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We have made significant progress on several projects aimed at understanding multi-scale dynamics
in geophysical flows. Large-scale flows in the atmosphere and ocean are influenced by stable density
stratification and rotation. The presence of stratification and rotation has important consequences
through (i) the conservation of potential vorticity q = ω · ∇ρ, where ω is the total vorticity and ρ
is the density, and (ii) the existence of waves that affect the redistribution of energy from a given
disturbance to the flow. Our research is centered on quantifying the effects of potential vorticity
conservation and of wave interactions for the coupling of disparate time and space scales in the
oceans and the atmosphere. Ultimately we expect the work to help improve predictive capabilities of
atmosphere, ocean and climate modelers. The main findings of our research projects are described
below.

1. Mathematical analysis of the statistical properties of the potential vorticity: Susan

Kurien, Leslie Smith and Beth Wingate

Two journal publications have resulted from our analysis of the the two-point correlation of poten-
tial vorticity (the potential enstrophy): Kurien, Smith & Wingate, J. Fluid Mech. 555, 121-130
(2006), and Kurien, Wingate & Taylor, Europhys. Lett. 84 (2008).

Starting from the Boussinesq equations for rotating and stratified flow, we derive exact scaling
laws for the potential enstrophy in two limits. The first limit is for large rotation and stratification
describing a range of scales for which vertical stretching by N/f leads to local isotropy (invari-
ance under arbitrary rotations and translations), where N is the buoyancy frequency and f is the
Coriolis parameter (twice the background rotation rate). The second limit is for small rotation
and stratification, in which the fluid velocity is governed by the isotropic Navier-Stokes equations
and the density is a passive scalar. We also identified several regions in parameter space where
diffusion and dissipation effects are sub-dominant to nonlinear effects, and thus where one might
expect ‘inertial-range’ transfer characterized by a constant flux of potential enstrophy.

We are working on understanding the constraints that potential enstrophy conservation imposes
on the transfer of energy. We have found an exact relation between the two quantities in strongly
rotating and stratified flows with equal Rossby and Froude numbers in a unit aspect ratio domain.
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The Rossby Ro and Froude Fr numbers may be defined as Ro = U/(Lf) and Fr = U/(HN) where
U is a characteristic velocity, H is the vertical scale (in the direction of the rotation/stratification)
and L is the horizontal domain scale (in the direction perpendicular to the rotation/stratification).
For the unit aspect ratio domainH = L. The exact relation between energy and potential enstrophy
leads to a prediction for the scaling of the potential energy as a function of the vertical wavenumber
(Epe ∝ k−3

z ), and for the scaling of the kinetic energy as a function of horizontal wavenumber
(Eke ∝ k−3

h ). These scalings imply that horizontal kinetic energy is suppressed in the small aspect-
ratio wavemodes, and potential energy in suppressed in the large aspect-ratio wavemodes. These
are the first derived constraints on energy due to potential enstrophy since the landmark results of
Charney (1971) for quasi-geostrophic flows. High-resolution numerical simulations of the Boussinesq
equations in the relevant parameter regimes show spectral scaling exponent closer to −4, and hence
even stronger suppression than is predicted by dimensional estimates. We are concurrently aiming
to extend the results to flows which have unequal Rossby and Froude and also to understand such
constraints using asymptotic analysis.

2. Self-similarity in decaying two-dimensional stably stratified adjustment. Jai Sukhatme

& Leslie Smith

One journal publication has resulted from our study of adjustment in stably stratified, two-
dimensional Boussinesq flow: Sukhatme & Smith, Phys. Fluids 19, 036603 (2007).

The evolution of large-scale density perturbations is studied in a stably stratified, two-dimensional
flow governed by the Boussinesq equations. As is known, initially smooth density or temperature
profiles develop into fronts in the very early stages of evolution (Figure 1). This results in a frontally
dominated k−1 potential energy spectrum. The fronts, initially characterized by a relatively simple
geometry, spontaneously develop into severely distorted sheets that possess structure at very fine
scales, and thus there is a transfer of energy from large to small scales (Figure 2). We showed that
this process culminates in the establishment of a k−5/3 kinetic energy spectrum, although its scaling
extends over a shorter range as compared to the k−1 scaling of the potential energy spectrum (Fig-
ure 3). The establishment of the kinetic energy scaling signals the onset of enstrophy decay, which
proceeds in a mildly modulated exponential manner and possesses a novel self-similarity. Specifi-
cally, the self-similarity is seen in the time invariant nature of the probability density function PDF
associated with the normalized vorticity field (Figure 4). Given the rapid decay of energy at this
stage, the spectral scaling is transient and fades with the emergence of a smooth, large-scale, very
slowly decaying, almost vertically sheared horizontal mode with most of its energy in the potential
component, i.e., the Pearson-Linden regime.
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Figure 1: Snapshots of the temperature field at early times.

Figure 2: Snapshots of the vorticity (left) and temperature (right) field at a later time when small
scales are clearly present.
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Figure 3: Spectra of the kinetic and potential energy from 1D cuts of the temperature and velocity
fields, respectively. The two bunches of curves have been shifted for clarity; the upper bunch shows
that the kinetic energy spectra scale as k−5/3; the lower bunch shows that the potential energy
spectra scale as k−1.
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Figure 4: PDFs of the normalized vorticity field. The upper panel shows the approach to a
self-similar profile; note the decrease in intermittency with time. The two bunches of curves in
the lower panel consist of profiles evenly spanning time in the intervals [12, 28] and [126, 173]
seconds, respectively. The upper bunch represents the interval during which the enstrophy decay is
exponential in character, whereas the lower bunch shows the PDFs in the Pearson-Linden regime.
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Figure 5: Total and wave energies vs time for ǫ = f/N ≤ 1 (left) and ǫ > 1 (right) showing the
asymmetry about ǫ = 1.

3. Effects of dispersion on vortical and wave modes in 3D rotating and stratified flows:

random large scale forcing. Jai Sukhatme & Leslie Smith

This work has been published in Geophysical and Astrophysical Fluid Dynamics, 102 437-455
(Sukhatme & Smith, 2008).

Utilizing an eigenfunction decomposition, we study the growth and spectra of energy in the
vortical (geostrophic) and wave (ageostrophic) modes of a three-dimensional (3D) rotating strat-
ified fluid as a function of dispersion, i.e. of ǫ = f/N , where f,N are the Coriolis parameter and
Brunt-Vaisala frequency. Throughout we employ a random large scale forcing in a unit aspect ratio
domain and set these parameters such that the Froude and Rossby numbers are roughly compara-
ble and much less than unity. This inquiry is motivated by recent analytical work on the change
in character of vortical-wave mode dynamics with dispersion, and especially the asymmetry about
ǫ = 1. Looking at the total energy evolution and the wave energy evolution as a function of time,
one immediately sees the asymmetry with ǫ (Figure 5). For ǫ ≤ 1, the wave energy quickly saturates
and the vortical modes energetically dominate for longer times (Figure 5 (left)). For ǫ > 1, the
vortical modes contain a small amount of energy and the energy in wave modes continues to grow
(Figure 5 (right)).

