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1. INTRODUCTION

Clouds and precipitation are expected to play an important role in climate change (Stephens and Greenwald
1991), and in the future will be important for initialising mesoscale prediction systems (e.g. Wright and Gold-
ing, 1990). However, establishing characteristics of cloud and precipitation at high spatial resolution remains a
problem (e.g. Hou et al. 1993). Over oceanic and data sparse regions this information can, with varying de-
grees of success, be inferred from passive visible and infrared satellite measurements (e.g. Lovejoy and Austin,
1979; Arkin, 1979; Wu et al., 1985; Rosenfeld and Gutman, 1994). The incidence of cloudy, partially cloudy
and cloud free fields of view have been determined by both multi-spectral threshold (e.g. Saunders and Krie-
bel, 1988; Stowe et al., 1991; and Gutman, 1992) and spatial coherence (Coakley and Bretherton, 1982)
methods. More recently, using pattern recognition approaches, cloud morphologies over complex terrain have
been estimated from higher order spatial textural information in satellite radiances (e.g. Parikh, 1977; Ebert,
1987; Welch et al., 1988; Tovinkere et al., 1993; Chou et al., 1994). Indeed, Welch et al. (1988), using gray-
level co-occurrence textural information alone, indicate that stratocumulus, cumulus and cirrus clouds can be
identified using a single LANDSAT TM band. Wu et al. (1985) collocated radar data with geostationary satel-
lite data and by combining spectral and spatial information were able to show that three classes of rain-rate
R), R<05mmh!,05<R<50mmh, and R >5 mm h'!) could be diagnosed from low resolution
infrared and visible imagery of deep convective systems.

However, many reported pattern recognition classification algorithms have been developed from small sam-
ples of independent data, with the result that their general applicability is unclear. Welsh et al. (1988) used 12
stratocumulus, 7 cumulus and 2 cirrus cloud field images to specify the spatial characteristics of these cloud
classes. Ebert (1987) used 3 Global Area Coverage (GAC) resolution AVHRR polar orbits to determine the
characteristics of 18 surface and cloud classes, while Tovinkere et al. (1993) defined a 10 class classifier from
data in 6 Local Area Coverage (LAC) AVHRR passes. Wu et al. (1984) derived their rain-rate estimation
discriminant functions from 29 GOES-2, GOES-4 and SMS-2 observations spread over three years. While it is
possible to label large numbers of cloud class samples from few images, the measurements are clearly not in-
dependent, so reducing the number of degrees of freedom in the labelled data. To establish stable class statis-
tics it has been suggested that the sample size for each cloud class should be at least 10 to 20 times the number
of classes (Tovinkere et al., 1993).

Labelling or training strategies have also varied - from unsupervised clustering or segmentation (Chou et al.
1994), decision trees (Wu et al. 1985), subjective classification followed by relabelling (of errors) (Garand
1988) and supervised classification (Ebert 1987), to techniques utilising an analyst (Tovinkere et al. 1993). Un-
supervised techniques identify features that are separable in the measurement space without recourse to physi-
cal interpretation. Cluster classes determined in this way are sensitive to the characteristics of the observing
system and the choice of clustering variables. Supervised techniques attempt to define cloud classes known to
be associated with particular physical processes such as, stratocumulus cloud capped by a boundary layer in-
version, mesoscale organised cumulus, mid-level altocumulus etc. However, with this approach there can be
no assurance, apriori, that all such cloud classes will be separable given the satellite measurements.

In the research reported here, a very large sample of LAC AVHRR data has been collocated- with radar esti-
mated precipitation at three southern hemisphere maritime midlatitudes locations, where rainfall is dominated
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by frontal processes. This sample extends over a year and includes 257 orbits of data. Because of the diversity
of this dataset, independence in the training samples is assured, and the data are representative of all seasons.
Training samples have been determined for cloud free situations and 7 cloud classes (altocumulus, cirrostratus,
cumulonimbus, organised cumulus, nimbostratus, stratocumulus and stratus) using a supervising analyst label-
ling approach. Finally, it is noted that although AVHRR data have poor temporal resolution (four passes per
day, from two spacecraft), compared to geostationary systems, they do have high spatial and radiometric reso-
lution, and sample the atmosphere in 5 wavelength regions. Consequently it is expected that an optimal pat-
tern recognition, rather than decision tree cloud classification scheme might be developed from these data, and
the relationships between the high resolution radiometric, spatial and radar precipitation data investigated.

