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FOREWARD

A principal goal of general circulation modeling has been the prediction
of atmospheric flow anomalies over time periods ranging from several weeks to a
season or more. Recent work, both observational and theoretical, has suggested
that in fact there may exist certain classes of flows which may be more poten-
tially predictable than others. Ideally, an increased understanding of the
nature of these special flows will aid in their numerical modeling, and aid in
the definition of observational data requirements. These, hopefully, would lead
to an enhanced predictive capability.

Our ongoing research in this area has focused on the applications of the
general circulation models used at NASA's Goddard Laboratory for Atmospheric
Science. As part of this effort, Dr. Siegfried Schubert has undertaken a
detailed observational and theoretical study of large-—scale atmospheric flow
anomalies. The following report, which contains the Ph.D. thesis research of
Dr. Schubert, describes an attempt to represent the structure of the anomalies
in terms of empirical orthogonal functions (EOFs), and determine stability of
the EOF's and their correspondence to actually-occurring structures.

The research described herein was funded under NASA grant NSG-5223,

"The effect of synoptic scale processes in GCM modeling,” and relied heavily
upon the computational resources provided by the Modeling and Simulation Branch
of Goddard's Laboratory for Atmospheric Science (GLAS). We are indebted to

Dr. M. Halem and the staff of that branch for their dedicated support of this

research.

Gerald F. Herman
Associate Professor
1 June 1983



A STATISTICAL-DYNAMICAL STUDY OF THE

LARGE-SCALE INTRASEASONAL VARIABILITY OF

THE NORTHERN HEMISPHERE WINTER CIRCULATION

siegfried Dieter Schubert

ABSTRACT

The observed wintertime intraseasonal variability

of the Northern Hemisphere mid-tropospheric circulation

is analyzed using a combined statistical and dynamical

approach. The statistical analysis is

based on an empir-

ical orthogonal function (EOF) expansion of the 500 mb

streamfunction anomalies (deviations from the climato-

logical seasonal cycle) and includes a
interpretation of the dominant modes.

analysis involves entering these modes
barotropic model in an attempt to gain
into the important dynamical processes
behavior. The importance of the terms

parameterizations is determined from a

description and
The dynamical

into an equivalent
further insight
governing their
involving boundary

least squares fit.

A major result of this study is the identification
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of the zonally varying wintertime mean flow as a
potentially important energy source for some of the
dominant EOF's: these include the first three EOF's
which are associated with a range of behavior encompas-
sing an index cycle, the Pacific/North American pattern,
and the North Atlantic oscillation.

Nonlinear aspects of the model were also investi-
gated and these include the-interaction between EOF's,
the stability of base states involving fixed EOF's, and
multiple equilibria. The strongest interactions were
found to involve the second and ninth EOF's. The
latter is associated with North Atlantic blocking and the
former is associated with fluctuations in the North
American east coast jet. The North Atlantic blocking
mode was found to be very unstable as a result of inter-
actions with the dominant EOF's which act to destroy
this pattern.

A comparison with spatially and temporally uncor-
related noise suggests that the first twelve principal
components (PC's) are sighif%cant; however, the limited
temporal extent of the data allows only a marginal res-
olution of the individual modes.

A study of very low order models (without orography)

shows that, while multiple equilibria are possible, they

ii1



are generally found for parameter values associated with
unreali;tically weak decay rates and/or unrealistically
strong forcing. 1In the present model blocking is most
likely to occur as a gquasi-linear response to the in-
homogeneous forcing which enters into the model as a
residual calculation due to the fact that the mean flow,

by itself, does not satisfy the vorticity equation.

iv
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1. INTRODUCTION

A key aépect of the extended range predictability
problem concerns the difficulties encountered in the pre-
diction of the large-scale slowly varying features which
typically dominate the middle latitude circulation. In
a recent review of the progress made in medium range nu-
merical weather forecasting, Bengtsson (1981) noted that
significant improvement may come from a reduction of the
systematic errors involved in predicting the large-scale
quasi-stationary flow. Vital to such error reduction is
a better understanding of both the spatial structure of
these flows and the mechanisms which produce and maintain
them.

A number of recent theoretical and observational
studies have either directly or indirectly contributed to
prospects for improved extended range forecasts by pro-
viding a clearer insight into the nature of the large-
scale intraseasonal variations of the atmosphere. Ob-
servational studies have emphasized the identificationand
description of coherent hemispheric, as well as near
global scale modes of variability, while theoretical
studies have focused on the nature of the processes
governing their behavior.

Using a 15 year NMC data set consisting of monthly




mean sea level pressure and 500 mb height analyses,
Wallace and Gutzler (1981) found strong support for tele-
connections (measured by mid-tropospheric spatial Cor—
relations) involving the North Atlantic Oscillation and
Pacific/North American patterns. The former is charac-
terized by fluctuations in the western Atlantic mean jet
and the latter involves an alternation between a high
amplitude wave structure and a more zonal flow over the
North Pacific and North America. These modes were found
to have a predominantly equivalent barotropic structure.
A study by Weickmann (1982) using winter NMC analyzed
circulation fields (85°N - 30°S) and satellite-derived
outgoing longwave radiation fields found evidence for
near global scale oscillations characterized by an index
cycle involving the middle latitude and subtropical jet
streams of both hemispheres. In a study of recurring
anomalies in a 15 year GFDL model simulation, Lau (1981)
found strong similarities between the dominant winter
modes of variability of the model simulation and observa-
tions. The simulation did not.allow nonseasonal per-
turbations in the prescribed model forcing, yet sub-
stantial variability was found on monthly time scales.
Much of the theoretical work concerning lérge—scale

low-frequency variability has centered on barotropic



dynamics. Charney and DeVore (1979) showed the existence
of multiple equilibria in a low order barotropic channel
model with orography and a barotropic analogue to thermal
driving. Crucial for the existence of large amplitude
equilibria is linear resonance of a stationary Rossby
wave in the presence of orography. K&dllén (1981) ex-
tended these results to the sphere and showed that a
properly placed wave vorticity source could increase the
efficiency of producing multiple equilibria.

Lorenz (1972) examined the stability of Rossby waves
on a B-plane. His results showed that for sufficiently
small wave lengths and large amplitudes the waves were
barotropically unstable, and Lorenz postulated that this
may be the primary cause of the unpredictability of the
atmosphere. Baines (1976) examined the stability of free
planetary waves on the sphere and found that all waves
with total wave number greater than 2 are unsfable if
their amplitudes are large enough. For zonal flows the
critical amplitudes are close to those obtained by
Rayleigh's criterion; whereas, for some of the traveling
waves the critical amplitudes are approximately those
obtained from triad interactions.

Simmons et al. (1982) examined a barotropic model

linearized about the 300 mb climatological mean January




flow in their study of barotropic instability and tele-
connections. Results showed that the structure of the
responses to localized forcings in the tropics and sub-
tropics were related to the most rapidly growing mode
associated with barotropic instability of the zonally-
varying base state. They further suggested that much of
the low frequency variability of the Northern Hemisphere
wintertime circulation derives its energy from the base
state through barotropic instability.

In order to define more clearly the applicability
and important processes of these simple models, Kruse
(1983) performed a detailed statistical analysis of a
spectral equivalent barotropic model. Themodel allowed
a crude representation of baroclinic effects and an in-
homogeneous term which was interpreted as a thermal
forcing. Results of this study showed the equivalentbaro-
tropic model is capable of explaining a significant
fraction of the large-scale variability, and emphasized
the importance of the beta effect, wave/zonal flow and
wave/wave interactions, and~thermal forcing in the de-
velopment of planetary waves. Furthermore, these results
showed the orographic term to be less important, partic-
ularly for the zonally asymmetric modes. Friction was

found to be practically negligible, and the effect of



the baroclinic modes, through the surface tendency term,
led to almost dispersion-free Rossby speeds.

The present work involves a combined observational,
statistical and modeling approach in an attempt to close
the gap between some of the basically heuristic studies
involving highly simplified models and the observational
studies of the atmosphere. The main objective is to
identify the important mechanisms responsible for the
initiation and maintenance of the observed modes of vari-
ation within a dynamical framework. The first part of
this work involves the identification and description of
the dominant modes of variability of the extratropical
atmosphere in terms of empirical orthogonal functions
(EOF's) . Subsequently, the EOF's are entered into an
equivalent barotropic model, which in its basic form is
similar to that in the Kruse (1983) study. However, the
model used here does not explicitly include the effects
of baroclinic modes or thermal processes. The model is
formulated in terms of deviations from the climatological
seasonal cycle, which enters into the anomaly equations
via the advective terms and as a residual inhomogeneous
forcing term.

Sellers (1957) was the first to formulate a

dynamical model based on atmospheric EOF's. However,




predictions of the 500 mb anomaly field over a limited
area, based on the barotropic vorticity equation, shbwed
poorer results for the EOF model than for the standard
barotropic model. Sellers pointed to difficulties in the
evaluation of the prediction coefficients associated
with the higher order derivatives as a possible reason for
the poor results. More recently, Rinne and Karhila
(1975) developed a similar limited area barotropic model
which exhibited a forecast skill at least as good as the
standard finite difference model. However, the model
exhibited some rather strong spurious osciilations in an
energy invariant, which were attributed to the level of
EOF truncation.

The present study overcomes some of these diffi-
culties by formulating the EOF's in the wave domain.
This allows a significant simplification of the higher
order derivative terms through the use of identities
satisfied by the harmonic functions on a sphere. Anal-
ogous to the spectral form of the advective terms,
interaction coefficientsnw&rbe~defined for the EOF's.
Unlike the grid point formulation, the EOF's in the
wave domain are governed by interactions which explicit~
ly take into account the interaction rules of the

spectral formulation. This allows for an analytic



analysis of the conservative properties of the truncated
EOF model and provides a basis for making decisions

concerning the proper model formulation.




2.0 DATA ANALYSIS AND INTERPRETATION

2.1. Description of the data

The data consist of twice daily 500 mb values of
the streamfunction for the Northern Hemisphere for the
ten year period beginning January 1, 1967 and ending
December 31, 1976. The original data were provided by
the Deutscher Wetterdienst (DWD) as geopotential heights
on a rectangular grid (381 x 381 sqg km at 60°N) analyzed
for the area north of approximately 12.5° latitude. These
data were converted to the spectral domain assuming
symmetry with respect to the equator and employing
triangular truncation at total wave number 16, by E. Kirk
and P. Speth (Institut flir Geophysik und Meteorologie in
K&ln) . The geopotential coefficients were converted to
streamfunction coefficients (odd harmonics) by Harald
Kruse (1983) through the linear balance equation. The
recurrence relation involved in this transformation uses
a geostrophic constraint on the mean angular momentum to
provide a starting point for the purely zonal modes.
Extrapolation to the equator wés done by assuming a
constant value equal to the zonal average computed from
the éouthernmost data points.

The orographic data consist of 5° longitude by 2.5°

latitude values provided by E. Maier-Reimer (Max-Planck-



Institut fiir Meteorologie, Hamburg). This is a smoothed
version of a 1° by 1° grid produced at the Geophysical
Fluid Dynamics Laboratory. The orographic heights are
normalized by the Earth's radius and converted to the
spectral domain with even harmonics and triangular
truncation at total wave number 16. A plot of the oro-
gfaphy is presented in Figure 1. While there is a con-
siderable amount of smoothing to the gridpoint data (not
shown), the major land masses and mountain chains are

reasonably well represented.

2.2. The empirical orthogonal functions

a) Theoretical background

Empirical orthogonal functions (EOF 's) provide a
very useful tool for the analysis of very large data
sets. The data transformation associated with the
dominant EOF's aligns the coordinate axes (defined by
grid points or spectral coefficients) in the directions
of greatest variability, allowing for a very efficient
representation of the data. One of the disadvantages of
EOF's (particularly when based on gridded data) is their
ljack of a well defined functional form and the associated
difficulty in dealing with them in mathematical equations.

In the present study this limitation is in part overcome




10

e

U

RN O bir g
[> “u >
SRy
3
o}
Y
/

- 7

Figure 1.

The orography (normalized by the Earth's
radius) based on a spherical harmonic expansion
non-dimensional, contour interval is
3 x 1073. Heavy contours are the zero lines

with triangular truncation at total wave number
16 assuming symmetry with respect to the equator.

Units:
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by formulating the EOF's in the spectral domain and using
spherical harmonic identities in order to simplify the
mathematical expressions.