Stratification stronger than rotation: For ǫ = f/N < 1, the wave mode energy saturates quite
quickly. Much like the well understood non-dispersive (ǫ = 1) case (Bartello 1995), the resulting
forward cascade continues to act as efficient way of removing ageostrophic energy from the sys-
tem. Simultaneously, the vortical modes exhibit a pronounced transfer of energy to large scales
(k < kf ), while the high wavenumber energy spectra associated with the vortical modes scale as
k−3 for kf < k < kd. In essence, the picture painted in Bartello (1995) involving the 3D QG
dominance of the vortical modes and rapid adjustment via a wave mode cascade is valid for ǫ < 1
(Figure 6 (left)). This picture agrees also with the analytical work by Babin et al. (1997) and
Embid & Majda (1998) regarding the splitting of of the vortical and wave modes for Fr ∼ Ro→ 0
wherein the vortical modes follow 3D QG dynamics while the wave mode cascades are ”unfrozen”
and result in an efficient transfer of energy to small scales. Interestingly, we observe that dispersive
restrictions on the catalytic exact resonances appear to manifest themselves in a steepening of the
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Figure 6: Vortical mode spectra (left) and wave mode spectra (right) for ǫ ≤ 1.

Figure 7: For ǫ > 1, the wave mode energy never saturates and the wave mode spectra shift upwards
in time, indicating inefficient transfer of energy to small scales via wave interactions. Spectra shown
here are for ǫ = 5.
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wave mode cascade from a (nonlocally dominated Batchelor regime passive scalar like) k−1 to a
(local 3D turbulence like) k−5/3 scaling for kf < k < kd (Figure 6 (right)). Further, we notice a
bias in the partition of energy among the different modes at varying scales. Specifically, the vortical
modes contain a large portion of the energy at scales ∼ kf while the wave modes have most of the
energy at smaller scales. This naturally introduces a gradual steep-shallow transition in the total
energy spectrum. In a broader context, the focus on forward transfers of energy in the present
work serves as a counterpart to Smith & Waleffe (2002) wherein small scale random forcing was
employed to probe the inverse transfer of energy for the regimes1/2 ≤ ǫ ≤ 2 and ǫ << 1, and to
elucidate the resulting 3D QG or VSHF dominance, respectively.

Rotation stronger than stratification: Proceeding to ǫ > 1, we immediately confirm the asym-
metry anticipated from Babin et al. (2002). The wave modes never saturate and soon dominate
the entire energy in the system. In spite of this, their spectra do appear to achieve invariance.
While shifting upwards, they show signs of a k−2 scaling (for larger ǫ values) for an intermediate
range of scales kf < k < kr where kr > kd, much like the weak forward cascade in purely rotating
turbulence (Figure 7, Cambon et al. 1997, Yeung & Zhou 1998). This situation is in a sense close
to the observations for the shallow water equations whereby switching on rotation was seen to
inhibit forward transfer (Yuan & Hamilton 1994; see also Farge & Sadourny 1989 for remarks on
the difficulty in achieving geostrophic adjustment in a similar scenario). As for ǫ ≤ 1, the vortical
modes continue to follow 3D QG dynamics though now their role is quite small in that they contain
only a small fraction of the total energy in the system. In fact, seeing that the fraction of energy
in the vortical modes decreases with increasing ǫ provides some hope that, at least in an energetic
sense, the ǫ >> 1 limit of the 3D rotating Boussinesq system will transition smoothly to a purely
rotating flow. The scaling of the vortical-mode spectra for ǫ > 1 follows a k−3 form for kf < k < k2

and is followed, for larger values of ǫ, by a shallower form for k2 < k < kd. Finally, in contrast to
ǫ ≤ 1, now the wave modes dominate the total energy in the system for all k > kf .

With regard to atmospheric phenomena, recent very high resolution studies of the rotating
Boussinesq equations with large scale forcing and N ≫ f in a skewed aspect ratio domain show
a similar k−3 scaling for vortical-mode spectra, k−5/3 scaling for wave-mode spectra, and vortical-
mode energy dominance at large scales (Kitamura 2006). Indeed, the spectral transitions in the
total energy (also in the potential and kinetic energies) that occur quite naturally in the Boussinesq
system when ǫ < 1 are reminiscent of the classic synoptic-mesoscale Nastrom-Gage spectrum (Nas-
trom & Gage 1985). However, it should be kept in mind that the k−5/3 portion of the Boussinesq
spectra arises from wave modes whereas some observational evidence points to a vorticial mode
dominance even at small scales (Cho, Newell & Barrick 1999). Furthermore, as clearly put forth
in the recent work of Tulloch & Smith (2006), it is difficult to imagine a consistent theory of the
midlatitude tropospere that does not explicity address the potentially complicated evolution of
buoyancy (or potential temperature) on domain boundaries (see for example Held et al. 1995 and
Sukhatme & Pierrehumbert 2002).

4. Reduced dynamics and an investigation of anticyclone dominance in rotating shal-

low water flows. Mark Remmel & Leslie Smith.

One manuscript is Remmel, M. & Smith, L.M. 2009 New Intermediate Models for Rotating Shallow
Water and an Investigation of the Preference for Anticyclones, J. Fluid Mech. 635, 321-359.

The two-dimensional and three-dimensional quasigeostrophic models (2DQG and 3DQG) are
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Figure 8: Energy vs time for Ro=.25 and Fr=.2. Left: balanced initial conditions; Right: unbal-
anced initial conditions.

often used as a starting point to understand rotating and stratified flows. They are simpler and less
costly to compute than their ‘parent’ equations, respectively, the Rotating Shallow Water (RSW)
equations and the Boussinesq equations. The 2DQG and 3DQG equations are given by the nonlin-
ear interaction of the non-wave vortical modes of the linearized RSW and Boussinesq systems, and
thus do not account for gravity and inertial-gravity wave motions and vortical-wave interactions.
The 2DQG and 3DQG equations are known to exhibit symmetry between cyclones and anticy-
clones, whereas the RSW and Boussinesq systems exhibit strong cyclone/anitcyclone asymmetry
in certain parameter regimes.

Whereas previous researchers have derived corrections to QG using perturbative techniques
(e.g. Muraki, Snyder & Rotunno 1999, McIntyre & Norton 2000), here we explore reduced models
for the RSW equations by including subsets of gravity wave modes in a non-perturbative manner.
The method we describe below is general and can be applied to any dispersive wave system for a
complete understanding of vortical-wave interactions. For the case of the RSW equations, we are
especially interested in determining which vortical-wave interactions are responsible for the domi-
nance of anticylones exhibited by the full RSW equations at moderately small values of the Rossby
number (Polvani et al. 1994).

