THE SCHWERDTFEGER LIBRARY 1225 W. Dayton Street Madison, WI 53706

FINAL REPORT

Collecting and Processing of Micrometeorological Data

for the

Spring, 1967, Cooperative Field Experiment at Davis, California

Prepared by

C. R. Stearns

W. F. Dabberdt

Department of Meteorology
University of Wisconsin
Madison, Wisconsin

Contract No. DAADO6-67-C-0117
Department of the Army
U.S. Army Electronic Proving Ground
Mateorology Department
Fort Huachuca, Arizona

TABLE OF CONTENTS

			Page
1.	INTRO	oduction -	1
		Objective	1
		Role of the Department of Meteorology,	
		University of Wisconsin	1
	1.3	Theoretical Guidance	2
2.	INST	RUMENTS AND RECORDING	4
	2.1	Windprofiles	5
	2.2	Temperature Profile	8
	2.3	Moisture Profile	11
	2.4	Wind Direction	11
	2.5	Mast Construction	. 12
	2.6	Radiation Measurements	13
	2.7	Soil Heat Flux	15
	2.8	Soil Heat Flux and Temperature Profile	17
	2.9	Bivane and Vertical Anemometer	19
	2.10	Pressure Gradient Measurement	20
	2.11	Switching, Amplifying and Recording	21
		Happenings	23
3.	DATA	REDUCTION	25
	3.1	Windprofiles	26
	3.2	Printed Tape Data Reduction	28
4.	CONC	LUSIONS	35
5.	PERS	onnel	39
	5.1	Personnel participating in the field	
		experiment at Davis, California.	39
	5.2	Personnel participating in the data	
		reduction.	39
	5.3	Data Analysis in Progress	40
.:	DESTRICT	D TRICUIC	40

FINAL REPORT

COLLECTING AND PROCESSING OF MICROMETEOROLOGICAL DATA FOR THE SPRING, 1967, COOPERATIVE FIELD EXPERIMENT AT DAVIS, CALIFORNIA

1. INTRODUCTION

The cooperative field experiment is under the direction of and sponsored by the Mcteorology Department of the U. S. Army Electronics Research and Development Activity, Fort Huachuca, Arizona.

- 1.1 Objective. The program is a collective and coordinated field study with the objective of gathering together instrumentation for the measurement of mementum, sensible heat and latent heat fluxes in the surface layer of the air, to collect comprehensive sets of data during two or three weeks of concentrated activity and to make comparisons between the results obtained by the several systems.
- 1.2 Role of the Department of Mateorology, University of Wisconsin. Planning for the Cooperative Field Experiment at Davis, California began after the April 1956 meeting of the contractors for the Mateorology Department (USAERDA). It was decided that the University of Wisconsin, Department of Mateorology would contribute best by making profiles of mean windspeed, wind direction, air temperature and mointure at three sites around the other instruments on the Davis site. One of the purposes would be to determine, if possible, how representative the site actually is.

Additional measurements to be made by the University of Wisconsin, Department of Meteorology would be net radiation and soil heat flux so that the flux of sensible and latent heat to the atmosphere could be determined.

1.3 Theoretical Guidance. Detailed windspeed, wind direction, air temperature and moisture profiles located on a small uniform area lend themselves to analysis in ways which are seldom attempted in micrometeorology. The combination of windspeed and direction profiles at three points allows for the estimation of divergence of velocity and momentum over the small area. If these results should prove reliable then the divergence of sensible and latent heat can be estimated. Only very limited data is available in the literature from which estimates of the divergence of velocity, momentum and sensible and latent heat may be made for small areas.

The modification of the windspeed, air temperature and moisture profile as the air moves over the site from one mast to another can be estimated. This provides a measure of the representativeness of the site.

Other participants in the field experiment would be measuring such items as surface stress, sensible heat flux and latent heat flux. The heat budget would use the Bowen ratio technique for determining the fluxes of sensible and latent heat. The basic heat budget equation at the earth's surface is

where Ro = net radiant energy received at the earth's surface, So = heat conducted into the soil and grass, Qo = sensible heat flux to the air, Eo = latent heat flux to the air and Po = heat flux required for photo chemical processes, which will be neglected. Ro would be measured by net radiometers and So by soil heat flux plates at each mast site. Qo and Eo can be estimated by assuming that the eddy diffusivity for sensible and latent heat are the same. The Bowen ratio Br is equal to Qo/Eo and, if the eddy diffusivities for sensible and latent heat are the same, Br = constant times (d9/dz) / (dq/dz)where d0/dz is the potential temperature gradient and dg/dz is the specific humidity gradient at the same height above the surface. The air temperature gradient and specific humidity gradient would be measured at each mast site so that comparisons might be made between the three systems and a more reliable value for the average of Qo and Eo would be available for comparison with other instrument systems.

Estimates of Zo the surface stress or $V* = (Zo/p)^{\frac{1}{2}}$ where V* is the friction velocity and p the air density may be obtained from the wind and air temperature profiles. The basis equation to be used is

$$v = v * k^{-1} (\ln(1+z/z_0) + \bar{p}_v)$$

where k=0.428 the karman constant, z is height above the surface, z₀ is the roughness parameter for the surface and $\int_{-\infty}^{\infty} v$ is the integral diabatic influence function which is a function of stability departures from adiabatic conditions.

From the windspeed, air temperature and moisture profile it is possible to estimate the sensible and latent heat fluxes by the aerodynamic method which will be nearly independent of the heat budget method mentioned above as neither the net radiation or soil heat flux will enter into the equations.

Several wind vanes located on each mast would be used to determine if the wind direction is constant with height over the entire profile so that it can more safely be assumed that V*, Qo and Eo are constant over the profile. The above assumption is essential to the aerodynamic method of estimating V*, Qo and Eo utilizing all levels of profile measurement.

The divergence estimates over the area encompassed by the three masts would yield an estimate of the mean vertical velocity at the top level of the masts. To check this estimate it would be desirable to have an independent measure of the vertical velocity. The vertical momentum transport would also be desirable. Therefore, a supplementary measure of the instantaneous vertical and horizontal velocity would be made at the level of the uppermost anemometer.

Z. INSTRUMENTS AND RECORDING

The field sites were located by Mr. Dave Morgan of UCD, Davis, California based on an equilateral triangle 100 meters on a side, oriented so that two masts were 50 m south and north of the Davis 20 m tower and the third mast was directly west of the Davis Tower and 100 m from the other two masts. The

Wisconsin masts were well within the field site, yet enclosed all possible sites for other instruments. Fig. 1 gives the field layout and the corresponding mast numbers which will be referred to in the data.

Space at the University of California, Davis, field site was not available for housing equipment or to serve as a work area. A 7 ft x 9 ft x 7 ft high hutment was obtained which would fit on a 1½ ton stake truck that could be rented from the University of Wisconsin car fleet. The hutment was wired to serve as the recording shelter. A tandem trailer towed by the truck was used to transport equipment to Davis, California.

At Davis, California the hutment was removed from the truck and placed beside an obstruction which was already present on the east edge of the field site, so as to minimize the disturbance to the field. The trailer, which was parked beside the hutment, served both for storage and as a work area during the week of inclement weather present prior to the start of the field experiment.

2.1 Windprofile. The factor limiting profile measurements was that only 29 anemometers were available (including 7 loaned by Dr. C. B. Tanner, Department of Soils, University of Wisconsin). Since three masts were the minimum which would provide an area coverage around other installations, nine levels of wind measurement were made at each mast leaving two anemometers as spares. The heights selected were 20, 40, 80, 120, 160, 200, 240 and 320 cm. The wind vanes were initially installed at 40, 80, 160, 240 and 320 cm.

Fig 1. Field layout, Davis Culifornia for the limiversity of Wisconsin, Dept. of Motocrology showing location of mosts and instrument shelter.

SCALE

The wind speeds for profiles were measured by 3 cup
Thornthwaite anemometers using a recording system described
by Stearns (1967). During each revolution of the cup a photo
cell is eclipsed from a light bulb by a shutter. The photo
cell resistance change is amplified operating an electromechanical counter. The counters were photographed once each
minute and the counts for 28 minutes out of each 30 minutes
were noted commencing one minute after the hour or half hour
and stopping one minute before the half hour or hours.

After the field experiment the anemometers were compared to each other in order to establish their relative calibration factors. The anemometers were mounted 12 at a time 50 cm apart on a horizontal bar two meters above the water on Lake Mendota. Comparison runs were made when the wind was within ± 30 degrees of being normal to the bar until 3,000 or more counts had been registered for all anemometers. Then the anemometers were shifted one position along the bar with the anemometer on position 12 removed and one added at position 1 until all anemometers had been run at all positions on the bar. A total of 34 ktms were required as occasionally one anemometer was not operating properly. Table 1 presents the resulting correction factor for each anemometer and the standard deviation of the correction factor for the comparison runs.

The average correction factor for each bar position and its standard deviation is presented in Table 2. This was calculated from the correction factor for each anemometer on that position and the average is the average of the correction factors for every anemometer.

2.2 <u>Terrerature Frofile</u>. Air temperature differences between levels were measured by 10 junction thermopiles. Each thermopiles was encased in a 5 mm dia aluminum bulb 10 cm long supported on a stainless steel tube. The bulbs were shielded from direct solar radiation by two concentric tubes covered with aluminized mylar on the outside and painted flat black on the inside (Stearns, 1967). The resulting time constant of the thermopiles was about 2 min when ventilated 5 m/sec by a blower.

The absolute value of the air temperature was determined by measuring the temperature difference from an ice bath to the 20 cm and the 320 cm level with two junction thermopiles. Since this signal normally was more than the amplification range of + 1 mv could handle, the difference between the thermopile outputs and a milli-volt bias source equivalent to about 18.5°C was amplified and recorded. The temperature at 20 cm and 320 cm was determined by adding the recorded signal to the milli-volt source then the voltage was converted to a temperature difference relative to zero deg C. Then the temperature at the next level __ was found by adding the temperature difference measured by the 10 junction thermopiles from the previous level. Finally at the 320 cm level two air temperatures were available for comparison: one measured by summing the differences in temperature between each level and the other from the two junction thermopile going from the ice bath to 320 cm taking into account the bias source.

The air temperature data on Mast 1 was recorded once each minute on Mast 2 and 3 twice each minute.

Table 1. Mean and standard deviation of the anemometer correction factor obtained by comparison of 12 anemometers at a time on a horizontal bar two meters above the water of Lake Mendota during June and July, 1967. The standard deviation includes variability due to the differences in bar position.

	anem.	RUNS	MEAN	STANDARD DEVIATION	ANEM. NO.	RUNS	MEAN	STANDAND DEVIATION
	7	31	0.927	0.006	16	12	1.001	0.013
	2	32	0.995	0.006	2 17	12	1.028	0.01€
	3	12	0.997	0.017	18	12	0.997	0.012
•	4	12	1.010	0.008	1 9	12	0.980	0.011
	5	-12	1.038	0.011	20	12	0.992	0.007
-	6	12	1.011	0.002	21	12	0.969	0.008
	7	12	1.019	0.004	22		1.000	•
	8	12	1.023	0.015	, · 23°	11	995	0.011
	9	9	0.996	0.005	24	10	.1.008	0.011
	10	12	0.999	0.004	2 5	11	0.997	0.016
	1.1	12	0.993	0.002	26	11	0.981	0.011
	12	11	0.994	0.016	27	11	1.006	0.023
	13	11	1.001	0.011	28	10	C.979	0.01.1
	14				71 29	8	1.006	0.009
	15	12	1.026	0.014	,-			,

Table 2. The mean and standard deviation of the correction factor for each position on the comparison bar obtained during June and July, 1967 over Lake Mendota. The positions are numbered from right to left facing the wind.

BAR PGS.	SAMPLES	MEAN	STANDARD DEVIATION	BAR POS.	SAMPLES	MEAN	STANDARD DEVIATION
1.	27	0.992	0.021	7	24	1.004	0.024
2	26	0.994	0.021	8	24	1.007	0.023
3	27	0.998	0.021	9	24	1.005	0.023
4	27	0.999	0.022	10	23	1.007	0.020
5	27	1.001	0.022	11	25	1.000	0.021
6	27	1.006	0.023	12	25	0.990	0.025

2.3 Moisture Profile. The difference between the air temperature and the wet bulb temperature was measured by a two junction thermopile at each of the nine levels on each mast. Two aluminum bulbs 0.5 cm in diameter and 5 cm long were supported on plexiglass tubing. One aluminum bulb was covered with a wick moistened by distilled water fed by capillary action from a 250 cc reservoir. The two junction thermopile measured the temperature difference between the wet and dry bulbs. The unit was located in the supporting pipe for the air temperature probles and ventilated by the same blower.

The output of each wet-bulb-depression thermopile was switched and recorded at nearly the same time as the air temperature at the same level during the first half of each minute.

2.4 Wind Direction. Wind direction in the very lowest layers of the atmosphere has been too often ignored. Although very conservative under lapse conditions, wind directional changes with height during stable conditions are known to be quite significant (Dalrymple, 1967). To remedy this problem, the wind direction was measured at five levels on all three masts to determine if measurable changes in wind direction occur over the profile height.

^{*}The signal from the potentiometer was passed through a filter with a 2 min exponential time constant. It was then amplified, digitized and printed on paper tape.

Stearns and fabricated at the University of Wisconsin Mechanician Shop. The high-aspect-ratio aluminum tail was counter-balanced by a streamlined brass nose. The vertical shaft was mounted in sealed-ball bearings and coupled to a one-turn, high resolution potentiometer.* Although no individual calibrations have as yet been made, the wind speed response threshhold is in the neighborhood of 1 m sec⁻¹.

In the field the vanes were mounted one meter upwind and 50 cm to the left of the vertical mast structure so as to minimize possible interference.

The calibration procedure was as follows: three distant targets were selected the true bearings of which were known; each vane was then sighted on a target for 10 to 15 minutes, recorded, and calibration curves constructed for each wind vane from the three sightings. It was later determined that further refinements were necessary. The assumption was then made that the wind direction was constant with height at each mast during strong lapse conditions. The average departure of the wind direction of each vane from the mean direction over the mast during these periods was used as an additional correction factor. 2.5 Mast Construction. The use of three separate masts for mounting the sensors for windspeed, direction, and air temperature and moisture was rejected in favor of one mast which supported all elements. On a central mast made of a two inch aluminum pipe three meters high a horizontal arm one meter long was mounted at each level which would support the sensors. At the

end of the supporting arm a one meter long horizontal cross arm was welded to the arm. On the left end of the crosspiece the wind vanes were mounted and on the right end of the crosspiece the anemometer was mounted. The air temperature and moisture sensors were in the center above the supporting arm. The center of the anemometer cup, the center of the air intake nozzle for air temperature and wet bulb depression, and the center of the wind vane tail are at the same level. The mast was supported on a base by four guy wires and could be turned manually so that the sensors would be directed into the wind.