The various properties of EOF's have been discussed
in detail in previous studies (e.g. Kutzbach (1967),
Davis (1976), North et al. (1981)). Here only the pro-
perties pertinent to the present study will be briefly
reviewed. The discussion will follow the development of
North et al. for a continuous two-dimensional field in
order to show more clearly the relationship between EOF's
in the wave domain and EOF's in physical space.

The EOF analysis summarizes the information con-
tained in the data in terms of the covariance function,

C, defined as

C(E,E’,t) = <¢(E,t)w(£’,t)> (2.2.1)
where the angular brackets represent an ensemble average
and |y is a continuous two-dimensional field (e.g. stream-
function) referenced by position r and time t. It is
assumed that <¢(£,t)> = 0. The basis functions are the
eigenfunctions (Ei) of the integral equation

2™ i C(r,r’,t)Ei(r’,t)dr’

A

Ai(t) Ei(s,t) (2.2.2)
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where A defines the domain of integration and the Ai are
the eigenvalues. An important property of the eigen-

functions (EOF's) is the dual orthogonality

-1
A Bilx, ) ! BRCEPEYAE =L 875 2.2.3
[ Btz Bjteverar = s ( a)
and
izl Ei(f,t) Ei(f = e Ggr’ (2.2.3b)

The latter property is of particular importance in the
present study for the investigation of the EOF model's
integral constraints (see 3.2b). (2.2.3) insures that

the Ei form a basis set and
plr,t) =} “gl(E) Bi{L}E) (2.2.4a)
~ j=1 1 1'%

where the z, are the coefficients of the EOF's and are

called principal components (PC's) given by

z, (t) = T i E; (r,t)y(r,t)dr (2.2.4b)

Additional properties are: the orthogonality of the

PC's
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<Z. zj> A o ik (2.2.5)

where <zi> = 0; the total (or mean) variance relation

Al p®sar s o, (2.2.6a)

A i

PO TR SOPEE SEPRs Iy (2.2.6b)
P - 17312
Since the variance associated with the ith PC is Ai'
the fraction of the total variance represented by this
mode is the ratio of this eigenvalue to the sum of the
eigenvalues. A very useful property of the PC's is that,
when ordered by the amount of variance explained, they
are the most efficient representation of the data in the k
sense that for a given subset of the expansion, no other
set of basis functions can explain a greater fraction of
the total variance. Another property, not often men-
tioned in the meteorological literature, concerns the
correlation between y and the PC's and is given as

oy, z,) = E; X s (2.2.7)
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This property becomes more useful when treated in the
wave domain (cf. 2.3.2).

In practice the ensemble averages are replaced by
time averages under the assumption of stationarity (see
2.2b). Then the eigenfunctions and eigenvalues in
(2.2.1) - (2.2.7) lose their time dependence. Further-
more, one usually does not deal with continuous func-
tions. In the case of grid point data, (2.2.2) must be
approximated by finite differences, and North et al.
(loc. cit.) has discussed the proper scaling for spher-
ical geometry. For the present study the data are

expanded in spherical harmonics

vir,t) = § v_(t) y_(r) (2.2.8)
~ ’Y ’Y w
Y
where the YY are spherical harmonics (see 3.1lc) with
zonal wave number m and total wave number n and the wY
are the spectral coefficients. The spectral expansion

of Ei is then

E, (r) = \2( e; (v) ¥ (x) (2.2.9)

where ei(7) = Ei(y); the bar indicates a complex con-

jugate and y = (nY,—mY). Substituting (2.2.8) and
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and (2.2.9) into (2.2.2) leads to the spectral EOF eigen-

value problem

g <$Y wB> ei(y) = Ai ei(B) (2.2.10)
where*
Sig=l fog
ei(y) = A £ YY(f) Ei(f)df (2.2.11)

The ei(y) are the complex EOF's in the wave domain. The
spectral versions of the properties (2.2.3) - (2.2.7)
may be obtained by substitution of (2.2.8) and (2.2.9).

In particular, (2.2.3) becomes

I ey ey(y) = 8,4 (2.2.128)
Y
and
z e, (y) e;(g) = aYB (2.2.12b)
(2.2.4) becomes
wY(t) = } z; ei(y) (2.2.13a)

and

*In practice the ei(y) are computed from (2.2.10).
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z, (t) = z Ei(y)wY (2.2.13b)

A schematic view of the various data transformations
involved in this study is shown in Figure 2. The actual
data field is assumed to be continuous and exhibits vari-
ations characterized by the covariance function (3)
defined in (2.2.1). The spectral expansion of the data
leads to covariance relationships defined by an infinite
dimensional matrix (B) involving covariances between the
spectral coefficients. In practice, the spectral expan-
sion is based on gridded data and is limited to a finite
number of harmonics leading to the finite dimensional
covariance matrix (C). The spectral representation is
ordered by spatial scale and therefore provides a natural
choice for truncation based on the spatial resolution
desired or obtainable from an observational network. The
fact that a wave expansion involving just a few hundred
modes or less provides a very good representation of the
large-scale atmospheric fields is in large part due to
the observed tendency for thé motions to be wave-like.
The spectral representation implicitly takes into account
the spatial covariances associated with wave motions,
allowing for a large reduction in the number of degrees

of freedom.
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DATA TRANSFORMATIONS AND COVARIANCES

Spectral expansion
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C
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Figure 2.
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A schematic view of the data transformations
and expansion truncations as they are reflected in
the covariance function (see text for details).
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The EOF expansion, in turn, takes into account the
observed covariances between the spectral coefficienté.
Effectively, this rotates the coordinates such that the
covariance matrix (D) is diagonalized and concentrates
most of the variance in a relatively small number of modes.
The efficient variance concentration of the PC's suggests
the possibility of a further reduction in the number of
retained modes by truncating the EOF expansion (E).
Unfortunately, the EOF's do not provide an obvious
criterion for deciding a truncation point based on spatial
resolution; instead, one must turn to more rigorous
statistical tests for obtaining EOF selection rules.

This is the subject of 2.2c.

b) Stationarity and the seasonal cycle

In this study much effort is made to insure that
the EOF's can be treated within a statistical framework.
This allows one to interpret the EOF's as being rep-
resentative of an underlying climatological probability
distribution. In order to interpret the sums of squares
and cross products of the data as variances and co-
variances, each year is assumed to be a realization of
a stationary stochastic process. Stationarity is .

achieved by removing the seasonal cycle (with the first
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moment a constant) and limiting the analysis to one
season (with the second moment assumed constant).

All harmonics of the seasonal signal are explicitly
eliminated from the data: the EOF calculation is based
on the deviations from a mean seasonal cycle computed as
an average over the ten year data set (see Appendix A).
An alternative approach would be to allow the expansion
to define the seasonal cycle by computing the EOF's with-
out first removing the seasonal cycle. It has been found
that the first EOF of such an expansion is dominated by
the seasonal component (e.g. Weickmann, 1982); however,
part of the seasonal signal is also contained in higher
order components making the desired separation difficult.

One of the advantages of EOF's over a conventional
space spectral analysis is that individual modes, partic-
ularly those of lowest order, often closely resemble
observed circulation regimes (Kutzbach, 1970). Since
intra-annual variations in atmospheric forcing and flow
regimes are quite large, an attempt is made to select
appropriate periods during which these variations are
minimized. The consequence of such a selection should
be to enhance the physical interpretation of the EOF's,
The concept of a "natural" calendar dividing the year

into segments of similar weather patterns which change
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abruptly (rather than slowly following the gradual change
in solar radiation) was studied by Bryson and Lahey
(1958) . Their study supported the idea that there are
statistically similar flow regimes separated by abrupt
changes in circulation patterns, allowing for the defini-
tion of a "natural" calendar of seasons. Using these
results as a guide the present definition of the seasons
is based primarily on the variations of the m = 0

(zonal) flow components which seem most closely linked

to variations in solar radiation and are the major con-
tributors to the seasonal cycle. The winter season

(Dec. 2 - March 31 as compared with Nov. 1 - March 21

for the Bryson study), which is the focus of this study,
is chosen in an effort to minimize the variations of

these components.

c) Expansion truncation

The higher frequency modes associated with day to
day weather variations are filtered from the expansion by
computing the EOF's from lo-aay~averages of the stream
function anomalies. Details of the EOF calculations and
the relationship between the real and complex representa-
tions are given in Appendix A. A major advantage of an

EOF representation is the efficiency with which it is
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capable of reconstructing the variance of a data set (see
2.2a). Figure 3 (large dots) shows the percent variance
explained by each PC of the observations on a semi-
logarithmic plot. The first PC explains 16% of the
observed variance. The first 25 PC's explain about 92%
and the first 40 PC's explain more than 97% of the ob-
served variance in the 10 day averaged streamfunction
anomalies. This plot suggests that very little addi-
tional information is gained by including more than say
the first 25 modes since more than 100 modes are required
to explain the remaining 8% of the observed variance.

In order to make a more objective assessment of the
EOF representation and provide a framework for making
decisions concerning truncation of the EOF expansion it
is necessary to develop more rigorous statistical tests
concerning the nature of the noise and information signal
in the data. Preisendorfer et al. (1981) have developed
‘an extensive set of statistical tests designed to provide
a criterion for EOF truncation. The test used for this
study is one of the dominant variance rules (rule N)
developed by Preisendorfer et al. under the assumption
that all the useful information is contained in the modes
with the greatest variability. The null hypothesis is

that the eigenvalues come from spatially and temporally
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uncorrelated noise, and only those modes are retained
which have eigenvalues larger than the noise process.
The computations involve Monte Carlo simulations of the
noise process with sample size (P) and dimension (N)
identical to those for the data eigenvalue calculations
(P = 120, N = 135).

In order to generate realizations from a Gaussian
probability distribution in N-space with a known co-
variance matrix, $, one need only generate N x P inde-
pendent Gaussian variates, un(p), with 0 mean and unit
variance arranged in P vectors of length N. The realiza-
tions are then given by

x(p) = ? oli u. (p)g. pis 1,20055%P (2.2.14)

~ o n n =N
where W and g, are the eigenvalues and eigenvectors of
X, respectively. As shown by Preisendorfer et gl. (lgg.
cit.), these realizations have a sample covariance matrix
which has an expected value of §. The spectral criteria

for spatial white noise on the sphere is (see North and

Cahalan, 1981)

b Vg> = o (2.2.15)
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where wY are the coefficients of the spherical harmonic
expansion and ¢ is independent of y. Therefore, for the

present study { = oI and (2.2.14) may be reduced to
x(p) = o (u, (p),u, (p) u (p)) T (2.2.16)
~p lplzpl"'le oL oo

The noise and data eigenvalues are each normalized
by the sum of the eigenvalues to eliminate the dependence
on the unknown magnitude of the noise variance. Con-
fidence intervals for the noise eigenvalues are con-
structed from 100 noise simulations and compared to the
data eigenvalues. The upper 5% points on the cumulative
distribution of the noise process* (small dots in Figure
3) superimposed on the normalized (percent variance)
data eigenvalues suggests that approximately the first 12
PC's have variability significantly larger than would be
expected from a noise process. These modes together

explain about 76% of the observed variance.

2.3. Description and interpretation of the dominant
EOF's

c) Mean energy spectrum
To the extent that the EQOF's are estimates of the

true climatological modes of variability exhibited by

*Note that as P/N becomes large, one would expect
the noise curve to become approximately horizontal.
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the atmosphere, a thorough analysis of the structures of
the dominant EOF's should provide insight into the nature
of preferred modes of the Northern Hemisphere winter
circulation. While there is a significant amount of
sampling error involved in the EOF's (see 2.3c), it is
nevertheless of value to document the-characteristics of
the dominant EOF's since this will be helpful for under-
standing the modeling results of chapters 3 and 4.

A straightforward method of analyzing the EOF
structures is simply to examine their spectral weighting.
Such an analysis is done here for the first 12 EOF's in
the context of the time and spatial mean kinetic energy
(KE) together with a description of the hemispheric maps
of the anomaly patterns. The time and spatial mean
square nondivergent velocity (MSV) of the anomalies in

non-dimensional form is given by (see 3.2b)

<MSV> = E akkkk (2.3.1a)
where
ap = g cYek(Y) ek(Y). (2.3.1b)

and CY = nY(nY + 1). Here Ak is the variance of the kth
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PC and akkxk is the fraction of the MSV of the anomalies
associated with the kth PC. Furthermore, cng(y) ek(Y)

is the fraction of the kth PC MSV associated with spectral
component y. The anomalies account for approximately 24%
of the total mean KE.