The rotating Shallow-Water equations are (Salmon, 1998)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = −g∂h

∂x
,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = −g∂h

∂y
,

∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y
+ (H + h)

(

∂u

∂x
+
∂v

∂y

)

= 0. (1)

where the horizontal velocity uh = u(x, y)x̂ + v(x, y)ŷ, the height of the fluid layer is H + h(x, y),
H is constant, the Coriolis parameter is f = 2Ω, Ω is the constant background rotation rate and g
is the acceleration of gravity.
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Figure 10: Contours of vorticity at the same time in decay from a random field. Left: PPG reduced
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For flow with constant f in an unbounded or periodic domain, the linear eigenmodes of the
inviscid, unforced equations (1) are Fourier modes

v(x, t) = φm(k)ei(k·x−σm(k)t) (2)

where v = [uh;h] and φ = [ûh; ĥ] and there are three types of modes corresponding to m = 0,±1.
The m = 0 vortical modes are non-wave modes with σ0(k) = 0. There are also two gravity wave
modes with m = ±1 and wave frequency σ(k) given by the dispersion relation

σSW
± (k) = ±(f2 + c2 k2

h)1/2 (3)

where k is a vector with components (kx, ky), k = |k|, kh = (k2
x+k2

y)
1/2 is the horizontal wavenumber

and c2 = gH. Since the eigenmodes are orthogonal and complete, the solution to (1) may be written
as a superposition of the linear eigenmodes φm(k) with amplitudes am(k, t):

v(x, t) =
∑

k

∑

m

am(k, t)φm(k) exp[i(k · x − σm(k)t)]. (4)

Thus, in Fourier space, equation (1) takes the form

dam(t;k)

dt
=

∑

k+p+q=0

∑

n,l

Cmnl
kpq a

∗

n(p, t)a∗l (q, t) e
i(σm(k)+σn(p)+σl(q))t, (5)

where ()∗ denotes the complex conjugate, and nonlinear interactions are among triads with k+q+
p = 0. Notice that there are twenty-seven types of interactions

∑

n,l C
mnl
kpq a∗n(p, t)a∗l (q, t) if one

considers all m,n, l = 0,±1.

The 2DQG model results from allowing only interactions between the non-wave modes φ0(k),
and does not include any interactions with wave modes φ+(k) or φ−(k). We denote the 2DQG
interactions between non-wave modes as (0, 0, 0) interactions. However, there are twenty-six other
kinds of interactions that one could include in a new model. It is natural to consider first the class
of interactions between two non-wave modes and one wave modes, denoted (0, 0,+) and (0, 0,−)
interactions (and all permutations). We call the new model PPG:

∂Q

∂t
+ J(Q,ψ) +Q∇2χ+ ∇Q · ∇χ = 0

∂(f∇2ψ − g∇2h)

∂t
− c2∇4χ+ f2∇2χ = fgH J((f2 − c2∇2)−1Q,Q)

∂∇2χ

∂t
+ g∇2h− f∇2ψ = 0 (6)

where ∇2ψ = vx − uy and ux + vy = ∇2χ (so u = χx − ψy and v = χy + ψx) and and the quantity
Q = (∇2ψ − fh/N) is the linear potential vorticity. This model may be compared to potential
vorticity inversion models in which wave amplitudes are slaved to the vortical modes (e.g., Muraki,
Snyder and Rotunno 1999, McIntyre & Norton 2000).

Adding to the reduced PPG model all interactions involving one non-wave mode and two grav-
ity wave modes – (0,±,±) and all permutations – the next model in the hierarchy is denoted P2G.
In this manner, one can construct models to investigate the contribution to the full dynamics of
any subset(s) of wave-vortical interactions, including three-wave interactions in isolation. As an

11



example, we compared 2DQG, PPG, P2G and the full RSW equations for decay from balanced and
unbalanced initial conditions (Figure 8). For moderate values of the Rossby and Froude numbers
Ro,Fr ≈ 0.1, the full RSW system develops vortices with a strong preference for anticylones as
indicated by the development of a negative skewness of vorticity (Figures 9-10, Polvani et al. 1994).
Here the Froude number is defined by Fr = U/(gH). As already mentioned, the 2DQG model does
not show significant asymmetry between cyclones and anticyclones (Figure 9)). We found that by
adding vortical-wave interactions involving a single gravity wave to the 2DQG model, the resulting
PPG model captures the asymmetry of the full RSW model remarkably well for (i) decay from
balanced initial conditions, and (ii) decay from unbalanced initial conditions with divergence-free
velocity field (Figures 9-10). In these cases, the evolution of the skewness for the PPG model and
the full RSW system are quantitatively similar. Three-wave interactions were found to be impor-
tant only for initial velocity field containing significant divergence, in which case the skewness of
the full RSW equations becomes more negative than the skewness of the PPG and P2G models at
these moderate parameter values.

We have derived the corresponding ”corrections” to 3DQG by building a hierarchy of reduced
models including more and more vortical-wave interactions starting from the linear eigenmodes of
the 3D Boussinesq equations. This method of deriving reduced models in non-perturbative and the
corrections are not small.

5. Reduced dynamics of inertia-gravity waves for the 3D rotating Boussinesq equa-

tions. Mark Remmel, Leslie Smith & Jai Sukhatme.

One manuscript is to appear in Communications in Mathematical Sciences: Remmel, M., Sukhatme,
J. & Smith, L.M. 2009, Nonlinear inertia-gravity wave-mode interactions in three-dimensional ro-
tating stratified flows.

Following the derivation procedure outlined in the previous section, we derived a reduced model,
denoted GGG, describing nonlinear interactions between intertia-gravity waves (±,±,±) of 3D ro-
tating Boussinesq flow, in the absence of interactions with vortical modes. For brevity, we do not
present the GGG equations here, but refer the reader to the manuscript (to appear and available
upon request). Our first investigation of the GGG model focused on strongly stratified and strongly
rotating flows with comparable stratification and rotation strengths, i.e. flow with order one Burger
number Bu = Fr2/Ro2 ≈ 1 with Fr = U/(NH), Ro = U/(fL) and Fr ≈ Ro ≪ 1. Furthermore,
as in most atmosphere-ocean phenomena, we considered small-aspect-ratio domains with height to
length ratio H/L < 1. One goal is to determine which interactions are primarily responsible for the
scaling of wave-mode energy. We present results from two sets of parameters: (i) Fr = Ro ≈ 0.1,
H/L = 1/3, and (ii) Fr = Ro ≈ 0.05, H/L = 1/5. In both cases, an external random force is ap-
plied to large scales in order to explore the possibility of a long-time forced-dissipative statistically
steady state. In comparison cases of the full Boussinesq dynamics, the vortical modes are damped
at large scales since they support an inverse cascade for Bu = O(1) with Ro ≈ Fr ≪ 1 (Babin et
al. 2000).

For the first set of parameters Ro = Fr ≈ 0.1 and H/L = 1/3, Figure 11 compares energies in
time (right) and wave-mode energy spectra at time t = 17.7 (left) for the GGG model and the full
Boussinesq system. The large-scale random force is applied only to wave modes and is therefore
identical for both systems. Both systems appear to approach a quasi statistically steady state. One
can see that the (wave-mode) energy of the GGG model is higher than the total energy of the full
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Figure 11: The GGG model compared to the full Boussinesq dynamics with H/L = 1/3, Ro =
Fr = 0.1, 162× 4862, identical IG-mode forcing. Left: Energies in time; Right: Wave-mode energy
spectra at time t = 17.7.

equations, owing to the fact that interactions involving vortical modes are absent from the GGG
model. More specifically, near-resonant interactions between two wave modes and one vortical
mode in the full system help to transfer energy downscale (Bartello 1995, Sukhatme and Smith
2008). However, the scaling of the wave-mode energy spectra of the GGG and full models appear
to be identical when forcing is applied only to wave modes. Thus we conclude that three-wave
interactions play an important role to establish the scaling of the wave-mode energy spectrum of
the Boussinesq equations under the influence of unbalanced, high-frequency forcing at large scales.

