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1 INTRODUCTION

Besides it’s main dedication to provide water vapour and temperature sounding information the Ad-
vanced Microwave Sounding Unit (AMSU) onboard NOAA-K allows to derive hydro-meteorological
parameters, such as columnar water vapour content, cloud liquid water, and precipitation. These pa-
rameters are necessary for monitoring the global energy and water cycle and for other climatological
applications. In this study algorithms to derive surface rain rates (RR) and water vapour path (WVP)
over open water surfaces are introduced. Both algorithms are based on inversion of radiative transfer
simulations. While for WVP a linear regression algorithm is employed, for RR linear regression is

compared to the results of a neural network.

2 METHOD

2.1 Radiative Transfer Simulations

All radiative transfer calculations were performed using a polarized eddington model described in
Bauer and Bennartz (1997). Gaseous absorption was calculated using the algorithm of Liebe (1985).
The emissivity of the ocean surface was parameterized according to Schliissel and Luthardt (1991).
Different cloud types were adapted to the model with liquid water contents and droplet size distribu-
tions according to Silverman and Sprangue (1970). All ice particles were assumed to be spherical and
to have the same distribution as liquid water droplets. Both phases were allowed to occur at the same
level, the relation between ice and liquid water was determined according to Wu and Weimann (1984).
The droplet size distribution and intensity of rain was parameterized using the Marshall-Palmer ap-

proach. For size parameters greater than 0.1 Mie-scattering was applied.

The model was applied to 1477 globally distributed radiosoundings taken in the period from August
1987 to August 1988. First, for each radiosounding a cloud-free simulation was performed. Second,
an additional cloudy simulation was performed, if the relative humidity at one or more levels exceeded
95 % (valid for 245 radiosoundings). To account to first order for beam-filling each cloudy simulation
was mixed to a randomly varied extend with the corresponding cloud-free simulation leading to com-

binations of simulations describing partially cloudy situations. Three dimensional radiative transfer
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effects are still not included.

The same method was applied to simulations including precipitation (and clouds). First simulations
were performed with precipitation (on the 245 radiosoundings mentioned above). These were randomly

mixed with cloudy and cloud-free simulations.

Simulations were performed for the channels listed in Table 1 for the zenith angles 6 =
0, 10, 20, 30, 40, 50, 60deg. A randomly distributed gaussian noise was added to each simulation. The
rotation of the polarization plane of the AMSU measurements was taken account for, cross-polarization

coupling was neglected.

3 RETRIEVAL OF WATER VAPOUR CONTENT

To allow for the derivation of WVP even in cloudy situations, the use of low frequency AMSU-A
channels is desirable, since at low frequencies the transmissivity of non-precipitating clouds is high.
However, emission of cloud liquid water considerably affects the measured brightness temperatures.
Experiences with the Special Sensor Microwave/Imager SSM/I (Schliissel and Emery, 1990) suggest
the use of a two frequency algorithm to derive WVP and simultaneously correct for liquid water

emission. The following models for the derivation of WVP are examined:

q = ag + ay * 10g(310.0 — Tga3) + az * log(310.0 — Tga1), (1)

q = ag + a1 *10g(310.0 — Ta3) + ag * log(310.0 — T31) + a3 * log(310.0 — T323)2, (2)

where q is the WVP and Tga3 and T3 are the measured brightness temperatures at 23.8 GHz and
at 31.4 GHz, respectively. Since the zenith angle and the polarization state of the measurements varies
with the AMSU’s scan position (see Table 1), thev regression coefficients were derived for all zenith angle
considered in the radiative transfer simulations. The regression coefficients a; were obtained from the
cloudy dataset by excluding clouds with liquid water path higher than 300g/m?. This threshold has
been chosen since non-precipitating clouds with liquid water path higher than 300g/ m? are considered
to be unlikely (Grody, 1993).

For model 1 the dependency of the regression constants and of the rms-error of the regression
on zenith angle is shown in Figure 1. The variation of the regression coefficients a; with zenith
angle is small, as is the variation of the rms-error. A moderate increase of rms-error associated with
decreasing a;’s towards high zenith angles can be observed, reflecting the increasing optical thickness

of the atmosphere.