The height to each level on the mast is given in the program for the reduction of printer output in Appendix B, C and D already corrected for the height error given at zero distance from the mast in Table 4.

2.6 Radiation Measurements. At each mast total shortwave incident radiation was detected by an Eppley pyranometer and recorded once each minute. The net radiometer, due to its short response time, was sampled four times each minute at about 15 sec intervals.

The net radiometer ventilation was balanced by shielding the sensing element from external radiation by a cardboard tube large enough not to restrict the air flow. Then heat was applied to each side of the sensing element while the cutput was monitored by a D. C. amplifier with meter output. The ventilation was adjusted until the application or removal of the heat did not change the output signal. The radiometer was leveled according to a bubble level placed on the upper sensing aurface.

Table 4 Height in cm to be subtracted from zero of mast height to obtain the height of the anemometer above the surface at distances 0 - 9 meters from the mast in the indicated direction. The surface reference is a ½ in. mast screen one foot square resting on the grass.

	Distance from mast (meter:)										
•	Direction	0	1	2	3	4	5	-5	7	8	9
	South	1.1	1.3	4.4	5.4	6.5	10.0	11.0	12.1	12.5	14.3
7	Southwest	1.1	-0.1	3.5	4.6	5.7	8.4	15	11.3	13.5	14.4
Mast	West	1.3	0.9	4.7	6.5	8.1	9.1	10.7	10.4	11.1	12.0
Œ	Northwest	1.0	0.5	3.8	6.5	6.7	8.9	15	12.5	10.5	13.2
. ~	South	-1.5	1.6	2.4	6.2	6.3	8.3	7.2	9.0	8.8	10.1
	Southwest	-3.0	-1.3	0.5	0.2	3.7	3.5	3.3	6.1	5.7	12.2
Mast	West	-3.1	-2.3	0.1	3.1	4.7	6.0	15.3	11.9	5.2	3.2
4	Northwest	-0.8	-1.1	-0.3	0.9	3.0	4.1	6.2	6.7	13.1	12.9
				•	•						
	South	-0.1	2.0	4.6	5.0	4.9	6.0	7.8	8.6	7.4	7.2
Mast 3	Southwest	0.4	1.0	3.2	4.0	5.6	6.8	9.2	10.2	9.2	11.2
	West	-1.0	0.6	4.2	5.0	6.5	8.0	10.8	10.8	10.2	12.5
	Northwest	1.2	0.0	. 1.5	2.6	2.9	5.5	£.5	6.0	7.0	8.6

to the Eppley pyrancmeter recorded at the same mast. The pyranometer was shaded for five minutes by a 6" by 12" piece of sheet metal covered with aluminized mylar and mounted on the end of a 10 ft piece of electrical conduit. The conduit was manually held in a vertical position so that the shade shadow would fall on the pyranometer element. After shading the pyranometer, the net radiometer element was shaded in a similar manner for one minute then the shade was shifted slightly, so that the shade shadow was on the ground below the sensing element but not on the element, for one minute so that the effect of the ground shadow on the net radiometer could be determined.

The calibration was carried out whenever the sky was clear and the sun was shining during the latter half of each hour period. The three sets of radiation instruments were calibrated in 30 minutes. During three days only four opportunities were available for calibration of the net radiometers.

2.7 Soil Heat Flux. The soil at the Davis field site was covered with a mat of roots, dead grass and other debris which made a layer of uncertain composition and thickness. There

made a layer of uncertain composition and thickness. There was little point in putting soil flux plates in the soil itself because they obviously would not detect the actual heat flux into the surface. Escause of uncertainties about the thermal contact between the litter and the flux plate the calibration of the flux plates in terms of actual soil heat flux will be very uncertain (Philip, 1961), however, the saving feature is that the soil heat flux should be a small portion of the total surface heat budget.

each mast location and recorded separately. The plates were placed in the surface litter by cutting a slit a few centimeters deep, then a horizontal slice was made about 1 cm below what appeared to be the top of the litter and the flux plate was placed in the slice and the litter pressed down. Since the litter was stiff a gallon or so of water was put on the litter over the flux plate so that the litter would be softened and make better thermal contact with the flux plate. Very few actual soil particles were present in the litter.

The three soil heat flux plates at each mast were recorded through the switch-amplifier-digital voltmeter-printer system. After the data was on punch cards the raw values were plotted as a function of time for each of the individual flux plates. Examination showed which plates were operating uniformly in the expected proper phase with respect to the solar forcing function and not exposed to solar radiation filtering through the litter. The flux plates which seemed to be operating properly were used to determine the soil heat flux using a calibration factor of 3.9 mv ly min. This was arrived at by assuming that the thermal conductivity of the litter was about 0.1 of the flux plate which would mean that the flux plate would indicate about 1.2 times the heat flow that was actually taking place if the thermal contact were perfect. Then it was assumed that the thermal contact was 75% of perfect thermal contact. (Philip, 1961), (Stearns, 1967). The resulting calibration for the soil heat flux plates with 100 thermo-junctions was

3.9 mv ly min which was the value used in processing the data for all three masts. It could be in error by as much as ± 25%.

2.8 Soil Heat Flux and Temperature Profile. In view of the effort that was being put forth at Davis, California, it was felt that it would be worth while to make a detailed study of the soil temperature and heat flux at each of the three mast sites. Three systems were constructed for burial at Davis, California, and in March 1967, a trip was made to Davis to bury one system at each of the mast sites. The soil was wet and after one system was rather poorly buried at mast 1 it was believed that it would not be worthwhile to bury the other two systems as they were unlikely to be successful due to the tendency of soil to ball. The installation at mast 1 left much to be desired.

An examination of previous data from the Davis site showed that the amplitude of the diurnal variation of the soil temperature at -32 cm would be about 0.4°C which was selected as the greatest depth at which measurements would be made. The 13 positions available for recording the soil temperature and heat flux profile limited the number of points in the soil to six. The depths selected were -1, -2, -4, -8, -16 and -32 cm. A double system was constructed so that a failure in one side after burial would not cause the experiment to fail. It is very unlikely that both systems would fail at the same level.

Two junction thermopiles were used to measure the temperature difference between adjacent levels. Aluminum tubes one-eighth

inch in diameter and 30 cm long were used to house the junctions which were insulated and spaced about three centimeters apart near the midpoint of the tube. Two tubes were used at each depth spaced two inches apart between the inner edges. Thus each row of tubes resulted in a complete temperature profile and were held in place by two plexiglass sheets drilled for the tubes and located at each end of the tubes.

The flux plates were constructed of microscope slides 2" long and %" wide upon which 60 turns of No. 36 constantan wire were wound. The turns were copper plated to the midpoint of the flat side of the plate resulting in 60 thermojunctions which would measure the temperature difference across the slide. The plated slides were coated with glyptal varnish to improve the thermal contact between the glass plate and the thermo junctions and to insulate the thermo junctions from the soil. Each plate was checked by immersing the plate in water then measuring the resistance between the water and the plate after leads had been soldered to the outer constantan turn, in order to be sure the plates were well insulated electrically. The flux plates were then glued between the two aluminum tubes housing the thermocouples, so that both soil temperature and heat flux would be at the same level. To partially compensate for the decrease in soil heat flux with depth more individual flux plates were used at greater depths as follows: -1 and -2 cm depth -four plates, -4 and -8 cm depth - 5 plates, -16 and -22 cm depth - six plates. Distribution of the plates along the aluminum tubing was adjusted so that the plates were not aligned

in the vertical. It was believed that the staggered distribution plus the small size of the plates would minimize the hinderance to the vertical flow of water. Two separate leads were brought out for each flux plate so that if one plate were broken the complete set of measurements at that level would not be disrupted.

Two thermo junctions were brought out from the -32 cm depth from each side to a reference bulb and similarly from the -1 cm depth so that if there were a complete disruption of the system at one level in temperature it would be possible to work down and up to that level from the two sets of reference junctions.

Prior to recording the soil heat flux and temperature profile, each item was checked to see if it was operational. One set of thermocouples were open but the flux plates all were operating in a reasonable manner except for some leakage to the soil.

The thermopiles from the separate systems at each level were connected in parallel for recording. The flux plates at one level were connected in series for recording.

2.9 Bivane and Vertical Anemometer. A Gill bivane with propeller anemometer was mounted at the 320 cm height near mast 1. About 2 m away a Gill vertical anemometer was mounted at 320 cm together with a set of fine wire thermocouples for air temperature measurement which was referenced to an ice bath less an adjustable bias voltage, which could be changed as the air temperature changes so that the fluctuations only were amplified substantially.

The horizontal and vertical angles of the bivane, the bivane propellor, the vertical anemometer and air temperature were individually amplified to permit range-changing and recorded on a Visacorder 14 Channel oscillograph at a chart speed of 5"/min. A filter of 5 sec exponential time constant was placed in each output in order to smooth out the high frequency components. This would serve to give all systems the same time constant as all are normally quite different.

The outputs will be used to determine the vertical velocity, momentum and sensible heat transport. This will require products which have contributions at frequencys higher than 1/5 hz but this contribution would be lost. The individual time constants are such that the actual contributions of the products would be uncertain if the filter were not used.

2.10 <u>Freesure Gradient Measurement</u>. One term which is always missing in micrometeorological measurements is the horizontal pressure gradient at the earth's surface. An estimate can be made by placing microbarographs tens of kilometers apart but the poor response time of the instruments and their inherent error of ± 0.5 mb in absolute pressure limit their use for determining small scale pressure gradients.

An attempt was made to make a measurement of the horizontal prossure gradient between the three masts at the Davis site.

Three snow saucers were mounted on and scaled to a wood base which has a 0.50 inch pipe fitting. Four holes 0.25 inch in diameter were drilled around the saucer dome. One dome was placed in the soil at each mast so that only the dome extended.

These the soil surface.

Plastic water pipe of 0.50 inch diameter was connected to each dome leading to the recording shelter where a solenoid valve switching arrangement connected the pipes to a Statham differential pressure gauge with a range of ± 3000 dynes/cm² for ± 10 mv output.

Recording was on a 0 to 2.0 mv Honeywell recording potentiometer. The cycle of the pipe switching was as follows: the pressure difference between mast 1 and 2, mast 2 and 3, mast 1 and 3, and the gauge zero. The switching system for the solenoid switches was triggered every 2.4 sec by the main switch so that 6 cycles were obtained each minute.

2.11 Switching Amplifying and Recording. At each mast was located a switching and amplifying box which was buried in the ground so as to provide the minimum disturbance to the wind flow plast the mast. The switch was a 24 position eight deck unit arranged so that two decks were used to switch each terminal and two terminals were used (one for each side) for every element which was recorded. The output of each channel was fed to a Sanborn 8375 differential amplifier then to a Hewlett Packard 405 digital voltmeter. Both channels for each mast were recorded on one Hewlett Packard digital printer. Three systems were used, one for each mast. A total of 144 items could be recorded each minute.

All switches were stepped every 2.4 sec by a master clock then 1.8 sec after switching the digital voltmeters were triggered and the digital output was recorded on the printer.

After 24 positions had been stepped, the units were quiet for 2.4 sec until the 1 min clock turned the stepping mechanism on for the next cycle. Table 3 gives the recording order.

Table 3 - Recording order for Mast 1, 2, and 3. Wet bulbs, soil heat flux, net and solar radiation were not recorded until May 2, 1967. On May 2 the 40 cm, wind vane was placed at 200 cm and positions 13 to 24, Channel 1, were used for the soil temperature and heat flux profile on Mast 1.

Switch Position	Item - Channel 1	Item - Channel 2
		•
1	0.935 Millivolts ref.	Short
2	Shork	0.935 Millivolts ref.
3	Ice bath to 20 cm temp. diff.	Net radiation
4	40 - 20 cm temp. diff.	20 cm wet bulb depression
5	80 - 40 " " "	40 " " "
6	120 - 80 " . " "	80 " " " "
7	160 - 120 " "	120 " " " "
8	200 - 160 " "	160 " " " "
9	240 - 200 " "	Net radiation
10	280 - 240 " "	200 cm wet bulb depression
11	320 - 289 " "	240 " " " "
12	320 cm to icebath tem. diff.	280 " " " "
13	-0.935 Millivolts reference	320 " " " "
14	Short	Solar radiation
1.5	Ice bath to 20 cm tem. diff.	Net radiation
<i>!</i> 6	40 - 20 cm temp. diff.	40 cm wind direction
17	80 - 40 " " "	80 " " "
18	120 - 80 " " "	160 " " "
19	160 - 120 " "	240 " " "
20	200 - 160 " "	320 " " "
21	240 - 200 " "	Net radiation
22	280 - 240 ", "	Soil flux plate
23	320 - 280 " "	в ,н п
24	Ice bath to 320 cm tem. diff.	U 11 H

2.12 Happenings.

Date	<u>Time</u>	<u>Event</u>
4-15-67		Russell Johnson arrivos at Davis, Calif. with truck, trailer and hutment.
4-16-67		C. R. Stearns and Tom Frostman arrive at Davis, California, car rented.
4-17-67		Start preparations for field experiment.
4-18-67		Walter Dabberdt arrives at Davis, Calif.
4-24-67		Ken MacKay arrives at Davis, California
4-26-67	1301	Start recording wind profiles
4-26-67	2001-2129	Mast 3, 160 cm anemometer not working. Bulb replaced.
4-26-67	2224	Rain began so recording was stopped.
4-27-67	1131	Recording started.
4-2767	1201-1301	Mast 1, 240 cm anemometer not working. Bulb replaced.
4-27-67	1231-1259	Started putting wet bulbs on mast 1
4-27-67	1331-1359	Finished putting wet bulbs on mast 1
4-27-67	1701-1959	Mast 2, 200 cm anemomster not operating. Bulb replaced.
4-27-67	1731-1929	Mast 3, 120 cm anemometer not working. Bulb replaced.
4-27-67	1801-1929	Mast 3, 200 cm and 280 cm an/mometer not working. Bulbs replaced
4-27-67	2302-2359	Mast 3, 80 cm anemometer not working. Bulb replaced.
4-28-67	0101-0231	Mast 3, 320 cm anemometer not working. Bulb replaced.
4-28-67	0231-0259	Bias voltage on air temperature reference shorted out. Air temperature had been off scale.

