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INTRODUCTION

This is a report on the continuing investigation of/the
thermal structure and circulation of Lake Superior. Ragotzkie
and Bratnick (1965) reported on a series of four closely spaced
airborne temperature surveys of Lake Superior during the latter
part of July, 1964. 1In particular, the existence and short-term
persistence of "cold pools" or regions of cold surface water in
the central parts of the east and west basins of Lake Superior
was demonstrated. It was shown that these could only be main-
tained by a general upward motion of cold water in these areas.

In addition, a steep horizontal temperature gradient directed
normal to the coast was found along the north side of the Keweenaw
Peninsula. This temperature gradient persisted during the passage
of a cyclonic storm with its associated wind shifts and suggested
the existence of a current flowing northeastward parallel to the
coast of the Keweenaw Peninsula.

The field program during the summer of 1965 had two purposes:
first, to determine if the "cold pools" were a regular character-
istic of the summer pattern of Lake Superior, and if so when they
formed, and second, to investigate in more detail the surface tem-
perature pattern and its relation to the sub-surface thermal
structure in the region along the north side of the Keweenaw
Peninsula.

FIELD OPERATION, 1965

A series of seven airborne surveys of the surface tempera-
ture of Lake Superior was flown between 15 June and 3 August. The
limitations and validity of this technique have been discussed

1



elsewhere (Clark, 1964, Ragotzkie & Bratnick, 1965). K Four of

these flights yielded excellent results and the other three pro-
vided limited to poor coverage of the lake because of weather
interference or instrument difficulties. In all but one flight,
detailed coverage was obtained in the region along the north side ¢
of Keweenaw Peninsula.

In addition to the airborne observations, four temperature
cross-sections normal to the Keweenaw Coast were obtained on 30
July by bathythermograph from the USCGC Naugatuck. Due to advance
aircraft scheduling this set of observations was not made on the
same day as an airborne survey but fell midway between two surveys
a week apart. Despite this time difference, good agreement with
the airborne results was obtained by comparing the patterns observed

before and after the BT sections.

"COLD POOLS"

The surface temperature maps of the lake as a whole (Figs.
1-6) show that the lake was still very cold in June with a band
of warmer water along the south shore with the maximum horizontal
gradient along the Keweenaw Peninsula. By mid-July, the north-
south temperature gradient extended over more of the lake except
near the Keweenaw where the gradient remained very steep. Not
until 26 July did the cold pools appear and then only weakly. By
3 August the two cold areas were better developed, resembling quite
closely the pattern observed on 29 July, 1964 (Fig. 7). In general
the cold pools developed as expected but about a week later than
in 1964. These observations have strengthened the suggestion
(Ragotzkie and Bratnick, 1965) that these two cold areas are regular

features of the summer thermal structure of Lake Superior.



15 June 1965
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Figure 1. Surface temperature pattern of Lake Superior obtained
by airborne infrared radiometer on 18 June 1965. Flight tracks are
shown by light lines, isotherms are C.
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Figure 2. Surface temperature pattern of Lake Superior obtained
by airborne infrared radiometer on 38 June 1965. Flight tracks are
shown by light lines, isotherms are “C.
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Figure 5. Surface temperature pattern of Lake Superior obtained
by airborne infrared radiometer on 28 July 1965. Flight tracks are
shown by light lines, isotherms are C.
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Figure 6. Surface temperature pattern of Lake Superior obtained
by airborne infrared radiometer on 3 _August 1965. Flight tracks are
shown by light lines, isotherms are C.
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Figure 7. Surface temperature pattern of Lake Superior obtained
by airborne infrared radiometer on 29 July 1964 (from Ragotzkie
and Bratnick, $965). Flight tracks are shown by light lines,
isotherms are C.

KEWEENAW REGION

Detailed analyses of the infrared data from closely spaced
flight tracks and the BT data for 30 July in the region along
the north side of the Keweenaw Peninsula (Figs. 8-13) show that a
steep gradient of surface temperature normal to the coast existed
throughout the entire period from 30 June to 3 August, 1965. These
patterns of surface temperature display several interesting charac-
teristics.

