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DOUBLE BOLOMETER MEASUREMENTS OF

THE EFFECTS OF ATMOSPHERIC RADIATORS

P, M. Kuhn,l R. A. Ragotzkie,2 V. K. Menon?

ABSTRACT

The feasibility and testing of an air-borne, double bolo-
meter (radiometer) technique for deriving atmospheric water
vapor profiles at modest cost is illustrated. To achieve
these results with "shelf" equipment, the radiative transfer
equations are solved for the water vapor transmissivity at
aircraft holding levels using observed upward irradiances

as input data. The transfer solutions are obtained from
computer programs developed specifically for this purpose.

Results indicate an accuracy at least as good as that of
the standard sounding electrical hygrometer but with mea-
surements obtained at levels much higher than those at
which hygrometer observations are possible. The implica-
tions for use on high-flying jet or special purpose air-
craft or on rockets are presented.

INTRODUCTION

The equation of radiative power transfer may be sub-
Jected to an iterative solution to produce atmospheric
water vapor distributions as a function of remote radiant
power measurements over different infrared spectral ranges
(M8ller, 1962) The purpose of this research is to study
such a solution employing remote aircraft measurements of
radiant power, but made primarily in one spectral region.

A balloon technique was proposed by Kuhn (1966). These
techniques are different from those of satellite instru-
mentation researchers (Houghton, 1961; Wark, 1961: Mbller,
1962; King, 1964, 1965). Their efforts are limited, neces-
sarily, to irradiance observations from the fixed satellite
orbit employing sensors receptive to radiant power in two
or more different spectral intervals.

lE. 8. s. A., Project Scientist, Radiation Research,
Atmospheric Analysis Laboratory

q - . . . .
“Department of Meteorology, University of Wisconsin,
Madison, Wisconsin
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The procedure to be described requires observations
of temperature, height and spectral irradiance at a number
of aircraft holding levels. Two "shelf-type" radiometers
sensitive over different spectral intervals constitute the
sensor capability. One radiometer monitors the air-surface
interface temperature while the other measures the spectral
component of upward irradiance as a function of height.

COMPUTATION OF RADIANT POWER
Temperature and irradiance data are input to a transfer

solution for spectral irradiance passing upward through a
plane parallel gaseous atmosphere. This may be written

/D32 [wi] [1]

F- -le:lgy %’;—ﬂ{dzdﬂ-{%% j:z

The subscript "o" indicates surface conditions.

The iteration procedure requires insertion of a pro-
gressive series of trial values for Ty(2Z) in Eq. 1 until
the component spectral irradiance calculated is equal to
the measured component of the upward irradiance. Of
course, one begins with a trial value of W (mixing ratio
in grams of moisture per gram of dry air) since1&ﬂ?)5EON) .
The iteration will converge to a last value which is
assumed to be the actual mixing ratio at that observation
level. Effects of other aerosols will be discussed in a
subsequent section. By using broad band and fine (window)
band chopper bolometers the aircraft does not have to
make any surface landings for surface temperature observa-
tion. It requires only a vertical sounding. Direct appli-
cation of this technique to rocket-borne radiometers will
also be discussed in the next section.

To solve Eqg. 1 for water vapor it is necessary to
measure the component of upward irradiance, F coming
from a cone of reception with a solid angle opening
AW: 27TC0OS 8 SiIn 8 AB. @O is the nadir angle of a down-
ward looking radiometer. A®  defines the half beam
width of the radiometer.

MEASURED IRRADIANCE EVALUATION

The curves for the filter transmissivities are shown
in Fig. 1, curves "a" and "b", the former for the inter-
face monitor and the latter for the broad band radiometer,
similar to TIROS III, Channel 4.
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Curve "la" covers the transmissivity of the infrared
"window," temperature monitoring radiometer (hereafter
designated IRW). Curve "1lb" covers the transmissivity

of the infrared irradiance or flux density radiometer
(hereafter designated IRF). (Spectral gensitivities, ¢y ’
of the IRW and IRF are not given as they are a function

of the particular manufacturer's radiometers.) Md8ller
(1963) has shown that "because of different spectral trans-
missivities of the radiometer filter, lenses, and prism
and of different spectral reflectivity of the chopper,

the radiometer has an effggt}ve spectral sensitivity, g‘ oM
The measured irradiance (F‘]") may then be expressed by,

3R T 7 B €

V4 .