Figure 2 shows the rms-error and the bias of the regression model 1 as functions of the WVP.
Even though the rms-error does not exceed 2.2kg/m? and the overall rms-error is small (1.44kg/ m?),
a significant dependency of bias on WVP is found. While for values less than about 20kg/m? WVP
is underestimated, a systematic,lovefestima,tion of WVP occurs for values higher than 25kg/m?. A

similar but weaker trend has been observed for WVP retrieval algorithms for the SSM/I (Schliissel
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and Emery, 1990). The introduction of a quadratic term in model 2 corrects for this behaviour. As
shown in Figures 3 and 4, the variation of regression coefficients with zenith angle increases. Especially
the regression constant ag and the quadratic term represented by (I'3 show significant dependencies
on zenith angle. The signal dependent bias decreases. Only water vapour contents below 10kg/m?
appear to be systematically underestimated. Between 10kg/m? and 60kg/m? no systematic trends

occur.

4 RETRIEVAL OF PRECIPITATION

For the retrieval of precipitation two different methods were compared. First, a multispectral regression
was established. Second, a backpropagation neural network was trained based on the same input

dataset as used for the regression. The regression model is given by

RR = ag+ay *1log(310.0—Tgo3) +as+log(310.0—Tp31 ) +a3+log(310.0—Tps2.8 ) +as*log(310.0—Tp150)
(3)

Figure 5 shows the dependency of the regression constants and the rms-error of the regression
model on zenith angle. The comparably small rms-error is dominated by small rain rates occuring
more frequently in the dataset than higher rain rates. This has been taken account for in the regression
by weighting the relative contribution of each simulation with the rain rate dependent inverse density
of simulations. Hence, the impact of densely represented areas on the regression coefficients is reduced,
while the impact of sparsely represented areas is enhanced. A more meaningful representation of the
errors associated with the regression model is given Figure 6. A significant signal dependent trend
in bias and rmse is observed for the regression model. The introduction of higher order terms as

successfully demonstrated for WVP did not yield better results for this case.

The neural network consists of four input neurons, 10 hidden layer neurons and one output neuron.
Each neuron of a given layer is connected to every neuron of the previous layer. The input neurons
are fed with the brightness temperatures of the same channels as used in the regression model. Due to
constraints of the neural network’s architecture the input channels had to be linearly transformed to
a range between |0, 1[. The output neuron represents the surface rain rate, again calibrated to values
between ]0,1[. Since the network’s number of free parameters is much higher than the regression’s
free parameters, the entire simulation dataset had to be split in two seperate datasets dedicated for

either training or testing the network.

Figure 7 shows the results of the network for the test dataset. Up to 7 mm/h rain rate no trend
in bias can be observed. For rain rates higher than 7 mm/h the network underestimates rain rate
systematically. Obviously, the network better represents the relation between rain rate and simulated
brightness temperatures than the regression model. The underestimation of high rain rates may have
physical reasons. The channels used for the retrieval are mainly located in the emission region below
50-60 GHz. In this frequency domain emission of liquid cloud and precipitation droplets leads to

an increase of the simulated brightness temperatures compared to the cold brightness temperatures
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observed for cloud- and precipitation-free atmospheres over ocean. Since this signal is directly related
to liquid precipitation, it is the most directly coupled with surface rain rate. The simulations show
saturation of this emission signal at about 7 mm/h for 31.4 GHz. This indicates that the bias of
the network above 7Tmm/h is physically determined. Although the impact of the spatial resolution
of the AMSU-A on brightness temperatures observed is not investigated in this study, Bauer and
Bennartz (1997) addressed this issue for a different sensor, but with comparable spatial resolution
(for the Tropical Rainfall Measuring Mission’s (TRMM) TRMM Microwave Imager (TMI)). Even
for the heavily precipitating large convective system examined in this investigation area averaged
precipitation rates above 8-10mm/h did not occur. Further problems using the emission signal at low
frequencies arise from emission of cloud liquid water deteriorating the emission signal of precipitation.
The relative importance of cloud liquid water emission increases with increasing frequency. While
frequencies lower than 20 GHz are only weakly affected by cloud liquid water, frequencies above 30

GHz are strongly influenced.