For each EOF, graphs of the percent mean KE as a
function of m (zonal wave number, ZWN) and meridional wave
number index (n - m) are presented along with the cor-
responding anomaly flow patterns. In addition, the indi-
vidual wave contributions are presented in tabular form.
The percentages are based on atotal of 40 PC's. The merid-
ional structure of Y? for various values of n - m for
the case m = 0 is shown schematically in Figure 4. The
index n - m denotes the number of zeros of the meridional
structure between the North and South Poles.

The first EOF (5a-b) accounts for about 10% of the
mean KE of the anomalies and is dominated by zonal wave
numbers 0 and 2 and meridional indices 3, 5, and 7. The
most important spectral contributions come from Y? and

3. The meridional structure of the zonally symmetric

Y
component (see Figure 4) suggests a coupling between high
and low latitude wind changes which act in opposition to

changes in the middle latitude zonal wind. The spatial

pattern of BOI" 1 shows the largest zonal anomaly occurs
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Figure 4. A schematic of the meridional structure of
the spherical harmonics for various values of
n - mwith m = 0.
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in middle latitudes and the ZWN 2 anomaly is confined to
the high latitudes.
The second EOF (5c-d) has large ZWN 1 and 2 contri-

butions. The dominant meridional indices are again

3, Spand /. The largest individual contributions come
from Y% and Yi (n - m=5,3). The spatial pattern shows

that the ZWN 1 contribution is largest at middle lati-
tudes with a large anomaly center over the North Atlantic.
The high latitudes show a more pronounced ZWN 2.

The third EOF (6a-b) is dominated by ZWN's 1 and 3
and meridional indices 3 and 5. Important spectral con-
tributions come from Yé and Yg. The ZWN 1 pattern is
most evident at high latitudes while the ZWN 3 pattern
predominates in middle latitudes with large anomalies
over the North Pacific, western North America and the
western North Atlantic.

The fourth ECF (6c-d) has a zonal and meridional
wave dependence similar to the third EOF. However, the
individual spectral contributions show a smaller merid-
ional scale for the fourth ﬁOF; having dominant waves
Yé and Yg. The spatial pattern is dominated by a large
anomaly over the Arctic extending into Asia and the

Bering Sea.

The fifth EOF (7a-b) is predominatly made up of
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ZWN 1 and meridional index 5 (component Yé). This is
reflected in the spatial pattern which is composed of.2
large anomaly centers of opposite sign, one centered over
the Gulf of Alaska and the other over Scandinavia.

The sixth EOF (7c-d) has important contributions
from ZWN's 2 and 4 and meridional indices 3, 5, and 7.
Yg is the largest component. These features are re-
flected in the spatial pattern which exhibits a strong
ZWN 4 structure in the lower middle latitudes and a
ZWN 2 pattern at high latitudes in conjunction with a
long wave meridional component.

The seventh EOF (8a-b) is dominated by meridional
index 3 which corresponds to a wave number 1 mode between
the North Pole and equator. ZWN's 4 and 5 together
contribute to produce a very wave-like pattern partic-
ularly over the western hemisphere middle latitudes.

The eighth EOF (8c-d) is dominated by meridional
index 5 which roughly corresponds to 1.5 wavelengths
between the North Pole and equator. The large contribu-
tions from ZWN's 1 and 2 aré reflected in the elongated
anomalies throughout the middle latitudes. The most
intense anomaly center is located over the eastern North
Pacific Ocean with an anomaly of opposite sign to the

south.
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The ninth EOF (9a-b) is again dominated by merid-

ional index 5. However, this pattern is almost entirely

made up of Y% and Yg. These are ZWN 2 and 3 components

which combine to produce a very intense anomaly centered
between England and Greenland and a large anomaly of
opposite sign to the south.

Wave component Y4

7
tenth EOF (9c-d). The zonal structure is made up of

is the largest contributor to the

very nearly equal amounts from ZWNS g 094 152,03, land 5,
whereas the dominant meridional mode is a wave number 1
between the North Pole and equator. The spatial pattern
reflects the importance of the Yg component with a ZWN 4
structure evident at middle latitudes.

The eleventh EOF (10a-b) is primarily made up of
ZWN's 0, 1, and 2 and meridional indices 3, 5, and 7.
The relatively large ZWN 0 contribution is very likely
due to the fact that one of the anomalies in this
pattern is centered over the North Pole.

The twelfth EOF (10c-d) contributes less than 3%
to themean anomaly KE. Impbrtant contributions come from
ZWN's 0, 2, and 3 and meridional indices 3, 5, and 7.
The dominant spectral component is Yg. The strong ZWN
3 dependence is clearly evident in the middle latitude

anomaly pattern.



a

50 50
ol 4w}
aof aof
w w
v ¥
R R
20} 20
10 - 10} |
1. ..
0246 8101214 15 913
m n-m
15[ofo %KE
13|1|1|0f0
11{ofofoo]0]o]
%90131100'0
c r[a[7]2[o[1[1[o]a]0]0
s[o]2[2s]23] 2[00 |0]o]o] o]0
a[1[1[a[n[1[1]2[o]o]o]o|e[0]0
1{ofo]o]o]o[2]o]|o|o]o]o]o]o]o]0]0
012345678 09101112131415

%KE

n-m

35

Ninth EOF (4.1% of mean KE)

40

30

10

15
13
"

-w o~

Tenth EOF (3.2% of mean KE)
— 50 -

%KE

1 111

024 6 8101214 13
iy =

of1 %KE

1[1]o]o]

o[1]1]o]o]0

jof1]rjojojol

1|2[3a]o]o[1[o]o]

a|s|o|3[2]o|o|e[o]0]

al1[a[2[2]1]o]o]o|o|0]0

ofo[afiofie[7][o[1[1]0]o]0]0]0

ofo[1[1[1]s[1[1[o]o]o[e[o]o]0]0]

012346678 9101112131415

-

Figure 9. As in Fig. 5, except for the ninth and tenth
EOF 's which account for 4.1 and 3.2% of the total
mean anomaly KE, respectively.



a Eleventh EOF (3% of mean KE)
50 - 50

40| 40}

30} 30}

w w

* *

R

20 || 20}

10} | 10}
,,lln
024 6 8101214 15913

m n-m

15(0]0 %KE
13[1]1]1]o0

1fof1]ofo]o]o

€ sefslaf2]o]1]o]o]o

c 7[i3le3]1]|of1]0]0f0]0
s[a[2|e[3][2]3]|1]o]0]0]0]0
afol2f11[1]s|4|o[o[o]o]o]ofo]0]
1{ofofojo[2]o]1]|o]o]o[e[o]olo[a]0]
01 2345678 9101112131415

Twelfth EOF (2.7% of mean KE)

2 0

- 50.—
40} 40}
30 30}
w w
v 3
R R
20} 20}
10 H l 10}
1 Illl
2 4 6 8101214 150913
m n-m
15[o]o %KE
13[o]olofo
1{ofofo]ofo]o
|592511oooo
c 7[7[1]9][3]|0ofofofo]0]0
s[e|a|7[1]3]1[o]o[0]0]0]0
alolof1]1s{e]4][3][1]o[o|o]o0]0]0
1[o]ofo]a[1[1]s]o]2]oofofo]o]0]0]
01 23 45678 9101112131415
m

Figure 10. As in Fig. 5, except for the eleventh and
twelfth EOF's which account for 3.0 and 2.7% of the
total mean anomaly KE, respectively.
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Beyond the 25th EOF individual modes account for
'less than 1% of the mean anomaly KE. The decomposition
of the 25th and 40th EOF's shown in Figures 1lla and 1llb,
respectively, indicate that there is a general tendency
for the higher order EOF's to be composed of smaller
scales. However, the scale dependence on the order of
the EOF is not very strong and there is an apparent
tendency for the spectrum to flatten out toward a white
noise structure. These results appear to confirm the
idea that most of the advantage gained by an EOF repre-
sentation is reflected in the first few modes (perhaps

12 in this case).

b) Index cycles, teleconnections and blocking

In this section the variations of some of the domi-
nant PC's are interpreted in the context of some of the
more familiar observed large-scale atmospheric variations
and flow regimes. A single EOF, by definition, is
capable of representing only standing oscillations so
that traveling disturbances may only be identified by
examining several EOF's at one time. Wallace and
Dickinson (1972) have developed an alternative EOF
representation in which the eigenvectors of the cross-

spectrum matrix are applied to a time series consisting
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Figure 11. As in Fig. 5a, except for the twentyfifth
and fortieth EOF's which account for 1.0 and 0.4%
of the total mean anomaly KE, respectively.
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of the original time series and its time derivative. Such
an approach is more suitable for investigating wave dis-
turbances; however, since the present analysis is primar-
ily concerned with isolating the dominant modes of vari-
ability and using them as the dependent variables in a
dynamical model, the somewhat simpler EOF approach based
on the covariance matrix has been used.

In order to understand better the nature of the PC
fluctuations, large positive and negative values of the
PC's (equal to 1“10_3 and corresponding to approximately
2.5 standard deviations for the first PC and up to 5 for
the ninth PC) are used to superimpose the anomaly pat-
terns on the winter mean flow; these will be referred to
as the positive and negative instances of the EOF's. The
500 mb mean flow (Figure 12a) with its characteristic
wintertime east coast jets is shown to provide a refer-
ence for the following discussion. Figure 12b shows
this flow is dominated by ZWN 0 and has small contribu-
tions from ZWN's 1, 2, and 3.

Figure 13 shows the positive and negative instances
of the first EOF. The basic behavior of this mode is an
expansion (positive value of the associated PC -- Figure
13a) or contraction (negative value--Figure 13b) of the

circumpolar vortex. The expanded vortex is characterized
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Figure 12. (a) The spatial pattern and (b) the spectral
distribution of the climatological mean winter 500 mb
stream function. The zonal (m), meridional (n - m)-
and individual wave dependences are presented as a
fraction of the mean flow KE. The mean flow accounts
for approximately 76% of the total mean KE. Heavy
contours are shown for emphasis. Units: non-
dimensional, contour interval is 10-3.
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Figure 13. The first EOF superimposed on the winter mean
flow with a large (a) positive and (b) negative PC
corresponding to 2.5 standard deviations of the 10-
day averaged data. Heavy contours are shown for
emphasis. Units: non-dimensional, contour interval

is 10=3,
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by an increased westerly circulation in the subtropics
and western middle latitude Pacific and a more wéve—iike
structure in the rest of the middle latitudes. Prominent
features are the ridges over western North America and
the North Atlantic as well as a large trough over Europe.
The contracted vortex is associated with weaker sub-
tropical westerlies and increased middle latitude wester-
lies over North America and the North Atlantic. This mode
of behavior seems very much related to the index cycle
described by Namias (1950) and others for the western
hemisphere. Viewed on a hemispheric basis this behavior
is primarily associated with ZWN's 0 and 2 and may be
viewed as a combination of a zonal oscillation and the
Pacific/North American pattern. The latter pattern is
characterized by above normal geopotential heights over
western North America accompanied by below normal heights
over the eastern North Pacific and east coast of North
America versus a more zonal flow in these regions (see
Wallace and Gutzler, 1981).

In order to determine £he~strength of association
between the PC's and the various spectral components, a
correlation (in time) between the ith PC, Zi and
spectral coefficient, wY, (the spectral version of

(2.2.7)) is computed as
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p(zi,wY) 2 ei(Y)A? o;’ (2.3.2)
where ei(y) is the yth entry in the ith EOF, Ai is the
variance of z; and GY is the variance of wY.

For the first PC the two largest sample correlations
are b(zl,wi) = -.72 and B(Zl,wg) = -.69, confirming that
oscillations of the first PC are closely linked to the
behavior of ZWN 0, ZWN 2 and very large meridional
scales.