The width of the temperature gradient varied from less than
5 kilometers to slightly more than 10 kilometers. Actual gradients
ranged from 2 to 12° ¢ per kilometer. The axis of this thermal
gradient remains approximately parallel to the coastline but moves
laterally with time (Fig. 14). On 30 June and 14 July, the axes

were almost coincident about 5 kilometers offshore. By 20 July
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Figure 8. Detailed analysis of surface temperature pattern near
Keweenaw Peninsula from infrared data, 30 June 1965.
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Figure 9. Detailed analysis of surface temperature pattern near
Keweenaw Peninsula from infrared data, 14 July 1965. Shaded areas
represent rain showers.
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Figure 10. Detailed analysis of surface temperature pattern near
Keweenaw Peninsula from infrared data, 20 July 1965.
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Figure 11. Detailed analysis of surface temperature pattern near
Keweenaw Peninsula from infrared data, 26 July 1965.
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Figure 12. Detailed analysis of surface temperature pattern near
Keweenaw Peninsula as obtained from BT data, 30 July 1965. Straight

lines and Roman numerals indicate location of BT sections shown
in Figures 15-18.
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Figure 13. Detailed analysis of surface temperature pattern near
Keweenaw Peninsula from infrared data, 3 August 1965.
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Figure 14. Axes of maximum surface temperature gradient from June
to August 1965. Axis on 30 July from BT data, all others from
infrared data.

the axis had moved to a position 15 to 20 kilometers offshore

apparently in response to a 4-day period of east and south winds.
Upwelling of cooler water immediately adjacent to the coast was
indicated by a band of 8-9° C water between the Keweenaw Waterway

and Eagle Harbor. The next two observations, 26 and 30 July showed
the axis back close to shore, but on 3 August it was again 10 to 20
kilometers offshore. However, on this date no cold water was present
along the coast and since the winds of the preceding day were from
the west it is doubtful that any nearshore upwelling occurred. The
reason for the rapid offshore movement of the axis between 20 July
and 3 August is not entirely clear, however, there was a suggestion |
of a countercurrent advecting cooler water westward along the coast
near the eastern tip of the peninsula on 3 August (Fig. 13).

On several occasions eddy-like thermal patterns appeared (30
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16 151311 9

20

301

METERS
S

50

55

100}

150}

200

wois08 07

Temperatures cross-sections (BT) off Keweenaw
See Figure 12 for location of sections.

Level of No Motion

5

(Isotherms in °C)




12

METERS

Figures 17-18.
Peninsula on 30 July 1965.
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June, 14 and 26 July). These were always on the offshore side of
the maximum temperature gradient, but whether they are dynamically
produced or are simply small bodies of warmer water embedded in

the general current cannot be determined from the existing data.

In one case, 14 July, the temperature pattern appeared streaky with
numerous reversals of gradient. Since there were rain showers in
the vicinity, this could have been the result of spotty rainfall
modifying the surface temperature.

The packing of surface isotherms has been interpreted as a
surface manifestation of sloping isothermal surfaces below the
surface and consequently of pressure gradients within the water mass.
A current parallel to the coast and flowing northeastward has been
hypothesized on the basis of the geostrophic relationship. In order
to verify the assumed internal thermal structure, four bathythermo-
graph sections across the gradient were obtained on 30 July 1965.
These sections (Figs. 15-18) showed that, as expected, the isothermal
surfaces sloped sharply downward toward the coast thus leading to

a pressure gradient directed offshore in the upper 30 or 40 meters.

KEWEENAW CURRENT

Current velocities normal to the temperature cross-sections
were calculated by the geodynamic height method of Ayers (1956)
taking 75 meters as the depth of "no motion". (See Appendix for
Fortran program). The velocity cross-sections are shown in Figures
19-22. On 30 July 1965 the current was confined to a zone within
five miles of the coast. Maximum calculated velocities were 35-40
cm/sec or about one knot, but since the maximum velocities occurred

at the inshore edge of the temperature data, even higher velocities

13
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can be inferred. The actual existence of this current has been
confirmed by U. S. Fish & Wildlife Service personnel. R. L. Pycha
(personal communication, 1964) states that "The current along the
northwest side of Keweenaw Peninsula is quite persistent--it takes
a good strong northeast wind of considerable duration to break up
this current." W. D. Dryer (personal communication, 1966) reports
that young lake trout released in this area tend to move from west .
to east suggesting a persistent current in this direction.