2. DATA

The areas for which data have been collected are shown in Fig. 1 and are centred on the sites of the three S-
Band radars, Mt. Tamahunga (36.30°S, 174.71°E at 453 m above mean sea level (amsl)), Outlook Hill
(41.31°S, 174.64°E at 534 m amsl ) and Rakaia (43.79°S, 172.02°E at 124 m amsl ). Each area is 480 km
square, corresponding to the radar’s maximum range of 240 km.

2.1 Satellite Data

The AVHRR instruments used here (NOAA11 and NOAA12) are five channel devices, having nominal spec-
tral intervals:- 0.55 - 0.68 um (1); 0.725 - 1.1 um (2); 3.55 - 3.93 pm (3); 10.5 - 11.5 ym (4), and 11.5 - 12.5
um (5). These channels provide measurements from the visible (i.e. 1 and 2), near infrared (i.e. 3) and infrared
(i.e. 4 and 5) parts of the spectrum. The data are at LAC spatial resolution, yielding an instantaneous field of
view (ifov) of 1.1 km at nadir, and are stored and analysed at 10 bit (full) radiometric resolution.

Channel 1 and 2 bi-directional reflectances of the scene were calculated using the pre-launch calibration coef-
ficients and a correction for the solar view angle (equ 1).

_ GxCHYy o)
Ry cos 6

Here R, is the bi-directional reflectance for channel n, G, and Y, are the gain and intercept (from Appendix B
of Planet, 1989), C is the raw count value, and 6 the solar zenith angle at the ifov.

The longwave thermal channels were calibrated using the non-linear method given in Planet (1989). Thermal
difference (T4 = T5, T4 -T3) channels were also computed - the latter for night time data only. For daytime

data, a visible ratio channel ( v,) was computed using the approach suggested by Gutman (1992).
R,
V2 - ITI— 1 2)
This quantity is equivalent to the definition of the Normalised Difference Vegetation Index (NDVI) and has a
value near zero for cloud.

Regions of sunglint, or specular reflection, were identified through examination of the sun - ifov - sensor ge-
ometry using the method of Stowe et al. (1991), who calculate the angle y (equ 3)

y = cos~![cos(zy)cos(Z) + sin(zy)sin(z)cos(A)] 3)

where z, and z are the solar and satellite zenith angles (as viewed from the field of view) and A is the relative
azimuth angle between the sun and the satellite. Here, sunglint is assumed whenever vy is less than 15 degrees.

The AVHRR data are remapped onto Lambert Conformal projections at 1 km resolution and full radiometric
resolution.
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Figure 1: Maps of the orography, at 2 km resolution
for each radar domain. (a) Mt. Tamahunga, (b)
Outlook Hill and (c¢) Rakaia. The lightest shading
shows areas lying between 50 and 300 m elevation,
while the darkest shading indicates areas lying above
2500 m. Intermediate levels increase in elevation
intervals of 300 m

2.2 Radar Data

All three radars operate at a wavelength of 5.6 cm, have nominal beam widths of 0.86°, 2 km range bins and
are controlled by Ericsson Weather Information System (EWIS) software. They generate polar-volume scans
at 10 elevations, the lowest four of which are 0.5°, 0.9°, 1.3° and 2.5°. Full volume scans are carried out every
15 minutes and take 2 minutes to acquire. Post processing of these data allow corrections to be estimated for
errors induced by hill and sea clutter, attenuation, beam blocking and the vertical profile of reflectivity effects.
Rain-rates were calculated using the standard Z-R relationship for frontal rain ( Z (mm6 m'3) =200 R"6), and
rectified onto the same grid as that used for the satellite data