The positive and negative instances of EOF 2 are
shown in Figures l4a and 14b, respectively. This anomaly
pattern has a majority of the variance concentrated in
the North Atlantic and is associated with fluctuations
in the North American east coast jet. The positive
instance is dominated by a high-latitude trough over
North America and the North Atlantic together with strong
zonal westerlies to the south and a large amplitude ridge
over Europe. The negative instance is characterized by
a blocking ridge in the North Atlantic associated with
an upstream split flow of the east coast jet and ridging
over the Asian continent. Strongest correlations of the
second PC are with wg [t 55} < w3 (-.54) and wé (-.54) .
This mode of behavior seems to bear some resemblance to

the North Atlantic Oscillation reviewed by Wallace and
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Figure 14. As in Fig. 13, except for the second EOF and
corresponding to 3.2 standard deviations.
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Gutzler, 1981 and shown schematically in their Figure 1.
This should be compared to Figure 5d in the present
study.

Figures 15a and 15b show positive and negative in-
stances of the third goF, respectively. The positive
instance is characterized by high latitude ridges in the
eastern North Pacific and North Atlantic oceans and a
very flat zonal flow pattern over the United States.

The negative instance shows a large trough over the North
Pacific, a ridge over western North America and a trough
over eastern North America. The strongest correlation
with the third PC is with wg (.65) indicating that the
third PC is closely associated with fluctuations in ZWN 3.
This mode also exhibits similarities to the Pacific/
North American pattern.

In order to determine which of the EOF's are im-
portant contributors to wintertime blocking patterns, a
study by Hartmann and Ghan (1980) was used to determine
occurrences of Pacific and Atlantic blocking during the
winters (Nov. 15 - March 14 by their definition) of 1965
through 1975. 1In their study blocking was assumed to
occur in either the Atlantic or Pacific if the 500 mb
geopotential height exceeded the mean in the longitude

sector by more than a specified amount and had a duration



Figure 15. As in Fig. 13, except for the third EOF
corresponding to 3.4 standard deviations.
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and
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of six or more days.

Figures 1l6a and 16b show the mean value of the first
25 PC's during times of Atlantic blocking and Pacific
blocking, respectively. 1In general, one finds that the
most important contributions to the blocking patterns lie
within the statistically significant EOF's 1-12. In the
case of Atlantic blocking a detailed inspection of the
PC time variations reveals that blocking occurrences are
most closely linked to negative values of the ninth PC.
For the case of Pacific blocking such an inspection shows
that positive values of the fourth PC (and to a lesser
degree negative values of the 12th PC) are most closely
linked to blocking. While these higher order PC's contri—
bute a relatively small amount to the total variance
defined in (2.2.6a), they may contribute much more to the
local variance (2.2.6b). For example, the ninth PC
accounts for only 3.6% of the total variance yet over the
North Atlantic its contribution to the local variance is
equal to or greater than that of the first PC.

The negative and positive instances of the ninth
EOF are shown in Figures 17a and 17b, respectively. The
resemblance of the negative instance to a classical high
latitude Atlantic block is striking. The pattern con-

sists of a very strong ridge in the North Atlantic
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Pacific blocking. Units: non-dimensional.
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Figure 17. As in Fig. 13, except for the ninth EOF and
a large (a) negative and (b) positive PC corre-
sponding to 5.3 standard deviations of the 1l0-day
averaged data.
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between Greenland and Europe and cyclonic flow to the
south over the Mediterranean Sea. Upstream of the ridge
the North American east coast jet is split and strongly
diverted to the north. The positive instance is charac-
terized by a generally zonal flow over the middle lati-
tudes of the western hemisphere. A deep Icelandic low
and intense zonal flow to the south are located upstream
of a split flow pattern over Europe and western Asia.
The ninth PC is most strongly correlated with spectral
modes w? (-.53) and wg (.48) indicating fluctuations in
this mode are primarily associated with ZWN's 2 and 3
having meridional scales spanning 1.5 wavelengths between
the North Pole and equator.

The positive and negative instances of the fourth
EOF are shown in Figures 18a and 18b, respectively. The
positive instance is characterized by a large ridge over
the eastern North Pacific and western North America
straddled by troughs on the east coasts of Asia and North
America. Weaker ridges also occur over Asia and Green-
land. The negative instance is characterized by a more
zonal flow over the Pacific, North America and Asia,
while the eastern Atlantic and Europe are dominated by
a middle latitude ridge. The fourth PC is most strongly

correlated with wg (.58) and wg (.58) indicating



Figure 18. As in Fig. 13, except for the fourth EOF
and corresponding to 3.6 standard deviations.
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fluctuations in this mode have a strong zonal character
primarily in the high latitudes (see Figure 6d).

These results suggest that the fourth and ninth
EOF's are important components of the average blocking
patterns. However, particular blocking occurrences are
very complicated, exhibiting a wide variety of different
forms and it is very likely that many more EOF's are
needed to represent them adequately. However, for the
purposes of trying to understand the mechanisms involved
in blocking, these modes may provide a valuable first

order approach.

c) Eigenvalue resolution and pattern stability

An important question that must be addressed when
attempting to interpret the EOF patterns concerns the
degree to which the "true" climatological variations
have been resolved from the available data. Population
eigenvalues which differ by only a small amount combined
with a relatively small data sample can lead to an
effective degeneracy of the-EOF's. Intuitively this
problem may easily be visualized for the case of
samples drawn from a 2-dimensional Gaussian distribution
with zero mean and nearly identical variances for the

components. A scatterplot (a plot where each point
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represents an observation or sample) of the samples taken
from such a distribution will produce a slightly ellipti-
cal pattern having semi-axes whose direction and length
are characterized by the sample covariance matrix eigen-
vectors (EOF's) and eigenvalues, respectively. However, an
insufficient number of samples will make the scatterplot
indistinguishable from a purely circular pattern (sample
eigenvalues are not significantly different) and lead to
ambiguities in the eigenvectors.

North et al. (1982) have derived formulas which give
an approximation to the sampling error of the eigenvalues
and eigenvectors of the covariance matrix. For the

eigenvalues the standard error is
SA. v AL (2/ );i 2:3.3
i ; (87p (2:3.3)

which should be compared to the separation between suc-
cessive sample eigenvalues (P = # of observations) .
Figure 19 shows the first 14 eigenvalues with the
associated standard error intervals. The fact that the
error bars for successive eigenvalues overlap suggests
that (except for the first EOF) the length of the data
set allows only a marginal resolution of the true

(population) EOF's and therefore one would expect a
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from 10-day averaged winter stream function anom-
alies and the associated approximate standard error
bars. Units: non-dimensional.
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considerable amount of variability in the details of
EOF's computed from different data sets.

To check further the degree of intersample variabil-
ity 1in ‘the EOF patterns a comparison is made with the
EOF's published by several different authors (Weickmann,
1982; Rhinne, et al., 1981; Fechner, 1981; Jeckstrom,
1977) . Here differences in the EOF's arise not only from
differences in the time periods of the data but also
from differences in data processing (analysis method
and space and time filtering) as well as the choice of
variable(s) used in the expansion (e.g. streamfunction,
geopotential, winds, horizontal and vertical extent).

Part of the Weickmann study involved an EOF analysis
of a circulation data set extending from 85°N to 30°S.
NMC gridded objective analyses of the 250 mb and 850 mb
Northern Hemisphere winter winds were used covering the
period 1974-75 through 1979-80. Five day mean values
were computed and the annual cycle was not removed.

Only the first three EOF's were presented. The first

was found to be associated with the variations of the
annual cycle whereas, the second and third describe wave-
number one and two index cycles. Even though direct
comparisons with the wind EOF's are difficult, the

general behavior of the second and third EOF's when
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superimposed on the mean flow is qualitatively similar
to the behavior of the first and second EOF's in the
present study.

A more direct comparison can be made with the
Rhinne et al. results in which the EOF's are based on
Fleet Numerical Weather Center analyses of the 500 mb
geopotential for the years 1946-70. Thedata include all
seasons and cover the area north of 20°N with a grid
length of 381 km at 60°N. 11,876 time periods were used
and the annual cycle was not removed. The first EOF is
again associated with the annual cycle. The second EOF
pattern is similar to the first EOF of the present study
which describes an index cycle behavior and the fourth
EOF is similar to the third of the present study. Be-
yond this, there is no clear correspondence between the
EOF's except for the eighth which is similar to the ninth
blocking mode of the present study.

The work by Fechner is based on the same DWD data
set as the present study. The main differences are that
the expansion is based on-thev500 mb height field; the
study is not limited to the winter season and no time
averaging is done. Of the eight EOF's presented, the
first, second and seventh EOF's are similar to the

first, fourth and ninth EOF's of the present study,
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respectively.

The Jeckstrdém study also uses the same basic geo-
potential data on the DWD grid for the years 1966-74
truncated, however, at total wavenumber 12. The analysis
covers only the winter months and the annual cycle is not
removed. EOF's two through eight are presented super-
imposed on the first EOF which describés the annual
cycle. The second EOF describes an index cycle which is
similar to the behavior of the first EOF of the present
study. 1In addition, the third and fourth EOF's are simi-
lar to the third (Pacific/North American pattern) and
fourth (North Pacific blocking) EOF's of the present
study.

In general, the comparisons tend to confirm the
sampling errors shown in Figure 19. An index cycle mode
is found in all the studies and is usually associated
with the first EOF or the second EOF when the annual
cycle is not removed. In the latter case the first EOF
describes the annual variation. Similarities are found
in some cases with higher order EOF's; most surprising
is the reproducibility of the ninth (North Atlantic
blocking) EOF. However, the lack of a one-to-one cor-
respondence between the EOF's of the different studies

indicates that longer data records and more detailed



studies of the effects of data errors and analysis
methods are needed in order to determine the true

climatological modes of atmospheric variability.
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3. MODEL FORMULATION

In this chapter an equivalent barotropic model is
formulated as a set of prognostic equations for the
anomaly streamfunction PC's at the 500 mb level. The
basic equations consist of the linear balanced system.
Kruse (1983) gives a detailed scale analysis showing
that the vorticity and divergence equations of this
system are appropriate for the study of large-scale
flows. The thermodynamic equation does not enter into
the model due to the assumption of equivalent barotropy.
The unknown constants involved in the boundary layer
parameterizations are determined by the method of least
squares. The seasonal cycle enters into the anomaly
equations via the advective terms and as an inhomogeneous
forcing term due to the fact that the mean terms, by

themselves, do not satisfy the vorticity equation.

3.1. The equivalent barotropic model

a) Basic equations

The fundamental equations in this study (nondimen-
sionalized by twice the Earth's angular speed (2Q),

the Earth's mean radius (a) and reference pressure (p¥*))
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are, the vorticity equation**

9 o2 2 RN
a_tvw+Yw V(VTY + £) +YX'Vf+fV><—0 (3.1.1)
——
DV2X
the continuity equation
2 .
Vo + dw/3p = 0 (3.1.2)
and the linear balance equation
szw - V2¢ =0 (3.1.3)
where
5 9 =2 ;
D = cos ¢ ‘a-av + sin ¢ (3.1.4)

The velocity v has been partitioned into a divergent -
component vX = Vx and nondivergent component VW =k x Vy.

y and x are the streamfunction and velocity potential,

respectively. The vorticity equation allows for a

**See Haltiner and Williams (1980) for a discussion
of the linear balanced system.
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variable coriolis parameter (f) and includes advection of
planetary vorticity by the divergent wind and the
stretching term. ¢ is the geopotential, p is pressure
and w is the pressure vertical velocity. V-z is the in-
_verse Laplacian and is evaluated in the spectral domain.
The vertical structure of the model atmosphere is

. divided.into two domains consisting of the free atmos-
phere and the planetary boundary layer (PBL). In the

free atmosphere it is assumed that

y(x,0,p,t) = A(p) (Y] (3.1.5)

where the brackets denote a vertical average above the

PBL and A(p) is a vertical structure function such that

[A] = 1. At the equivalent barotropic level defined
by v(i,¢,p*,t) = [w][AZ], (3.1.1) is written as

S RS R, 2

5ev ¥ = Yy vV(Viy + £) + [A ]/pti(pi) (3.1.6)

where 12 is the non-dimensional pressure at the bottom
of the free atmosphere.