4-28-67	0231-0430	Mast 3, 20 cm anemometer not operating. Bulb replaced.
4-28-67	0315	Visicorder take up mel plug shorted out tripping circuit breaker 2 cutting power to clock and wind counters. Time thereafter is by Dabberdt's watch.
42867	0731-0831	Mast 3, 40 cm anemometer not operating. Bulb replaced.
4-28-67	0830-0900	Shorts on air temperature bias removed.
4-28-67	1101-11591	Lining up wind vanes on mast 1.
4-28-67	1850	Stopped recording data
4-28-67		H. H. Lettau arrives at Davis, Calif.
&-3 0-67		H. H. Lettau leaves Davis, Calif.
5-2-67	0630	Start recording
5-2-67	0930-1000	Shaded eppleys and net radiometers on mast 1_{ρ} 2 and 3.
5-2-67	1000-1030	Rotated masts to the northwest. Aligned wind vanes.
5-2-67	1130-1200	Shaded eppley and net radiometers on mast 1, 2 and 3.
5-2-67	1500-1530	Rotate masts to the southwest and aligned wind vanes.
5-3-67	0930-1000	Shaded eppleys and net radiometers mast 2, 3, and 1. Photographer at mast 1.
5-3-67	1231-1400	Mast 3, 40 cm anemometer missing counts - bulb changed.
5-4-67	0930-1000	Shaded eppleys and net radiometers mast 1, 2, and 3.
5-5-67	0200-0300	Observed mast 2 stepping switch was missing.
5-5-67	0301-0359	Misread mast 2 - 280 cm, Mast 3 - 20, 40, 80, 120, 160, 200 cm anemometers.

5-5-67	0550-0612	Switch off for all masts. Repaired broken micro switch. Now makes 25 steps per minute so every 25th cycle of data will be removed.
5-5-67	1200	Stopped recording.
5-5-67	1201	Started dismantling equipment and loading trailer and truck.
5-6 - 67		Russell Johnson started return trip to Madison, Wisconsin driving truck with hutment and towing trailer. C. R. Stearns leaves Davis, California

3. DATA REDUCTION

The recording of data commenced at 1130 FCT on April 26, 1967 but the sequence was interupted at 2330 FCT on April 26, 1967 because of light rain showers. Recording commenced again at 1130, April 27, 1967 and continued uninterrupted until 1830, April 28, 1967. The moisture profiles, radiation, soil heat flux and soil temperature and heat flux profiles were not in operation during the above recording pariods.

On April 28, 29 and May l_{σ} 1967 the additional items listed in the paragraph above were placed in operation.

Recording commenced again at 0630 PCT, May 2, 1967 and continued with only minor interruptions until 1200 PCT, May 5, 1967. On the afternoon of May 5 the equipment was dismantled, the truck and trailer were loaded. On the morning of May 6, 1967, the truck started for Madison, Wisconsin.

Data was recorded for about 120 hrs. resulting in about 6,000 28 minute windspeeds, 1,000,000 three digit numbers on printed paper tape, 25 rolls of Visicorder paper with five traces which potentially represent 2,000,000 three digit numbers,

10 rolls of Brown recorder paper representing another 173,000 potential three digit numbers. The wind profiles were photographed once each minute and this data represents a potential 195,000 three digit numbers. If all the data is utilized in the maximum desired detail then about 3.4×10^6 three digit numbers were collected at Davis, California by the Department of Meteorology, University of Wisconsin. 3.1 Windprofile Data Reduction. The wind counts for 28 minutes were recorded in a notebook every 30 minutes. The two minute time period allowed for reading the counters was insufficient to allow for resetting the counters so it was necessary to subtract the previous reading from the present reading in order to obtain the anemometer counts for the recording period. This operation was carried out after the data was recorded providing a check on the operation of all anemometers. Light bulbs burned out several times and these were corrected usually in the next hour. The missing data was filled in by the ratio of the counts for the anemometer above and below the missing anemometer for the period of missing data to the period before and after when all three anemometers were operating. Checks had shown that this method would duplicate the missing data within 1% of the actual value. The list of events gives times and location when anemometer counts had to be estimated.

The date, time of start, time of stop, mast number and anemometer counts for the period were recorded on punch cards. The correction factors for each anemometer given in Table 1 were used in the program "Fast Air" in Appendix A for the initial processing of the data. The program converted the anemometer counts to cm/sec then computed V*, Zo and the displacement height assuming that the wind profile was adiabatic. Often a solution could not be found because the bottom anemometer would be below the ground level so the program prints out "The______ th iteration. Try other initial guesses." In other cases a solution would be found at displacement heights hundreds of meters above the surface which should be considered ridiculous. If the displacement height is + 10 cm and a solution is obtained then the V* and volue should be reasonable.

The program takes the value of V*, so and D calculates a smooth windspeed profile, the speed difference between the smoothed speed and the observed speed, and the ratio of the smoothed speed to the observed speed printing cut the results.

During the period April 26 to 28 the enemometers remained in the same position, then for the period May 2 to 5 the enemometers previously on mast 1 were placed at the same levels on mast 2 and so forth.

Since slight differences in mounting may alter an anemometer calibration it would be desirable to correct an anemometer while mounted on the profile mast. From the initial pass at the wind profile data using the correction

factors given in Table 1, ten profiles were selected under lapse conditions and ten under inversion conditions for which there were solutions with reasonable displacement heights. The average of the ratio of the smooth speed to the observed speed was obtained for each anemometer for the 20 profiles for the parieds April 26 to 28 and May 2 to 5. Table 5 gives the initial correction factor for the anemometer, the correction based on the smooth speed to the observed speed and the final correction factor for each anemometer. The final correction factor is based on the assumption that the 20 profiles were adiabatic and the correction factor could force the profile towards the adiabatic profile. However, the correction factor for lapse and inversion conditions was generally of the same sign and magnitude while the departures from the adiabatic wind profile for lapse and inversion condition should be of the opposite sign. The program used for the wind profiles is given in Appendix A.

The program "Fast Air" punches a card containing the mast number in column 2, the number 1 in column 4 which is an identifier for windspeed, the date, time of start, time of stop and the windspeed at nine levels on the mast in order of accending height.

3.2 Frinted Tapa Data Reduction. Air temperature, wet bulb depression, wind vane angle, solar radiation, not radiation and soil heat flux were recorded through the switch-amplifier-digital voltmeter-printer system at one minute intervals.

The mast number, card number, date and time, then 24 values of printer output were placed on one card. Since 48 values were recorded on each printer each minute two cards were required, hence the card number. For ease in puching, alternate channels were entered serially on the card as they were side by side on the printed tape.

It was necessary to scan the data punched from printed tape for errors in recording and punching. Recording errors were relatively easily corrected during the initial inspection of the tape when one minute times marks were indicated. The punching error which was most bothersome and difficult to correct for was the mispunching of, for example, a l instead of a 4. Some errors are still present in the data and as they are corrected an errata sheet will be provided with the corrected values.

A computer program was written which would scan the data and look for a significant departure of a one minute value for each item from the previous and next minute. If a departure was detected, the position of the data point on the card would be indicated. All errors detected in this manner were checked to see if the departure were real, or a punching or printing mistake. If either, the card was corrected. The variability of some data, such as net radiation, was so large that it was not possible to make corrections for printing errors.

Cince the data was on tab cards and scanned for obvious printing and punching errors it was possible to do the actual calculations on the data and serch for errors in measurements.

Each mast was considered separately, resulting in three separate programs which are basically the same. Examples of differences between programs: one air temperature gradient might be reversed in sign on one mast or the recording order might be different. These errors had to be found before final computations could be made. Wiring errors are revealed in the programs in Appendix B, C and D.

The nominal heights of each level are given initially and the geometric mean heights are computed. At statement 100 the mean values are initially set to zero. The first card is read in, checked to see if it is the first card for the one minute sequence of two cards, and, if it is the second card for that minute, is read into the computer. A check is made to see that both cards are for the same mast, day and time. The electrical zero is subtracted from each reading and the reading is adjusted to the value of the reference voltage which is recorded once each cycle.

The first item computed is air temperature. A check is made to see if the bias voltage of 1.516 mv in the reference (ice bath) to 20 cm and to 320 cm level is shorted out. Cace decided the air temperature at successive levels is computed. On mast 1 only, the second sampling of air temperature on May 2, 3, 4, and 5, 1967 has been deleted so that the soil

temperature and heat flux profile could be recorded. The air temperature sum TM(J) and the sum of the squares TMV(J) are made.

The date and mast number for one minute values are written togother with the heights for each level. The difference between the two measured temperatures at 320 cm is computed along with the 320-20 cm temperature difference. The air temperature data is printed on one line labeled "air temperature (deg C)" under the appropriate height. On the right hand side is printed first the difference between the two temperatures measured at 320 cm and the difference in temperature between 320 and 20 cm.

Wet bulb depression, radiation and soil heat flux were not measured before May 2, 1967 so the program skips to wind direction prior to May 2. On and after May 2 solar radiation, not radiation and soil heat flux are computed. The one minute values of solar radiation, net radiation, soil heat flux and the remainder from net radiation and soil heat flux are printed. Sums of each item are formed for the computation of the average.

The wet bulb depression is added to the air temperature at the same level, then the vapor pressure is determined at each level. In some cases a wet bulb did not seem to be operating properly so the average wet bulb depression for the level above and below was used for the wet bulb depression.

On other occasions the wet bulb was dry which is obvious in the data as one minute values of the wet bulb are printed, and, if the wet bulb and air temperature are within 0.2°C then it

is safe to assume that the wet bulb at that level was dry.

The profile of the wet bulb temperature does not vary smoothly either, if one wick is dry.

Specific humidity in gm/kg is computed from the vapor pressure at each level and printed at one minute intervals. Sums are formed for the mean and the standard deviation.

The Bowen ratio is computed between the 40-20, 80-40, 160-80, 240-120 and 320-160 cm levels. From the Bowen ratios and the residue of the net radiation and soil heat flux, the latent and sensible heat flux to the air are computed for each Bowen ratio. The mean value of the sensible and latent heat flux are determined from the values at the five levels above. The five levels and mean value of sensible and latent heat flux in ly/min are printed for each minute. Sums are formed for computing the mean value.

Upon reaching either a 30 minute or hour time the program forms means from the time that a mean was last formed. The heading is printed which includes the date, mast number, the time of the first minute and the last minute in the mean together with the number of minutes used to form the mean. Heights of the levels of measurement are printed.

The mean air temperature at each level, the difference between the two mean temperatures at 320 cm and the temperature difference from 320 to 20 cm temperature are computed and printed. A card is punched which is dated, timed for start and stop, identified (a 2 in column 4 for air temperature), then

the air temperature at each level is punched in ascending order. The standard deviation of air temperature at each level is computed and printed.

If the date is prior to May 2, 1967, the program skips to wind direction, otherwise the mean and standard deviation of specific humidity are computed and printed. A card is punched as for air temperature except the identifier in column 4 is 3 for specific humidity. The printed values for specific humidity are punched in ascending order.

Mean values of solar radiation, net radiation, soil heat flux and the residue from net radiation and soil heat flux are printed.

The mean values of the sensible and latent heat flux determined at one minute intervals for each level and the mean of all levels are computed and printed. Then the Bowen ratio is determined from the mean air temperature and specific humidity at five level pairs. From the residue of mean net radiation and soil heat flux another set of sensible and latent heat flux values are obtained at the above level pairs, the mean of the five levels determined and the results printed for comparison to the previous method of determining mean values of sensible and latent heat flux.

A card is now punched identified by a 5 in column 4 containing heat flux data. The punching order is solar radiation, net radiation, soil heat flux, mean sensible heat flux formed from one minute values of sensible heat flux at five levels.

mean sensible heat flux determined from the mean air temperature and specific humidity over the five pair of levels, the mean latent heat flux determined from one minute values at five level pairs, and the mean latent heat flux calculated at five level pairs from the mean air temperature and specific humidity using the mean Bowen ratios. All units are ly/min.

The heights at which wind directions were measured are printed, then the mean wind direction at each level and the mean of all levels are printed. The standard deviation for each level and the difference from the mean are printed. A card with identifier 5 in column 4 is punched with the wind direction at each level and the mean of all levels in order of ascending height with the mean of all levels last.

Table 6 lists the symbols used in the programs for the air temperature, moisture and heat budget. The programs are listed in Appendix B, C and D.

4. CONCLUSIONS

The accuracy of all measurements is open to question.

The windspeed is based on calibration data supplied by the manufacturer of the anemometers. The absolute value of the air temperature is dependent upon the gain of an amplifier and the value of a bias voltage, if present. The air temperature differences between adjacent levels are dependent on the gain of the amplifier as is the wet bulb depression, radiation and soil heat flux. The amplifier gain was checked by a reference

Table 6 List of Program Symbols, Mast 1, 2, 3.

2(9)	Height (cm) of sensor levels
ZZ(3) .	geometric height (cm) between adjacent sensor levels
Ll	Mast number first card
L2	Card number - must be 1 for first card of minute
L3	Date 26,27,28,2,3,4,5
L4	Time hours (1 to 24)
L 5	Time tens of minutes (0 to 6)
L6	Time minutes (0 to 9)
Ml .	Mast number, second card
M2 '	Card number - must be 2 for second card of minute
M3	Date (26, 27, 28, 2, 3, 4, 5)
M4	Time hours (1 to 24)
115	Time tens of minutes (0 to 6)
M6	Time minutes (0 to 9)
A(48)	Data on cards 1 and 2 minute consisting of 43- three digit numbers
Þ	number of minutes read in to be used to obtain the number of samples for the mean value over a period of time ending on the hour or 30 minutes after the hour
K .	Index for time-numerically equal to P
M4, L4	are converted to time in hours and minutes
IT(K)	The time of all cards read in for a given period such as 30 minutes
REF 1	Value of reference voltage on channel 1
REF 2	Value of reference voltage on channel 2
B(48)	Data on cards minus electrical zero corrected for recorded value of reference voltage
T(10)	Air temperature computed for I minute period.
TM (10)	Sum of air temperature
TMV (10)	Sum of air temperature squared
DD	Air temperature difference at 320 cm
DDT	Air temperature difference between 320 and 20 cm
RS	Short wave radiation

Table 6 Continued

•	
RO	Net radiation
SO	Soil heat flux
RSS	Sum of short wave radiation
ROS	Sum of net radiation
SOS	Sum of soil heat flux
S	Difference between net radiation and soil heat flux
TW(9)	Wet bulb temperature
ES (9)	Saturation vapor pressure of wet bulb temperature
E(9)	Vapor pressure of the air
SP (9)	Specific humidity of air
SPM(9)	Sum of specific humidities
SPMV(9)	Sum of specific humidities squared
BR (5)	Bowen ratio
EO (6)	Latent heat flux
QO (6)	Sensible heat flux
EOS (5)	Sum of latent heat flux
edsv(5)	Sum of latent heat flux squared
QOS (5)	Sum of sensible heat flux
Cosv(S)	Sum of sensible heat flux squared
'W(5)	Wind direction
277 (5)	Height of wind vanes
NE!	Mean wind direction
WD (5)	Wind direction difference from mean
WW(5)	Sum of wind direction
WWV (5)	Sum of wind direction squared
DDQ	Specific humidity difference between 320 and 20 cm
DT (5)	Mean temperature gradient
DQ (5)	Mean specific humidity gradient
COM	Sensible heat flux computed from mean air temperature and specific humidity
EOM	Latent heat flux computed from mean air temperature and specific humidity

voltage during each data cycle but the reference voltage may also be in error. Net radiation should be questioned seriously as the calibrations left much to be desired. A recheck of the net radiometer calibration will be made which may result in changes of as much as ± 20%.