Ground and sea-wave clutter were identified through their vertical and horizontal structure signatures. Wave
clutter shows a rapid decrease of reflectivity with height, while hill clutter can be identified by comparing the
horizontal reflectivity patterns over 5 » 5 tiles (centred on the target) with those arising from the topography’s
height and slope. This approach is used, since hill clutter tests based on Doppler data often fail owing to tree-
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motion induced signals. Beam blocking effects were corrected by estimating the fraction of the beam blocked
by the hills, assuming propagation effects can be modelled using the 4/3 Earth approximation and the antenna
pattern by a sinc function. The attenuation correction algorithm used was iterative and similar to that of Hil-
debrand (1978), where the attenuation per kilometre is estimated from the measured rain-rate R (mm h™Y). Fi-
nally, the precipitation at the surface must be inferred from radar measurements sampling precipitation at some
range-dependent height above the Earth’s surface. Since the vertical profile of reflectivity (VPR) varies in
both space and time a model, of the VPR is first estimated using an approach similar to that of Gray (1991),
where the average (spatial) VPR is estimated from the radar volume scan data.

Although much effort has been put into quality controlling the radar data, possible errors in the surface
reflectivity estimate of 1-2 dB could still be present (Austin 1987). An underestimate of 2 dB at a reflectivity
of 37 dBZ (a 5% error) represents an increase in rainfall rate of 7.5 to 10 mm h™!. Also since the terrain around
the radar sites is rugged (see Fig. 1) it is not always possible to remove all hill clutter effects, consequently
these areas were avoided in the following analysis.

3. METHODOLOGY

Pattern recognition algorithms are highly dependent upon the span of the data utilised in the training (or label-
ling) phase, and on the training method employed. In this study samples have been drawn from 105 NOAA11
and 152 NOAA12 passes during the period 14 December 1993 to 31 November 1994.

The training (or sample labelling) strategy pursued here is to use an analyst to identify (or label) specific cloud
classes on any particular image. To enable the analyst to accurately label cloud samples a comprehensive set of
diagnostic tools was provided.

3.1 Spatial Characteristics

The spatial, or textural characteristics of an image can be described by specifying statistical measures of the
distribution of “gray levels” in an image. Weszka et al. (1976) carried out a comparative study of a number of
texture measures, including Fourier power spectrum analysis, second-order gray-level statistics, gray-level
difference statistics, and gray-level run length statistics. They found that features described by both the
second-order and difference statistics were best able to separate terrain features, and that the accuracy of these
two methods was essentially identical. Since the gray-level difference method is computationally less expen-
sive than the second order method, it has been chosen for this work.

Gray-level difference (GLD) statistics measure the local properties of the absolute differences between pairs of
gray-levels in an n x n pixel image area. A GLD probability density function for the image can be defined, and

has the form P(m) 4.0 where the m th entry is the relative frequency of occurrence of gray-level difference m
= | i = j | for pixels separated by d pixels in direction 6 (relative to the horizontal). If the texture is coarse,
relative to distance d, then the differences m might be expected to be small and P(m) 4 will be large for

small m, and small for large m. Conversely, for fine texture, where d is comparable to the scale of the features
in the image, P(m) d6 will be large for large m. Accordingly, measures of the texture in an image may be

computed from estimates of the spread in P(m) at different separations and angles. Conventionally four meas-
ures are utilised, where m = | i — j |, and N is the number of gray-levels :-

1. The mean, equ. (4):-

N
Hap = ZmP(M)do @
m=0 ’

which, if smx;ll, indicates that the GLD values are concentrated near the origin (i.e. m=0) and the texture is
“coarse” relative to the spatial scale d.
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2. The contrast, equ (5):-

N
CON dg = ZﬁmzP (m) 40 ®))
or second moment of the P(m) density funzlti_on, measures the variability of the gray levels in the image.