For the second set of parameters, Ro = Fr ≈ 0.05 and H/L = 1/5, Figure 12 shows energies
in time at the highest resolution we could achieve (100 × 5002 Fourier modes). When only wave
modes are forced (left), one sees that GGG and full model energies grow in time and neither simu-
lation approaches a quasi statistically steady state. These results strongly suggest that three wave
interactions are under-resolved in both cases. On the other hand, when all modes are forced, the
wave-mode, vortical-mode and total energies of the full Boussinesq system approach a constant
value as time increases, indicating approach to a forced-dissipative quasi statistically steady state
(right plot of Figure 12). Even though three-wave interactions are probably under-resolved, they
are a now a secondary effect because the vortical mode energy dominates and the wave-vortical-
wave interactions efficiently transfer energy downscale. Nevertheless, the secondary effect of the
three-wave interactions (when they are resolved) is likely to change the scaling of the total and
wave-mode spectra at high wavenumbers (Figure 13). Thus, larger resolutions are necessary to
obtain accurate spectral scalings. This work serves as a caution for most present-day calculations
of atmosphere-ocean dynamics in small-aspect ratio domains with H/L≪ 1 since we demonstrate
that the three-wave interactions are likely under-resolved.

In strongly stratified flow at large Burger number, our investigation of the GGG model is rel-
evant to many recent studies of three-wave interactions as a possible explanation for the Garrett-
Munk (1979) spectrum observed in the oceans. Whereas previous investigators (e.g. McComas
& Bretherton 1977, Lvov, Polzin & Tabak 2004) have included only exact resonances, our PDE
reduced model keeps all 3-wave interactions (exact, near-resonant and non-resonant). The central
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Figure 12: Energies in time for Fr = Ro ≈ 0.05, H/L = 1/5. Right: GGG and full Boussinesq
systems with forcing applied only to wave modes, resolution 100 × 5002. Left: Full Boussinesq
system with forcing applied to all modes, resolutions 80 × 4002 and 100 × 5002.

Figure 13: Energy spectra for the full Boussinesq system with Fr = Ro ≈ 0.05, H/L = 1/5,
resolution 100×5002, all modes forced randomly at large scales. High-wavenumber spectral scalings
are likely incorrect since 3-wave interactions are under-resolved.
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Figure 14: VSHF and wave energies vs time for different resolutions (blue 1283, red 1623, black 1923,
green 2563). Left: GGG model; Right: Full Boussinesq system. In both cases, forcing is applied
only to wave modes (not including VSHF modes or vortical modes). Curves showing continuous
growth in time correspond to VSHF modes, while curves leveling off and eventually decreasing in
time correspond to true wave modes. On the right, the curves with very small amplitude correspond
to vortical modes.

question is whether or not the three-wave interactions among inertia-gravity waves in isolation from
the vortical modes can explain the Garrett-Munk spectrum, as has been commonly assumed. To
answer this question, we compare simulations of the full Boussinesq system to simulations of the
GGG model.

With Fr = 0.05 in the purely stratified case, Figure 14 shows energies in time for different
resolution simulations of the GGG model (left) and the full Boussinesq system (right). In both
cases, forcing is applied only to true wave modes, while modes with zero frequency are not forced
directly. The zero-frequency modes are (i) vertically sheared horizontal flows (VSHF, the limiting
case of wave modes for vanishing horizontal wavenumber), and (ii) vortical modes. Curves showing
continuous growth in time correspond to VSHF modes, while curves leveling off and eventually
decreasing in time correspond to wave modes. On the right, the curves with very small ampli-
tude correspond to vortical modes (present in the full system but not present in the GGG model).
One can see that neither the GGG nor full model simulations are yet resolved with respect to
near-resonant interactions, since the results continue to change as the resolution is increased. The
resolution problem persists even when vortical modes are force in addition to true wave modes, but
VSHF modes are not directly forced (see Figure 15).

Nevertheless, despite resolution issues, one may investigate the scaling of the GGG wave-mode
energy spectra, keeping in mind that higher-resolution simulations will be necessary for increased
confidence in the results. Since the true wave-mode energy does not have an extended flat portion,
we measured spectra at many single-time snapshots in order to assess the degree of change. Figure
16 (left) shows that the GGG wave-mode energy spectra scale approximately as k−2 for a large
range of times. Figure 16 (right) shows that the GGG spectra E(kz) averaged over horizontal
wavenumbers kh exhibit a clean k−2

z scaling, at least for some range of times (the plot is for time
t = 49.3)). Many intriguing questions remain for future investigation. What is the dependence on
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the Froude number, and the effect of the hydrostatic approximation? What is the effect of rotation?
Are vortical modes significant as Fr → 0? Is a statistically steady state achieved if VSHF modes
are damped? What is the time evolution of spectra, and for what range of times and parameters
does the Garrett-Munk scaling persist?

6. Reduced models for β-plane and purely rotating 3D flows. Li Wang & Leslie Smith.

A manuscript is in preparation for journal submission.

For the cases of 3D pure rotation and 2D flow on the β-plane, there is no slow vortical mode
solution to the linearized equations. However, there are wave modes. The dispersion relation for
the wave frequency takes the value zero for certain wavevectors, and thus there are slow wave modes
in both cases.

For 3D flow rotating about the ẑ-axis, the wave frequency is given by

σR
± = ±f kz

k
, k = kxx̂ + kyŷ + kz ẑ (7)

and the slow wave modes with kz = 0 correspond to vortical columns. In a manner similar to
Project 4 above, one can investigate the dynamical effect of different subsets of interactions. For
example, nonlinear interactions of the slow wave modes in isolation lead to a reduced model consist-
ing of 2D Navier Stokes flow for u(x, y)x̂ + v(x, y)ŷ, and this 2D flow advects the vertical velocity
w(x, y)ẑ as a passive scalar. However, this model has cyclone/anticyclone symmetry, whereas the
full 3D equations generate large-scale cyclones (e.g., Smith & Waleffe 1999). It has been shown by
Smith & Lee (2005) that near-resonant interactions with |σR

±(k) + σR
±(p) + σR

±(q)| = Ro < 1 and
k + p + q = 0 are responsible for the formation of large-scale cyclones from small-scale random
forcing. However, it is not yet clear if those near-resonances are of the type (0,±,±) or (±,±,±),
where here a zero mode is a zero wave mode. The triplet notation here implies all permutations of
the triplet. We can this question using reduced models including (0, 0, 0) and (0,±,±).