Occasionally a wet bulb was dry so these points should be eliminated from the cutput. The decision is simple but was omitted from the program.

The correction of the basic data and altering of the program will continue under Grant No. DA-ANC-28-043-66-624. The corrected results will be forwarded to the Meteorology Department, Fort Euchuca, Arizona.

Several items which were recorded are not mentioned.

The soil heat flux and temperature profiles are not yet ready for presentation. The soil temperature profile is excellent for differences between levels but there is some doubt about the absolute value of the temperature. The soil heat flux profile is erratic and at this time the results are doubtful.

The vertical velocity, bivane and air temperature data at 320 cm is being read from the charts onto punch cards at the present time. The pressure gradient measurements is the least likely of all data to be useful but selected periods will be evaluated to determine if the scheme was measuring any thing meaningful.

The data will be supplied as magnetic tape containing the one minute data and the 30 minute means, and punch cards containing 30 minute means of the data necessary for further computations.

5. PERSONNIEL

5.1 Personnel participating in the field experiment at

Davis, California.

Russell Johnson - electronic technician

Walter Dabberdt - graduate student

Kenneth MacKay - graduate student

Thomas Frostman - graduate student

Charles Stearns - Assistant Professor

Hoinz Lettau - Professor

5.2 Personnel participating in the data reduction.

Walter Dabberdt - graduate student

Jack Kittridge - project assistant

Mary Schumacher - hourly help

Eelen Tuton - hourly help

Ruby Turner - hourly help

Phoeba Winterbottom - hourly help

Janet Ledin - hourly help

5.3 Data Analysis in Progress.

Allen Wordester - The temperature gradient vector and modification of the air as it moves over the surface.

George Fredericks - Divergence of wind velocity.

Walter Dabberdt - Variation of wind direction in the vertical.

Charles R. Stearns - Determination of displacement height, roughness length and shearing velocity.

6.0 REFERENCES

Philip, J. R. (1961), "The theory of heat flux meters", J. Geoph. Res., 66, 571-579.

Stearns, C. R. (1967), "Micromoteorological studies in the coastal desert of southern Peru", Ph.D. Thesis, Department of Meteorology, University of Wisconsin, Madison, Wisconsin.

Dalrymple, P. E. (1967), Personal Communication,

Quartermaster R & E Center, Natick, Massachusetts.

APPENDIK A

Fortran program for processing the wind profile data.

```
""COOP, 710753775757EARNS, 07HD17E/2=50.20, 0999079999, s
*PLEASE MOUNT TAPE DAVIS WIND AS LUN 1
TETNOL POE
       COMPUTATION OF WIND PROFILE PARAMETERS ZO.V STAR. DEU
       PROGRAM
                FAST AIR
                                                                              9.1
       DIMENSION ZIASQI.
                                 GZ(8),ZO(8),DEU(7)
       DI FNSION 21(3,9),22(3,8),222(3,7)
                  A(3,9),R(0),D(9),E(9)
       DIMENSION
       DIMENSION V(9), VO(0), VR(9)
COOPE NITIONS
      ALJ. II = ANEM. CORRECTION FACTOR
C
      (J) () = ANFM, HEIGHT
C
      I=TOWER NUMBER
      VELFVEL
      4(1)=NIND COUNTS IN THE PERIOD TE-TS FOR THE J PROFILE
C
     DITIEWIND VELOCITY (CM/SEC)
      00 1 L=1 +2
 200
        READ (2,51) J, (A(J,1),1=1.9)
        WRITE (1.51) J. (A(J.)) . I=1.9)
  157
        FORMA ( 12,956.2)
        READ(2,50) J.(Z(J.1),1=1,9)
       WR [ [ = ( ] , 50) ], (2( J, )), [= 1,9)
  50
        FORMAT(12,956.1)
 150
      DO 4 L=102
        READ (2052) J.JAY.TS.TE.(B(T).1=1.9)
  52
       FURMAT(11017011F4.0)
      IF(J) 999:200:201
201
      IF(J-7)200,109,120
      WRITE(1,50)
708
   50 FORMAT (IHI)
 120
       DT=TF-TS
        IF (51-60.) 130,121,121
 121
        07=07-40.
 130
        IF (L-1) 9998131014
 131
         IF (JAY-10) 135,177,133
 123
          WRITE (1956) JAYOTSOTE
         FORMAT (///AH APRILI3:6H: 106710X:5HSTART:F6:0:10X:4HSTOP:F6:0)
  55
         GO TO 140
 135
         WRITE (1,57) JAYOTSOTE
         FORMAT (///4H MAY, 13, 6H, 1967, 12X, 5HSTART, F6.0, 10X, 4HSTOP, F6.0)
  57
       WRITE (1055) J
 140
       FORMAT(1HO,30X,5HTOWER,15)
  55
       00 3 1=100
        C=A(J,1)+8(1)/01
        D(1)=2.518*C-.000198*C#C+13.93
  530
       FORMAT (11HOHEIGHT(CM), 6X,9F10.2)
        WRITE (1.530) (Z(J,I),I=1.9)
  54
       FURNAT (14H WIND VELOCITY, 3X, 9F10.2)
       WRITE (1.54) (D(1):1=1:9)
      [ 7= Y
      1.3275
      LASTE
      FORMAY (717,17,775,057,2)
500
      PUNCH 599, J, L2, JAY, L2, L4, (D(1), 1=1,9).
      90=10.
      DN=5.
      T= . 01
      SV=0.0
```

```
52V=0.0
       K == 0
       70 6001=1.9
       SV=SV+D(I)
F,00
       59V=59V+5(Y)**7
       S=0.
       DM=DO
601
       SX=O.
       52X=0.
       SVX=00
       54200
       544 = 0 .
       5X4=0.
       50 602 1=109
       Y=2(J,1)+DM
       IF (Y). 611:671:690
       WATTERTOSETT K
611
                                 .14.39HTH ITERATION. TRY OTHER INITIAL GUE
       FORMATINHO JOHERROR AT
561
      135837
       GO TO 4
610
       XELOGETY
       SX=SX+X
512
       25x=25xxxxxxx
       SVX=SVX+X*D(I)
      Haloly
       San Saab
       1110mayhvenver
      SXAmsXa+X&a
602
      G=15VX-5V*5X/9.1*(5X4-5X*5P/9.)-(52X-5X**2/9.1*(5VB-57*5B/9.)
       IF(S) 603,604,603
604
      5=10
      GO=G
707
      Milit Fill
      GO TO 601
      GNEG
603
      K=K+1
      DP=TOOKGN-GUMONTY (KN-GU)
      TF(A95F(DP-DN)-T1605,605,606
606
      かりこりか
      GO::GN
      ONSIN
      MOSMEDN
      15 (K-100) 601,605,805
      VST=15VX-SV4SX/9.1/(S2X-SX442/9.1
605
      ZNV=EXEF ((SX-SV/VST)/9.)
      Rom(SoV-SV##o/o,)-VST#(lo.#SVX-VST#SoX)-SX#(2,#SV-VST#SX)/9.}
      FURMATTIAUSIASIZATA ITERATIONOSA V STAR=BEISOGOAA DESEISOGOAN Z
562
                         SUM OF SQUARES=,E15.6)
     1 ZERO= , £15.6,17H
      V51=V5120.423
       WRITE(10562) KOVSTOPOZNTORO
        WRITE (10530) (2(Joil) 1=109)
      DO 410 I=1.9
      V(1)=V5170.428*LOGF(12(J,1)+DP)/2811
      AD(1)=A(1)-D(1)
      VR(1)=V(1)/D(1)
410
540
      FORMAT(17H SMOOTH VELOCITY . OF10.2)
      WRITE([0540) (V(1).1=1.9)
      FORMAT(17H VELOCITY DIFF
                                   o9F10.21
541
      WKITE(1, 544]) (V)((), 1=1, 9)
      FORMATINTH VELOCITY RATIO
                                   99510,49
542
      WRITE(19442) (VRITISIE199)
```

```
COMPUTE DEACON NO FOR WIND PROFILE
(
      no 827 7=198
      ZZ(J, 1)=5087F((Z(J,1)+DP)*(Z(J,1+1)+DP))
150
      DO 832 1=107
      222(J. () = SQRYF (22(J. 1) +22(J. 1+1))
837
      00 8 7=107
      S=(D(1+1)-D(1))/(D(1+2)-D(1+1))
      [F(5)84 .81 .82
      DEU(1)=0.0
61
      A OT OF
      DEU(() 2LOGF(S)/LOGF(ZZ(J.1+1)/ZZ(J.1))
32
      CONTINUE
      FORMAY (THO & SHIELGHT , TOX , 7F 10 . 1)
520
       JRITE(1:500) . (ZZZ(Jef1:1=1:7)
      FORMATTIN . 10HDEACON NO. . 6X . 7F10.3)
571
      WRITE(1,521) (DEU(1),1=1.7)
    A CONTINUE
      GO TO 100
C. GRAPHS .. D(I) VS ZL(J. I)
            VST(I) VS ZZ(J,I)
            20(1) VS ZZ(J.Y)
C
            DEU(1) VS ZZZ(J:1)
C
900
      END FILE 1 .
      SUD OF BOT AIR
      5110
         FINIS
OFXFCUT!
                                                                              APRIL
                              .976 1.026 1.025 1.022 1.004
    0037 0098
                1.001 1.007
                 79.3 119.3 159.8 200.5 240.9 280.5 320.8
    18.7
          4827
                                                                               APRI
                               .997 1.034 1.013 1.028
                                                         .988
                        0000
           0994
                  .989
   1.000
                 80.0 122.2 162.2 201.9 244.3 283.6 322.4
    2000
           2000
                                                                               APRI
                              .999 1.003 1.002 1.706
                  .997 1.004
          1.000
    966
                 79.1 110:1 159.4 199.0 239.6 280.3 319.8
    10.7
           3869
```