3. 'The angular second moment, equ (6):-

.
ASMyq = Z[P(m) 4 9]2 (6)
=0 :

m

which measures the degree of homogeneity in the image. A small ASM implies that the gray-level differ-
ences are all similar and the sampled area has textural variations on a spatial scale close to d, whilst a large
ASM indicates that there are dominant gray tones present (e.g. when the GLD values are concentrated
near m=0).

4. The entropy, equ (7):-.

N
ENT do =~ ZOP(m) 48 log P(m) 49 @)
m=

This parameter indicates whether the “texture” is organised. This is largest when the P(m) are equal, or
randomly distributed, but is small when they are very unequal.

Each parameter is computed at four angles (6 = 0°, 45°, 90° and 135°), and any number of pixel separations d
while directionally averaged measures of texture are computed by averaging the parameters over all four direc-
tions.

The GLD statistics are nominally defined on gray levels (or counts), however, calibrated binned physical vari-
ables are used here. This approach ensures that the textural characteristics from different NOAA series space-
craft may be combined together.

Table 1: Features computed for all data (including difference and ratio satellite channels, and radar

data)

Feature Feature Description Feature Feature Description
Number Number

1 Mean 10 Minimum GLD Contrast

2 Minimum 11 Maximum GLD Contrast

3 Maximum 12 Directionally averaged GLD ASM

4 Standard Deviation 13 Minimum GLD ASM

5 Average Roberts Gradient 14 Maximum GLD ASM

6 Directionally averaged GLD mean 15 Directionally averaged GLD Entropy

7 Minimum GLD mean 16 Minimum GLD Entropy

8 Maximum GLD mean 17 Maximum GLD Entropy

9 Directioanlly averaged GLD Contrast 18 - 33 | Four (8) components of all GLD statistics

P

3.2 Training Strategy

The analyst is provided an interactive tool (called ENHANCE (see Kidson et al. 1992)) to diagnose cloud
types in some image. ENHANCE allows the primary data sources (i.e. the AVHRR and radar data) to be
viewed, standard enhancement curves modified to bring out specific features (e.g. by histogram equalisation),
sub-areas enlarged, and vector fields, sgch as radar rain-rate overlaid. Difference and ratio channels (e.g.( T4 =
T3), (T4~ Ts), v,) may also be displayed. Centring the cursor on some cloud of interest, results in the calcu-
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lation and display of the spectral and spatial characteristics of an 8 x 8 (or 16 x 16, or 32 x 32), pixel square
area surrounding the cursor. The characteristics displayed include:-

¢ single and multi-variable histograms of all data, including radiances, and derived channels.

¢ Breatherton Coakley (Molnar and Coakley, 1985) spatial coherence plots and channel by channel plots on
2 x 2 tiles within the 8 x 8 selected areas

¢ the features noted in Table 1 (for all data, including radiances and derived channels).

From these diagnostics, single layer clouds are classified according to the meteorological situation and the ap-
proximate constraints noted in Table 2. This procedure has been called SRTex (Satellite Rainfall by Texture)

Table 2: Cloud type labelling rules for SRTex classification

Cloud Name Characteristics

Class

St Stratus Rain No T4 Warmer than 0 °C
(T4~ Ts) Positive R; (Daylight) High
(T4 - Ty) (Night) Positive (> 0.5°C) Dimension Large area

Ns Nimbostratus | Rain Yes (no for As) Dimension Large area
(T 4- T5) Positive Includes non-raining
T, range -1to-30°C altostratus

CiC |Cirrus over Rain Allowed T4 < -25°C

Cloud (T 4" T5) Positive (> 0.5 °C) Dimension Linear structure,
underlying clouds
evident (or raining).