More recently on 9-11 July, 1966, the author has made direct
observations of this current while setting instrumented buoys
near Eagle Harbor. At an anchored buoy less than two miles offshore
in about 700 feet of water an audible wake was created as the
surface water swept past. The current velocity was estimated to
be between one and two knots. From a ship crossing of the current
at constant magnetic heading, the drift vector indicated an average
surface velocity of about one knot which is in agreement with the
maximum calculated velocity values from the 1965 data. At the same
time these direct observations were made, there was no perceptible
current at an anchored buoy about six miles offshore indicating
an exceptionally large lateral shear. This steep velocity gradient
was also indicated by the analysis of the 1965 BT data.

Preliminary analysis of infrared radiometer data for the same
area obtained a few days before and after the 1966 ship observations .
indicated that the typically sharp gradient of surface temperature
was very close to the coast.

Taken altogether these various observations demonstrate the
definite existence of a swift, but relatively narrow current parallel

to the north coast of the Keweenaw Peninsula. This current appears
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to be confined to the upper 30 meters and persists from late June

to early August and probably longer. Since this current is a
regular and persistent feature of the summer circulation of Lake
Superior, it is suggested that it be called the "Keweenaw Current".

The outer edge of the current is characterized by the packing
of the surface isotherms with colder water offshore. This feature
constitutes a surface "signature" of the Keweenaw Current and is
readily detectable by infrared radiometry. As shown in Figure
14 the axis of the current "signature" moves offshore from time to
time apparently in response to offshore winds and subsequent
upwelling near the coast or to the intrusion of colder water along
the coast from the northeast.

Despite its lateral movements, the current remains narrow
and coherent. The geometry of the lake undoubtedly exerts some
effect, but it is difficult to see how this alone could cause a
narrow surface current to persist up to 20 kilometers offshore where
depths exceed 200 meters. Referring to the thermal maps of the
entire lake (Figs. 1-6) it is obvious that during summer a large
expanse of warm surface water is found in the south portion of the
lake west of the Keweenaw. This water may originate from the
shallower water in the Apostle Island region or from the stripping
off of heated surface water in the central region by Ekman transport
or both. As this warm water flows eastward it is apparently con-
stricted between the Keweenaw Peninsula and the cold central water
to the north resulting in the development of exceptionally steep
geodynamic slopes. Since the water depth in this area is several
times the depth of the thermocline, bottom friction is small.

Therefore, it seems reasonable to assume that the Keweenaw Current
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is in geostrophic equilibrium.

RELATION TO THE "THERMAL BAR"

Rodgers (1965) has proposed that the sharp horizontal tempera-
ture gradient frequently observed parallel to the coast in the
Great Lakes is the same as the "thermal bar" described by Tikhomi-
rov (1963). This phenomenon requires that water masses above and
below 4° ¢ be present simultaneously. In the spring situation a
convective circulation is set up which results in sinking along
the cold side of the horizontal temperature gradient parallel to
the shore and a general slow upward motion in the cold central
portion of the lake. Inshore of the temperature gradient region
the water is above 4° C and sinking also occurs along the warm
side of this gradient where lateral mixing lowers the surface
temperature below that of the underlying water. In cross-section
the thermal bar is characterized by reversal of slope of the iso-
thermal surfaces from one side to the other with the surfaces being
vertical in the center of the gradient. As surface warming proceeds
the "thermal bar" moves steadily offshore. Presumably when the
surface temperature of the central portion of the lake exceeds
4° C, the entire system "flips over" into the usual epilimnion-
hypolimnion thermal structure.

