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1. INTRODUCTION

ISCCP data products suggest the total cloud amount over the mid-latitudes and tropics (Ros-
sow and Schiffer, 1991) lies in the range 70 - 80%, while the global mean is about 62%.
Using a CO, slicing method, Menzel et al. (1993) find that the global average for all clouds,
both semi-transparent and opaque, is about 75%. However, the number of cloudy and partly
cloudy fields of view (fovs) detected by the TOVS operational cloud detection algorithms is
rather lower than these estimates might suggest, indicating cloud contamination of HIRS
data remains a problem. With the launch of AMSU, direct measurements of emission from
cloud liquid water droplets (over oceans) and scattering by ice particles (over land, and
oceans) will enable precipitation rates to be inferred (Grody et al. 1996) in many situations.
However, to make full use of AMSU and HIRS data, cloud, cloud-liquid phase and precipi-
tation contaminants within the ifovs of these instruments need to be identified. One ap-
proach to an improved understanding of these problems is to use collocated data from the
AVHRR to help identify these “contaminants”. In the research reported here we will pre-
sent results which indicate what can-be achieved with AVHRR Bayesian classification algo-
rithms utilising cloud field radiometric and spatial features to estimate cloud cover, cloud- ’
type and rain-rate. The algorithms used are based on work reported by Uddstrom et al.,
(1997) for cloud discrimination, and Uddstrom and Gray (1996) for cloud classification and
rain-rate prediction.

2. METHODOLOGY AND THEORETICAL BASIS

The problem of detecting the presence of cloud, or of some type of cloud in a fov can be
thought of as a classification problem. Thus given the a priori knowledge that some observ-
able belongs to one of m possible classes (w;, i = 1, m), a vector of measurements (f, the
feature vector) that in some sense characterise the observable, and the assumption that all
misclassifications are equally costly, then the posterior probability P(a;lf), is the conditional
probability that the observable belongs to class ;. Accordingly, the best classification of
the observable is the one that maximises this probability, i.e. it belongs to class i if

P(w;|f) > Pwj|f), Vj#i ¢y
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From Bayes theorem;
m
P,;|f) = Pf|w)P@) / Y P(|wpP@;) )
J=1

where P( ®;) is the a priori probability that the observable belongs to class i. If the underly-
ing distribution is multivariate Gaussian, and the measurement errors are unbiased; a meas-
ure of the distance of feature f from class i can specified by the discriminant function in equ

3):-
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where f; and Sf,- are the mean (vector) and covariance (matrix) for class i and some set
of features.

The feature vector elements may include simple spectral measurements and/or complex spa-
tial measures such as spatial texture (Parikh, 1977). However, the accuracy, or skill of the
resulting discriminant function will be dependent upon the separability of the m classes in
feature space as specified by the class mean and covariance statistics and the apriori prob-
abilities of the classes. Measurement noise will also limit the separability of the classes. Of
course, f; and Sf; must be determined from “labelled” samples of the m specified classes.

In the case of the cloud-mask problem there are just two possible states for each instantane-
ous field-of-view (ifov) - clear or cloudy - although the posterior probability for either class
may not be close to unity, implying that the measurements perhaps represent a partly cloudy
observation. For the cloud-type classification problem, there will be as many classes as there
are cloud types identified in the labelled samples.

Here sample labelling is performed by an analyst who identifies (or labels) specific cloud
classes in a training sample dataset. A key premise of this approach is that meteorologically
significant cloud classes are identified. Although these classes are not necessarily separable
in the available feature space, neither are they determined by a clustering algorithm which
while producing “cloud classes” having maximal separation in the chosen feature space, are
perhaps difficult to identify meteorologically, and change with feature selection. The ap-
proach followed here is fully outlined in Uddstrom and Gray (1996).