Sc Stratocumulus | Rain Possible Dimension Large area - granular
(T 4" TS) Positive
T4 Warmer than 0 °C

Ac Alto-cumulus | Rain Lessthan Smmh™! | Dimension Large
(T4 E T5) Near zero

Cu Cumulus Rain Not necessary Dimension Of the order of 10-20
(Ty - Ts) Maybe negative, or km, (e.g. squall line,

near zero open-cell, embedded)
Cb Cumulonimbus | Rain >6mmh™ Dimension Greater than 20 km
(isolated) (T4 = T5) Negative or near zero

Cirrus shield Present

NC No Cloud

The climatological sea surface temperature for the selected area and housekeeping information such as the
area’s location, the satellite characteristics, and an analyst identifier, are saved along with the satellite, and ra-
dar data.

Altogether 257 collocated radar and satellite images were examined, spanning all seasons, leading to a com-
bined training set of 4323 samples - certainly large enough to satisfy sampling constraints for an 8 class
discriminant function..

4. Cloud Characteristics

Tukey box plots (Tukey, 1977) of cloud class characteristics of T (sample mean, GLD mean, and entropy),
(T4 - T5)(mean), (T4 = T3)(mean) and ) (mean) are given in Fig.1 below.
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While this figure includes interesting detail, the main points might be summarised as follows:-

e While the T4 mean (Fig 1a) does not discriminate cirrus and cumulonimbus classes, the GLD texture
measures do (e.g. Fig 1b). The cumulonimbus is expected to include a cirrus shield, but this is transmis-
sive with the result that the cumulonimbus remains much “grainier” than cirrostratus, and is therefore
separable.

¢ The lowest GLD means (Fig 1b), indicating coarse texture relative to the GLD separation parameter, d, are
associated with those classes having the lowest expected spatial structure (i.e. classes NC and St).

¢ The Entropy statistic (Fig 1c) confirms that the no cloud (NC) and more stratiform clouds (i.e. St, Sc,
CiC) show the most “organised” structure while the cuamuliform clouds show the least.
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Figure 1: Box plots of spectral gﬁﬁ%%%tial characteristics of the labelled cloud classes and 8 x 8 pixel samples.
(a) Mean T4 temperature, (b) GLD Mean T4 , (¢) GLD entropy T4, (d) Mean (T4 - T%), () Mean (T, - T3)
(night time data) and (f) -v, mean. The horizontal line in the “box™ represents the sample median and the upper
and lower ends of the box dre the hinges or medians of the remaining halves of the data. The whiskers are 1.5
times the absolute difference between the respective hinge and median, and all outliers are represented by either
asterisks or small circles (i.e. greater than, 3 times the absolute difference between the median and respective
hinge.) /, i J
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e The textural characteristics of stratus are very similar to those of the no-cloud class at a GLD separation
(d) of one pixel (i.e. 1.1 km). However during night hours stratus is detectable radiometrically. The tem-
perature difference (Ty-Ty (Fig le) is positive for opaque water clouds since their emissivity at 3.7 pym
is near 0.8, while at 11.5 pm it is close to 1.0 (Hunt 1973). The v, data provide a similar capability during
daylight hours. For cirrus clouds, the difference has the opposite sign, and may be quite large due to trans-
mission through the cloud (Olsen and Grassl 1985). These differences can, however, be confounded when
the temperature varies across an ifov (e.g., a partially cloud filled) since the 3.7 um radiance is about three
times more sensitive to temperature changes than the 11 pym radiance.

*  For low clouds and no-cloud (T, - T5) (Fig 1d) is positive and provides a measure of the amount of water
vapour above the cloud / surface. Cirrus clouds also yield positive (T, — Ty) differences since the emissiv-
ity of cirrus at 11 pm is lower than at 12 ym (Inoue, 1987) albeit at lower temperatures (74 or T5).

e The ratio channel 12) (Fig 1f) is related to Saunder’s and Kriebel’s Q, since v, =Q - 1, (Saunders and
Kriebel, 1988) and for the labelled cloud classes shows characteristics similar to those described by these
authors.

These results suggest that the spatial parameters can be usefully employed in the cloud classification problem
since they provide information not present in the radiative measures when treated independently.