[
The IRW and IRF radiometers were calibrated against an
assumed hemispherically symmetrical black source. We
then have,

% J

—_— 2 r N

F] - f By(_reﬁ) %y dv {_W/m ] [31
4, 7

When required, the equivalent black body temperature (Teq.)

can be determined from Eq. 3 (Mbller, op. cit.).

By (Teg.) is the spectral black body irradiance
illuminating either the IRW or IRF apertures. The IRW
and IRF radiometers employed in this research had solid
opening angles of 3 degrees.

MODEL COMPUTER CALIBRATION OF RADIOMETERS

Assuming the prism transmissivity to be 1.0 for all
7 . (wave number) and the chopper reflectivity to be 1.0
for all ¥ , the sensitivity calibration of the IRW and
IRF units were evaluated with the equation of radiative
power transfgr SEq. 1) with a spectral filter transmis-
sivity term,l.(¢1 , and aperture, AW , added. They
define the radiant power illuminating the radiometer
sensor system, but behind the filter.

This calibration sensitivity will be reduced by
the priem transmissivity and chopper reflectivity. How-
ever, in choosing filter calibration sensitivity this
illuminating power is important to the manufacturers.

Eq. 1, including \.(ﬂ)y , becomes, ]
» f% Ty @ y’)\ o 28 @ w/m’
Fnjgj'j;z T6¢zV E%V)Q;1;2 ‘dz'sz L(ﬁ),ESygjg I.;:_ C}% dj}{,/ [4]
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The IRW and IRF radiometers were "calibrated" by a computer
solution to Eg. 3 _in the CDC-3600. The calibrations yielded
curves of ,u.W/ cm? versus assumed hemispherical black source
temperatures as "seen" through a solid angle aperture of AW
equal to 27TSINO6 O8O steradian. These curves are displayed
by Fig. 2.

IRW ALTITUDE CORRECTIONS, CALCULATED AND OBSERVED

A referral to Fig. 1 clearly shows the considerable over-

lap of the water vapor absorption band with the pass area
1050 to 1400 cm-l. To illustrate these effects transfer
equation solutions for received power (Eq.3) were run for

12 mean monthly soundings for Sault Ste. Marie, Michigan,
from sea level to 18,000 feet. Figs. 3 and 4 illustrate

the extremes encountered over the 12 months. The March
sounding requires a 6.0°9C correction at 10,000 feet. The
influence of water vapor absorption in the 1050--1400 cm—1
pass band of the filter is very important. A Kodak IRTRAN 6
filter appears much more suitable than the Indium Antimonide
cell. This, of course, is not a new idea. Fig. 5 is an
example of the altitude correction required when the 7.4-13.2
filter is used. The sharp cut on and cut off at 104 and l%u 7
respectively, resulting in a narrower pass band, produces

a somewhat weaker signal at the plane of the sensor system.
But, it is essentially free of water vapor absorption.
Laboratory tests of such a filter are being made.

Fig. 6 illustrates an actual aircraft calibration
over Lake Superior near Duluth from the surface to 6,000
feet. The displayed data closely resemble the computer
solution for altitude correction in Fig. 5.

The effects of a total optical mass of 0.1 and 1.0
gram/cm“, respectively, at an average temperature of 10.0°c
through an altitude of 3,000 feet can be seen in Fig. 7.

The overlap between 7.3 and 9.4microns and 12.0 and 13.6 microns
is clear. This is not a particularly wet sounding. One

might suggest a 10-12 micron filter but problems of resolu-
tion and sensitivity then become important in a cost con-
sideration. This is quite true of "shelf" hardware.

DETERMINATION OF ATMOSPHERIC WATER VAPOR

In view of problems in the accurate, and relatively low
cost, measurements of atmospheric water vapor distribution by
aircraft and balloon borne dew point sensors, we are testing
the feasibility of an iterative solution of the radiative
power transfer equation. Our end product will be the moisture
distribution in parts by mass/1000.
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Input to the transfer equation in solving for atmos-
pheric moisture are the aircraft sensor (or ballon sensor)
measured pressure (altitude), air temperature, and IRW and
IRF radiation profiles. A fourth parameter required in the
solution of Eq. 4, the radiative transfer equation, is an
assumed profile of the mixing ratio of water vapor (grams/
kilogram) . A good first approximation will be the mean
monthly mixing ratio sounding for the nearest upwind
radiosonde station.