A simpler case is the β-plane model for 2D motion on the surface of a sphere a mid-latitudes,
accounting for the latitude variation of the Coriolis parameter. In terms of the streamfunction Ψ,
the β-plane equation is written

∂t∇2Ψ + β∂xΨ + J(Ψ,∇2Ψ) = ν∇4Ψ + f (8)

where the zonal flow is u = ∂Ψ/∂y, the meridional velocity is v = −∂Ψ/∂x, and f is an external
force.

In the absence of external forcing and in a periodic domain,the inviscid,linear limit of (8) has
wave solutions of the form

Ψ(x, t;k) = exp(i(k · x − σβ(k)t)) + c.c, σβ(k) = −βkx

k2

and slow wave modes are zonal flows with kx = 0. The solution Ψ(x, t) may be represented as a
superposition of linear waves, formally written as

Ψ(x, t) =
∑

k

a(k; t)eik·x (9)
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with reality condition a(t;k) = a∗(t;−k). Substituting (9) into (8) gives

k2∂tak + iβkxak =
∑

k+p+q=0

Ckpqa
∗(p)a∗(q) (10)

where Ckpq = (q2 − p2)(p × q) · ẑ.

On the β-plane, there is no energy transfer between three slow waves with kx = 0, and further-
more, interactions between two slow waves and one fast wave do not exist since they do not form
a triad with k + p + q = 0. Thus an interesting subset of interactions involving any slow mode is
between one slow mode and two fast waves, which we may denote (0,-,-), following the notation of
Section 4. Considering all such interactions, we derive the reduced model

∂tΨy + J(Ψ,Ψy) = 0 (11)

∂

∂t
∇2Ψ′ + βΨ′

x =
1

2
Ψy(

∂

∂x
∇Ψ′) − 1

2

∂

∂y
(∇Ψ)Ψ′

x (12)

where Ψ denotes the zonal flow with kx = 0 and Ψ′ denotes the part of the streamfunction field
with kx 6= 0.

However, to make an analogy with 3D rotation where three 2D slow modes with kz = can in-
teract as a 2D subsystem, one may make a modification of (12). Let us divide modes into near-zero
S with wavevectors in a sector kx/ky ≤ δRh, and modes P with wavevectors kx/ky > δRh, where
the Rhines number Rh = U/(L2β). Now the model (S,S+P,S+P) (and all permutations) includes
(S,S,S) interactions and (S,P,P) interactions. This model is analogous to the model we would like
to study for 3D rotation (0,0,0) together with (0,±,±). Note that three-wave interactions are
excluded and hence we can discern their importance for zonal flow formation in 2D, and cyclonic
vortical column formation in 3D, by comparison of the reduced model to full simulations. Of course
here for the beta-plane problem we have introduced a new parameter δ as the size of the sector
characterizing ”near-zero.” There is no such parameter in the 3D problem.

The broadened model including dissipation may be written as

∂t∇2Ψs + β∂xΨs + Js(Ψ,∇2Ψ) = ν∇4Ψs

∂t∇2Ψ + β∂xΨ +
1

2
(J(Ψs,∇2Ψ) + J(Ψ,∇2Ψs)) = ν∇4Ψ (13)

where subscript s restricts the function or operator inside the sector about kx = 0. As a warm-up
for the 3D problem, we compare simulations of (13) with Rh = 0.3 and δ = 1.5. The calculations
are performed in a 2π periodic box with resolution 3843 Fourier modes. Hyperviscosity is used
instead of normal viscosity. The system is forced by white-noise with spatial correlation function

F (k) = ǫf
exp(−0.5(k − kf )2)

(2π)1/2

where all forced wavevectors satisfy kx/ky > δRh and the peak wavenumber is kf = 75. For the
parameter values Rh = 0.3 (based on forcing parameters) and δ = 1.5, large-scale zonal flows
develop. Figure 17 compares maximum westward zonally averaged velocity (blue) to maximum
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Figure 17: Maximum westward (red) and eastward (blue) zonally averaged velocity as a function
of time for a full simulation (left) and the model (13) (right).
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Figure 18: Zonally averaged velocity at time t = 350 for the full simulation (left) and the model
(13) (right).

eastward zonally averaged velocity (red) as a function of time for the full equations (left) and the
model (13) (right). One can see that the model preserves the important asymmetry between east-
ward and westward zonal flows in favor of stronger westward flows. The important asymmetry to
capture in the 3D rotation problem is asymmetry between cyclones and anticyclones in favor of
cyclones. Figure 18 compares the zonally averaged velocities at a single snapshot in time (t = 350).

Returning to the 3D rotation problem, we investigate the role of (0,±,±) and three-wave
(±,±,±) interactions in the formation and dominance of cyclones. Our results are consistent
with earlier work by Lee and Smith (2005) elucidating the importance of near resonances, but
go beyond that work to show that the (0,±,±) near-resonant interactions primarily responsible
cyclone/anticyclone asymmetry in favor of cyclones. All results shown here are for Rossby number
Ro = 0.08 and resolution 1283 Fourier modes. We are currently extending the results to higher
resolution 2563 Fourier modes and a range of Rossby numbers.

Figures 19 and 20 show that the reduced model including (0, 0, 0) and (0,±,±) interactions
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Figure 19: Total energy (solid) and energy in the 2D kz = 0 modes (dash) vs time for the full 3D
rotating system (right) and the reduced model including (0, 0, 0) and (0,±,±) interactions (left).

Figure 20: Spectra of total energy (solid) and 2D energy (dash) for the full 3D rotating system
(right) and the reduced model including (0, 0, 0) and (0,±,±) interactions (left).

Figure 21: Skewness of vorticity vs time for the full 3D rotating system (right) and the reduced
model including (0, 0, 0) and (0,±,±) interactions (left).
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Figure 22: Skewness of vorticity vs time for the reduced models (0,±,±) (right) and (±,±,±)
interactions (left).

(and all permutations) is more efficient at transferring energy to large scales than the full system.
Notice the higher energy level in the right panel of each plot showing energy in time (Figure 19) and
single-time spectra (Figure 20) for the mode (0, 0, 0) + (0,±,±). The 2D nature of the large scale
flow (k < kf = 24) and the scaling of the energy spectrum E(k) ≈ E(kz = 0) ∝ k−3 is well captured
by the reduced model. Since the only difference between the two systems is the presence of the
three-wave interactions in the full system, it is immediately evident that three-wave interactions
inhibit the transfer of energy into large-scale 2D flows. Figure 21 shows that the vorticity skewness
associated with the model (0, 0, 0)+(0,±,±) is slightly more positive than the vorticity skewness of
the full equations for long times, indicating that the reduced model and full equations both generate
similarly strong coherent cyclones. Finally, Figure 22 compares the vorticity skewness associated
with (0,±,±) interactions in isolation (right) and (±,±,±) interactions in isolation. One sees
that the (0,±,±) interactions generate positive skewness, although the magnitude is smaller than
the reduced model (0, 0, 0) + (0,±,±). On the right, one also sees that (±,±,±) interactions in
isolation lead to skewness near zero for long times. Hence, the conclusions are that (i) (0,±,±)
interactions are responsible for the cyclone/anticyclone asymmetry in favor of cyclones, (ii) the
reduced model (0, 0, 0) + (0,±,±) is more efficient than the full system for the generation of large-
scale coherent cyclones from random forcing at small scales, and (iii) the (±,±,±) interactions
inhibit the formation of large-scale coherent cyclones.