Probability plots (not shown) of the radiative and textural data by day / night separation indicated no day /
night signal in the thermal channels, as would be expected from samples over the sea. As a result of using
calibrated data no significant intersatellite differences were detected.

5. CLOUD TYPE DISCRIMINATION

Using the radiative and texture characteristitics of a sufficiently large sample of cloud classes identified in the
training, or labelling stage, a Bayesian discriminant function can be developed to classify cloud classes in inde-
pendent data. This approach while utilising all available information such as the span of each class, its ex-
pected probability of occurrence, and the feature vector mean and covariance structure, does assume that the
underlying probability distribution is of known form. When that distribution is multivariate Gaussian, and the
measurement errors are unbiased, then a measure of the distance between a given (observed) feature vector, f,
and the i th cloud class, 8;M is:-

m 1
g(f) = log[P(@)) / (2T*|Sg|?]

T A ®)
- Le-5)'sp'd- 1)

where f is the feature vector of radiative and spatial data (dimension m), P(®;) the a priori probability of oc-
currence for the i th cloud class, and fi and sfi the associated class mean and covariance. The a posteriori

probability of the observed feature vector belonging to the i th class of N possible classes is just:-

N
p@;| = exp(gD) / Y _exp(g;D) ©)
j1
and the expected class membership can be estimated by determining the class (i ) that maximises the probabil-
ity p(o; | ) (i = I, N) of equ9.

The accuracy of the discriminant function estimator is dependent upon; the number of classes to be identified,
their expected probability of occurrence, the class separability in feature vector space (including choice of fea-
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ture vector elements), and “measurement” noise. Some classification errors are inevitable, since the labelling
process utilised information not available to the discriminant function, such as cloud extent and relationships to
synoptic features. However, in other cases, cloud classes will have significant overlap in feature space due to
their similar physical origins. In these cases, e.g. the altocumulus and cumulus classes, misclassifications will
occur but are not be expected to have high cost.

5.1 Night Equations

A number of discriminant function models were investigated and the results given in Table 7, where the skill
of each model is summarised by the fraction of correct classifications, the Kuiper's skill score (see Murphy
and Katz, 1985), and the Probability of Detection (POD) of the cumulus, no-cloud and stratus classes. Gener-
ally, the inclusion of spatial statistics increases the skill of the discriminant function considered across all eight
classes. However, a more detailed examination of the results can be performed by considering the POD values
for the three “cloud” classes noted.

Table 3: Discriminant function model skill characteristics for 8 class (Ac, Cb, CiC, Cu, NC, Ns, S¢, St)
classification of nighttime data using equal prior probabilities, i.e. P(® ) = 0.125. POD is the
Probability of Detection.

Model Feature Vector Fraction | Kuiper’s | POD | POD | POD
id Correct Index Cu NC St
1 T4, ( T4 = T5) 0.521 0.454 0.15 | 0.74 | 040
2 T4, ( T4 = T3) 0.576 0.508 0.14 | 0.93 | 0.69
3 T4, (T4 -3 T5), ent (T4) 0.630 0.577 0.60 | 0.77 | 049
4 T4, (T4 = T5), (T4 = T3) 0.561 0.492 0.18 | 0.83 | 047
5 T4, (T4 = T5), (T4 - T3), ent (T4) 0.666 0.614 0.61 | 0.85 | 0.55
6 Ty (Ty—Ts), (Ty—Ty), ent (T4), u (T4 - T5) 0.673 0.621 0.58 | 0.86 | 0.54
7 T4, (T4 - T3), ent (T4) 0.676 0.620 0.59 | 094 | 0.61
8 T4, (T4 = T3), ent (T4), u( T4 = T5) 0.684 0.629 0.57 | 0.93 | 0.59
9 T4, (T4 = T3), ent (T4), u( T4 = Ts), con (Ty) 0.681 0.628 046 | 091 | 0.56