3. DATA

Since the skill of Bayesian classification methods is critically dependent upon the span of
the labelled data sets used to develop the discriminant model equations, two different data
sets have been developed. For the cloud classification and rain-rate estimation problem, Lo-
cal Area Coverage (LAC) resolution AVHRR data have been collocated at full radiometric
resolution with three S-Band weather radars' situated at Mt. Tamahunga (36.30°S,
174.71°E, 453 m above mean sea level (amsl)), Outlook Hill (41.31°S, 174.64°E, 534 m
amsl ) and Rakaia (43.79°S, 172.02°E, 124 m amsl ) (see Fig.1). Necessarily, the geo-

-

1 Owned and operated by the Metéorological Service of New Zealand Ltd.
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graphical constraints imposed by the need to collocate the satellite data with radar observa-
tions probably limits the application of the resulting algorithms to the temperate mid-
latitudes. However, the data set does extend from 1994 to the present thus enabling many
different meteorological situations to be captured. For the cloud detection problem, no radar
collocation data are required, so the geographical coverage can be extended beyond that
used by the cloud classification and rain-rate algorithms. To this end, similar high resolution
AVHRR data were archived for 9 months (from July 1996 to April 1997) over three dispa-
rate oceanic regions (see Fig ). These regions include tropical and sub-Antarctic waters, as
well as a region having high spatial gradients in Sea Surface Temperature (SST). Data from
an additional region, called SALPEX_3 which includes both land and ocean (Fig. 1) were
also available (from 1994 to the present).

3.1 Satellite Data

The AVHRR instruments used here (NOAA11, NOAA12 and NOAA14) are five channel
devices, having nominal spectral intervals:- 0.55 - 0.68 pm (R); 0.725 - 1.1 ym (Ry); 3. 55 -
3.93 pm(T ); 10.5 - 11.5 pm(T ), and 11.5 - 12.5 pm(T ) The data are atLAC spatial
resolution, yleldlng an mstantaneous field of view (ifov) of 1.1 km at nadir, and are stored
and analysed at full 10 bit radiometric resolution.
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Figure 1: Areas from which AVHRR data were archived in order to develop the Bayesian cloud-iask
(SPCZ, 55S, EAC, SALPEX_3, AKRADAR, WNRADAR and CHRADAR), cloud-type and rain rate
(AKRADAR, WNRADAR and CHRADAR) algorithms.

Channel 1 and 2 bi-directional reflectances of the scene were calculated using the pre-
launch calibration coefficients and a correction for the solar view angle. The longwave ther-
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mal channels were calibrated using the non-linear method given in Planet (1989). Regions
of sunglint, or specular reflection, were identified through examination of the sun — ifov —
sensor geometry using the method of Stowe et al. (1991). Finally, the AVHRR data are
remapped onto Lambert Conformal projections at 1 km resolution.

3.2 Radar Data

All three radars operate at a wavelength of 5.6 cm, have nominal beam widths of 0.86°, 2
km range bins and are controlled by Ericsson Weather Information System (EWIS) soft-
ware. They generate polar-volume scans at 10 elevations, the lowest four of which are 0.5°,
0.9°, 1.3° and 2.5°. Full volume scans are carried out every 15 minutes and take 2 minutes
to acquire. Post processing of these data allow corrections to be estimated for erTors in-
duced by hill and sea clutter, attenuation, beam blocking and vertical profile of reflectivity
effects. Rain-rates were calculated using the standard Z-R relationship for frontal rain ( Z
(rnm6 m™3 ) =200 R1'6), and rectified onto the same grid as that used for the satellite data
(see Uddstrom and Gray, 1996).

3.3 Features

Radiometric and spatial characteristics were computed for all labelled 8 x 8 ifov sample
tiles. Radiometric features include AVHRR channel means (albedo and radiance tempera-
ture), standard deviations and tile minimum and maximum values. The same statistics are
computed for derived difference (e.g. T 4" T5) and ratio (e.g. R2/R1 — 1) channels, the in-
frared radiances, and the emissive and reflective components of the 3.7 um channel. The
spatial characteristics of the sample tiles were estimated using Grey Level Difference (GLD)
statistics (Weszka et al. 1976) applied to data transformed and binned according to their
physical values (Uddstrom and Gray, 1996). These measure the local properties of the fre-
quency distribution of the absolute differences between pairs of physical values in the sam-
ple tiles. GLD mean, angular second moment, entropy and contrast statistics were computed”
for four angles (8 = 0°, 45°, 90° and 135°) and averaged to provide directionally independ-
ent values.

For those areas collocated with one of the radars, the mean, standard deviation, minimum
and maximum values of the reflectivities and rain-rate in the sample tiles are computed.