7. Effects of the hydrostatic approximation on energy redistribution in rotating and

stratified flows: Susan Kurien, Jai Sukhatme and Leslie Smith.

This work is in progress. Our results for low resolution simulations are summarized below, however,
it is clear that we need much higher resolutions to thoroughly understand the differences between
hydrostatic and Boussinesq simulations in small aspect ratio domains. For example, consider two
simulations with an isotropic energy source at intermediate scales, one with H/L = 1 and the other
with H/L = 1/10. A minimal resolution at small geophysical values of the Rossby and Froude
numbers << 1 for the benchmark simulation with H/L = 1 in a 2π periodic domain would be
2563. Now consider increasing the horizontal length scale by a factor of 10 such that the domain
becomes 20π × 20π × 2π with H/L = 1/10. Then in order to maintain integrity of the isotropic
forcing and the same resolution in all directions, the resolution for the small aspect ratio run with
H/L = 1/10 should be 2, 560 × 2, 560 × 256. At low resolutions and low aspect ratios, inadequate
resolution may lead to spurious growth of modes that are biased by the inadvertently anisotropic
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forcing. We have been awarded 25,000,000 processor hours on the IBM Blue Gene/P at Argonne
National Laboratory through the DOE Office of Science program Innovative and Novel Computa-
tional Impact on Theory and Experiment (INCITE).

Starting from the Boussinesq equations for rotating and stratified flow, the hydrostatic approx-
imation assumes vertical accelerations are negligible, and thus that the vertical motion is always in
a state of hydrostatic balance. Then the dispersion relation for wave frequencies is modified from
the Boussinesq expression

σB(k) = ±(f2k2
z +N2k2

h)1/2

k
(14)

to become

σH(k) = ±(f2k2
z +N2k2

h)1/2

kz
. (15)

where kz, kh are the vertical and horizontal components of the wavevector, respectively, and k
is the magnitude of the wavevector k. In essence, with the Boussinesq approximation σB =
{0, [−N,−f ], [f,N ]} (as for the complete rotating stratifed fluid equations after removing acoustic
waves) whereas by imposing hydrostatic balance σH = {0, [−∞,−f ], [f,∞]}. Usually the hy-
drostatic approximation is justified by invoking a large disparity amongst the vertical (L) and
horizontal (H) scales of motion, i.e. H/L << 1. However, (15) shows that, in order to avoid the
generation of ”spurious” high frequcency waves, one actually requires kh << kz. The implication is
that if the wavenumber spacing is given by ∆kx = ∆ky = 2π/L, ∆kz = 2π/H, then Nx ≤

√
2L/H

is required to satisfy kh << kz. In other words, increasing the horizontal resolution (i.e. increasing
Nx) for a specified aspect ratio will result in the generation of the aforementioned spurious high
frequency inertial-gravity waves. Note that increasing Nx to resolve smaller scales of motion while
artificially truncating the frequencies to lie between [f,N ] is likely to result in a violation of basic
conservation laws — indeed, this is one of the points we are presently examining. For example,
Fig. 23 shows the effect of higher frequency waves on the total energy distribution for hydrostatic
simulations in a periodic box. The parameter values are N/f = 25, Fr = U/(LfN) = 0.2 and
L/H = 25, where U,Lf are the characteristic velocity and length scales of the force. The force
is 3D, isotropic, white in time, with a gaussian two-point spatial correlation function peaked at
kf = 43. A hyperviscosity is used in order to allow for a range of scales where viscous effects are
negligible. The hydrostatic simulations are purposely ”over-resolved” in the sense that kh << kz

is violated. We allow successively more spurious high-frequency inertial-gravity waves: the three
different simulations allow inertial-gravity waves with frequencies in the range [f,N ] (curve with
dots), [f, 4N ] (curve with stars) and [f, 8N ] (curve with open circles). As we allow the higher
unphysical frequencies to enter the simulation, the energy transfer is inhibited with the spectrum
tending towards isolated peaks at multiples of the forcing frequency.

Figure 24 compares total energy spectra for a hydrostatic simulation that satisfies the constraint
kh << kz with resolution 32 × 32 × 64 to a Boussinesq simulation with resolution 180 × 180 × 64.
The parameters and forcing are the same as for Fig. (23): N/f = 25, L/H = 25, Fr = 0.2,
kf = 43. One sees that the hydrostatic interactions are not sufficient to extract energy from the
forced modes, whereas the Boussinesq interactions transfer energy from the forced modes to both
larger and smaller scales. The higher horizontal resolution is necessary for the nonlinear transfer
to occur, but as discussed above, higher resolution in the hydrostatic runs violates the condition
kh << kz under which the hydrostatic equations are derived. In the Boussinesq run, the energy
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Figure 23: The total energy at equilibrium in hydrostatic simulations for N/f = 25 and with forcing
parameter kf = 43. All of these hydrostatic simulations are ”over-resolved” (in the sense that
kh << kz is violated) with L/H = 25 and resolution 180 × 180 × 64. The spurious high-frequency
waves (curves with stars and circles) inhibit energy transfer from the peak forced wavenumber to
other wavenumbers that are not integer multiples.
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Figure 24: Total energy in the hydrostatic (left panel) and Boussinesq (right panel) runs with
N/f = 25, L/H = 25 and kf = 43. The hydrostatic run is consistent with the assumptions
used to derive the hydrostatic approximation: L/H = 25 and the resolution is 32 × 32 × 64, i.e.
Nx <

√
2L/H. The Boussinesq run is at a resolution of 180 × 180 × 64.
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spectrum for intermediate scales appears to have a well-defined scaling that may indicate the pos-
sibility of inertial-range dynamics.

Further, a subtlety that comes in the Boussinesq equations is that they admit two distinct lim-
its in terms of stratification and rotation. Specifically, measuring the strength of stratification and
rotation in terms of the smallness of the Froude (Fr = UL/N) and Rossby (Ro = UL/f) numbers
respectively, the two limits are (a) Fr small, Ro ∼ O(1) and (b) Fr,Ro both small. These corre-
spond to vertically sheared horizontal flows (VSHF) and quasi-geostrophic (QG) flows respectively
(Embid & Majda, 1998). If one imposes hydrostatic balance, i.e. if H/L << 1, then the first limit
is difficult to achieve since a small Fr implies a small Ro, meaning that the only limit accessible is
that of quasigeostrophy.

8. Local and nonlocal dispersive turbulence. Jai Sukhatme and Leslie Smith

The results of this research have been appeared in Sukhatme, J. & Smith, L.M., Local and nonlocal
dispersive turbulence, Phys. Fluids 21, 056603, 2009.