In essence we solve Eq. 4 for the emitted water vapor
and transmitted window water vapor radiation terms. This
is shown symbolically in Fig. 8. This solution, for various
levels, is then compared with the observed IRW component of
measured upward irradiance evaluated by Eq. 3. If the agree-
ment is within a set convergence limit for all levels the
solution is complete. If the convergence limit is not
reached at a given level this is "noted" by the computer
and we move on to the succeeding levels, following the
same procedure. Adjustment of the water vapor profile
is then made on the entire sounding and the iteration
procedure repeats. Average computer solution time is 15
seconds (CDC-3600) for a 10 level solution, over the spectral
range 4.39 to 20.83 microns (560--1480 cm‘i). The con-
vergence limit chosen is 1.0 w/m? (lLoguwW/cm?2) . This is
beyond the minimum resolution quoted by manufacturers of
such equipment.

AIRCRAFT INSTRUMENTATION

The NCAR Queenaire Beechcraft aircraft was made avail-
able to this project by Dr. D. R. Rex, Director of flight
facilities at NCAR. Without his cooperation the modification
of the aircraft and ascents could not have been made. Ports
with shock mountings supported the two (IRW and IRF) radio-
meters. Data were recorded by the standard aircraft data
collection system. Simultaneous measurements of IRW and
IRF upward irradiance, altitude and air temperature were
made coincidentally with visual observations of the surface.

AIRCRAFT RADIOMETRIC SOUNDING

An aircraft sounding with the IRW and IRF was made,
under visually determined cloudless conditions on 14 July
1965. The area surveyed was over Lake Superior, twenty
miles east of Duluth, Minnesota, covering the period 2245
CDT through 2331 CDT. Flow aloft under a subsiding Canadian
High, to the northwest, was west-northwesterly at all levels.
Table 1 gives the observed pressure, height, air tempera-
ture, IRW estimate of surface temperature and IRF observed
upward flux. In addition it displays the iterative calcu-
lations of upward irradiance with the corresponding input
mixing ratio. 5



TABLE 1

OBSERVED AND CALCULATED SOUNDING DATA

lst Iteration 2nd 3rd

PRESS HT(FT) Tpair IRW IRF, Fa W(g/kg) Fc W Fo \3
1012 0 12.5 12.5 ( ) 11.41 9.2 1l.4l 8.3 11.6 2.0
1003 300 19.4 12.3 11.00 10.04 9.2 10.04 8.3 10.4 2.0
920 2600 16.3 12.1 11.50 10.17 8.1 10.17 7.3 10.4 0.6
886 3600 13.3 12.0 10.80 9.93 7.5 9.94 6.8 10.2 0.6
825 5600 7.9 11.7 10.30 9,55 6.4 9.56 5.8 9.9 0.5
794 6600 5.4 11.5 10.10 925 6.0 9.27 5.4 9.7 0.5
763 7600 3.8 11.4 9.90 9.07 5.2 9.09 4.7 9.7 0.3
735 8600 1.8 11.2 9.40 8.92 4.7 8.94 4.2 9.5 0.2
710 9600

682 10600 0.3 11.0 9.34 8.74 3.5 8,77 3.1 9.4 0.1

(Temperature in °C; pressure in millibarsi
height in feet; irradiance in watts/meter<;
mixing ratio in grams/kilogram.)

It is clear from the columns headed 2nd and 3rd itera-
tion, that the temperature profile, necessarily, is most
important in determining the convergence of the observed
irradiance (IRF) and the calculated irradiance, Fs. But,
with relatively accurate temperature measurements the
iteration on mixing ratio will converge quite rapidly, in
this case in three iterations. The constraint imposed on
the solution is present in the Observed (fixed) temperature
profile. This, then results in a unique solution for the
moisture. The reduction in moisture in this instance
reached a maximum of 30% to result in convergence. One
should bear in mind that we are applying a systematic
reduction, or where required, increase in the profile of
the mixing ratio. Smith (1966) at Wisconsin has suggested
a "power law" generation of the profile of moisture based
on the observed surface temperature and humidity. 1In
summary, Fig. 9 gives the sequence of moisture soundings vs.
altitude and pressure to final convergence. The observed
special Duluth sounding, which carried over Lake Superior,
is included for reference. The agreement is obvious.
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The minimum resolution of the nominal 24 - 20 IRF
unit (Barnes Engineering Company) is 0.7 w/m?* or approximately
0.2°9C. This resolution is indicated by the minimum resolu-
tion bar limits to either side of the observed irradiance
values at 1003, 825, and 686 millibars in Fig. 9. This is
nearly four times the resolution of standard IRW units (Barnes
Engineering Company). Both the increased transmissivity of
the germanium lens (flat) and the larger spectral pass band
of the IRF contribute to the greater sensitivity of this
bolometer over the IRW.