Comparison of the NC and St PODs from models 1 and 2 shows that use of the radiative information in the T}
temperature significantly improves the skill of the discriminant function. The reduction in stratus misclassifica-
tions observed in Table 3 may seem less than might be anticipated from consideration of the radiative informa-
tion only - especially when compared with rule based, threshold driven cloud classification schemes such as
CLAVR (Stowe et al 1991), MAGIC (Gutman 1992) and APOLLO (Saunders and Kriebel, 1988). However
the Bayesian discriminant function finds the most likely class based on the information in all feature vector
components simultaneously. Addition of the T, entropy spatial statistic to the T, and T model (cf. models 1
and 3) leads to only small improvements in skill. However, adding the T entropy to the Ty and T3 model (cf.
models 2 and 7) degrades the skill of the discriminant function in regard to POD of NC and St classes. Those
cloud classes (St and Sc) most likely to be misclassified as NC all have similar spatial characteristics (i.e. low
mean (u), contrast and entropy, and high Angular Second Moments) as noted in Fig. 1. The improvements in
the POD for the NC class are necessarily mirrored in the POD values for the St class. Clearly, when the spatial
or textural characteristics are similar, the radiative information dominates.

When the POD values for the mid to high level Cumulus class are examined, as well as the Kuiper’s Index for
the skill of the discriminant function over all classes, it is clear that the use of spatial statistics significantly
improves the skill of the discriminant function models. A number of other feature vector models were tried,
including those using the minimum, maximum and range statistics of the basic and GLD directional statistics.
Although Wu et al. (1985) found these to be of primary importance for identifying raining regions in deep
convective clouds, use of these measures did not improve the skill of cloud discrimination functions.
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5.2 Day Data

Daytime equations were derived from those data having local solar zenith angles less than 81.5° and lying out-
side the sunglint region (i.e. y > 15°). The 2) ratio channel alone can détect the no-cloud class with some skill,
but it has little skill at discriminating cloud type. As additional features are included, the skill of the
discriminant function improves to values that are the similar to those for the night data

6. RAIN-RATE ESTIMATION

To examine the relationships between the collocated rain-rate and satellite measurements, those data where the
time difference between observations is greater than 10 minutes were excluded, as were rain-rate samples in-
ferred from data above the bright band. The hypothesis that the within class variance in rainrate could be esti-
mated from the multi-spectral and spatial information in the AVHRR measurements was then examined using
standard stepwise multivariate (linear) regression methods. In the best case, altocumulus, 25% of the variance
(adjusted R2) could be explained using T4 predictors [1] L 121, [71, [8], [16], and [17], and ( T4 = T5) predictors
[11, [3] and [16]. These features provide estimates of cloud top temperature, cirrus or water-vapour contamina-
tion, and provide a measure of the vertical development in the clouds. However in the worst case, cirrostratus,
only 10% of the rain-rate variance could be explained using stepwise linear regression methods. This result is
not surprising though, since the rain processes are largely decoupled from the overlaying cirrostratus.

To determine whether the rain-rate estimation skill was limited by the assumption of linearity, non-linear inter-
actions were considered. The class spectral and spatial data were clustered using an unsupervised method (K-
Means). Given some desired number of classes, this approach maximises the between cluster to within cluster
variation. Clustering on the most significant variables identified in the stepwise regression, the altocumulus
data were divided into two subsamples. The mean rain-rates associated with these sub-samples were 0.6 and
1.2 mm h™', and are significantly different at the 99.5% confidence level. The lower rain rate cluster is associ-
ated with warmer temperatures, lower entropy and little directionality in the 7y GLD mean. The nimbostratus
class showed similar separability in rain-rate.

An alternative approach is to attempt to determine whether there is sufficient information in the satellite data to
delineate the rain and non-raining parts of clouds (e.g. see Lovejoy and Austin, 1979). To test this hypothesis
the data were grouped into rain and no-rain sub-classes and significance tests of the rain / no-rain differences
computed for all features noted in Table 1. Cloud class specific Bayesian discriminant functions were esti-
mated from the most significant, independent data using prior probabilities (P(w;) ) determined from the rain /
no-rain frequency characteristics of each class.. The resultant feature vectors, and fraction of correctly classi-
fied data are given in Table 4. Owing to sample size limitations, no results are given for the cumulonimbus
class.