Besides the emission signal at low frequencies, scattering of precipitation-sized ice particles at higher
frequencies may allow to identify and quantify precipitation. However, the relation between large ice
particles at cloud top and surface precipitation rate is highly non-linear. The use of the scattering
signal at window frequencies above 50 GHz in inverse modelling techniques requires more complete
cloud and precipitation models, describing the relation between the amount of high level precipitation-
sized ice particles and surface rain rate. Simple cloud models as used in this study fail to render these
complex microphysical relations.Improvements may either be achieved by using radar measurements
describing the vertical and horizontal distribution of precipitation particles within clouds (Bauer et
al., 1996; Bauer and Bennartz, 1997) or by employing coupled hydrodynamical and microphysical
models describing cloud dynamics.

An empirical approach to derive precipitation information from the scatttering signal would be to
adjust the relation between the observed brightness temperatures and rain rates by means of colocated

radar or rain gauge measurements. Simmer (1996) emphasizes the need for calibration of algorithms

based on the scattering signal.

5 SUMMARY AND CONCLUSIONS

Retrieval algorithms for columnar water vapour content and precipitation were established. These
algorithms were developed for channel combinations available at AMSU-A/B. WVP can be derived
from low frequency AMSU-A measurements. This allows for the derivation of WVP even in overcast
situations with high liquid water path (LW P < 300kg/m?). The standard error of the retrieval is in
the order of 1.5kg/m?.

Retrieval of precipitation is investigated comparing a linear regression model with a neural network.
While the regression method leads to significant underestimation of high rain rates, the neural network
results are in better agreement with the simulations. However, retrieval of rain rates using AMSU

suffers from the lack of low frequen(;y ‘channels (below 20 GHz). The lowest available frequencies at
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23.8 GHz and 31.4 GHz are strongly affected by columnar water vapour content and cloud liquid water,
respectively. Further efforts will concentrate on a consistent physical approach to derive precipitation

information including sensor geometry as well as cloud microphysical and dynamical effects.
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Frequency | Bandwidth | NEAT | Polarization
(GHZ] [GH?z] (K] [deg]
23.8 0 0.22 90-0
31.4 0 0.21 90-0
50.3 0 0.28 90-0
52.8 0 0.20 90-0
180.3/3.0 1.0 0.70 90-0
180.3/1.0 0.5 1.06 90-0
183.3/7.0 2.0 0.60 90-0
90.0/0.9 1.0 0.37 90-0
150.0/0.9 1.0 0.84 90-0

Table 1 : AMSU-A/B channels for which radiative transfer simulations were carried out.
NEAT and Polarization values are taken from Saunders et al. (1994) .
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Water Vapour Path, 2—Channel Regress#on Model 1
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Figure 1 : Dependency of water vapour retrieval regression coefficients (upper panel) and
rms-error of regression on zenith angle for regression model 1 (upper panel).
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Figure 2 : Rms-error and bias of water vapour regression model 1 with respect to the
simulation’s water vapour content.
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Water Vapour Path, 2—Channel Regression Model 2
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Figure 3 : Dependency of water vapour retrieval regression coefficients (upper panel) and
rms-error of regression on zenith angle for regression model 2 (upper panel).
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Figure 4 : Rms-error and bias of water vapour regression model 2 with respect to the
simulation’s water vapour content.
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Rain Rate, 4—Channel R’egressi.on Model
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Figure 5 : Dependency of the surface rain rate retrieval regression coefficients (upper panel)
and rms-error of regression on zenith angle for regression model 2 (upper panel).
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Figure 6 : Rms-error and bias of the surface rain rate regression model with respect to the
simulation’s rain rate.
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Figure 7 : Rms-error and bias of the neural network’s surface rain rate estimate with respect
to the simulation’s rain rate.
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