This phenomenon may occur in Lake Superior up to early July,
but by mid-July the temperature of the central water has increased
to above 4° c. Therefore, this effect can no longer operate. This
is clearly shown in the BT sections of 30 July (Fig. 12) when the
isothermal surfaces all slope upward away from the coast. Also the
horizontal temperature gradient did not move outward until 20 July,

but then returned to a nearshore position by 30 July and back
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offshore by 3 August, (Fig. 14). Thus instead of moving steadily

offshore, the thermal gradient migrated back and forth, probably
in response to transient wind changes. Furthermore, the gradient
persisted even after the temperature of the central water rose
above 4° c. Therefore, the temperature gradient normal to the
Keweenaw Peninsula and its associated equilibrium current must be
viewed as a dynamic feature of the lake which persists from late

June to early August at least.

DIURNAL HEATING OF THE SURFACE WATER

Since the infrared thermometer senses only radiation in the
8 to 14 micron band, the temperature measured is primarily that of
the upper 10 microns of the water (McAllister, 1964). Even in
the presence of considerable wind action this layer is strongly
affected by heat exchange processes such as evaporation, radiation
and conduction to the air. This problem is discussed by several
authors in the "Techniques for Infrared Survey of Sea Temperature"
J. Clark ed. (1964). During all daytime flights over Lake Superior
the effects of diurnal heating were suspected of introducing a
bias into the results. The following test was made to determine
the magnitude of this effect.

The flight of 14 July (Fig. 3) originated and terminated
at Duluth. Several flight path intersections were planned so that
surface temperatures on the outbound and inbound tracks could be
compared. These are lettered in Fig. 3, and the results are sum-
marized in Table 1. Point F is omitted because of a navigational
uncertainty. At points A, B, C, and D the average heating rate
was 0.24° ¢ per hour. This value applies to clear to partly cloudy

sky conditions during the middle part of the day. At point E the
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observed value was about twice as large, but this is attributed to
the proximity of a rain shower which could have produced a local

increase in surface temperature.

The diurnal heating therefore can cause a gradual increase
in the surface temperature of 1 to 2° ¢ in the course of a day.
In a survey lasting an entire day a bias would be apparent, but
where horizontal temperature differences of 10° ¢ or more are
encountered, the overall pattern would not be substantially affected.
Due to the short time intervals involved, local gradients would not
be significantly affected.

Since the heating rate will vary depending on local meteorolo-
gical conditions, the rate should be determined for each flight
if a correction for this effect is to be made. No correction was

applied to the data presented in this paper.

GENERAL DISCUSSION

The primary result of this investigation has been the demon-
stration of the validity of a remote sensing technique, infrared
in this case, for detecting sub-surface features by means of a
surface "signature". A sharp horizontal temperature gradient at
the surface is a well recognized manifestation of a boundary current.
However, all sharp temperature gradients do not necessarily indi-
cate the existence of currents. Other effects such as shallow water,
river outflow or onshore winds could cause such gradients. When
the gradient occurs in deep water and persists despite wind shifts
associated with the passage of cyclonic storms, the probability
of a steady equilibrium current is great. Final verification must

then be sought from other evidence such as measurements of internal
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thermal and current structure.

Once the feature is verified then the remote sensing technique
becomes a surveillance technique by which the exact position and
movements of the current can be determined. The streamline orienta-
tion can also be observed directly by flights which identify a particui
lar group of surface isotherms using the infrared radiometer as
a tracking device, as is being done, for example, on the Gulf Stream
(Niblock, 1966). A high precision air navigation system such as
a doppler radar or inertial platform navigation system will be re-
quired in order to document the actual ground track of the aircraft.

At the same time, detailed investigation of the current, e.g.
its velocity structure, depth, transport and so forth, can be conducted
from ships or buoys. The effectiveness and efficiency of these
vehicles can be greatly enhanced by making use of the data from the
remote sensing surveillance technique. For example, infrared surveys
of the thermal gradient associated with the Keweenaw Current suggest
the occasional occurrence of eddies and a counter-current. (Figs.

8 and 13). Ideally whenever these secondary features appear to

be present, a ship could be directed to the proper location to make
direct measurements. Lacking the aerial surveillance capability,
the possibility of a ship locating these features would be left to
chance or would require a "brute force" type of operation involving
several ships or a very tight buoy array. Either of these alterna-
tives is prohibitively expensive in terms of both personnel and
money.

