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It 1s known that MSU data measurements are especially important in the remote sensing of atmospheric
parameters under cloudy conditions on the basis of TOVS spectral information of NOAA satellites. Actually
cloudiness is considered to be transparent in the MSU microwave region. This assumption simplifies considerably
the numerical solution of the inverse problem, because the spectral measurements of the infra-red region of the
spectrum on the basis of HIRS/2 information can be totally contaminated by cloudiness .

In the processing of MSU information there is a principal aspect involving the estimation of underlying surface
emissivity. There are different numerical schemes of MSU information processing. We will consider them by
looking at the example of one algorithm used broadly in practice, which consists in the estimating of emissivity,
using the measurement in "clear” channel 1 and than the estimating the vertical temperature distribution, using the
measurement in channels 2 through 4. Further we shall discuss the numerical solution of RTE for the microwave
region of spectrum, paying especial attention to the question of the mutual dependence of the accuracies of the
emissivity and temperature parameters being estimated.

I. Recursive estimation of desired parameters.
Let us consider the model of the measurements, based on RTE and some approximations of its parameters

(Weinreb et al. 1981):
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where: J is a satellite measurement; G is an unknown emissivity; T(p) is a desired temperature profile of pressure
p : t(p) is a transmittance function of the atmosphere; (.)g designates value of any parameter on the underlying

surface level; € - is an error of the measurement. In (1) the terms (I), (II) describe the upwelling and reflected

downwelling radiation, respectively. (1) describes a model of “transparent cloudiness”. Designating :

1 1
T, =Tp)up,) + [T(p)dn(p), J, ==T)up,)+7*(@,) JTp)*Edup), e=1-g,

(ps) w(ps)
let us transform (1) to the following form:
J=Jp+efp+& ()
(Jp corresponds to RTE with the "black” underlying surface (¢ = 1)). Let us estimate the order of accuracy of the
procedure mentioned above for consecutive estimation of "emissivity than temperature”. It follows from (2) that

s:(J—J(l)b)/J(l)r . (3)
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where are denoted: (.); parameters of the first MSU channel; J b (T),J Qx (T) are solutions of the forward

problems under the given temperature first guess T(p). To estimate the accuracy of the approximation (3),
substitute (2) into (3) and then rewrite it for the desired temperature variation T(p) = T(p) + x(p):

€= E+(J(l)b(x)—eJ(l)r(X)+§)/J(l)r(T) @
In (4) the second term describes the emissivity error estimation due to the uncertainty of temperature. In
substituting (4) in (2) for other MSU channels we obtain Jo @)= T (D) +J g (0) +E)M g, (T+x)/ Jge(D.

The latter means that the approximation error J(i)(8€) is proportional to the variation X(p) with the weight

J(i)r(T +x)IJ(1)r('T), Le. the disturbance of problem operator in (1) due to the emissivity estimation error Sg

generates error approximation correlating with the desired solution of the inverse problem and being proportional
to one. [t explains why we can degrade the first guess temperature profile located under cloud layer when sounding

in heavy cloudy conditions, the only MSU measurements are actually used to sound temperature: if the accuracy
of the first guess of used surface temperature ;i(p,) is significantly poorer than the accuracy of the used atmeospheric
temperature first guess T(p) ,'x(p,)[>|x(p), » then the surface temperature error X(pg) will be propagated by the

emissivity estimate into other channels. Such situation is not an exception, but rather the rule. It follows from the
above discussion, that we must solve nonlinear problem (1), because its linear approximation has a low efficiency.
Let us consider some approach for solving a non-linear problem. The inverse problem solution of (1) is known to be
an ill-posed problem, as Fredholms' equation of the first kind. To be solved numerically, (1) must be regularized,
1.e., We are approximating the initial problem (1) by some well-posed problem ( Tikhonov 1977 ), whose solution is
unique, stable, and corresponds to the solution (1) in some sense. [t can been shown that the statistical estimators

best correspond to the properties (1). We will consider the minimum variance estimator. Constructing the estimates
of desired parameters (X',S'), we suggest that in (2) parameters satisfy the following conditions:

- X is a random value with known covariance matrix R and zero mean;

- € is a random value with known covariance matrix S and zero mean, not correlated with X :

- € 1s free control parameter from some known interval of interest.