3.4 Labelled Classes

Thirteen classes were identified in the data archive; stratus (St), stratocumulus (Sc), altostra-
tus (As), altocumulus (Ac), nimbostratus (Ns), cumulus (Cu), embedded cumulus (eCu),
open-cell cumulus (oCu), cumulonimbus (Cb), cirrus (Ci) and “thick” cirrus (CiC), together
with no cloud over land (NCL), and no cloud over sea (NC).

4. CLOUD-TYPE CLASSIFICATION

From the labelled training samples Bayesian discriminant function classifiers were tested for
different selections of feature vector elements. In each case, because of limited samples of
eCu and oCu data, the classification was performed on just 11 (of the potential 13) classes.
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Data from these samples were combined with those in the Cu class - extending the span of
that class to include mesoscale convective clusters. Also, due to the differing radiometric
data available, separate equations are defined for day and night data. Table 1 shows the
cloud-type classification skill of 9 different discriminant models derived from differing fea-
ture vectors. Here, the column labelled “Fraction Correct” is just the sum of the diagonal
elements of the resulting contingency table over the total sample size, while that labelled
Kuipers Performance Index (Murphy and Katz, 1985) measures the skill of each
discriminant function.

Table 1: Discriminant function skill for an 11 class classifier (NC, NCL, St, Sc, As, Ac, Ns, Cu, Cb, Cij,
CiC) and sample sizes 1340 for day data, models 1 to 4, and 3657 for night data, models 5 to 9. In all
cases the prior probability was 0.091 (i.e. 1/11) and all samples are classified.

Model Features Fraction Kuipers
No. (where:- Vy = (R2/R1-1), @ =GLD mean, asm = GLD angular second Correct Performance
moment and ent = GLD entropy) Index
1 \2) 0.26 0.22
2 Vo, T 4 0.47 0.44
3 Vo, Ty, ent (Ty) 0.59 0.55
4 Vs, Ty, ent (T4), R2’ ent (R2), = TS)’ ent (T4 - TS) 0.74 0.72
5 T 4 0.44 0.37
6 T4, (T4~ T3) 0.46 0.41
7 T4,(T4 - T3), (T4 - TS) 0.51 0.46
8 T4,(T4 - T3), (T4 - T5), ent (T4) 0.61 0.56
9 T4,(T4 - T3), (T4 - T5), ent (T4), asm (T4), 1} (T4 - T5), ent (T4 - TS) 0.67 0.63

Two points are evident from the table. Firstly, that the addition of spatial features signifi-
cantly improves the skill of the cloud classification, and secondly, that it is possible to de-
fine a nighttime algorithm which has similar skill to that available during daytime hours.
However, the skill of the cloud-type classification can be further improved by setting a
minimum posterior probability for classification. For the classifier represented by model 9
(the last row in Table 1), setting the minimum a posteriori probability to 0.5 yields a contin-
gency table having a Kuipers Performance Index of 0.68 at the cost of only 11.5% of the
sample being unclassifiable.

Fig 2 (a) shows the 0.9 pm (channel 2) image from a section of a NOAA11 pass over the
Rakaia weather radar domain on 14 December 1993. The pass is from late afternoon local
time and shows evidence of a “southerly buster” propagating up the Canterbury Plains east,
of the Southern Alps. Some cloud shadows (due to the low sun angle) are evident, as is
overlying transmissive cirrus in portions of the south-west quadrant of the image. Fig 2 (b)
shows the cloud-classification derived from model 4 of Table 1. As noted in the caption, the
saturation of each colour indicates the posterior probability of the selected cloud-class, with
full saturation indicating a posterior probability greater than 0.90 and grey, a posterior prob-
ability of less than 0.40. Data that cannot be classified are shown as dark grey / black - e.g.
the cloud - shadow regions fall into this category, as do the coasts. A number of other as-
pects of the SRTex classifier are evident in Fig 2 (b). There is little evidence of vacillation
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between classes. Cloud free areas on both land and sea are clearly identified (with high pos-
terior probabilities) - the former over regions of even quite steep and complex orography in
the northern part of the image. Similarly, the area of marine stratocumulus east of the land
mass is confidently classified, as is the evident overlying transmissive cirrus. The line of cu-
mulus and embedded cumulus associated with the leading edge of the southerly buster is
also clearly identified. The stratocumulus classification of cloud west of the land-mass is
less confident, but probably correct given the meteorological situation.