In summary, remote sensing is a powerful technique which can
be used to detect interesting and significant thermal and circulation

features in large bodies of water. By maintaining surveillance,
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the effectiveness of ship-borne operations can be greatly increased.
CONCLUSIONS:

At this stage of the investigation the following conclusions
can be drawn:
1. The thermal structure of Lake Superior during summer
displays features which occur regularly each year. Two of these
are the two "cold pools" in the central portion of the lake and
the steep surface temperature gradient along the Keweenaw Peninsula.
2. There is a narrow, swift current flowing northeastward
along the north coast of the Keweenaw Peninsula. This current appears
to be in dynamic equilibrium and persists from late June until at
least early August.
3. Infrared radiometry is a valid and powerful technique
for examining the surface temperature patterns of large bodies of
water. These thermal patterns can in some cases be interpreted
as "signatures" of internal thermal structure and boundary currents.
4. The concept of a "thermal bar" does not adequately
explain the observed thermal structure of Lake Superior.
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APPENDIX. COMPUTER PROGRAM FOR DETERMINING CURRENT
IN DEEP FRESHWATER LAKES BY THE GEODYNAMIC
HEIGHT METHOD.

FORTRAN PROGRAM

DIMENSION A(250),C(250),DIsJ(9),T(36,10),H(36,10),V(36,9)
Q=10./(.000145%,736*1609.4)
READ 1001, (A(J),J=1,250)
READ 1001, (c(J),J=1,250)
FORMAT (10F6.1)

READ 1101, NI

FORMAT (I2)

DO 3 I=1,NI

READ 1102, NJ, (DISJ(J),Jd=1,9)
FORMAT (8X,12,21X,9F4.1)

READ 1103, ((T(K,J),K=1,36),J=1,NJ)
FORMAT (14X,9F6.2)

DO 5 J=1,NJ

=e,1

DP=.1

DO 5 K=1,36

IF (K-27) 204, 202, 204
DP=.5

P=P+DP

TI=10.*T(K,J)+1.

IT=TI

FIT=IT

F=TI-FIT

TT1=A (IT+1) *F+A (IT)*(1.-F)
TT2=C (IT+1) *F+C (IT)*(1.-F)
H(K,J)=TT1-P*TT2

DO 7 J=1,NJ

DP=100.

DO 6 K=1,35

IF (K-26) 6, 206, 6

DP=500.
H(K,J)=(H(K,J)+H(K+1,J))*DP*.5% 00001
H(36,J)=0.

DO 8 J=1,NJ
DO 8 KC=1, 35

K=36-KC

H(K,J)=H(K+1,J)+H (K, J)

NJ1=NJ-1

DO 9 Kc=1, 36

K=37-KC

DO 9 J=1,NJ1

V(K,J)=(H(K,J)-H(K,J+1) ) *Q/DISJ (J)

PRINT 3001, I

FORMAT (58H1TEMPERATURES, SIGMA DELTA HEIGHTS, SIGMA DELTA VELO-
CIT

1IES/9HO TRACKI2)

PRINT 3002, (DISJ(J),J=1,NJ1)

25



26

3002

3003

3004

301
303

3005

3006

3007

(Fortran Program Continued)

FORMAT (/10HODISTANCES, 3X,9F10.1)
PRINT 3003, (J,J=1,NJ)

FORMAT (8HOSTATION, 7X,10(I2,8X))
PRINT 3004

FORMAT (6H DEPTH)

KP=-1

KDP=1

DO 11 K=1, 36

IF (K-27) 303,301, 303

KDP=5

KP=KP+KDP

PRINT 3005, KP, (T(K,J),J=1,NJ)
FORMAT (1HO,I3,5H (T),1X,10F10.2)
PRINT 3006, (H(K,J),J=1,NJ)
FORMAT (6X,5H(H) ,10F10.5)

PRINT 3007, (V(K,J),J=1,NJ1)
FORMAT (6X,3H(V),6X,9F10.2)
CONTINUE

STOP

END
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