Table 4: Rain /[ no-rain feature vectors and skill scores. The item in the {.} braces refers to the entries

in Table 1.

Cloud Prior Probability Feature Vector Fraction
Class Rain No-Rain Correct
Ac 0.53 047 | T [17], T,[12], T416], T,[71, T4I8, (T4~ Tg)[7] 0.64

Cb n/a

CiC 0.50 0.50 |( T4— T5)[3] 0.60
Cu 0.07 0.93 T4[2] 0.93
Ns 0.18 0.82 [ T46], T,[7], T 8], T49], T,412], T,[3] 0.85

1 See Table 1 for definition of features.
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Evidently, for cumulus cloud, the cloud top temperature may be used to delineate regions in the cloud where
rain is reaching the surface, although the accuracy of this prediction is low since nearly all the labelled cumu-
lus clouds in the sample were precipitating. However the feature vectors identified for the altocumulus, cirro-
stratus and nimbostratus all demonstrate positive skill at delineating rain / no-rain regions in cloud.

Interestingly, while rain / no-rain areas in cumulus could be delineated using cloud top temperature, in the
other classes classes, cloud top temperature is either not related to the delineation of rain / ho-rain areas (e.g.
cirrostratus) or is weakly linked. For altocumulus and nimbostratus, the most significant features are of a spa-
tial nature.

7. CONCLUSIONS

Based on analysis of an extensive, 257 orbit, 12 month sample of AVHRR LAC data, there is good evidence
that 8 x 8 km resolution scenes can be classified into altocumulus, cumulonimbus, cirrostratus, cumulus, nim-
bostratus, stratocumulus, stratus and no-cloud classes with significant skill (Kuiper’s skill scores of the order
of 0.63). Using equal prior probabilities, the percentage of samples correctly classified is of the order of 70%
(over all classes) for a discriminant function utilising 3.7 (T3), 11 (T and 12 pm (T5) temperatures, GLD
contrast, entropy and mean spatial textural features. Excluding the spatial information reduces the percent cor-
rectly classified to 56%, and the skill score to 0.49. Although these results are for dependent data, given the
size and span of the samples it is unlikely that the results will differ greatly when applied to independent data.

Although it is true that adding the spatial information does improve the overall accuracy of the discriminant
function, some cloud types are more reliant upon this information than others. For example the radiometric
information is the most important component for discriminating stratus and cloud free scenes, since the spatial
statistics for these classes are quite similar and there is a a strong radiometric signal in the infrared measure-
ments. However, for upper level stratiform and cumuliform clouds the information in the spatial statistics is
significant.

Results from attempts to model rain-rate from the satellite radiometric and spatial data show mixed results.
The cloud classification algorithm is able to discriminate raining (altocumulus, cumulus, cumulonimbus, cirro-
stratus and nimbostratus) from non-raining classes (stratus and stratocumulus), although these classes could
also be delineated using simple temperature threshold methods. For raining classes, it has also been possible to
show that the rain / no-rain samples can be delineated with some skill, and that the most useful features for this
purpose are not generally radiometric. In such cases the degree of directionality in the GLD statistics of the
radiometric data is important. Within class rain-rates can also be modelled for the altocumulus and cumulus
classes, at the level of 20 to 25% explained variance. For both these classes, the sets of GLD statistics which
measure the spatial structure in the data are important predictors.

While these results do not verify those presented by Wu et al. (1985), it should be noted that they concentrated
on deep convective systems, which tend to have well defined growth and decay phases. These phases might
also be expected to be reflected in there textural characteristics, and hence improve the skill of the rain-rate
discrimination algorithm. The data sets used here reflect the characteristics of mid-latitudes frontal rain, which
are clearly different.
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