In the PBL it is assumed that there is a balance
between friction (€H)’ coriolis and pressure gradient

forces such that



62
=D Ba(T —Yw'Vf + ]E°V X E‘H (3.1.7)

Integrating (3.1.7) from the top of the PBL to the

bottom one obtains

¥ ~ ) (ps-pi)
w(p;) = Duw(py) [reiagtis K A(pi)}y -VEf

[ete =

gp c K .A(p.)
- {0 g % 21 192y (3.1.8)
(2Q) "a” [AT]

where it has been assumed that the PBL is bounded at the

top by P; and at the bottom by Pg- Furthermore, it is

assumed that

9T
Fy = - —245 = (3.1.9a)

" (20) “a P

p_C
T(p,) = 5oL v, (pg) (3.1.9b)
[y FBL = K, ¥ (p;) (3.1.9¢)
and

W(pg) = K w(p;) (3.1.94)

]
o
.

where 1 is the stress with T(pi) The surface drag
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parameterization has coefficient (cD) with units of
velocity and is formulated to be consistent with the Ekman
layer formulation (e.g. Holton, 1972). The mean non-
dimensional density in the PBL is Poi Pg and p; are the
non-dimensional pressures at the bottom and top of the
PBL, respectively, and Kl and K2 are assumed to be

constant.

At the lower boundary the expanded form of the

vertical velocity (w = %%
: 9% (p_)
w(pg) = o ( ats - 92 w(p,)) (3.1.10)
(2Q) "a

is used to allow for the effects of surface pressure
tendencies and orography, where the advective term has |
been neglected and

w(p,) = v, (p) *Vh (3.1.11)

Y
where h is the non-dimensional height of the Earth's
surface. Then substituting (3.1.3) for ¢ and (3.1.11)

for w into (3.1.10), one obtains at the lower boundary

K.A(p.)p_. _ o A(p;)K,g
1 1 0oy 2DV2 Yy _ "o i |

wlp)) = —s5—
s [AZ] ot

v, +Vh
[(a%1(20) e~V |

(3.1.12)
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Finally (3.1.6), (3.1.8) and (3.1.12) are combined

such that
D (1 - 2, _ 2 - oy
at(l Ll)V v = J(VY,y) (1 + E)ax
2
+ L2J(h,w) - kV'y (3.1.13)
where
(2Qa)2 -2
Ll gH* DV "D (3.1.14a)
P. — P.
% g i
€ = ———5;—— K2A(pi) (3.1.14Db)
L=iD (3.1.14c)
2 o* .l1.14c
c
5% ¥
K = % 5E (3.1.144)
and
H* = — (3.1.14¢e)
8958 (p; )

where H* is a scale height parameter, the primes denote
dimensional quantities, and J is the Jacobian representa-

tion of the advective terms where
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J(A,B) = 3(A,B)/3(A,sin ¢) (3.1.14¢)

(3.1.14a) is a generalized form of the long wave
correction term. The usual form of this term (see e.g.
Haltiner and Williams, 1980) may be obtained by replacing
D (3.1.4) by a constant coriolis parameter (sin ¢o).
(3.1.14b) is a correction factor for the beta term. This
term arises due to the fact that the coriolis parameter
is allowed to vary in the PBL (first term on the RHS of
(3.1.7)). (3.1.14c) acts on the orographic vorticity

source term and (3.1.14d) is the frictional decay rate.

b) Mean anomaly formulation

One of the problems associated with using barotropic
dynamics to model the atmosphere concerns the manner in
which to introduce properly (and interpret) a driving
or source term. Many theoretical studies dealing with
barotropic models have (in a somewhat ad hoc fashion)
introduced forcing of a Newtonian type (e.g. Kdllén,
1981; Charney and DeVore, 1979). More recently, Kruse
(1983) has shown that with a more sophisticated treat-
ment of the PBL it is possible to introduce an empirical
driving term which (at least for the winter season) may

be interpreted as a heat flux from the Earth's surface.
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In the present study the thermal driving enters into the
model implicitly due to the assumption of a fixed baée
state equal to the observed winter mean. While the mean
state is a statistical quantity which the atmosphere may
never resemble for very long time periods, it neverthe-
less is interpreted as reflecting the mean stabilizing
influence of the orography and thermal asymmetries of the
lower boundaries. The model is formulated as a prognos-
tic equation for the anomalies (deviations from the base
state) which are indirectly forced due to the presence of
the base state. This is consistent with the statistical
concept of an EOF which represents the modes of fluctua-
tion about a mean state.

In order to obtain a model explicitly involving the
PC anomalies the streamfunction is separated into com-
ponents involving the seasonal cycle (ws) and the devia-

tions from the seasonal cycle (y~) such that
VOLb,t) = BT (A, 0,t) + BTN, 0,t) (3.1.15)

Substituting (3.1.15) into (3.1.13) leads to



67

a 4 & B 2, . -y - 3y~
= (1 - LVYT = T, e0) - (L + e)dk
2
+ L,d(h,y7) - kv y” (3.1.16)
+ 32 0% + 3(v3S,u°) + s
where
iag . 2 s 2 8 8 _ gyi
s = - (L-Lv® +3@S%0% -+ ek
. L2J(h,¢s) RS (3.1.17a)

By ensemble averaging (3.1.16), S is given by
2 - -
S = - <J(Vy~,p7)> (3.1.17b)

In (3.1.16) the three additional terms governing the
anomalies are the advection of the anomalous vorticity
by the mean flow (J(Vzw’,ws)),the advection of mean
vorticity by the anomalous wind (J(Vzws,w’)) and the
inhomogeneous forcing term (S) which arises due to the
fact that the mean flow vorticity does not satisfy the
vorticity equation (3.1l.17a). It should be noted that

(3.1.17a and b) are not necessarily consistent since
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many simplifications have been made in deriving (3.1.17a).
As a representation of the average effects of the proéesses
not explicitly included, (3.1.17a) should include a
residual term. 1In practice, S is computed from (3.1.17b)
where the ensemble average is'replaced by a time average
over the entire winter data set and it is assumed that

ws does not change appreciably for the time periods of

interest.

c) Spectral formulation
The spectral version of (3.1.16) is obtained by
expanding all quantities in terms of spherical harmonics

(Yy) such that

v, 0,8) =) p (t) Y (A,4) (3.1.18a)
Y Y by

S(A,9)

|
=<

S Y (A,0) (3.1.18b)
Y oy

h(x,¢)

Il
o1

hy Y (3,0) (3.1.18c)

and

w(x,¢, t) = § we (£) Y (X, ¢) (3.1.184d)
S



69

where = (n ,m n - m is odd and n. - m. is even.
LR MM R Y 8 8

The YY are normalized so that

2m "wi2
Y Y cos ¢dodr = 478 3.1.19a
é _ﬂ£2 Y B bde YB ( )
The spherical harmonics satisfy the equation
2 |
V'Y =-c¢c Y (3.1.19Db) ‘
Y Yoy |
\
where cY = nY(nY + 1) and by definition ﬁ
|
Yo o= ¥ (3.1.19c)

; Y

Further properties are given in Platzman (1962). 1In

spectral form (3.1.16) is
c b, + Nix (MY rz(y+)¢Y++ Gk AU L ety
= k2 2 % wawB (CB - ca)LYBd * imY(l B 8)wY
V8 88 Y'Y I

+Mi VY hoyT - kc_y (3.1.20)
8

I8 SR | ijs(cs = C)Lygy *+ Sy i“‘
a “\
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where ¢y~ = § wYYY and y° = y iny. The first term on the
left hand side (LHS) is the tendency and the second £erm

in braces is the long wave correction where

= e : " 2
rl(Y) = (1 <Slny)(Bl(nY l,mY))
e 2
+ ) (B (n ,m ) (3.1.21a)
Y
n -1
rz(y) = (H$_¢_T)Bl(nv - l,my)Bl(nY,mY) (3.1.21b)
and
_mnm+ 2, , n+m+ 1)(n -m+ 1), %
Bylnm = () @zn s Dizn + &

n > 1 (3.1.21ka)

The correction term has off-diagonal elements involving
++ + -

= (n + 2,m = (n. + 1,m = (n. - 2,m
Y ( Y ’ ,Y)I | f ( Y ’ Y)r Y ( Y ’ Y)
and y = (nY - l,my) and is multiplied by the long wave

correction (Helmholtz) parameter
2
N = (2Qa)”/gH* (3.1.22a) -

The first term on the RHS is the advective term where
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(L u) is the spectral coupling integral defined by

YB
Platzman (1962) and written here as

ek, 5 B
L = —_— Y Y ’Y i i
yBa ~ 4w é _ﬂ£2 J(¥g ¥ ) cos ¢ dgdr  (3.1.22b)

The second term on the RHS is the planetary vorticity
advection (beta effect) and the third term on the RHS is
the generalized orography where

n

— = ¥
T —Bl(Y )L + (

YBS v-B§ W)BI(Y)LY*'M (3.1.226)

is a sum of two coupling integrals weighted by the func-

tions given in (3.1.21c). This term is multiplied by
M = a/H* (3.1.224)

The fourth term on the RHS is the frictional decay
and the fifth term involves the mean/anomaly interac-
tions. The last term is the projection of the inhomo-

geneous forcing (S) onto the spherical harmonics.
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3.2. The EOF model

a) EOF expansion and model coefficients
The formulation in terms of EOF's is done com-
pletely analagously to the spectral approach. The

spectral quantities in (3.1.20) are expanded in the form

wY(t) =}Z z, (t)e, (v) (3.2.1a)
o A ]Z z¥ e, (v) (3.2.1b)

where the z, are the real PC's and ek(y) are the complex

spectral EOF's satisfying
ek(Y) = ek(y) (3.2.2)

The bar indicates a complex conjugate where y = (nY,—mY).
Substituting (3.2.1) into (3.1.20), multiplying by
Ek(y) and summing over Y leads to the following system

of real prognostic equations for the PC's.
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+ M z zjfkj + z zjrkj - Kz zjakj + zi (3.2.3)
] J J
\__V___/ \ Y . ) |
D E F G
K TR s

is composed of two parts. The

The PC tendency term (A)

first part derives from the diagonal spectral tendency

term ¢ ) of (3.1.20) and involves the coefficients

(3.2.4a)

These coefficients form a diagonally dominant symmetric

positive definite matrix. The second part is the PC

form of the generalized long wave correction term where

uy = g (r)(y) egiy) + r2(Y+) ej(y++)

+ rz(y') ej(y")}ék(y)

The matrix formed by these coefficients is also sym-

metric and shows a tendency for the diagonal terms to be

dominant.
The advective term (B) is quadratically nonlinear

in the PC's and involves the coefficients

(3.2.4Db)
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e = o
Ay = 3 E z L e () ej(B) e; (o) (cg cOL)LY

B Ra

(3.2.4c¢)
These are interpreted as EOF interaction coefficients
even though the tendency term is not strictly diagonal.
The interactions involve linear combinations of the
spectral interaction coefficients, (cB - ca)LyBa’
weighted by the elements of the participating EOF's.
The only nonzero terms in the triple summation aré those
which satisfy the spectral selection rules (see Platzman,

1962) . These rules are reflected in the EOF inter-

actions by the following relations
unbiteducy vy .= 0 - (3.2.44)

dkji = dkij (3.2.4e)
which imply that, in general, the only trivial inter-
action 1is dkkk = 0.

The beta term (C) is linear in the PC's and the

coefficients

s i z mﬁk(y) ej(Y) (3.2.4f)

are inner products of the EOF's weighted by zonal wave
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number mY. These coefficients form an antisymmetric
matrix and satisfy I = 0. The latter property is a
result of the fact that the EOF's are constrained to a
flip-flop type behavior and therefore a single EOF can-
not be affected by the beta term which causes features
to propagate.

The generalized orography term (D) involves the

coefficients

fkj = 3 % % % h, Ek(y) ej(B) TYBG (3.2.49)
This term is similar to the advective term (B) where the
ith EOF has been replaced by the orographic spectral co-
efficient hd' The matrix formed by these coefficients
shows a tendency for antisymmetry and it is shown in
Appendix B that when the advection of planetary vorticity
by the divergent wind is neglected, fkj reduces to an
antisymmetric form.

The linear term involving interactions between the
mean flow and EOF anomalies (E) is composed of two parts.

The first is the EOF advection of the mean flow

vorticity where

rl. . = i (-c ¥°) & (y) e.(B)L (3.2.4h)
k3 g 2 % A A R
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This term is identical in form to the simplified oro-
graphy (see Appendix B) where now the mean flow vorti—
city (—cawz) plays the role of the orography and the
matrix of coefficients is again antisymmetric. Figure
20 shows the mean flow vorticity or what may be called a
"dynamic orography" for the winter season. Here the
major "mountains" are along the east coasts of North
America and Asia and the subtropics are characterized by
extensive "valleys". The relative importance of the
orography (see Figure 1) and dynamic orography in contri-
buting to the PC tendency depends on the factor M given
in (3.1.22d) and is determined in 3.3 by regression.