NOAA11, Orbit: 26909, 0548-0550 UTC 14DEC93 Ch 2, 0.8um Albedo NOAA11, Orbit: 26908, 0548-0550 UTC 14DEC83 (day_model_108) SRTEX class * pp

- 4 { 5 s | sy
s [y a o ire xS =

Figure 2: An example SRTex cloud - classification. (a) Channel 2 (0.9 um) albedo for NOAA 11 pass over
Rakaia radar on 14 December 1993. (b) SRTex cloud classification of AVHRR data represented by (a). Each
colour indicates the cloud class selected by the Bayesian classifier (see legend above image), while the
saturation of the colour is a measure of the posterior probability of the cloud class estimate (saturation falls to
grey at a posterior probability of 0.40)

5. RAIN-RATE ESTIMATION

The labelled samples used to derive the cloud-classification discriminant equations include
rain-rate data from collocated radar observations, so cloud class specific rain-rate regression
equations can be derived using both radiometric and spatial predictors. Clearly some cloud
classes do not rain - e.g. stratus, stratocumulus and transmissive cirrus, so the problem of
estimating rain-rate from the satellite data is simplified. Rain-rates need only be predicted
for those cloud classes known to rain, i.e. classes Ac, Cu, Ns, Cb and CiC. Also, since day
time observations can utilise predictors related to cloud albedo, the problem is further sepa-
rated into day and night sub-problems.

Using linear stepwise regression to identify predictors, and the cube root of the rain-rate as
the predictand, rain-rate equations for cloud classes; Ac, Cu, Ns, Cb and CiC were evalu-
ated. All possible spatial and radiative predictors were considered. A summary of the most
important daytime predictors and R of the resulting fit are given in Table 2. The night time
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equations (not shown) yield significantly poorer fits, having R values in the range 0.2 for
class Ns to 0.5 for class Cb).

Table 2: Summary characteristics of the SRTex daytime cloud-type specific rain-rate regression
equations where the predictand is third root of the rain-rate. (predictors associated with “max” refer to
the tile maximum value of the feature)

Cloud Number of Most Significant

Class predictors Predictor R2
Ac 14 ent (T4-Ts) 0.60
Cu 11 T 4 Max 0.57
Ns 7 R2 max 0.58
Cb 2 (T4~Ts5) max 0.60
CiC 3 R, 0.36

Fig. 3 shows scatter plots of measured and (SRTex) modelled rain-rates. While the correla-

tion coefficient (the slope of the line of best fit) is not unity, there is clear evidence (together
with the R“ values) that a reasonable fraction of the rain-rate variance is explained by the
SRTex predictions.
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Figure 3: Scatterplqts of SRTex predicted and radar measured rain-rates (cube root) for (a) the
Cumulus class (daytime), (b) the cumulus class (nighttime), (c) the nimbostratus class (daytime)
and (d) the thick cirrus class (nighttime). The line of best fit is also shown.
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Fig. 4 shows SRTex rain-rate predictions derived from the cloud-type classification of Fig. 2
(b) and the cloud-class specific rain-rate equations outlined in Table 2. Also included on Fig
4 is a contour analysis of rain visible to the radar (which excludes areas west of the Southern
Alps - which rise to over 3000 m). The SRTex analysis appears to have captured most of the
rain features evident in the radar data, although toward the edge of the radar domain (in the
south-west quadrant - up to 240 km from the radar) the satellite predicted rain-rate intensi-
ties are rather low. This could arise from two sources; the low dynamic range of the SRTex
predictions and / or problems with the radar vertical profile of reflectivity correction em-
ployed in the surface rain-rate estimation procedure.