While nine aircraft holding levels were used in the
14 July 1965 ascent and moisture computation, it is presumed
clear that the same accuracy in water vapor computations
could be attained with but three irradiance observations.
More dense vertical measurements are not warranted by the
minimum sensitivity of the instrument.

One can note that our best estimates of water vapor
mixing ratios will be for values in that part of the water
vapor transmissivity curve between a mixing ratio of .0l
»nd 1.0 grams/kilogram.

CLOUD OR AEROSOL EFFECTS

A previous experiment using a window radiometer (IRW)
and a 4.5 to 5.6 4 (1780-2220 cm~1l) radiometer to determine
a gross size distribution of atmospheric aerosols was attempted.
This failed due to the lack of sensitivity of the bolometer
in the restricted spectral operating range of from 4.5 to S.Qp..

However, the IRW and IRF radiometers appear to have
more of a capability along these lines. In an aircraft
ascent on 25 July 1965 over Lake Superior, east of Duluth,
passage 1100 feet above a layer of tenuous fog (10 m or
larger aerosol), the IRW signal decayed very sharply. The
IRF, though showing some decay in signal response, was much
less affected. On the other hand, passage of both radio-
meters in the near saturation, pre-fog conditions resulted
in a very rapid decay in the signal output of the IRF but,
in much less attenuation in the IRW. In clouds both units
decay abruptly. Thus, it appears that double bolometers of
the pass bands described will have value in determining,
qualitatively, the distribution of certain types of atmos-
pheric radiators.

CONCLUSIONS
Aircraft Operations

Admittedly, relatively expensive dew point devices are
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available for aircraft observations of humidity. However,
their accuracy may be considerably less than the radio-
metric technique for determining atmospheric moisture that
we have discussed. If this is so, then applications to
remote sensing of the atmospheric moisture structure in
remote areas without recourse to any surface observations
may well be feasible.

Balloons

It appears quite clear that one of the major uses of
low cost infrared radiometric detectors lies in the realm
of balloon soundings. Of course we would now have to
forego the chopper bolometers, described, and refer to
the conventional radiometersonde (Kuhn and Suomi, 1965).
Without discussing this device, let us generalize by say-
ing that a suitable, selectively sensitized detector to
duplicate the transmissivity of the IRW is possible and
under search. When this is realized one may be able to
sound atmospheric moisture and particulate layers to
altitudes above 100,000 feet with much greater reliability
than can be achieved with the present electrical hygrometer.
Tests have been conducted using powdered talc on one sensor
(IRW) and standard blackening agent on the IRF. While still
not satisfactory they indicate continued research. We are
speaking of a total additional cost of twenty-five dollars,
including computer reduction of data, over a standard
Weather Bureau radiosonde ascent.

One should also note that our greatest resolution
occurs in that part of the water vapor spectrum between
.01 and 0.5 gm/cm2 of water vapor. This is evident from
an examination of the slope of the transmissivity of water
vapor versus optical mass. This, then, prompts a question
on the use of rockets or high level balloons.

Rockets

With a sufficiently high resolution (relatively low in
cost in keeping with the vein of this study) one could monitor
the downward component of spectral irradiance against a
background of "zero" radiant power. Certainly this is not a
new idea, but appears worth investigation. The results
could augment high flying frost point equipment for strato-
spheric water vapor profiles.
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TABLE OF SYMBOLS

F Irradiance (watts/meter2 or microwatts/centimeter2)
7& Wave number (reciprocal centimeters)

Z: Height (feet)

B: Blackbody irradiance

Spectral transmissivity

mixing ratio for H,0 vapor (grams/kilogram)

¢y1 Spectral sensitivity

TGQ,ISpectral filter transmissivity

/IW: Microwatts

IRW: Infrared window Radiometer (watts/meter?)

IRF: Infrared irradiance Radiometer (watts/meterz)
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