The second part of E is the mean flow advection of

the EOF vorticity where

3 8 — :
r2kj = i z z % Cgly ey (v) ej(B)LYBu (3.2.41)

The matrix of coefficients for this term has neither
symmetry or antisymmetry properties. One may combine

rlkj and r2kj such that

4 s — o "
ey =4 1LY Vg ey ej(B)(cB Ca)LyBa (3.2.47)
Yy o B
where r, . = rl . + r2 ., making the similarity between

kj kj kj
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The climatological winter mean flow vorti-

Figure 20

non-dimen-

=5

Units
contour interval is 3 x 10

"dynamic orography".

city or
sional,
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this term and the nonlinear term (3.2.4c) more apparent.
The frictional decay term (F) has the same coef-
ficents (akj) as the tendency term (without the long wave

correction) and reduces to the simple linear form

Zk = -KZk.

Term G is a vorticity source or sink due to the im-

balance in the mean flow vorticity equation. zﬁ is the

projection of the steady source term S onto the kth EOF

where
* = =
z} y ek(y)SY (3.2.4k)
Y
or
X = - = -
z¥ } % <zizj>dkji } Aidkii (3.2.41)

where Xi is the variance of the ith PC. Proof of the
various relations concerning the model coefficients and

methods of computation are given in Appendix B.

b) Integral constraints and energy sources

Two important conservafive quantities for the two
dimensional vorticity equation (when only advection and
the beta effect are included) are the mean energy or

mean square nondivergent velocity (MSV)
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1 ?ﬂ ?/2

MSV = —— v, +v, cos ¢ dodi (3.2.5a)
4T[ 0 _TT/Z "“P "’q)

and the enstrophy (ENS)

1 2T m/2 2 o

ENS = =~ [ | (VoY) © cos ¢ d¢dr (3.2.5b)
T

0 -m/2

A very useful property of the spectal vorticity equation

is that these quantities are also conserved for an

arbitrary spectral truncation of the equations (see for

example Platzman, 1960).

In spectral form and decomposed into mean and

anomaly terms the MSV is

o =S .S
MSV g cY(waY +

and the ENS is
ENS = J o2 (35y° +
Y YN

where wY and wj denote

with the anomalies and

(3.2.6a)

LT 2 O 2 S R (3.2.6Db)

the stream function associated

the seasonal cycle, respectively.

The ensemble averages of these quantities are

—-S S
<MSV> = c
e, TS

+o <Py > (3.2.7a)
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and
2 =-s_ s 2 -
<ENS> = c e < RS > 3e2. 1D
g ML S g A S ( )
In the present study the quantities of interest are the

MSV and ENS associated with the anomalies alone. There-

fore, the anomaly MSV and ENS are defined as

MSV = c U = . g 12,
z v Yy¥y E % %ki%k?; (§-2-88)
and
2__
ENS = c = B, Yz 2z} 3.2.8b
z v Yv¥y E % kj k] ( )
where
a, . = e 2 3.2.8
K3 E c, i (V) eJ(Y) ( c)
b . =75 c2 5 (y) e.(y) (3.2.84)
kj . k ] _

and one should keep in mind that at any instant in time
the complete quantities are defined by (3.2.6).
One of the peculiarities of the EOF model is that

the truncated model is not unique in the sense that
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multiplying (3.1.20) by a function of y will lead to
different solutions in the EOF domain. Depending upon
exactly how the spectral model is formulated, the above
integral quantities may or may not be conserved for the
EOF model ((3.2.3) with only terms B and C and without
the long wave correction). When all the EOF's are in-
cluded (in this case a total of 135) this is not the
case since the EOF transformation is simply an orthog-
onal coordinate rotation. The key to the integral con-
straints for the complete model is the dual orthogonality
(2.2.12) of the EOF's which is only exactly achieved by
including all possible components. However, as discussed
below, by making a judicious choice for the PC tendency
formulation it is possible to achieve either energy or
enstrophy conservation (but not both) for an arbitrary
EOF truncation.

One way to formulate the tendency term is first to
divide through by CY in (3.1.20). This leads to a
diagonal tendency term; however, it also destroys the
symmetry properties of the EOF interaction coefficients
and neither energy or enstrophy are conserved for the
truncated model (see Appendix C).

A second formulation is achieved by not dividing

through by CY in (3.1.20). If the tendency term is then
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projected onto the EOF's as

z e () fe b} (3.2.9a)

this leads to tendency coefficients (3.2.8c) which are
related to the energy. It is shown subsequently that
such truncated models will conserve energy and this is
the approach taken in formulating (3.2.3).

A third approach is first to multiply (3.1.20)

by CY so that the tendency has the form

T e (v) {ci@ } (3.2.9b)
s

In this form the tendency term involves coefficients
(3.2.8d) which are related to the enstrophy and it is
shown in Appendix C that truncated models of this form
will conserve enstrophy.

In order to show that the present formulation con-
serves energy, the MSV tendency is written as

(Msv) = § Z {% akaj} (3.2.10)

1d
2 dt &

and the various terms on the RHS of (3.2.3) are sub-

stituted for the term in braces. For the nonlinear term
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this becomes

; zkzjzi dkji (3.2.11a)
which sums to zero identically for any truncation be-

cause by (3.2.4d-e) all permutations of d sum to zero.

kji
For the beta term,(3.2.10) becomes

V- (3.2.11Db)
kK 3 k 37kj]

which sums to zero for any truncation, this time be-
cause of the antisymmetry of the gkj (i.e. gkj =—gjk).
Similarly for the term involving EOF advection of the
mean flow vorticity (rlkj).

Potential energy sources or sinks include the

generalized orography

% i 0 d:2+lle

the mean flow advection of EOF vorticity
Y % Z,2. r2kj # 0 (3.2.114)

the dissipation term
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-y % akakzj <0 (3.2ille)
and the inhomogeneous forcing

E g zkz§ # 0 k3.2:11%)

The tendency for the £ to be antisymmetric indicates

kJ
(3.2.11c) may not be an important energy source. It will
be shown in 4.2 that (3.2.11d) is an important energy
source, primarily for the dominant PC's. Since akj forms
a positive definite matrix, (3.2.l1lle) is always an energy
sink. The inhomogeneous forcing may be a source or sink
depending on the sign of the inner product between z and
5*. This term will be described in more detail in 4.3a.
3.3. The regression model

The EOF model (3.2.3) contains several undetermined
quantities (N,M,e, k) which appear in the equations as a
result of the PBL parameterizations. The question that
the regression approach attémpts to answer is: how im-
portant are the boundary layer processes to the tendency
of the PC's at the 500 mb level? Or, more specifically,

what percent of the remaining observed variance in the PC

tendency do the boundary terms explain after all the
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other terms have been taken into account?
In order to answer this question (3.2.3) is re-

written in the form

= BX t+ ByX, + 83X, (3.3.1)

where

gria y akaj - {g g zizjdkji + %(gkj + rk.)zj

k ]
i Zﬁ} (3.3.2a)
(2Qa)2
REeg afkaj y ;i Uy 525 (3.3u2b)
] J
sz = % gkaj (3.3.2c)
EW N P TP (3.3.24)
k - L 28 %37 widts
)
— *_l
Bl = H (3.3.2e)
= g 3.3.2f
82 ( )
and
e - =1 = -
By = (~c H*™") = -2q« (3.3.29)
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An important assumption implicit in the model form-
ulation is that the various parameters involved in the
PBL parameterizations are not a function of the PC's.

For example, it is assumed that the same frictional decay
rate, k, holds for the first PC as well as the fortieth
PC. Therefore, in the context of the estimation préce—

dure, one should treat each component of Y in (3.3.1) as

a sample, rather than the entire vector itself. The
problem may then be posed as a standard univariate

multiple regression equation
Y = XB + € (3.3.3)

where ¥ is a vector of length (r x n) where r is the
number of observations and n is the number of PC's re-
tained. X is the (r x n) x 3 design matrix involving
3.3.2b-d and 8 is the (3 x 1) vector of parameters.

e is the (r x n) x 1 error vector_which is assumed

normally distributed as
2 Py
e v N(O,Vg™) (3.3.4)
' The regression procedure involves the minimization

of the mean square error which leads to estimates for

R and 02 if the (n x r) ¥ (n x r) matrix (V) is known
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(see e.g. Draper and Smith, 1966, pp. 77-8l). For the
present analysis it has been assumed that the errors are
uncorrelated in time and the variances and covariances
of the errors are not a function of time. Therefore V

is written as

——e —

1

vV = o (3.3.5)

s Lt

where { is the (n x n) matrix of error variances and
covariances. 1In the following results only two forms
of { have been tested. One is that f is the identity
matrix and the other assumes that the covariances are
zero but the error variances are proportional to the PC

variances such that

= ¥ev
A
Ay
i = . (3.3.6)
A
n
kst i
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The latter form of § leads to the weighted least squares
problem (e.g. Draper and Smith, loc. cit.). |

The PC are filtered with a five day running average
to eliminate the high frequency fluctuations and provide
a better estimate of the observed tendencies which, in
turn, are computed from a two day difference of the
filtered data. The effects of the smoother are shown in
Figure 21 for selected PC time series. These results
suggest that the filter does an adequate job of reducing
the short time scale fluctuations without seriously re-
ducing the amplitude of the longer time scale components.
All the terms in (3.3.3) except zﬁ are computed from the
filtered data sampled at 5 day intervals for the winter
seasons of 1967-75/76.

Results of the regression are summarized in Table 1
for various truncations. A test of the overall regres-
sion equation based on an F-test (see Draper and Smith,
loc. cit.) showed significance at the 95% level for all
the models shown. The first four rows of Table 1 show
results computed with V = I~and the long wave correction
term removed from (3.3.2b). A major result of this
analysis is that the boundary terms are found to explain
only a small amount of the observed variance. For

example, with 25 PC's included in the model the percent
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EFFECTS OF SMOOTHING
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Figure 21. Effects of smoothing on the evolution of

(a) the first and second PC's and (b) the eighth
and ninth PC's. The dashed lines represent the
projection of the daily 500 mb anomaly fields
(Jan. 1-30, 1967) onto the EOF's computed from
10-day averaged anomalies. The solid lines are a
result of a 5-day running average applied to the
unsmoothed PC's. Units: non-dimensional.
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explained variance is 7.6%. The percentage calculation
is based on the number of PC's included in the regres-
sion model so that comparisons between different trunca-
tions should not be made on this basis. The values of
H*, € and k are shown with their associated 95% confi-
dence intervals. For H* the confidence intervals are
based on a Taylor series expansion about the computed
value of Bl (see Beers, 1957). The H* values have units
of meters. However, it is difficult to separate out a
true scale height value since this quantity is weighted
by other unknown constants (see (3.1.14e)). The beta
correction term is positive and small compared to one,
for all truncations. The frictional decay is also very
weak. For the case of 25 PC's the value corresponds to
an exponential decay time of about 52 days.