In the 2D context, simple model equations that possess advection and dispersion include the
familiar barotropic beta plane equation (Rhines, 1975) and the dispersive surface quasigeostrophic
(SQG) equations (Held, Pierrehumbert, Garner and Swanson, 1995). We look at an extended
family (that includes the aforementioned examples as members) of dispersive active scalars. Our
family is a simple dispersive generalization of the family of 2D turbulence models introduced in
Pierrehumbert, Held & Swanson (1994). Specifically, in a 2D periodic setting we consider

Dθ

Dt
+

1

ǫ

∂ψ

∂x
= 0 ; (u, v) = (−∂ψ

∂y
,
∂ψ

∂x
)

where θ̂(kx, ky , t) = −(k2)αψ̂(kx, ky, t) (16)

where D/Dt denotes the 2D material derivative and ǫ is a non-dimensional parameter. Note that in
real space θ and ψ above are related via a suitable (pseudo-) differential operator, i.e. θ = −(−△)αψ
where △ is the 2D Laplacian. For the beta plane equations we have α = 1, θ is the vorticity field,
and ǫ corresponds to the Rhines number Rh = U/(βL2). In the dispersive SQG case α = 1/2, θ
now represents the buoyancy (or potential temperature), and ǫ = U/(ΛL). Physically, of course
we are dealing with very different scenarios wherein β is the ambient planetary gradient of the
vorticity while Λ is the background surface buoyancy gradient. Apart from α = 1, 1/2, there exist
other members of this family that have physical interpretations, but, from a broader perspective,
the entire family is well defined, and we expect that varying α would provide greater insight into
the interplay between advection and dispersion.

Before considering the effect of dispersion, we examine the influence of α. To obtain a feel
for the locality of the interactions, we shut off the linear dispersive term in (16) and consider a
simple numerical exercise involving the evolution of a smooth θ ring. As is seen in Fig. (25), the
deformation of the ring is more physically local for smaller α. Given that ψ̂(~k) = −θ̂(~k)/k2α, as α
increases, one sees that only the small k features of θ and ψ remain dynamically active. As a result,
for larger α, smaller scale features of the scalar field are for all purposes driven in a passive manner.
In fact in the limit α → ∞, only the wavenumber one (k = 1) component of θ and ψ is coupled,
and in essence, we end up with the problem of passive advection via a large-scale smooth flow.
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Figure 25: Non-dispersive evolution of θ rings. From left to right, α = 0.5, 1 and 1.5 respectively.
Quite clearly, as α decreases the deformation of the ring is more local in character.

In contrast, the case of small α is markedly different. Specifically (û, v̂) = (iky θ̂/k
2α,−ikxθ̂/k

2α)
results in a transition at α = 1/2 (when the scalar and velocity fields have similar scales) where for
α < 1/2 — even though ψ remains a smoothened form of θ — the velocity fields are in fact of a
finer scale than the advected scalar field.

In a 2D periodic domain, much like their non-dispersive counterparts, (16) conserves energy
E =

∫

D
ψθ and enstrophy or ”θ-variance” E =

∫

D
θ2. In fact, continuing with the non-dispersive

case; following arguments for the 2D Euler equations (Kraichnan 1967), it is expected that the
energy primarily flows to large scales while the θ-variance is transferred to small scales. If we
consider a simple Fjortoft-like estimate, i.e. the transfer of energy out of scale k1 into scales k0, k2

(s.t. k0 = k1/2α and k2 = 2αk1), we have E0 = E1 × {(2α)2α/[1 + (2α)2α]}; i.e. the more nonlocal
the situation (α > 0.5), the larger is the fraction of the energy (enstrophy) transferred to large
(small) scales. Curiously such a monotonic statement does not hold for increasing locality, i.e. for
α < 0.5. Keeping in mind that for α < 0.5, k0 is the small scale, as is seen in Fig. (26), a larger
fraction of enstrophy (energy) is always transferred into the small (large) scale, but for α < 0.5,
there is a local extremum α = α∗ = exp{−1} for which enstrophy (energy) transfer to the small
(large) scale (k2) is actually maximized. Also note that, for α > 0.5, not only is a larger fraction
of the enstrophy (energy) transferred to small (large) scales, the exchange involves scales that are
progressively further apart, i.e. we have a spectrally nonlocal transfer. It is known that forward
(inverse) enstrophy (energy) transfer in 2D turbulence (i.e. α = 1) is spectrally nonlocal (weakly
nonlocal) , and is supported by the Fjortoft estimate that suggests a monotonic increase in spectral
non-locality for α > 0.5.

To develop a feel for the dependence of the geometry of an emergent scalar field on α, we con-
tinue with non-dispersive simulations, though now from spatially un-correlated initial data chosen
from a Gaussian distribution with unit variance. Given the presence of an inverse transfer of energy,
we expect coherent structures to emerge from this un-correlated initial condition. In fact, given
the similar scales of the velocity and scalar fields for smaller α we do not expect the scalar field to
undergo much stretching and folding, while for large α we expect repeated events of this sort lead-
ing to a filamentary scalar field — much like the fate of a small-scale passive blob when advected
by a large-scale smooth flow — due to the implicit large-scale strain (via the large scale-separation
between θ and ψ). These expectations are confirmed in Fig. (27) which shows the initial condition
and the emergent scalar field for α = 0.5 and 2 respectively.

When the dispersive term is included, the linearized form of (16) supports waves with the
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Figure 26: Energy and Enstrophy transfer into the small scales. Note that the three interacting
scales are k0 = k1/(2α), k1 and k2 = 2αk1 and hence the large and small scales flip at α = 0.5. In
all cases, a larger (smaller) fraction of the enstrophy (energy) is transferred into the smaller scale.

Figure 27: The first panel is the spatially un-correlated initial condition (smoothened via a diffusive
stencil). The second and third panels show the emergent scalar field for α = 0.5 and 2 respectively.
Quite clearly, for α = 0.5 we have a field composed of coherent θ eddies while for α = 2 we obtain
a filamentary geometry reminiscent of a passive field when subjected to large-scale advection.

26



dispersion relation

ω(~k) = − kx

ǫk2α
; where ~k = (kx, ky) (17)

It is interesting to note that, for α = 0.5, (17) gives 0 ≤ |ω(~k)| ≤ 1/ǫ. For α < 0.5, |ω| → ∞ for
ky = 0, kx → ∞, whereas for α > 0.5, |ω| → ∞ for ky = 0, kx → 0. Quite clearly the frequencies
have a very different dependence on wavenumber when α <,= or > 0.5. In fact, an important
feature of the beta plane equations (which is true for all α > 0.5) that |ω(~k)| increases for large
scales is no longer true for α ≤ 0.5; in fact, for α < 0.5 the smaller scale features have larger
frequencies.