':.i < " -l .
EELAFL 5 [~
= ¢ b’ -
vox g g ® o
e 2.
e £y 5 o
X - .
__ \ ) “\\n .,.‘."‘."’ - N
- % (.."" 4
4 -
. 3
. ! -
" A ot
. S 3
3 2 > "
-_ ot
O , S "
oo <, -
5 o
2 3
o, ke
. “g & agmd s
0 -
A !}; A i 3 o
3 )

Figure 4: SRTex instantaneous rain-rate predictions for the NOAA11 orbit of Fig. 2 expressed in
mm/h overlaid with a contour analysis of the rain-rate as defined by radar (contour intervals are 0.1,
0.5,1,2,5, 10 mm/h)

6. CLOUD DETECTION

Cloud classification using GLD statistics restricts the spatial resolution of the resulting clas-
sification, since a tile size smaller than 8 x 8 ifovs is unlikely to yield good estimates of the
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spatial characteristics of clouds sampled. However, when only two classes need be identi-
fied; clear or cloudy, then the classification can be performed at higher spatial resolution
since less use need be made of the spatial information - which is primarily used to discrimi-
nate cloud-type. Bayesian discriminant functions were computed from 3 x 3 tiles extracted
from the labelled samples of warm cloud (i.e. T4 > 0°C) and cloud-free situations over the
areas noted in Fig.1. The skill of the resulting “cloud-mask” classifiers is shown in Table 3.

Table 3: Measures of the skill of day time (Models 1 — 4) and night time (models 5 - 8) cloud-mask
classifiers (POD is the Probability of Detection). The prior probabilities were set to 0.5, and all samples
were classified. The day time sample size is 590, and the night time sample 1598.

Model Features POD POD Kuiper’s
No. (where o refers to the tile standard (cloud) (clear) Performance
deviation of the feature) Index
1 R,y 0.65 0.99 0.63
2 Ry, Ty 0.72 0.99 0.71
3 R, ,0(Ty) 0.94 0.97 0.91
4 Ry, Ty, (T4 = Ts), o(R,), 6(Ty) 0.99 0.98 0.96
5 Ty 0.67 0.84 0.51
6 Ty, 0(Ty) 0.70 0.97 0.68
7 Ty, (T4 —Tg), (Ty - T3) 0.90 0.93 0.83
8 Ty, (T4 —Ts), (T4-T3), 6(Ty 0.94 0.98 0.92

Evidently Bayesian classifiers can be specified which have similar skill for both day and
night measurements and have high probabilities of detecting (POD) cloud. The importance
of the spatial features is also evident. Additionally, classifier skill can be improved further
by limiting the minimum posterior probability for a classification (with the ifov being classi-
fied as unknown if it does not reach this threshold). For example, raising the posterior prob-
ability threshold to 0.95 for model 8 in Table 3 improves the probability of detecting both
cloudy and clear ifovs to 0.99 and the Kuiper’s Performance index to 0.97, at the expense of
only 10% of samples being unclassifiable.

7. CONCLUSIONS

The results shown here indicate that AVHRR radiometric and spatial features can be used in
Bayesian classifiers to determine cloud-type with high skill during both day and night hours.
Additionally the skill of different discriminant models can be objectively evaluated. These
skill levels might also be expected to be realised in independent data since the labelled train-
ing sample spans a very large set of meteorological conditions. Application of a
discriminant model to an AVHRR scene further suggests that the cloud classifications are
both spatially stable and reasonable.

During daylight hours, rain-rates derived from AVHRR radiometric and local spatial fea-
tures using cloud class (i.e. Ac, Cu, Ns and Cb) specific prediction equations, are able to
explain more than 50% of the variance in coincident radar estimates of the rain-rate. This
true for both land and sea samples. During night hours, the reduced spectral information
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available reduces the skill of the predictions to about half this value. However, only about
35% of the variance in the rain-rate under thick cirrus can be predicted from the AVHRR
data - a not unexpected result given the decoupling between the rain-producing clouds and
the measurements. From these results it might be expected that high resolution AVHRR
measurements will be able to provide estimates of rain areas and cloud-types within AMSU-
A and B ifovs.

Using a similar Bayesian approach, high resolution cloud-masks can be determined through
the application of a two state classifier (clear and cloudy) that utilises radiometric and spa-
tial features. The skill of night and day models is similar, and by limiting clear classifica-
tions to those ifovs where the posterior probability that it is cloud free is greater than 0.95
yields a POD for cloud of 0.99. This approach is expected to yield very accurate estimates
of cloud cover within HIRS ifovs leading to important improvements in the estimation of
clear radiances for partly cloud fields of view.
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