APPENDIX B

Fortran program for processing the air temperature, moisture and wind direction profile data and the heat flux data for Mast 1.

```
COOP , 2192 , 3275/STEARNS , 1/HD2/O/HD1 , 30 , 99999/9999 ;
 IPLEASE MOUNT TAPE MAST I-OUTPUT 1/2 THEN2/2 IF NECESSARY AS LUN 1
 OFTNOLOPOF.
       PROGRAM
                 ATR T 3
       TOWER I TEMPERATURE, MOISTURE, RADIATION, WIND. DIRECTION
                                                                               SYEA
       DIMENSION A(48),B(68),T(10),TW(9),Z(9),ZZ(8),ZZZ(7),W(5),WD(5),ES(
      1 U) of (0) , SP(0) , AR(A) , IM(10) , IMV(10) , WW(5) , WWV(5) , SPM(Q) , SPMV(9)
       DIMENSION DET(7).DEH(7).ZL(9).ZW(5).ID(6).DT(8).DQ(8).TT(100)
       DIMENSTON EO(6),00(6),FOSV(6),QOSV(6),EOS(6),QOS(6)
       2179=18.7
       2171=3467
       Z131×70,4
       2141=119.3
       2651415908
       2181=200.5
       2(7)=24009
       218)=280.5
       2191=320,8
       00 116 Ja100
       ZZ(J) = SQRTF(Z(J) #Z(J+1);
. 116
       ZZ(4)=SQRYF(Z(5)*Z(4))
      .ZZ(4)=SQRTF(Z(7)#Z(4))
       12(5)=50R1F(2(0)*2(5))
      READ(2,51) L1, L2, L2, L4, L5, L6
105
       7F112-41 105,106,105
106
      LAELA#100+L5#10+L5
       1F(LA-0700) 105,107,107
107
       IF(L2-2)105.100.105
  100 F=0.0
      K at O
      DU 101 J=106
      E05(1)=0.0
      FOSVIJI=O.
      005V1J1=0.
      003131=0.0
TOT
      00 109 Ja1.5
      MM(1)=0.0
102
      O.O. (L) VWW
       R55#0.0
      $05±0.0
      RU5=0.0
      DO 113 July 10
      TM(J)=0.0
      TMV(J) =0.0
 113
      100 114 Jal 19
      SPM(1)=0.0
 714
      SPAVIJI 20.
51
      FORMAT(2)11,212,211,24F3,31
      READ(2,51) L10L20L30L40L50L60(A(J)0J=1024)
1
      IF(L2-1)00.2.1
      READ(2,5) M1, M2, M3, M4, M5, M5, (A(J), J=25,48)
      Prifit 1.
      KHK47
      M4=M44100+M5*10+M6
      L4=L4*100+L5*10+L6
      TT(K) =M4
      1F(11-M1)00+3,99
      IF(M2-L2-1)00,4,00
      |FIM2-12100,5,00
4
      1F (M4-L4)0005,00
      COMPUTE MILLIVOLTS
```

```
REF1=(A(3)-A(1))+2.0
  6
       REF2=(A(2)-A(4))+2.0
       00 7 Ja5 , 47 , 2
     7 S(J)=(A(J)-A(]))/REF1*.935
      00 8 J=6:48:2
       8(J)=(A(J)-A(4))/9EF2#.935
       IF(L3-5) 600.604.600
 500
       IF(B(6)+.1)601,501,602
1.02
       IF(L4-900)604,804,403
403
       IF(L4-1800)601,601,604
       1(1)=3(6)#25.+12.5#1.516
 501
       GO TO 610
       7(1)=9(5)#25.
634
       IF(L3-5)609,614,609
610
350
       1F18(24)+011511:611:512
       IF (L4-9001614,614,613
512
613
       1F1L4-18001611.614.614
 511
       T(10) 2B(24) 425 +12.5*1.516
       GO 10 615
       T.(10)=R(24)*25.
614
       IF(L2-25)1001,1007,1002
6:5
1001
       T(2) = T(1) + B(R) # 5.
       T(3)=T(2)+6(10)*5.
       T(4)=T(3)+P(12)*5.
       T(5)=T(4)-B(14)*5.
      T(6)=T(5)+4(15)*5.
      T(7)=T(6)+B(18)*5.
      T(8)=T(7)+B(20)45.
      1(9)=T(9)+B(22)*5.
      GO TO 1003
100:
      1(2)=1(1)+(B(A)+B(32))#2.5
      7(3)=7(2)+(B(10)+B(34))#2.5
      T(4)=T(3)+(8(12)+8(36))*2.5
      T(5)=T(4)-(8(14)+8(38))#7.5
      T(6)=1(5)+(8(16)+8(40))*2.5
      T(7)=T(6)+(B(19)+B(42))#7.5
      1(8) =T(7)+(B(20)+B(44))#2.5
      T(9)*T(8)*(B(22)+B(46))#2.5
1003
      DO 401 J=1910
      (L)T+(L)MT=(L)MT
      CHA(C) T+(C) MITE (C) WAT
401
      IF(L3-25) 801, 802, 802
566
      FORMAT (6HOTOWER 14 . 25% . 4HMAY 14 . 6H. 1967 16 . 5% . 6HRUF .
                                                                          REF
     1. 2F6.31
 108
      WRITE(1,566) L1,L3,L4,REF1,REF2
      GO TO 903
 802
     . WRITE(1,565) L1, L3, L4, REF1, REF2
 807
      WRITE(1,53A) (Z(J),J=1,0),Z(9)
53
      FORMATIZAH AIR TEMPERATURE (DEG C), 12F8.3)
      DD=T(0)-T(10)
      DD1=T(9)-T(1)
      WRITE(1.53) (T(J).J=1.10).DD.DDT .
865
      FORMAT (6HOTOWERI4,25X,4HAPR.14,6H, 196716,5X,6HR F. 1F6.3,9H
                                                                          REF
     1. 256.31
      IF 163-25117.13.14
13
       RS=P(27)#3.35 .
      RO=-(8(5)+8(17)+8(29)+8(41))*3.42/4.
      50=9(47)+2.0/3.9
      5x170-50
      RSS*RSS+RS
      RUS ROS+RO
```

```
W(1)=187.3+(8(31)+.033)/1.547*1000.
      W(1)=W(1)+0.23
      N(2)=182.3+(8(33)+.069)/1.634#1000.
      H(2)=H(2)+1,003
       W(3) # 182.3+(8/35)+.054)/1.660*1000.
      W(3) 28(3)-1,3147
      W(4)=182.5+(8(37)+.049)/1.547*1000.
      DAE=(((212.5-W14))#(1.05/70.))-0.3)
      1F(DA9-0.3)56.56.58
   56 1 1 DA4+1.75157.57,59
   57 1.43=-1 . 75
      30 70 39
   58 DAR=0.30
   90 WILLIEWILLIADAR
      W151=182.5+(8(32)+.065)/1.534#1000.
      11(5)=1(5)-00773
      21171=400
      ZW(7) =80.
      241310160.
      2W141=240.
      ZW(5) 370.
      60 TO 59
60
      IF(L3-2)62052067
62
      IF (LA-1000)64,64,64
65
      IF (14-1500) 58 + 66 + 67
  64 H(1)=182.3+(8(33)+0175)/3.154*1000.
      W(1)=W(1)+1.903
     W(2)=192.3+(B(35)+.108)/3:198*1000.
     H(2)=H(2)-10147
     H(3)m192.3+(B(31)+.065)/3.154#1000.
     W(4) = 182.3+(B(37)+.007)/3.176*1000.
     DABm(((212.5-W(4))#(1.05/70.0))-0.3)
     IF (DAB-0.3) 156 , 156 , 148
 156 IF(DAR+1.75)157,157,159
 157 DAB=-1.75
     GO TO 159
 158 DAR=0.3
 159 W(4) = W(4) - DA9
     W(5)=182.3+(B(39)+.131)/3.220*1000.
     W(5)=W(5)-0,773
      60 TO 69
  66 H(1)=275.5+(9(33)+.10))/3.154*1000.
     W(2)=275.s+(B(35)+.151)/3.432*1000.
     W(3)=275.5+(B(31)+.122)/9.371#1000.
     H(4)=275.5+(B(37)+.15+)/3.412#1000.
      ₩(5)=275.5+(B(39)+.147)/3.412*1000.
     GO TO 68
  67 W(1)=275.54(B(33)-.110)/3.154#1000.
     W(1)=W(1)+1.22
     W(2)=275.5+(B(35)-.1411/3.198*1000.
     W171=W171-0.79
     W(3) =>75.5+(B(31)-.120)/3.154*1000.
     W(2)=W(2)+0050
     W(4)=275 64+(A(37)-6140)/3.17641000.
     IF(W(4)-165.0)201.205.205
701 DAB=-1.00
    GO TO 210
205 IF(W(4)-225.0)207.208.208
8.0=8AG 80S
    60 TO 210
207 DABa-0.4+(W(4)-165.0) #0.02
```

63

```
S05 & S05+S0
       COMPUTE WET BULB TEMPERATURE
       ESU=100F (6.105)
       TW(11xT(1)-8(7)*25.
       TW(2) :: 1(2)+4(4) *25.
       TW(2):T(2)+9(11)+95.
       TW(4)=1(4)+4(12)*750
       TW(5)x7(5)+(8473)-8(19))*17.5
       THIGH 165-4(10) 425.
       TV1071011771481271375。
       गमानामा (१८)-छ। २४) कर्ष.
       TH (9) 117 (9) 48 (25) 4250
       FORMITTEIN NET BOLE TEMPERATURE, 3X.9FB.31
       10.10L.(LINT) 142.113TING
       COMMUTE SPECIFIC HUMIDITY .
       Pe 1 = 1 61. CO
        E: 11=E50+25.22*TW(1)/(TW(1)+273.)-5.31*LOGF((TW(1)+273.)/273.)
       ES/1) mEXPF(ES(1))
       E 17=55(1)-.00066*(1.+.00)15*TW(1))*1000.*(1(1)-1W(1))
       5/(1)=0.622#E(1)
       11145+(11M45=111M1);
    18 JPMV( 1 ) = SPMV( 1 ) + SP( 1 ) + #2
       CORNET (TEN SPECIFIC HUMIDITY, 6X, 9F8.3)
       WRITE(1,57) (SP(J),J=1,9).
       COMPUTE HUMEN RATTO
      BR(1)=0.4*(T(2)-T(1))/(5P(2)-SP(1))
      時代(2)=0.4%(1(4)-1(2))/(5P(3)-5P(2))
      BR(3) x0.44(T(5)-T(3))/(5P(5)-SP(3))
       4874)=0.44777)-1(4).)/(5P(7)-5P(4))
      9R(5)=0.4*(T(0)-T(5))/(SP(0)-SP(5))
      FORMAT(12H BOWEN PATIO,12X,5F8,3)
      WRITE(1.59) (BR(I).1=1.5)
      X=0.0
      DO 212 Jul +5
      1F(HK(J))209.211.209
 200
      IF(BR(J)+1a)213,211,213
213
      E0(J)=5/[]-+BR(J)).
      90(J)=5/(J,+t,-/32(J))
      E05101=E05101+E0101
      CDS(J) * COS(J) + CO(J)
      EOSVIJIEFOSVIJI & EOIJI **?
      C##(L)004(L)V200m(L)V200
      · [ thun
      GO TO 212