Under these conditions we obtain the following estimate for x(p) ( Rao 1965 )z

X=ReA®) (AP RO Ale)" +9) +1(5) ®
where: A(€)=AlKg)is a matrix of the algebraic system approximating (2) and A(g) = A+¢G, A=Al ], GQL];
f(ﬁ) is a measurement variation vector; (.)T and (.)'1 are transposition and inversion operators, respectively. To

estimate &€ we will use the normal solution of (2) under some given mean temperature profile T(p) =i(p):

£ = q(T),(D)Tss (I - J,(T) , ®
where (T)=1/(J ,(T)T"S_ l'J,-(T)) is a scalar variable. The error estimate (6) will be:
&xq(MI (D +s™ s(AE)ox 19 , ™

where e* is an unknown true value of emissivity. (7) is obviously more accurate than (3) due to the smoothing of

the influence of (x, &) . Ajoint system (5,6) can been solved recursively:
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T(n+1)=T+x(n) ]
q(n+1)=1/ I (T(n+ D) *s*J_(T(n+ 1))
e(n+1)=qn+ DI, (T + 1) *s (I~ I, (T +1) | (8)
f(n+1)=J - J(T,e(n + 1))
x(n+1)=R*AEm+ 1) *(AEem+ DPR*A(em+ )" +8) *f(n+1) J

with the initial vatue x(0)=0 . Because the sequence of estimates in (8) is monotonic and bound, one will converge

1o some solutions(i,g).

II. The filtering of the impact of error estimation of the undertying surface emissivity into the temperature solution.

% . A A 5 A & 2 . . o s A *
Let us examine the estimation X as the function of € ,X= X(€). Because estimation variation E=£—¢

is order m < 0.02 of magnitude, we can linearize X= X(€) in the point g :

xké) =x(")+ %l et de ©)

Then by substituting (7),(8) for (9) and retaining linear terms of = X(é) , we will obtain the following equation:
- . =y d T T -1 FYT o Q-1 -
x=x(e")+ q(T)E—{ R+A(e)"+(A(e)*R*A(e)" +S) ' *f(e) }‘ AT (T) 8 12 A(e7)*x
& e=¢€
It is worth noting that we can consider the derivatives of x(g) with respect to € due to the regularization of
problem. Considering x(s.) =X(g) , then it follows from the equation above that the value of the linear interpolated
estimate i(s') depends on the current value X(€) as
X(eT) = (E+LE") ok (10)
where: E is the identity matrix and

L(e')=qmi{ ReA(E) *(AEPRAE) +8)'91(e) || +T, (DT "*AE"). D

€=
To use (10), (11) we must know the value of 8‘ , but with the estimation £ being the only known. Let us consider

a substitution of the estimate £ into (11) instead of €": look at Appendix containing an feature analysis of

dife)
e

I(€) and & operators , and where the relation L(g®) & L(€) is established, i.e.

L(e") = ~q(T) -R* A(e) " #D(e) "¢ J, (T)rd (T) " #82 Ae)| s (12)
It is worth noting that the calculation of the solution (10) can be simplified because rank{l (€)} =1 and by
expanding preliminary solution f& i:ﬁv+éq/ LE)y*Xy =0}, where 1] is an arbitrary row of matrix L{&) from
(12), nT*L(é)'n:—cp ‘nT'n: 1 0<w<], é:§T'n , where 8 is a projection of X on vector T} : é=iT*T].
Then the solution is defined as

—iv+é(l—m)'ln (13)

>
|

Equation (13) can be interpreted in the following way:
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- in the solution X there is a component T] , such that the variation of the solution projection on T| is
analogous to the variation of emissivity © € in the sense of the variation of the right-hand side of the equation (1):
{6f(x =0n = 0,6e = 0)=58f(x=0,8¢ # 0)};

- T describes the linear dependence of the two unknown parameters and (13) defines the value of solution

projection on the vector 1 under the condition {&& = 0} ;

- vector X V 1s a unique, stable component of the temperature solution (5) not depending on ¢ .
Actually, the vector T] in solution (5) describes the value of an additional error due to the model error generated

by the "ambiguity” of equation (1). It follows from equation (9) that the variance of the perturbing signal due to the