Considering an initial value problem, the original deduction of anisotropic fields by Rhines
(1975), in the context of the beta plane equations was based on the dual constraint of an upscale
transfer of energy along with the tendency of resonant triads to move energy into small frequencies
(Hasselmann, 1967). Indeed, there are two pieces of the Rhines argument : (i) energy moving to
large scales as a result energy/enstrophy conservation, and (ii) the importance of resonant triads
in energy transfer with dispersive modulation of the advective nonlinearity. In the context of the
general dispersion relation (17), for isotropic structures, kx ∼ ky ∼ k we have

|ω| =
1

ǫ2α

1

k2α−1
. (18)

Hence for α > 0.5, moving to large scales, i.e. for decreasing k we encounter larger frequencies.
Therefore, to satisfy the dual constraints, Rhines (1975) suggested that the system would spon-
taneously generate anisotropic structures; further examining (17) shows that these constraints are
satisfied for ky 6= 0, kx/ky ≪ 1. Also, when considering energy transfer into large scales, i.e.
k < p, q, interactions that fall in the aforementioned anisotropic category are in fact near-resonant.
In essence we have an anisotropic streamfunction that results in predominantly zonal flows (i.e
u ≈ u(y, t)). Though note that for α < 0.5, decreasing k implies smaller frequencies, therefore
it is possible to maintain isotropy while simultaneously transferring energy to large scales and
small frequencies. Hence, for α < 0.5, the dual constraints do not nessecitate the formation of
a dominant of zonal flow. Note that this does not imply zonal flows cannot form for α < 0.5,
in fact, substituting an expansion of the form ψ = ψ0 + ǫψ1..., the O(1/ǫ) balance in (16) yields
∂ψ0/∂x = 0 ⇒ u0 = u0(y, t), v0 = 0. Of course, this expansion doesn’t imply any control over the
higher order terms, but irrespective of α, at order zero, it indicates the possibility of zonal flow
formation.

To examine the nature of emergent flows for differing locality, we perform numerical simulations
with spatially un-correlated initial data as shown in the first panel of Fig. (27). Setting ǫ = 0.1,
the scalar and zonal component of the velocity fields for α = 0.25, 1 and α = 1.25 are shown in Fig.
(28), quite clearly for α > 0.5 we have, what might be termed a coherent zonal flow i.e. u ≈ u(y, t),
while for α = 0.25, u is still a function of both spatial co-ordinates. Note that, in accord with Fig.
(23), the flows are broader and of smaller magnitude for increasing α.

With regard to the mathematical aspects of (16), α = 0.5 is known to be special in the sense
that it represents an open problem with regard to global regularity of non-dissipative solutions (see
for example Constantin, Majda & Tabak 1994 for an analogy between front formation in SQG and
finite time singularities in the 3D Euler equations). In fact, present estimates for well behaved
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Figure 28: θ, u fields for α = 0.25, 1 and 1.25 in the upper and lower panels respectively. In all cases
ǫ = 0.1. Note the finer scale of the flow as compared to the scalar field when α = 0.25. Further for
increasing α, we see u ≈ u(y, t) i.e. we obtain coherent zonal flows.

solutions require dissipation of the form △ρ with ρ = 0.5 for both, the non-dispersive and disper-
sive cases (Kiselev, Nazarov & Volberg 2007, Kiselev & Nazarov 2008). Unfortunately, regularity
results for 0.5 < α < 1 are presently un-settled. It is unclear if the difficulty in achieving regularity
(by present techniques) arises abruptly at α = 0.5 or whether one requires gradually stronger dis-
sipation as α decreases from unity. Ultimately, in our opinion it might be interesting to delineate
the nature of the (α, ρ) ”regularity curve” for 0 < α ≤ 1, and as α = exp{−1} is a local maximum
for enstrophy transfer to small scales, we feel this makes it a good candidate for investigating the
breakdown of smooth initial conditions.
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7. Oceanic mixing forced by remote wind forcing through internal gravity wave 
breaking: The single wave case, Wei Liu, Zhengyu Liu, Francis Bretherton, Leslie 
Smith, Christ Rotland, Hao Lu 
A paper is to be submitted to Journal of Physical Oceanography 
         Interior ocean mixing forced by surface wind forcing is studied in the idealized 
case of surface forcing internal gravity wave breaking. The breaking of internal gravity 
waves by convective instability is studied by direct numerical simulation (DNS) based on 
a newly-developed pesudospectral model, which is more  accurate than a finite difference 
code. On a two-dimensional fluid dynamics in the vertical (x, z)-plane, the Navier–
Stokes equations in the Boussinesq approximation can be written in terms of the 
streamfunction and fluctuating density fields ρ = (g /ρ0) ˜ ρ  as  
∂∇2ψ

∂t
+ J(∇2ψ,ψ) =

∂ρ'
∂x

+ υ∇2ψ             

∂ρ
∂t

+ J(ρ,ψ) = −N 2 ∂ψ
∂x

+ κ∇2ρ                

  where  ν is the kinematic viscosity coefficient and κ  the density diffusion coefficient. 
J(A,B) = (∂A /∂x)(∂B /∂z) − (∂A /∂z)(∂B /∂x)  is the Jacobian operator. 
Different from previous studies, this model employs top boundary forcing to generate a 
monochoromatic two-dimensional wave, which allows it to simulate the remote breaking 
process in the progressive wave. For simplicity here, the effects of mean flow is 
excluded. Isopyncal overturning and associated convective instability arises when the 
primary wave steepness s = 0.75 − 0.79, below the conventional critical value s =1 
(Fig.7.1). Due to dissipation and mixing effect in modifying the mean stratification, the 
surface forcing effect induced mixing is limited in the depth shallower than the wave 
propagation (Fig.7.1). Furhtermore, the critical steepness of ~0.75 is insensitive to the 
forcing frequency (not shown). Energy spectrums remain unchanged at the onset of 
isopycnal overturning and most high harmonics are not developed until the primary wave 
steepness increases to beyond s =1. Energy is more apt to transfer from the primary wave 
to higher harmonics (smaller scale) with slower forcing frequency.       
 
 
Further analysis shows that the wave breaking is caused by two mechanisms: the 
convective instability and shear instability. The two types of instability occurred in 
preferred phase, as indicated schematically. Convective instability occurs at the phase of 
0.5pi, while shear instability occurs at 0 and pi, as shown schematically in Fig.7.2. 
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Figure 7. 1.  Depth-time diagram of (a) vorticity and (b) density at x = −0.2Lx . For various forcing 
steepness s. This figure shows how the surface wave forcing generates breaking and mixing remotely away 
from the surface forcing. But the depth of mixing is confined shallower than the propagation wave.  
 

 
Figure 7. 2. Schematic diagram of instability phase range, blue shading near 0.5pi indicate the strongest 
overturning and therefore most likely convective instability, while the green dashed lines along 0 and pi are 
the region of strongest shear and in turn shear instability.   
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The mixing effect on mean stratification is seen in the example in Fig.7.3. It is seen that 
heavier fluid is moved to the surface while light fluid in the subsurface (Fig.7.3b), 
obviously the result of mechanical mixing caused by the surface wind. The induced eddy 
mixing coefficient reaches it maximum in the top half wave length and then decays 
downward (Fig.7.3c). The mixing coefficient generally increases with the steepness of 
the forcing wave (Fig.7.4).   

 
Figure 7. 3. An example of vertical profile of (a) total density, (b) density anomaly and buoyancy flux, and 
(c) mixing coefficient.    
 
 

 
 
Figure 7. 4. Eddy mixing coefficient as a function of forcing wave steepness.     
 
This study demonstrates explicitly that surface wind can indeed generate significant 
remote mixing in the subsurface ocean. However, for a single wave, unrealisitcally strong 
surface forcing is needed to generate mixing.  We speculate that in the real world random 
wave interactions produce spontaneous mixing and the GM spectrum. This will be 
studied in the future.  
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