211
      0.0x(L) HH
      EG(J)=0.0
      COIN (CIV)
212
      CONTINUE
      E0(5)=E0(1)+E0(2)+E0(3)+E0(4)+E0(5)
      QO(6)=QO(1)+QO(2)+QO(3)+QO(4)+QO(5)
      EULGIEFOLGIJX
      QO(S)=QO(S)/X
548
      FORMATTISH SENSIBLE HEAT FLUX, 5X, 6F8.31
      MRITE(1,444) (QO(J),J=1,6)
540
      FORMATTITH LATENT HEAT FLUX. 7X.6F8.3)
      WRITE(1,840) (FO(J),J=1,6)
F.4.6
      FORVATION . 16HSOLAR RADIATION . FA . 3 . 6X . 1 3 HNET RADIATION . F8 - 3 . 6X . 14H
     ISOIL HEAT FLUX.FR.2.4X.25HLATENT PLUS SENSIBLE HEAT.FR.3)
                                                                                5451
     WRITE(11.546) 35.80.50.5
      COMPUTE WIND DIRECTION-TOWER ONE
      1F1L3-25150060061
```

```
210 H(4) HH(4)+DAR
      は(5)=275.5+(5(39)-.115)/3.220#1000
      W(5)=W(5)-1.50
      ZW(1)=976
68
      ZW(:) = 100.
      ZW (11 = 2100 "
      21/14/0240,
      ZW(51=320,
   89 AMULAIAMUSIAMUSIAMURIAMUSI)\200
                12195
      00 403
      Maricinalicing
      Crine(C) and left his
      CARICIAVICIONE E EL LINER
403
      FORMATIZAH WIND DIRECTION (DEG)
                                            •6F8 • 2)
59
      TRIER 1.50 (WII). (21.5). WM
      1F $1.61300 . 707 . 300
      TELTE-SILOGOL
.च्या
      IF (1,5-3) 305 + 304 + 305
303
      THE THEM
705
      FORMAT ( IH! )
99
      GO TO T
      IF (L5)309-304-303
      FORMATION: TOWERT4-15X-4HMAY 14-6H. 1987-6H STARTIS-5H STOP16-F8-0)
301
                                             1967.6H STARTI6.5H STOPI6.F8.0)
214
      FORMATIONETTOWERIA. 15X. 4HAPR. 14.6H.
501
      TFIL3-25! 12501250124
 W/4
      WRITE(1.501)L1.L3.IT(1).IT(K).P
 :24
      60 10 125
      WRITE(1:570)L1:L3:T(Y):T(K):P
175
      FURNATURE TORNETGHT (CM) . 13% TUF8 . 11
538
      WRITE(1.53!) (Z(J),J=1.9),Z(9)
126
      COMPUTE MEANS AND STANDARD DEVIATION FOR AIR TEMPERATURE
      DO 700 J=1.10
      TMV(J)=SOUTF((TMV(J)=TM(J)**2/P)/(P=1.))
       TM(J)MTm(J)/P
700
      DOSTRIPS-TMITOT
      DOT=TM(9)-TM(1)
      FORMATTINO. 16HMEAN TEMPERATURE . 7X . 12F8 . 3)
320
      WRITE(1.570) (TM(J).Jn1.101.DD.DDT
      FUNCH 59
       L7#7
      PUMCHEGO. LIOL 20-130 11 (110. 111K) . (1M(J) . J=1.9)
      FORMATION . 18HSTANDARD DEVIATION . 5X . 10F8 . 3)
521
       WHITE(1.5521) (TMV(J).J=1.10)
       18(L3-25)131·133·133
       R55=R55/P
 131
       ROS*ROS/P
       505=505/P
       S=R05-505
       COMPUTE MEANS AND STANDARD DEVIATION FOR SPECIFIC HUMIDITY
       DO 710 J=1.9
       5PMV(J)=SORTF((SPMV(J)-SPM(J)##2/P)/(P-1.))
       SPM(J) = SPM(J) &P
 710
       DDQ=SPHICY-SPM(1)
       FORMATIIHO+13HMEAN HUMIDITY+10X+10F8-3)
 530
       WRITE(1.530) (SPM(J).J=1.9).DDQ
       PUNCH599 .L1 .L2 .L3 .IT(1) .IT(K) . (SPM(J) .J=1.9)
       FORMAT(212,13,215,9F7.3:
 5.09
       FORMATTIH . 14HSTANDARD DEVIATION . 5X . 9F8 . 41
541
       ₩RITE(1,531) (SPMV(J) »J=1,9)
       FORMATTIHO, 16HSQLAR RADIATION, FR. 3.6X, 13HNET RADIATION, 63.3.6X, 14H
```

```
ISOIL HEAT FLUX, FE- 3,6X,25HLATENT PLUS SENSIBLE HEAT, F0-31
                                                                              547
     WRITE(1.547) RSS.ROS.SOS.S
     CUMPUTE ROWEN RATIO FROM MEANS
     FORMAT (1HO.15HGEOM.HEIGHT (CM).14X.8F8.1)
SAR
     WRITE(1:503) (22(J).J=1:5)
      DO 221 Jal 15
      EOSV(J)=SCRTF((EOSV(J)-EOS(J)**2/P)/(P-1.1)
      GOSV(J)=SGRTF((GOSV(J)-GOS(J)**2/P)/(P-1.))
      0051J1=0051J1/9
      EOSIJI = EOSIJI/P
      EOSTS)=(EOST)+EUS(2)+EOS(3)+EOS(4)+FOS(5))/5.
221
      QOS(6)=(QOS(1)+QOS(9)+QOS(1)+QOS(4)+GOS(5))/5.
      HATTE(1.651) (GOS(J).J=1.6)
      WRITE(1,582) (FOS(J), J=1+6)
      DY (1)= (1M(2)-TM(1))/( 2(2)-2(1))
      DT(2)=(TM(3)-TM(2))/(2(3)-2(2))
      DY(3) (170(5) - 170(3))/(Z(5) - Z(3))
      DT(A)=(TM(7)-TM(4))/(Z(7)-Z(4))
      DY (5)=(TM(9)-TM(5))/(2(9)-2(5))
      DQ(11=(SPM(7)-SPM(1))/(Z(2)-Z(3))
      DO(2)=(SPM(3)-SPM(2))/(Z(3)-Z(2))
      DQ(3)=(SPM/3)-SPM(3))/(2(3)-2(3))
      5016)=(SPR[7)-SPR(4))/(2(7)-2(4))
      00(5)=(SPM(9)-SPM(5))/(Z(9)-Z(5))
      COMED.O
      FOM=0.0
        XaO.U
      DO 733 J=1+5
      HK(1)=0.4201(J)/00(J)
       IF(BR(J)) 732,731,73
       IF(GR(J)+1.)730.731.730
 737
       0.0mgl000
 731
       GO(J) *0 . 0
       60 70 793
      EULJ) ES/19 c4PRIJI)
 790
       GO(J) = S/(1 - 41 - /GR(J))
       EOMatonation
       (C) OD 4HODEMOD
       XEX+1.
       CONTINUE
 733
       X\MOQnMCQ
       FOM#EOM/X
       WRITE(1.950) (BR(J).Ja1.5)
       FORMAT (1H .11HBOWEN RATIO: 18X.9F8.2)
       FORMAT (1H +18HSENSIBLE HEAT FLUX, 11X+6+8+3)
 550
 551
       WRITE(1,551) (QO(J),J=1,5),QOM
       PONMATTIM . INPLATENT HEAT FLUX. 13X.6F8.31
 952
       URITE(1.557) (EO(J) .J. 1.5) .EOM
       PUNCH 509-L1-L2-L3-IT(1)-IT(K)-RSS-ROS-SOS-QOS(6)-QOM-EOS(5)-EOM
       DO 720 Jalis
        WWV(J)=SORTF((WWV(J)-WW(J)@@Z/P)/(P-1.))
                                                               · t. .
        HIJI WWI JIYP
  720
        FORMAT (1H010HHEIGHT(CM)+20X+5F8+1)
   943
        WRITE (1,963) (ZW(J), J=1,5)
        MH=(MA(1)+MM(3)+MM(3)+MM(4)+MM(2)))/2.
        FORMATIN . 14HWIND DIRECTION . 16X . 6F3. 1)
  540
        WRITE(1.540) (WW(J)oJn(.5).WM
        L255
        PUNCH599.L1.L7.L3.IT(1) #IT(K).(WW(J), J=1.5).WM
        FORMATTIH . I AHSTANDARD DEVIATION . 12X . 5F8 . 1) .
  341
```

```
W(1)=187.3+(8(31)+.033)/1.547*1000.
      W(1)=W(1)+0.23
      W(2)=182.3+(8(33)+.069)/1.634*1000.
      W(2)=1/(2)+1,003
       W(3) = 182.3+(8(35)+.054)/1.660*1000.
      W(3) -1 -1 -147
     #(4/=182.5+(B(37)+.049)/1.547*1000.
      DAE=(((212.5-W14))#(1.05/70.))-0.3)
      1F(DA9-0.3156.56.58
   56 17/DA9+1.75157+57,59
   57 f.4/3=-1.75
      30 70 39
   58 DAR=0.30
   SO WILL = WILL POAR
      W(5)=182.5+(8(32)+.065)/1.534#1000.
      ₩(5)=₩(5)-0.773
      27(1)=40.
      ZW(7) =80.
      ZX13) 8160.
      2W(4)=240.
      ZW(5)=370.
      60 TO 59
60
      IF(L3-2162+62+67
62
      IF (L4-1000)64,64,64
65
      IF (L4-1500)58.66.67
  64 H(1)=182.3+(8(33)+.175)/3.154*1000.
     W(1)=W(1)+1.903
     W(2)=197.3+(B(35)+.104)/3:198#1000.
     W(2)=W(2)-1-147
     W(31m19203+(B(31)+.665)/3.15491000.
     W(4)=182.4+(B(37)+.007)/3.176*1000.
     DABa(((212.5-W(4))*(1.05/70.0))-0.3)
     IF(DAB-0.3)156,156,198
 156 IF(DAR+1.75)157,157,159
 157 DAB=-1.75
     GO TO 159
 158 DAR=0.3
 159 W(4)=W(4)-DA9
     W(5)=182.3+(B(39)+.131)/3.720*1000.
     W(5)=W(5)-0.773
      60 TO 69
  66 H(1)=275.5+(9(33)+.192)/3.154*1000.
     W(2)=275.5+(B(35)+.161)/3.432*1000.
     W(3)=275.5+(B(31)+.122)/3.371#1000.
     H(4)=275.5+(B(37)+.154)/3.412#1000.
      W(5)=275.5+(B(39)+.147)/3.412*1000.
     GO TO 68
  67 W(1)=275.54(B(33)-.110)/3.154#1000.
     W(1)=W(1)+1.22
     W(2)=275.5+(B(35)-.1411/3.198*1000.
     W(7)=W(7)-0.29
     W(7)=275.5+(B(31)-.180)/3.154*1000.
      W(2)=W(2)+0.50
     W(4)=275.5+(A(37)-.149)/7.17641000.
     IF(W(4)-165,0)201,205,205
 701 DAB=-1.00
     GO TO 210
205 IF(W(4)-225.0)207.208.208
 8.0=AAG 805
     GO TO 210
```

```
WRITE(1,541) (WWV(J), J=1,5)
70 721 J=1.5
     FORMAT(1H . 15HWIND DIFFERENCE, 15X, 5F8.1)
     WRITE(1.442) (WW(J),J=1.5)
     WRITE (1 490)
     60 10 100
      END FILE
90
      STOP
      FRD
      מאיז
         FINIS
FXFCUTE
```