The final three columns of Table 1 give an indica-
tion of the relative importance of the boundary terms.
The numbers represent the additional sum of squares
gained (as a percent of the final regression sum of
squares) when the term in question is the last to enter
the model. This suggests that, in general, the orography
term is the most important predictor while the relative
importance of the beta correction and frictional decay

depends strongly on the level of EOF truncation.
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The fifth row of Table 1 shows the case of weighted
least squares ({ given by (3.3.6)). For ten PC's it is
found that the percent variance is actually smaller and
the parameter values are not significantly different.
The sixth row shows the case of 25 PC's when the long
wave correction term is included in the model. The per-
cent variance explained is reduced by almost one half
suggesting that the long wave correction should not be
included. This is contrary to the results of the Kruse
(1983) study in which it was found that the inclusion
of baroclinic effects leads to large values of the sur-
face correction parameter. In order to understand this
result, an effective total wavenumber for the EOF's is
computed from the ratio of the enstrophy (3.2.5b) to

energy (3.2.5a) given by

EEE = 2 c2 e, (y) e (Y)/i c e (y) e (y) =c (3.3.7)
akk - v 1k k o Yy k k k

where Cp = nk(nk + 1) and n, is the effective total wave
number for the kth EOF. ‘

Figure 22a shows n as a function of the EOF's and
Figure 22b is a table of observed versus theoretical

phase speeds for various spherical harmonics (taken from

Eliasen and Machenhauer, 1969). These results show that
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1 0 -360

2 0 =9 -111

3 0 -5 -1 -48

4 -3 0 -3 1 -23

5 -3 -2 -3 1 0 -11

6 -4 -1 -1 3 1 2 -4

7 1 3 1 2 2 3 2 1

8 3 5 1 3 6 4 4 3 4

9 6 3 7 5 5 4 4 6
10 6 6 8 8 5 5 7
11 9 7 10 7 6 8
12 . 9 9 7 ]
13 9 11 12 10
14 11 11 10
15 11 11

PHASE SPEEDS (°Longitude/day)
Figure 22. (a) The effective total wave numbers of the
EOF's based on the ratio of ENS to MSV. (b) The

mean observed phase speeds for the Northern Hemi-
sphere 500 mb stream function (1 Oct., 1957-31 Jan.,
1958) for various wave components (°long./day) and
the theoretical phase speeds determined from the
Rossby-Haurwitz formula assuming a solid rotating
mean flow of 14 °long./day. Taken from Eliasen

and Machenhauer (1969).
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the Rossby-Haurwitz formula does very well in determining
the phase speeds for modes with total wave number greéter
than six. The fact that the effective total wavé numbers
for the first 25 EOF's lie in the range of 7 to 12 indi-

cates that the regression result concerning the long wave

correction is consistent with the dynamics of these modes.
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4. MODEL RESULTS

The model developed in chapter 3 for the PC's is
now used as a tool to try to gain a better understanding
of the dynamical processes governing the observed large-
scale winter variability.

Section 1 deals with the complete model when all
the terms except the long wave correction are included.
The model is first run in a diagnostic mode where the
observations are simply substituted into the model terms
in order to determine their relative magnitudes as well
as to examine the ability of the model to reproduce the
observed tendency. Next, a simulation is made with the
observed mean flow as initial conditions in order to as-
sess the ability of the model to reproduce the atmospheric
variability.

Section 2 deals with simplified linear versions of
the model. First the stability of the winter mean flow
is tested with respect to perturbations composed of the
individual EOF patterns. Then a more complete normal mode
analysis is done in order to compare the structure of
these modes with the EOF's and to examine the sensitivity
of thé normal modes to model truncation.

Finally, in section 3 the nonlinear properties are

examined in more detail. This includes a discussion of




96

EOF interactions, the inhomogeneous forcing, EOF's as
steady states, and the possibility of multiple equilibria

in highly simplified versions of the model.

4.1. The complete model

a) Variance of model terms

Figure 23 shows the standard deviations of the vari-
ous terms in the model as a function of the PC's. Suc-
cessive values are connected in order to make the plot
more readable. The values are based on 25 PC's for nine
winters (1967-74/75) of data filtered with a five day
running average and sampled every fifth day. The observed
tendency is computed from a centered finite difference
formula spanning a 48 hour period. All other terms are
computed by inserting the observed values of the PC's into
the model terms every fifth day.

The comparison between the standard deviation of
the model tendency (RHS of (3.2.3)) and that of the ob-
served tendency indicates that there is a reasonable
agreement particularly for fhe«first few PC's. The
dominant terms on the RHS of (3.2.3) are the mean flow/EOF
interactions and the beta term. These are 1.5 to 4 times
larger than the tendency term, but they are highly

negatively correlated so that their sum (not shown) has
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Figure 23. The standard deviation of the model terms as
a function of PC for the 25 component model. The
values are computed by inserting the observations
(filtered with a 5 day running averaged and
sampled every fifth day) into the model terms for
the winters of 1967-74/75. The observed tendency
is also based on the filtereddata and is computed
from a centered finite difference formula spanning
a 48 hour period. Successive values are con-
nected to make the plot more legible. Units:
non-dimensional.
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a much smaller standard deviation, very close to that of
themean tendency. Two large peaks occur in the mean‘
flow/EOF term, one around the 7th PC and the other at the
18th and 19th PC. An inspection of the spatial distribu-
tion of the corresponding EOF patterns reveals them to
have relatively large wind anomalies in the vicinity of
and parallel to the largest mean flow vorticity gradients
off the east coasts of both continents.

The EOF interaction term is smaller than the ten-
dency for all components with the largest contribution
coming from the 9th mode. The orography and frictional
decay terms are still smaller in magnitude. The oro-
graphy is in general 1/4 to 1/5 as large and the fric~
tional decay is about an order of magnitude smaller than
the tendency term for all the PC's. This is a conse-
qguence of the poor fit of the boundary layer parameter-

izations to the observations.

b) Tendency correlations

In order to obtain a éimple measure of the fore-
cast skill of the EOF model, correlations are computed
between the observed and model tendencies for each PC,
The method of computation of the various térms is

identical to that of the previous section.
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Figures 24a,b and c show the correlations as a function of
PC for models truncated at 40, 25 and 12 PC's, respective-
ly. In each figure the correlations are presented for
the complete model (all terms on the RHS of (3.2.3)), for
the case when boundary terms are neglected and finally
with only the beta and mean/EOF interaction terms. For
the 40 component model only the first 25 PC's are
presented.

With 40 PC's one finds for the complete model a
maximum correlation of 0.6 at the 5th PC and a general
trend toward lower correlations as one goes to higher
order PC's. Other correlations greater than 0.5 occur
at the 2nd, 4th, 9th and 15th PC. Of the first 12 PC's
the smallest correlations occur for the 6th, 8th and
11th PC's. When the boundary terms are neglected there
is, in general, very little change in the correlations.
This is expected since these terms contributed very
little to the sums of squares. The 3rd, 5th and 6th PC's
gain the most from the boundary terms, as measured by the
improvement in the correlations. These modes have
anomaly patterns which suggest some coupling to the posi-
tions of the major land masses. In particular, the sixth
EOF, when superimposed on the mean flow, exhibits either

a zonal wave number 4 pattern with troughs off the west
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Figure 24. Correlations between the observed tendency
and the tendency computed from the model, as a
function of PC for (a) the 40 component model
and (b) the 25 component model. The three model
versions compared are (1) the complete model as
determined from regression (2) the model which
neglects all boundary terms and (3) the linear
version of the model which also excludes the
boundary terms.
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Figure 24c. As in Fig. 24a, except for the 12
component model.

coast of North America and over the western part of Asia,
or, a zonal wave number 2 pattern with ridges in these
areas. With only the beta and mean/EOF interaction terms
there is a dramatic drop in the correlations. This in-
dicates the importance of the EOF interactions partic-
ularly for EOF's 2, 4, 5, 9 and 11, all showing a reduc-
tion of more than 0.2 in the correlation coefficient.
Other modes such as the 10th, 19th and 25th show very
little improvement when nonlinear interactions are
included.

For the 25 component model the results are very
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similar; however, the correlation coefficients are almost
everywhere smaller than for the 40 PC case. Surprisingly,
the largest coefficient occurs for the 15th EOF. With a
value of 0.54, it shows almost no change from the 40 PC
results. With 12 PC's in the model the correlations drop
still further. When only the beta and mean/EOF inter-
action terms are included there is essentially zero cor-
relation at the 6th mode. These results show that, while
the statistical significance of the PC's is doubtful be-
yond the twelfth mode, it is possible to increase sub-
stantially the predictive skill of the model by including

the higher order EOF's.

c) A winter simulation

The ability of the model to reproduce the observed
climatology is measured by performing a long term inte-
gration from mean flow initial conditions and comparing
the simulated PC variances with the observed. The model
derived variances are computed from daily output using
the last 300 days of a 365 day simulation. The model
includes 25 PC's and uses the parameter values deter-
mined by regression (see 3.3). The numerical integration
involves a time derivative which is approximated by a

one step, fourth order Kutta scheme (Young, 1968) using
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a three hour time step. The observed variance is com-
puted from unsmoothed daily values of the first 25 PC's
for the winters of 1967 through 1974/75.

The percent of the total variance for each PC is
shown in Figure 25 for the model and observations. While
there are some major differences, particularly for the
first PC, the model seems to do reasonably well in
simulating the overall observed variance percentages.
However, when comparing the total variance, one finds
that the model has more than twice the variance of the
observations. This is, in part, due to the fact that
the regression produced a very weak frictional decay
rate (e-folding time of about 52 days); however, this
also suggests that there are significant energy sources
in the model.

A more detailed look at the simulation is presented
in Figure 26. The first 165 days of the evolution of
the first, second and ninth PC's (Figure 26a) shows that
there is a rapid energy input into the system producing
large oscillations (similar in magnitude to the observed)
within the first 50 days. The important components of
the kinetic energy tendency (Figure 26b) show that the
dominant source is the mean flow advection of the

anomalous vorticity. The contribution from the inhomo-
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Figure 25. The percent of the total variance explained
by each PC for the observations (dashed line) and
the model simulation (solid line). Successive
points are connected to make the plot more legible.
Units: non-dimensional.

geneous forcing is closely coupled to the behavior of

PC 9 (see Figure 31) and, of course, the dissipation
produces a negative tendency for all times. The fact
that most of the energy is obtained from the mean flow
advection term indicates that the winter mean flow is
barotropically unstable. This result is consistent with
the recent findings of Simmons et al. (1985) in their
study of the stability of the 300 mb mean flow. They

suggested that barotropic instability may be a major
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Figure 26. (a) The evolution of the first, second and
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total KE tendency in a 25 component model simula-
tion starting from mean flow initial conditions.
Units: non-dimensional.
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source of the low frequency variability of the wintertime

Northern Hemisphere circulation.

4.2. The linear model and normal modes

In this section the stability of the zonally vary-
ing climatological mean winter flow at 500 mb is investig-
ated by computing the growth rates of perturbations
composed of individual EOF's as well as performing a
normal mode analysis.

When all boundary and nonlinear effects are ne-

glected (3.2.3) reduces to
) a7 ;
z=A (G + R)z (4:2:1)

where A, R and G are the n x n matrices composed of the

elements akj’ rkj

vector of PC's. Note that for consistency z* must also

, and gkj' respectively, and z is the

be neglected since it arises only because of the non-

linear interactions of the anomalies (see (3.1.17b)).

a) One-component model
For the case when only one EOF is allowed into the

model (4.2.1) becomes
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G -1

2, = (akk) r2kk 2y (4.2.2)
The beta and advection of mean flow vorticity terms drop
out because of their antisymmetry properties. The solu-
tion to (4.2.2) may be written as

(r2
zk(t) = zk(O) e

/ e |

a
Bk BE (4.2.3) h

where r2kk and CIR are given in (3.2.4i) and (3.2.4a),
respectively.

The stability of the mean flow with respect to
perturbations composed of the kth EOF depends on the
values rzkk/akk' These are plotted for the first 25
PC's in Figure 27. Remarkably, excluding the 8th PC,
there seems to be a rather distinct transition from modes
capable of gaining energy from the mean flow, to more
stable modes, very near the transition to spatially and
temporally uncorrelated noise (see Figure 3). The second
and third PC's are the most unstable, having e-folding
times of a little more than two weeks; while the most
stable modes are found beyond the thirtieth PC (not
shown). The stability of the January 1-10 and May

climatological mean flows is also examined. The former

is of interest because it is representative of a more




108

III"I*TIIIIIIIIIIIITIIﬁIIIII
Growth Rates

.05 — =

.04 —

.03 — =

.02 —

days

01 — =

-02 -

-.03 =

Llllllllllllllllllllllllll

1 5 10 15 20 25

Principal Component

Figure 27. The growth rates of perturbations consisting
of individual EOF's superimposed on the climato-
logical mean winter flow.
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intense circulation regime and the latter is of interest
because it is a peak blocking month (see e.g. Brezowsky
et al., 1951). Figure 28 compares the growth rates for
the first 15 PC's. For the January 1-10 flow there is a
general increase in the growth rates with a dramatic
increase occurring for the third and twelfth PC's (9.9
and 13 day e-folding time, respectively). For the May
average flow the growth rates are much reduced; in
particular, the fourth and ninth PC's have essentially
zero growth rates.

These results must be viewed only as measuring the
potential for instability since the EOF perturbation is
constrained to be fixed in space. In reality the asym-
metric components of the RHS of (4.2.1) (such as those
associated with the beta and advection of mean flow
vorticity terms) will tend to propagate the anomalies.