2

model error is approximately equal to L* R» LT=w?. n*R»*»nq T’ o T'z . The influence of the

direction T) on the accuracy of the solution X ( ﬁ) is explained by results of the numerical examination (12)
for the measurement content of the MSU radiometer. Fig. | contains graphics of vector T] , calculated for different
kinds of atmospheric conditions and underlying surface types and diagonal matrix R . As seen from the figures,

the surface temperature is the principal variable, and there are two maxima in the atmospheric part of the solution

, ; . 2
component T| . The eigenvalue @ as a function of the surface temperature variance G 1, isdrawnon fig. 2.
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Fig.l Vector M ofvertical distribution of temperature estimation error due to emissivity estimation error for
different kinds of atmospheric conditions and surface types
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Fig.2 Dependance the weight of emissivity estimation error @ on the surface temperature variance Gy,

As seen in fig. 2, the uncertainties of surface temperature or the corresponding error of the emissivity estimate

A 2
will propagate into the solution X(€) along the direction T}, being proportional to the value Gy . This means

that in the atmosphere the value of the temperature error due to the disturbance of operator will be about 0.5-1.0 K

on the respective levels of the vector TN under the variation of surface temperature of about 5 K.
Finishing the consideration let us formulate an algorithm of simultaneous non-linear estimation of
atmospheric temperature profile and surface emissivity, based upon the results of the analysis being carried out

above:

1. Calculate the estimation (6) & = q(T)J, (T)"*S™'#(J - J,(T)) .

2. Calculate the estimation (5) X(g)=R#* A(e)T*(A(e)*R*A(e)T +8) '#f(e) in two points of
€=¢€ and €= €+ OE  where [5€| <.01 is an arbitrary disturbance of the estimation.

3. Design vector T = X(£) — X(€ + 8¢) and filter out the projection of the solution X(€)on it:

2(8) = %(8)- o1

Appendix
When considering the substitution ¢ from (7) into (11) and analyzing features of the operator L{(g), we

use following designations and relations::

;ﬂ = G, D(g) = A(e)*R*A(e)" +S , %'—)- — G*R*A(e)" + A(e)*R*G",
€ €
-1
dXe) _D(e)s dD(e) “D(e)", df(e) _ 3.(D).
de de

Then we obtain:
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L(g) = q(T){R-GT-D(e)-%f(s)vJ,(T)Tts-‘tA(sg
®
~R*A(e)*D(e) '*[G*R*A(e)" + A(e):R-GT]-D(e)—"f(e)-J,(T)T-S"-A(e) '
an '
~R#*A(e)*D(g) '#J,(T)*J (T) S " A(c )}
() J

(14)

As it follows from (14) :

- rank{L(g)} =1

- -keeping in mind the order of the physical variables and operator norms of magnitudes ,

Ir]= [K[= 2 + 5K, |J(T)|= 100K, |[T|=~250+ 300K, and only the third term being important in (14) and then:
L(z)~—q(T)-R*A(z) '*D(s) '#J, (T)*J (T)"*»S s A(e), L(e)f=<1.

di(e)

Obviously, repeating the above transformation concerning the operator 8€ » we obtain that

dL(g)
de

< H <.02 proving the use of current estimation € to calculate the operator

”dL(s)
de

<1,

L(ge) = L(8).

IIL. References

Rao, C.R., 1965: Linear statistical inference and its applications.--New York, Viley.

Tikhonov, A.N., and V.Ya. Arsenin, 1977: Solutions of ill-posed problems.--Washington : Winston.

Weinreb, M.P.; H.E. Fleming; L.M. McMillin; and A.C. Neuendorffer, 1981: Transmittances for the TIROS
Operational Vertical Sounder, NOAA Tech. Rep. NESS 85.

392



TECHNICAL PROCEEDINGS OF

THE NINTH INTERNATIONAL TOVS STUDY CONFERENCE

Igls, Austria

20-26 February 1997

Edited by
JR Eyre

Meteorological Office, Bracknell, U.K.

Published by

European Centre for Medium-range Weather Forecasts
Shinfield Park, Reading, RG2 9AX, U.K.

May 1997