APPENDIX C

Fortran program for processing the air temperature moisture and wind direction profile data on the heat flux data for Mast 2.

```
*COOP + 2102, 3275/STEARNS, 1/HD2/O/HD1,30,99999/9999,
 PLEASE MOUNT TAPE MAST 1-OUTPUT 1/2 THEN2/2 IF NECESSARY AS LUN 1
 OFTNOLO 21
       PROGRAM
                 ATR T 1
        TOWER I YEMPERATURE, MOISTURE, RADIATION, WIND DIRECTION
                                                                               SYEL
       DIMENSION A(48) +B(48) +T(10) +TW(9) +Z(9) +ZZ(8) +ZZZ(7) +W(5) +WD(5) +ES(
      1 4) + F(0) + SP(9) + AR(A) + TM(10) + TMV(10) + WW(5) + SPM(9) + SPM(9)
       DIMENSION DET(7) +DEH(7) +ZL(9) +ZW(5) +ID(6) +DT(8) +DQ(8) +TT(100)
       DIMENSION E0187,00161, FOSV161,005V161, E05161,005167
        2179=19.7
       217)=3467
       Z(3)=79.3
       2141=119.3
       2151215908
       Z151=200.5
       2(7)=240.9
       218)=280.5
       Z(9)=320.8
       DC 116 J=108
. 116
       ZZ(J) = SQRTF(Z(J) = Z(J+1) }
       12(7)=SURTF(2(5)*2(7))
       -22(4)=SORTF(Z(7)+Z(4))
       ZZIS)=SORIF(Z(O)*Z(S))
 105
       READ(2,51) L1,L2,L2,L4,L5,L6
       1F(L1-4) 105,106,105
       LA=L64100+L5410+L6
 106
       1F(L4-0700) 105,107,107
107
       IF(L2-2)10501000105
   100 P=0.0
       KmO
       DU 101 J=196
       E0511120.0
       F05V1J1=0.
       GOSV(J)=0.
TOT
       005131=0.0
       00 100 J=195
       NW(J)=DOO
102
       WWV(J) mO.O
        N55=0.0
       SOS=0.0
       KUS=U.U
      DO 113 Ja1010
       THE JI = 0.0
      O.O.ILIVMY
 113
      DO 114 JE199
      SPM(J) =0.0
 114
      SPMV(J)=0.
51
      FORMAT(211,212,211,2453.3)
      READ(7,51) L1, L2, L1, L4, L5, L6, (A(J), J=1,24)
      IF(L2-1100,701
2
      READ (2,51) M1, M2, M3, M4, M5, M6, (A(J), J=25,48)
      Papal.
      Kak+1
      M4=44100+M5#10+M6
      L4=L4+100+L5+10+L6.
      ITIK) =M4
      1F(L1-M1)09+3,99
      IF (M2-L2-1)00,4,00
4
      YF [M2-12]00,4,00
5
      [F(M4-L4)00,6,00
C.
      COMPUTE MILLIVOLTS
```

```
7 B(J)=(A(J)-A(1))/RFF1#.035
      DO 9 JES, 48,2
      9(J)=(A(J)-A(4))/REF24.035
 R
       IF (63-5) 600,604,600
      IF (9(6)+,11601,601,602
600
502
       IF (-4-900) 604,604,603
      JF164-18001601.601.604
502
      T(1)=(B(8)+8(30))*17.5+17.5*1.508
501
      GC TO 510
      T(1)=(4(4)+8(201)*12.5
604
       1:113-51509,614,600
610
       IF(B(24)+01)611#611#612
609
612
      15(14-90) 1614 + 514 + 512
       IF (L4-180016)1.614.614
613
611
      1(10)=(8(24)+8(48))*12,5+12,5*1,508
      60 10 615
      1(1()=(B(24)+B(48))#12.5
514
      T(2)*T(1)+(9(8)+9(32))*2.5
615
      T(11)=T(2)+(8(10)+8(24))#2.5
      丁(ル)=丁(コ!+(円(1つ)+円(3ん))***。ち
      T(5)=T(4)+(8(16)+8(47))*7.5
      716) = T(5) + (9(14) + 9(3R)) = 2.5
      1 7) =T(6)+(P(18)+9(42))#2.5
      TiB)=T(7)+(8(20)+8(44))*2.5
      1197=1181+181221+914611#2.5
1003
      11) 407 Ja7, 10
      (M(J)=[M(J)+"(J)
      CA*(F) 1+(F) AM12(F) AM
401
      [F:63-25] 801, 907, 807
      FORMATISHOTOWERIA, 25X, 4HMAY 14,6H, 196716,5X, 5HREF. 1F6.3,9H
566
                                                                            REF
      . 255.31
 ROI
      WRITE(1,565) LI, LA, LL, REF1, REF2
      60 TO 803
     WRITE(1) RAFY LI.LA, LA. REFI, REFZ
 03
 POI
     WRITE(1,538) (2(J),J=1,9),Z(9)
     FORMAT(24H AIR TEMPFRATURE (DEG C):12F8.3)
53
     DD=1-(9)-T(10)
     DDT=T(9)-T(1)
     WRITE(1,53) (T(J),J=],10),DD,DDT
     FORMAT (6HOTOWERI4 + 25X + 4HAPR - 14 + 6H ; 1967 16 + 5X + 6HREF - 1F6 - 3 + 9H
51.5
                                                                            REF
     1. 2F6.31
      IF(L2-25)12+12+14
13
     RS=R(27)#7.64
     RO=(B(5)+B(17)-B(20)+B(41))*3.46/4.
     50=(9(43)-9(45))/3.0
     5 - RO-SO
     1354R5
     ROS ROS + RO
     505=505+50
     COMPUTE WET AULA TEMPERATURE
  12 ESO-LOGF (6.105)
     TW(1)=T(1)-B(7) *25.
     TV(2)=1(2)-4(0)425.
     TH(3)=T(2)+(3(13)-9(0))#12.4
     TW161=T147+0(19) 425.
     TH( 51 11 7 1 5 3 -- 9( 1 5 ) 47 5.
     TW(A) = T(A) + A(10) #25,
     TW(7) = T(7) - P(21) #24 a
     YW(P)=T(P)+(B(25)-B(21))*12.5
     TW(0)=T(0)+A(25)#2F.
     FORMATIZIH WET BULB TEMPERATURE . 3X . 9F8 . 3)
```

```
WRITE(1.54) (TW(J).Ja1.0)
                                                                                                                                             1. 95.95 Kill 3. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 18 1. 1
                COMPUTE SPECIFIC HUMIDITY
                DO 18 1=1.0
                  ES(1)=FSO+25.22*TW(1)/(TW(1)+273.)~5.31*LOGF((TW(1)+273.)/273.)
                ESITI=EXPERESITION
                E(I)=ES(I)-.00066*(1.+.00115*TW(I))*1000.*(T(I)-TW(I))
   17
                5 [ [ ] a() . 677 = [ ]
                SPM(II = SPM(I)+SP(I)
         18 SPMV([)=5PMV([)+5P([)**?
                FORMAT (18H SPECIFIC HUMIDITY 6X 9F8 3)
   57
                WRITE(1,57) (SP(J),J=1.9)
  C
                  COMPUTE HOWEN RATTO
               E (11=0.4*(1(2)-1(1))7(5P(2)-5P(1))
               R?(2)=0.4*(T(3)-T(2))/(SP(3)-SP(2))
               A((2) x0.4 A(((5)-)(2))/(5P(5)-5P(3))
               F?(4)=0.4*(T(7)-T(4))/(SP(7)-5P(4))
               F((x)=0.4*(1(0)-1(5))/(5P(0)-5P(5))
               FORMAT(12H BOWEN RATIO+12X+5F8+3)
  58
               FRITE(1,58) (BRI(),(=1,5)
               >=0.0
               (1) 212 J=1.5
               11.(au(7))500.511.500
    200
               [(L)F3+4 [)\2*(L)(3
  213
               (IL(J) =5/(1.+1./ER(J))
               EGS(3) =EOS(J)+EO(J)
               1051J1=0051J1+001J1
               #05V(J)=F0SV(J)+F0(J) ##2
               5##(C)00+(C)V200=(C)V2CU
               **X+1.
              GJ TO 212
  211
              22(J)=0.0
              F711)=0.0
              001J1=0.0
  717
              CUNTINUE
              EG(6)=EO(1)+EO(2)+EO(3)+EO(4)+EO(5)
              CO161=00(1)+00(2)+00(3)+00(4)+00(5)
              EO(6) #EO(6)/X
             XX(9)00=(9)0X
             FORMAT(19H SENSIBLE HEAT FLUX,5X,6F8.3)
 54A
             WRITE[[,548] [QOIJ],J=1,6)
 549
             FORMAT(17H CATENT HEAT FLUX.7X.6F9.3) .
             WRITE(1,540) (EO(J), J=1.5)
             FORMATITH . 16MSOLAR RADIATION . FR . 3 . 6X . 1 3 HNET RADIATION . FR . 3 . 6X . 14H
544
            SUIL HEAT FLUX, F8.3.6X, 25HLATENT PLUS SENSIBLE HEAT, F8.37
                                                                                                                                                                       549
             WRITE(1,546) RS,RO,50,S
7
             COMPUTE WIND DIRECTION-TOWER ONE.
             IF(L3-25)60,60,61
14
      51 4(1)=(173.1-(8(31)-.044)/1.579@1000.)
             4(2)=(173.1-(8(33)-.843)/1.620#1000.1
            11(3)=(173.1-(9(35)+.098)/1.746#1000.)
            W(4) = {177.1-(9(37)-.038)/1.678*1000.)
            4(5)=(173.1-(9(39)-.034)/1.690*1000.)
            CORRECTION FACTORS FOR TOWER TWO FOR PERIOD ONE WITH ABSOLUTE VALUES CO.
            W(1)=W(1)-0.271
              W(フ)=W(フ)-フ。421
            IF(W(3)-190.)270,245,265
   265 IF(W(A)-250.)266,266,271
   745 W(3)=W(3)-((250.-W(3))*3./70.)+3.0
            GO TO 273
   270 W(3)=W(3)
                                           +0.3
```

```
GO TO 273
     M(3)=H(3)43.0
  272 CONTINUE
      W(4)=W(4)-1.350
      1814151-200.1280.275,275
  275 [F(W(3)-250.)276.276.28]
  276 W( 1 = X (5) - ((W(5) - 200 . 1/20 . 1+3 . 5
      60 70 295
  780 W(5)=W'5)+9.5
                       +0.3
      60 TO 285
      W(5)=W(5)+1.0
  SRI
                        +0.3
  285 COUTINUE
      20 91-47.
      ZH(7)=3),
      Zkla18130.
      ZWILLIMPAO.
      ZHIE 14320.
      60 '0 69
      15(1.3-2)62,62,67
80
6%
      IF1.4-1000164+54+55
      1F (: 4-1500) 86, 66, 67
   64 H(1)=(173.1-(B(33)-.070)/3.111*1000.)
      W(2'=(173.1-(B(35)+.177)/3.432*1000.1
      W(7 = (173.1-(8(31)-.084)/3.271*1000.)
      W(1 = (173.1-(8(37)-.073)/3.412*1000.)
      W(*) = (177.1-(8(39)-,054)/3,41241000.1
      CHRECTION FACTORS FOR PERIOD TWO ON TOWER TWO
(
      MI 1=K(1)-0.271
                         +0.3
       W173=11(7)-2.421
      IF[H(3)-190.)]70.165.165
  165 IF( V(3)-260.)166.166.171
  166 W(9)=W(3)-((260a-W(3))#3a/70a)+3a0
                                                +0.3
      GC TO 173
  170 W(")=W(3)
                      *0°3
      GO 10 173
 171 8(3)=8(3)+3.0
                        +0.3
 173 COULINUE
      W(4)=W(4)-1.350
                        40.3
      1F/8(5)-200.1190.175 175
 174 15 8(5)-250.1176.176.191
 176 WILLOWIST-([W(5)-200.1/20*1+3.5
      GC TO 185
 180 W(5)=W(5)+3.5
                         +0.3
      GC TO INS
 18: W: () = W(5) + 1 . 0
 184 CCHTINUE
      (C) TO 68
  66 W(1)=(274.9-(9(33)-.137)/2.111*1000.1
     W(2)=(276.9-(8(35)+.108)/3.422*1000.)
     Wf3)=(276.8-(B(31)-.154)/3.371*1000.1
     8(4)=(276.8-(9(37)-.142)/2.417*1000.1
     W(5) = (276.4-(9(39)-,123)/3.412#1000.)
     66 10 68
  67 W(1)=(276.A-(3(23)+.747)/3.111*1000.)
     W(?)=(276,3-(B(35)+.410)/3.432*1000.)
     #(3)=(276.9-(B(31)+.148)/3.371*1000.)
     W(0)=(276.8-(8(37)+.160)/3.412#1000.)
     W(5)=(276.8-(B(39)+.169)/3.412#1000.)
     CCHRECTION FACTORS FOR PERIOD FOUR
                                           FOR 80,200,240CM LEVELS
     MC CORRECTIONS CAN BE SAFELY ASCERTAINED FOR 160 AND 320CM LEVELS
     W(11=W(1)+4.309
```

```
W(2)=W(2)
       W(3)=W(3)-0.833
       W(4)=W(4)-2.477
       W(5)=W(5)
                         -7.7
       ZW(1)=40.
 KA
       ZW(2)=160.
       .M131=500.
       ZW(4)=240.
       ZW(4)=370.
    59 WM=(W(1)+W(2)+W(3)+W(4)+W(5))/5.
       70 403
                J=1,5
       MU(1) = M(1) - MA
       (C) W+(C) WW=(C) WK
       WWV(J) = WWV(J) + W(J) * * *
 404
 55
       FORMATIZEH WIND DIRECTION (DEG)
                                            .6F8.21
       WRITE( ]:55) (W(I):[=1:5):WM
       1F1631300,301,300
 300
       TF165-5)1,305,1
       7FTL5-31 205, 204, 305
 303
       WRITE (1.59)
 305
 50
       FORMATTIHII
       60 TO 1
       1F 1641303, 204, 302
 301
       FORMATIGHTTOWERIA: 15X, AHMAY I4, 6H. 1967, 6H STARTIG: 5H STOPIG: F8.0)
 519
 30T
       FORMATIGHTTOWER 14, 15 X 34HAPR + 14, 6H + 1967 + 6H STARTIG + 5H STOPIG + F8 + 0)
 304
       IF(L3-25) 125,125,124
       WRITERIARDITELITERATIONALIAN
774
       GO TO 126
175
       WRITETT - 51 91 L TO L 3 - 1 TT TT TT TKT - P
 531
       FORMAT(IH +10HHELGHT(CM)+13X+10F8-1)
175
       WRITE(),53A) (Z(J),J=1,0),Z(O)
       COMPUTE MEANS AND STANDARD DEVIATION FOR AIR TEMPERATURE
C
       DO 700 J=1.10
       TMV(J)=SQRTF((TMV(J)-TM(J)**2/P)/(P-1.))
 705
       TMISTERMINE
       DD=TM(9)-TM(10)
       DDT=14(0)-14(1)
5;0
       FORMAT(1HO:16HMEAN TEMPERATURE:7X:12F8:3)
       WRITE(1.570) (TM(J), J=1,10),00,001
       PUNCH 59
       [2=2
      PUNCH599,L1.L2.L3.IT(1).[T(K).(TM(J).J=1.9)
      FORMATITH . 18HSTANDARD DEVIATION . 5X . 10F8 . 3)
151
      WRITE(1,521) (TMV(J),J=1,10)
       15 12-251131-133-133
      RSS=RSS/P
 121
      ROS=ROS7P
       SOS=503/P
      5=R05-505
      COMPUTE MEANS AND STANDARD DEVIATION FOR SPECIFIC HUMIDITY
C
      710 J=1.9
      SPMV(J)=SQRT=((SPMV(J)-SPM(J)**2/P)/(P-1.))
770
      GALCINAS=ICIMAS
      DDQ=SPM(q)-SPM(1)
530
      FORMAT(1HO, 13HMEAN HUMIDITY, 10X, 10F8.3)
      WRITE(1,530) (SPM(J),J=1,9),000
      L2=3
      PUNCH599, L1, L2, L3, [T(1), [T(K), (SPM(J), J=1,0)
599
      FURMAT(212,12,215,057,3)
      FORMAT(IH .) INHSTANDARD DEVIATION . 5X . 0F8 . 4)
531
      WRITE(1,521) (SDMV(J), J=1,0)
```

```
FORMATITHO, IAHSOLAT RADIATION, FR. 2.6X, 12HNET RADIATION, FR. 2.6X, 14H
      ISUIL HEAT FLUX, F8. 3, 4X, 25HLATENT PLUS SENSIBLE HEAT, F8. 31
    WRITE(1,547) RSS, ROS, SOS, S
       COMPUTE ROWEN RATTO FROM MEANS
(
       FORVATITHO, ISHGEOM. HEIGHT (CM). 14X, 8F8.1)
587
       WHITE(1.583) (ZZ(J).J=1.5)
       D) 221 J=175
       EDSV(J)=SORTF((EOSV(J)-EOS(J)**>/P)/(P-1.))
       (OSV(J)=SQRTF((QOSV(J)-QOS(J)**>/P)/(P-1.1)
       (A)S(J1=005(J1/P
       105(J)=F05(J)/P
 221
       EOS(6)=(EOS(1)+EOS(2)+EOS(3)+EOS(4)+EOS(5))/5.
      005(61=(005())+005(2)+005(3)+005(4)+005(5))/5.
       VRITE(1+551) (QOS(J)+J=1+6)
       TRITE 1,552) (EDS(J), J=1,6)
       )T(1)=(TM(2)-TM(1))/( Z(2)-Z(1))
      DT(2) = (TM(3)-TM(2))/(2(3)-2(2))
      DT(3)a(TM(5)-TM(3))/(2(5)-2(3))
      DT(4)=(TM(7)-TM(4))/(Z(7)-Z(4))
      DT(5)=(TM(0)-TM(5))/(Z(0)-Z(5))
      DQ(1)=(SPM(2)-SPM(1))/(Z(2)-Z(1))
      DQ(z) = (SPM(x) - SPM(z))/(Z(x) - Z(z))
      DQ(2)=(SPM(5)-SPM(2))/(Z(5)-Z(2))
      DQ(4)=(SPX(7)-SPM(4))/(Z(7)-Z(4))
      DQ(5)=(SPY(0)-SPY(5))/(Z(0)-Z(5))
      0.04=0.0
      FOM=0.0
       X=0.0
      DO 733 J=1.5
      GR(J)=0.4*DT(J)/DQ(J)
      IF(BR(J)) 732,731,73
737
      IF(AR(J)+1.)730,731,730
731
      0.0=(L)0-0
      00(J)=0.0
      TO TO 732
720
      GO(J)=5/(1.+1./BR(J))
      FOM=FOM+FO(J)
      (L)CO+MOD=MGC
      スーズナフョ
773
      CONTINUE
      XVMOD=MOD
      FOM=FOM/X
      WRITE(1.550) (AR(J).J=1.5)
550
      FORMAT(1H ,11H3OWEN RATIO,18X,9F8.2)
551
      FORMAT(1H .) BHSENSIBLE HEAT FLUX.11X.6F8.3)
      WRITE(1,551) (00(J),J=1,5),QOM
552
      FORMAT(1H +16HLATENT HEAT FLUX+13X+6F8+3)
      WRITE(1.552) (EO(J).J=1.5).EOM
      しつせん
      PUNCH 599, L1, L2, L2, L1(1), L1(K), RSS, ROS, SOS, QOS(6), QOM, ECS(6), SOM
  173 DO 720 J=1.5
      WWV(J)=SURTF((WWV(J)-WW(J)**7/P)/(P-1.))
720
      A/(C) MM* (C) MM
      FORMAT (1HO10HHEIGHT (CM) . 20X . 5F8 . 1)
      WRITE (1,543) (ZW(J),J=1,5)
      WM=(WW(1)+WW(2)+WW(2)+WW(4)+WW(5))/5.
540
     FORMAT(1H .14HWIND DIRECTION.16X.6F8.1)
     WRITELIOSANI (WWIJ) OJEJOSIOWA
     PUNCHEOO, [1, [2, ] 2, [1 [] ] + [T(K), (WX(J), J=1,5), WM
```

541	FORMAT(1H +18HSTANDARD DEVIATION+17X+5F8+1) WRITE(1+541) (WWV(J)+J=1+5)	
	DO 721 J=1,5	
771	WW(J)=WW(J)-WM FORMAT(IH .ISHWIND DIFFERENCE.15X.5FR.1)	
747	WRITE(1,542) (WW(J),J=1.5)	
·····	WRITE(1.50)	
	GO TO 100	
40	STOP .	
	END	
	FINIS	
·FXEC		
	·	
	•	
<u> </u>		
. ,		

APPENDIK D

Fortran program for processing the air temperature, moisture and wind direction profile data and the heat flux data for Mast 3.

```
1000P, 7107, 1275/STEARNS, 1/HD7/U/HD1,50,99999/9999,
IDIFASE MOUNT TAPE MAST III-DATA AS LUN 2/
IDLEASE MOUNT TAPE MAST III-OUTPUT 1/4 THEN 2/4 THEN 3/4 THEN 4/4 IF NECESSAR
IAS LUM 1.
IFIN, L, POF.
       TOWER 3 TEMMERATURE, MOISTURE, RADIATION, SOIL HEAT FLUX,
                                                                                 STEA
       PROGRAM ATR T 3
       DIMENSION A(48) +8(48) +7(70) +TW(9) +Z(9) +ZZZ(8) +ZZZ(7) +W(5) +WD(5) +ES(
       0); (0), SP(0), RR(B), TM(10), TMV(10), WW(5), WWV(5), SPM(9), SPM(9)
       DIMENSION DET(7), DFH(7), ZL(9), ZW(5), ID(6), DT(8), DQ(9), IT(1004
       DIMINSTON FO(5),00(5),E05V(5),005V(5),E05(6),005(6)
        2(1)=19.7
       7171=24,0
       2131*70-1
       214 = 115.1
       2151=150.4
       216 4120 0
       217:2239.6
       Z(R)=220,2
       R. Pf == (0) 5
      20 11/ J=1 12
       22(J)=SQRTF(2(J)*2(J+1))
 116
       72(2)=50R18(2(5)*2(2))
       ZZ(1)=SQRT=(Z(7)*Z(4))
       ZZT:1=50HT (Z(9) *Z(5))
  100 P=0.0
      F. E. ()
      no 101 3=1 6
      ח.טבונונטים
      FOSV(J)=0.
      OCSV(J)=0.
101
      Q05(J)=0.0
      NO 107 J=1.5
      W- (J) =0.0
      1.00 (J) =0.0.
TOT
       RSS=0.0
      505=0.0
      ROS=0.0
      DO 113 JE 110
      "MIJ)=O.O.
      14V(J)=0.1
 7:3
      00 114 Julyo
      SPM(./)=7.7
      SPNV(J) :0.
 114
E 7
      FORMAT(211,212,211,24F3,3)
      READ(0,511 L1.L0,L3,L4,L5,L6,(A(J),J=1,24)
      JF(L2-1)00,2,1
      READ(2+51) M1+12+M2+M4+M5+M6+(A(J)+J=25+48)
>
      P-P-1.
      K - K + 1
      M4=M4#100+115* 0+M6
      L4=L4*100+L5* 0+L5
      11 (K) = M4
      IF (L1-M1)00+1,00
      IF (M2-L2-1),00,4,00
      1 = (M2-L2)00 . . . 00
5
      1 = ( 44-L4) 09 + 1, + 70
      COMPUTE MILL VOLTS
      RFF)=(A(2)-A(1))*2.0
      RFF7={A(7)-1/4)}*7.0
      00 7 J=5,470
```

```
a(J)=(A(J)-A(1))/REF1*.925
      DO A J=6,44,7
      A(J): (A(J)-A(4))/RFF2*.935
      TF(L1-5) 600,604,600
      [F(P(A)+.1)401.401.402
600
      IF (L4-000) 504 + 504 + 603
602
      JETE4-18701601,601,604
603
      T(1)=(B(K)+P(3A))*12.5+12.5*1.492
671
      60 TO 610
      [(1)=(B(K +B(30))*17.5
504
      F(L2--1507+514+509
610
      F(R(24)+. 1611+611)612
600
      FTL6-0001514,614,613
617
       1F(L4-1800)611,614,514
613
      (10)=(8174)-8(48))*12.5+12.5*1.492
611
      60 TO 51%
      T(10)=(8(26)18(48))*12.5
414
       [(2)=T(1)+(B(2)+B(22))*2.5
415
       1(3)=((2)+((10)+8(24))*2.5
       T(4)=T(3)+(P((2)+P(36))かりょち
       1(5)-1(4)+18'14)+8(39))*7.5
       T(6)#7(5)+(81.6)+8(40))*7.5
       1.71=1(6)+(8()8)+8(42))*2.5
       T(8)=T(7)+(8(2))+R(44))#2.5
       T(91=T(8)+(8(12)+5(46))*2.5
       50 401 Jel 10
1003
      11174(L)M = (L)MT.
       TMV(J) T+(LIVMT=(L)VMT
401
       IF (L ?-25) 901, 302, 802
       FORMAT (SHOTOWER 4, 25X, 4HMAY 14, 6H, 196716, 5X, 6HREF. 1F6.3, 9H
                                                                          REF
 565
      2 6.31
       WRITE(1.546) 11 12.L4.REF1.REF2
  ROI
       GG TO 803
       VPITE(1.565) LINLA.LA.REFT.REFZ
  302
       ARTE(1,529) (2 J), J=1.9), Z(9).
  303
       FORMAT (24H AIR TEMPERATURE (DEG C) 12F8.3)
 53
       00=T(9)-T(10)
       DDT=T(91-T(1)
       WRITE(1.53) (T(J:.J=1:10).DD.DDT
       FORMAT (6HOTOWERI .. 25X . 4HAPR . [4,6H . 196716 . 5X . 6HREF . 166.3 . 9H
 565
      1. 756.71
       [F(L3-25)13,13,13,1
       RS=P(37) +2.81
 75
       RO=(8(5)+8(17)+8(20)+8(41))+4.89/4.0
       SO=(8(47)-8(45))'3,0
       5-R0-50
       RSS=RSS+RS
       ROS=ROS+RO
       505-505+50
       COMPUTE WET BULS TEMPERATURE
    12 FSD=LOGF(4.105)
       Twi-) =T(+)=P(7)*25
       TW(2)=1(0)-2(0)+25.
       TW(2)=T(2)+0(1)1015
       TW(4)=T(4)+0(13)*15.
       TW(5)=T(5)+0(15)*DF.
       TW(6)=T(6)+9(10)*"5.
       TW(7)=T(7)+8(21)*/5.
       TW(R)=T.(8)+(9(21)-9(25))*12.5
       TW(0)=T(0)+P(25)*/5.
       FORMAT (21H WET BULB TEXPERATURE, 3X, 958.3)
 54
```

```
WRITE(1,54) (TW(J), J=1,9)
      COMPUTE SPECIFIC HUMINITY
      00 18 T=1.0
       ES(1)=ESO+25.72*TW(1)/(TW(1)+273.)-5.31*LOGF((TW(1)+273.)/273.)
      FST )=EX F(ES(I))
      E(I:=FS(I)-.000A6*(1.+.00115*TW(I))*1000.*(T(I)-TW(I))
17
      5P())=0,522#8(1)
      SPM([]=50M([]+SP([)
   TR SPM((1)=5PMV(()+SP(()**)
      FORMAT (YAH SPECIFIC HUMIDITY.6X.9F8.3)
57
      HRITE (1057) (SPIU) .JETO91
       COMPUTE BOWEN RATIO
C
      481 120,44 (1(2)-1(1))7(SP(2)-5P(1))
      4R( )=0.4*(T(2)-T(2))/(SP(3)-SP(2))
      4R(-1=0.4*()(4)-1(3))7(SP(5)-SP(3))
      AR(. =0.4*(T(7)-T(4))/(SP(7)-SP(4))
      9R(1 =0.4*(1(0),-1(5))/(5P(9)-5P(5))
      FORMIT(12H BOWEN RATIO.12X.5F8.3)
5 8
      WRI'E(1+58) (BR()) + (=1+5)
      X=0,0
      100 119 July 1
      IF(:R:J))209,211,209
700
      1F (-R(J)+1.)2) 3.2) 1.213
213
      EO(1)=5/(1.+BR(J))
      0001-5/(1.+1./BR(J))
      FO: (J) = FOS (J) + FO(J)
      (C) 00+(C) 200 = (C. 100
      FO"(J) * FOSV(J) * EO(J) * #>
      44 (C100+1C1\50021C1, OD
      X=(11+
      6777 212
      0.0 LIA
211
      1.1J =0.0
      01J) =0.0
      MALLINE MI
213
      [O(6)≈EO(1)+EO(2)+FO(3)+EO(4)+EO(5)
     20(4) 400(1)+00(2)+00(3)+00(4)+00(5)
     X167103=10101
     10161=00161/X
     *ORMAILINH SENSIBLE . HEAT FLUX . 5X . 6F8.31
     (001J).J=1.61
549
     FORMATCITH LATENT HEAT FLUX, 7X, 6F8.31
     WELLE ! [ - 549 ] [ EO[ J] : J= ] + 6]
     FORMATION . TAHSOLAR RADIATION . FA . 3 . 6X . 1 3 HNET RADIATION . F8 . 3 . 6X . 14H
546
    150 11 MERT FLUX, F8.3, 6X, 25 HEATENT PLUS SENSIBLE HEAT, F8.3)
                                                                               5454
     WRITE11.5461 RS, RO, SO, S
7
    COMPUTE WIND DIRECTION-TOWER ONE
     IF(L3-25160+60+61
14
  ST WITE 181.0+18131)+.0261/1.566*1000.1
    W(")=(181.0+(8(33)+.046)/1.653*1000.)
     K: 1, = (181.0+(8(35)+.041)/1.55371000.)
    W(4)*(181.9*(B(37)+.045)/1.653*1000.)
    Y(4)=(181.04(P(30)+.050)/1.655*1000.)
    CORPECTION CARDS FOR TOWER THREE FOR PERIOD ONE
    W(1)=W(1)+0.775
                             +4 , 7
    W(2)=W(2)-0.569
                             +4.7
    W(31 W(3)+0.706
                             +4.7
    H(4)=W(4)-0.388
                             +4.7
    7(5)=W(5)+4.7
    ZW(1)=40.
    ZW121=80.
```

```
ZW(2)=140.
      714 (4) = 240
      ZW(5)=320.
      GO TO 69
      TF(L3-2)62,62,67
60
      IF (L4-1000)64+64+65
67
      1F(L4-1500)65+66+67
55
   64 W(1)=(181.9+(8(33)+.098)/3.258*1000.)
      W(2)=(181.9+(8(35)+.087)/3.234*1000.)
      W(3) = (181.9 + (8(31) + 2075) / 3.258 * 1000 \cdot )
      W(4) = (181.9 + (8(37) + .096) / 3.283 * 1000.)
      8(5)=(181.9+(8(39)+.124)/3.258*1000.)
      CORRECTION CARDS FOR TOWER THREE FOR PERIOD TWO
      W(1)=W(1)+1,775
                                +4.7
                                +4.7
      W(2) = W(1) - 0.569
      W(3)=W(1)+1,705
                                44.7
      W(4)=W(..)-0.398
                                 +4.7
      W(5) = W(5) + 4,7
       GC TO 58
   66 W(_)=(274.24(8(33)+.082)/3.258*1000.)
      W(2)=(274.2+(8(35)+.072)/3.234*1000.)
      W(3)=(274.24'9(31)+.060)/3.258*1000.)
      W(4)=(274.2+(B(37)+.080)/3.283*1000.)
      W(5)=(274.5+(3(39)+.108)/3.259*1000.1
      60 TO 58
   67 U(1)=(274.0+(E(33)-,195)/3.259*1000.)
      W12)=(274,7+(8 35)-,205)/3,234*1000.)
      W(3)=(274.2+(B(31)-.217)/3.259*1000:)
      W(4)=(274.9+(B()7)-.107)/3.283*1000.)
      W(5)=(274.2+(B(39)-.159)/3.258*1000.)
      CURRECTION CARDS FOR TOWER THREE FOR PERIOD FOUR
                               -3.0
      W(1) = W(1) - 1 + 122
      W 21=W(21+0.528
                               -3.0
      8(3)+W(3)+0.434
                               -7.7
      W(4)=W(4)+0.279
                               -3.0
      b(5)=9(5)-0.116
                               -3.0
      TW(1)=80.
6A
      .W(7)=160.
      'W(3) = 200.
       E4(4)=740.
      ZW(5)=320.
   69 WM=(W(1)+W(7)+W(3)+W(4.+W(5))/5.
                Jx: 15
      00 403
      MVI-(C)W=(C)OW
      (C) Ww.(C) WWw.(C) XW
402
      C**(C)W*(C)VWWE(C)VWW
      FORMATIZAH WIND DIRECTION (DEG)
                                            .6F8.21
55
      WRITE ( 1,55. (W(1), [=1,5]) + (M
      IF(L6)200,231.300
300
      IF (LA-5) 1,705,1
      15 (15-2) 375, 374, 375
302
305
      WRITE (1,57)
50
      FORMATITHIE
      60 TO 1
      IF (L5)302,304,303
301
      FORMATIAH TOWERI4, 15X, 42 MAY 14,6H, 1967,6H STARTI6,5H STOP16, F8.0)
570
      FORMATISH TOWERT4, 15x, 411ADR. . . . 6.6H. 1967, 6H STARTIG. 5H STOP16, F8.0)
50
      IF(La-25) 125,125,124
301.
      WRITE(1,5/1)L1,L3,11(1),[1(K),
151
      WRITE(1,5 9) L1, L3, 11(1) . [ (K), P
```

```
5 3 H
       FORMAT(1H , TOHHEIGHT(CM), 13X, 10F8.1)
      WEITF(1,509) (Z(J), J=1.0).Z(9)
126
       COMPUTE MEANS AND STANDARD DEVIATION FOR AIR TEMPERATURE
C
      no 700 J=1.10
      TMV(J)=50RTET(TMV(J)-TM(J)**2/P)/(P-1.1)
700
      AV(T) MI=1C) MI
      00=14(9)-14(10)
      ODT=TM(0)-TM(1)
      FORMATITHO, TOHMEAN TEMPERATURE, 7X, 12F8. 31
570
      WRITE(1:520) (TM(J).J=1:10):00:00T
      פא זוקאוום
      1242
      OUNCH599, L1 . L2, L3, [7(1) . [7(K), [7M(J), J=1,9)
      FORMAT(IH + IAHSTANDARD DEVIATION + $X + 10F8 + 31
521
      WRITE(1.521) [TWV[J],J=1.10)
      IF (La-25) 1771 + 197 + 193
      RS5=RS57P
 131
      ROS_ROS/P
      505=505/P
      S=ROS-505
      COMPUTE MEANS AND STANDARD DEVIATION FOR SPECIFIC HUMIDITY
      50 710 J=1+9
      SPMV(J)=SORTE(TSPMV(J)-SPM(J)**7/P1/(P-1.1)
      SPM(J) 45PM(J)/P
710
      DD3-504(0)-5P4(1)
      FORMAT(1HO.12HMEAN HUMIDITY.10X.10F8.3)
530
      WRITE(1:530) (SPM(J), J=1:91:000
      1.7=3
      PUNCHX99 . [ ] . [ 2 . [ 7 . [ ] . [ ] . [ [ K] . (SPM(J) . J= ] . )]
      FORMAT(212,13,215,0F7.3)
500
      FORWATITE . TEHSTANDARD DEVIATION . 5X . 9F8 . 4)
531
      WRITE(1,531) (SPMV(J),J=1,9)
      FORMATITHO, TAHSOLAR RADIATION, F8.3,6X.13HNET RADIATION, F8.3,6X.14H
547
     1501L HEAT FLUX, F8.3.6X, 25HLATENT PLUS SENSIBLE HEAT, F8.3)
                                                                                54
      WRITETT SEATS RESTRUSSES
      COMPUTE ROWER RATIO FROM MEANS
      FORMATITHO, ISHGEOM. HFIGHT (CM), 14X, 8F8.1)
587
      WRITE(1.593) (22(J): Jal.6)
      DO 221 J=1.5
      FOSV(J)=SQRTF((EOSV(J)-EOS(J)**2/P)/(P-1.))
      005V(J)=50RTF(1005V(J)-005(J)**7/P)/(P-1.))
      QOS(J)=QOS(J)/P
ייי
      EUS (1) = EUS (1) / b
      EOS(&) = (EOS(1)+EOS(7)+EOS(3)+FOS(4)+EOS(5))/5.
      005(6)=(005(1)+005(2)-005(3)+005(4)+005(5))/5.
      WRITE(1,551) (QOS(J),J=1,6)
      WRITE(1.552) (EUS(J),J*1.6)
      OT(1)=(TM(2)-TM(1))/( Z(2)-Z(1)) :
      17(2)=17M(3)-1M(2))/(2(3)-2(2))
      OT(3) = (TM(5) + TM(3))2(Z(5) + Z(3))
      DT(4)=(114(7)-114(4))/(2(7)-2(4))
      DT(5) = (TM(0) - TM(5))/(Z(9) - Z(5))
      50(1)=(SPM(2)-SPM(1))/(2(2)-2(1))
      DQ(2)=(SPM(3)-SPM(3))/(Z(3)-Z(2))
      DQ(3)=(SPM(2)-SPM(3))/(Z(5)-Z(3))
      DQ(4)=(SPM(7)-SPM(4))/(Z(7)-Z(4))
      DQ(5)=(SPX(0)-SPX(5))/(2(0)-2(5))
      O.CHMCD
      ECMan,
       O. CEX
      10 733 J=1 15
```

```
00(J) =0.4*DT(J)/00(J)
       10(0R(J)) 737,731,73
       1= (02(J)+1.)730,731,730
       FO(J)=0.0
      00(1)=0.0
      GO TO 733
      FOIJ1=5/(1 +9R(J))
      Q0(J)=S/(].+1./AR(J))
      FOM=FOM+FO(J)
      (L)00+M00=M00
      X=X+I.
      CONTINUE
773
      DOM=OOK/X
      FOM=FOM/X
      WRITE(1.550) (AR(J), J=1,5)
      FORMATIOH . 11HBOWEN RATIO . 18X . 9F8 . 21
550
      FORMATTIH . 18HSENSIBLE HEAT FLUX . 11X . 6F8 . 3)
551
      WRITE(1,551) (QO(J),J=1,5),QOM
      FORMATCIH . 16HLAYENY HEAT FLUX . 13X . 6F8 - 31
552
      WRITE(1,552) LEO(J),J=1,5),50M
      17=4
      PUNCH 500, LT, L7, L2, L7, 17(1), IT(K), R55, ROS, SOS, QOS(6), QOM, EOS(6), EOM
  133 no 720 Jalo5
      WWV(J)=SQRTF((WWV(J)-WW(J)**7/P)/(P-1.))
770
      AV(C)MM=(C)MM
      FORMAT (1HO)OHHEIGHT(CM)+20X+5F8+1)
 543
      WRITE (1,543) (ZW(J), J=1,5)
      WM=(WW(1)+WW(2)+WW(3)+WW(4)+WW(5))/5.
      FORMATTIH . 14HVIND DIRECTION . 16X . 6F8 . 11
540
      WRITE(1,540) (WW(J), Je1,5), WM
      Lans
      PUNCHEOR, L1 . L2 . L3 . TT (1) . TT (X) . (WW (J) . J=1 . 5) . HM
      FORMAT (1H . 18HSTANDARD DEVIATION . 12X . 5F8 . 1)
541
      WRITE(1,541) (WWV(J),J=1,5)
      00 721 J=1.5
      MW-(L) WW=(L) WW
  771
      FORMAT (1H +15HWIND DIFFERENCE + 15X +5F8 +1)
542
      WRITE() . 542) (WW(J) . J=1.5)
      WR: TF (1:50)
      60 70 100
      END FILE 1
        STOP
      FIED
          FINIS
* FXFCUTE
```