Some rather general constraints on the growth rates
and frequencies are expressed in theorems due to
Bendixson and Pick (Bodewig, 1959, pp. 70-75). These
theorems state that for a general matrix W, the eigen-
values (aA+ ib) are constrained such that
< al$'M

1 (4.2.4a)
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Figure 28. A comparison of the growth rates of per-
turbations consisting of individual EOF's super-
imposed on (1) the climatological mean winter
flow (2) the climatological mean January 1-10
flow and (3) the climatological mean May flow.

and

(4.2.4Db)
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where ml and Ml are the smallest and largest eigenvalues

of W° and m., and M2 are the smallest and largest eigen-

values of —iwP. Here, w° and w® are the symmetric and
antisymmetric components of W, respectively. In the

present analysis (4.2.1), the growth rates are con-

strained by the eigenvalues of

S 1

W= l®R+6 + (R+6Ta1T2 (4.2.5a)

and the frequencies are constrained by the eigenvalues of

AR e A R BE) - R+ 0y TaTh

}/2 (4.2.5b)
For the case of the one dimensional model, (4.2.5a) re-

duces to the single value r2 and (4.2.5b) reduces

xk/2kk
to zero implying an infinite period. It will be shown
in the next section that for the 40 component model the

asymmetric terms do in fact result in the most unstable

mode being fixed in space.

b) N-component model
For an arbitrary number of components the solution

to (4.2.1) may be written in the vector form
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z(t) = ExP{A T (R + G)t}z(0) (4.2.6)

Assuming distinct eigenvalues (vj), z(0) is expanded in

terms of the eigenvectors (wj) of A"1(R + G) such that
z(t) = Y c. w, e (4.2.7)
~ Y 1
J
where the cj are constants which may be determined from

the initial conditions.

The real normal mode solutions are

z.(t) = e j {w‘r) cos v!i)t - w?l) sin vgi)t}
~] ~]J 3 ~ J
(4.2.8)
where w. = w(r) + iw!i) and V., = vgr) + iv!i)
~ ~]J ~J ] i J
or in terms of the streamfunction
(r)
V. t ;
Y(r,0,t). = e J {cos v!l)t(wgr)-E(A,¢))
J J ~]J ~
- sin v;i)t(?;i)-E(A,¢))} (4.2.9)

where E()A,¢) is the vector of spatial EOF's evaluated at
the point (),¢) and the dot signifies an inner product.

For the case of real eigenvalues (4.2.9) reduces to
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v.t
POLe,t) 5 = e (s EOL0)) (4.2.10)

Figure 29 shows the spatial pattern of the fastest
growing mode (e-folding time of 16.7 days) for the 40
component model. For reasons of computational con-
venience only the contributions from the first 25 PC's
are actually plotted. The mode is fixed in space and is
dominated by the 2nd, 4th and 12th EOF's with only minor
contributions beyond the 25th EOF. Large anomaly centers
are located in regions of mean flow diffluence (see
Figure 12a) associated with the Asian and North American
east coast jets together with weaker anomalies of op-
posite sign to the south. Another large anomaly is
located over western Asia on the lee side of a mean
trough in this area with a weaker anomaly of opposite
sign over the Mediterranean.

An analysis of the 500 mb winter mean flow shows
that the zonally averaged state is barotropically stable
(absolute vorticity has no extrema). This suggests that
the zonally asymmetric components of the mean state
which account for less than 16% of the mean flow kinetic
energy and are primarily composed of zonal wave numbers
1, 2 and 3 (see Figure 12b) are the key sources of

instability.
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Figure 29. The spatial distribution of the fastest
growing mode for the .40 component model linearized
about the climatological- mean winter flow.
Units:_lnon—dimensional, contour interval is
5 x 10
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As a test of the sensitivity to the model truncation
of the normal mode growth rates, periods and spatial
structure, the solutions (4.2.8) were computed for all
possible truncations up to and including 40. Figure 30
shows the growth rate and frequency of the fastest growing
mode for each truncation. One finds a very strong
sensitivity to the number of modes in the model. Beyond
a truncation of 30 there is a general tendency towards
very long or infinite periods; however, an obvious
asymptotic behavior is not evident. A more detailed
examination of the second, third and fourth fastest
growing modes shows that at some truncations these modes
have very nearly the same growth rates yet widely dif-
fering periods. When these become interchanged for
subsequent truncations the large scatter evident in
Figure 30 is produced. This, for example, is the case
for the fastest growing mode at a truncation of 28 which
is actually very similar to the second fastest growing
mode at a truncation of 29. A somewhat stranger
behavior occurs at more severe truncations, particularly
at truncations between 9 and 14, where an apparently
spurious unstable mode is traced until at a truncation
of 15 it seems to have disappeared.

The fact that such apparently spurious unstable
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modes exist for intermediate model truncations points to
a potentially serious defect of the truncated EOF model
in particular, and of all truncated models in general.
If this is indeed true, in general, then using highly
truncated models for extended range forecasting has very
little chance of success since the unstable spurious

modes will eventually contaminate the forecast. Un-

fortunately, it seems that the EOF model may have an even

greater sensitivity to truncation than the spectral or

grid point models.

4.3. Forced nonlinear models and steady states

In this section the nonlinear aspects of the EOF
model (3.2.3) are examined in more detail. For purposes
of this analysis all boundary terms except friction are
neglected.

With these simplifications (3.2.3) becomes

&l *
g de4i 21 24 % Pr3 B3 %% T4.3.1)

where the linear part

Pps = Ka, . - r (4.3.2)

j k3 kj ~ 9kj
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consists of the friction, mean flow/EOF interaction and the
beta terms. It is emphasized that the model does no£
allow the anomalies to feed back on the mean flow. The
mean flow is assumed to be continuously maintained by a
climatological mean winter thermal and orographic forcing.
The model should therefore be viewed as a gquasi-nonlinear
system where nonlinear interactions are only allowed
between the EOF's which, in turn, may gain or lose energy
due to the presence of the mean flow. As was shown in
3.2b these energy source/sink terms are the mean flow ad-
vection of the anomalous vorticity (rzkj) and the in-

homogeneous forcing (zﬁ).

a) EOF interactions and forcing

The extent to which EOF's interact is governed by
the quadratic term in (4.3.1). The dkji are coefficients
involving linear combinations of the usual spectral
interactions (see (3.2.4c)) and are referred to here as
EOF interaction coefficients even though the tendency
term in (4.3.1) is not strictly diagonal (diagonal
elements are dominant). The interaction coefficients
satisfy the properties that the sum of all permuta-

tions with respect to the indices i, j and k is

identically zero, and that there is symmetry with respect
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to i and j (see (3.2.4d,e)). It follows that a system

with only one component is inert (d = 0).

kkk
An inspection of the EOF interaction coefficients

should provide some insights into the nature of the non-
linear behavior of the EOF's; however, the large number of
the coefficients makes this a rather tedious task. A
somewhat more tractable approach is to examine the en-

semble average nonlinear structure

} % <zizj>dkji = % d—< A, (4.3.3)

where Aj is the variance of the jth PC.

For each k and j, dkjj Xj indicates the average
effectiveness with which 2y and zj interact to produce

changes in z The efficiency of the interaction, which

K
depends on the spatial structure of the associated EOF's,

is measured by d, ..; while Aj measures the intensity of

kjj
the circulation fluctuations associated with z..

Table 2 shows the values of d Aj for some of

kJjJ
the dominant interactions. Only those values are shown
which are larger than an arbitrary cutoff of 10 x lO_6
in non-dimensional units. Examining this table row by

row one finds that the 9th PC (k = 9) is most strongly

influenced by interactions with other modes; particularly




Table 2.

The time averaged EOF interactions (d

A

120

o s

Values smaller than 10 are not shown. k33 73
Units: non-dimensional x 10-6.

k 1 2 3 4 5 7 8 9 10 11 12
1

2

3 14 12

4 13 |-18

5 =12 10

6 -13 12 13

7 28 11

8 -13

9 32 ~64| 25 113 L 12
10 =12 -12 -16

11 32

12 did) =170

13 15 12
14 =10 10
15 12

16 -19 -11

37

18 -11 =27

19

20 13 12V 20| 11 10

21

22 16

23

24

25 -11
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the first three. By far the dominant interaction is
between the 2nd and 9th PC's. The effectof the inter-
actions is to produce a positive tendency in the 9th PC
which translates into a tendency for cyclonic flow over
the North Atlantic (see Figure 9b). Thus the dominant
nonlinear processes hinder the development of anti-
cyclonic circulations in this region.

Other strong interactions occur between the 2nd and
11th, the 3rd and 7th, and the 3rd and 18th PC's. The
fac£ that there are no entries in the first 2 rows of
Table 2 indicates that the first two PC's do not inter-
act very efficiently. These two modes do interact very
efficiently with some of the higher.order PC's (e.g. PC
9) ; however, the relatively low intensity (variance) of
the higher order modes results in an overall small non-
linear contribution.

The ensemble average of (4.3.1) is

* =
z dkjj AL+ zx 0 (4.3.4)
J
where, by definition, the forcing for the kth PC (zﬁ)
balances the average anomaly interactions and is equal
to the sum of the entries of the kth row in Table 2,

with opposite sign. These are shown in Figure 31 for
l
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Figure 31. The inhomogeneous vorticity forcing (S) as
a function of the PC's. Units: non-dimensional.

the first 25 PC's. The large negative value at the 9th
PC corresponds to an important anticyclonic vorticity
source in the North Atlantic. Other relatively large
contributions to the forcing occur at the 7th, 10th, 18th
and 20th PC's. The spatial distribution of the forcing
(S) is shown in Figure 32. The dominance of the 9th EOF
is clearly evident. This pattern is equal'to the projec-
tion of the time averaged vorticity advection by the

anomalies (c.f. Holopainen and Oort, 1981, Figure 2b)
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onto the first 25 EOF's. It is characterized by large
areas of cyclonic vorticity advection over the North.
Atlantic and off the west coast of North America ex-
tending into Asia. These correspond to anticyclonic
vorticity sources in the EOF model. Large areas of
anticyclonic vorticity advection are located to the south
over the Atlantic extending into the Mediterranean Sea
and over western Asia extending into the Pacific. These
correspond to regions of cyclonic vorticity sources in

the model.

b) EOF's as steady state solutions

In this section the stability of mean flow patterns
consisting of the climatological winter mean flow plus
a single fixed EOF is analyzed in order to examine the
possibility that some of the dominant EOF's are steady
state solutions to the simple equivalent barotropic
model (4.3.1).

The equations governing small perturbations about

a base state (ze) are
e e
a zZ. - 2.) = - D+ 2 d z Z, =2,
) oa.l 3 = 1Py z } ( ;)

(4.3.5)
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For purposes of this analysis the forcing (zi) is not
given by (4.3.4), but instead the forcing is that which
is necessary to maintain the assumed steady state.
Furthermore, friction is neglected because its effect
is simply to reduce the computed growth rates by an
amount equal to the decay rate.

Table 3 shows the growth rates and periods of the
fastest growing modes for the 40 component model where
the equilibrium states consist of the winter mean flow by
itself, and the winter mean flow plus a large positive
or negative PC multiplying the first, second, third,
fourth and ninth EOF's. These equilibrium states are
identical to the flow patterns shown in Figures 13-15,
17 and 18. The instability of the winter mean flow
(Figure 12) has already been discussed (see 4.2b) and is
presented here only for purposes of comparison. The
most unstable mode was found to have a growth rate of
16.7 days with an infinite period.

With a positive first EOF (Figure 13a) the flow is
somewhat more unstable and again is fixed in space. The
flow is even more unstable when it involves a negative
first EOF (Figure 13b) with the fastest growing mode
exhibiting a 10.4 day e-folding time and a period of

51.8 days. The second EOF equilibrium states exhibit
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Table 3. Characteristics of the fastest growing mode in
a 40 component model with base states consisting of
the climatological winter mean flow plus large
positive or negative instances of some of the
dominant EOF's.

Equilibrium e-folding time Period
state (days) (days)

mean flow 16505 ©

+/=- EOF 1 13.2/10.4 o 51..8

+/= EOF 2 9,494, 607 25.4/185.2

+/- EOF 3 13.7L 1.0 40.0/

+/- EOF 4 9.5/10.8 27.8/x

+/- EOF 9 Jed s Tidon Be B 19.5/x

modes with e-folding times under 10 days. The

negative instance (Figure 14b) has the most unstable mode
with a 6.7 day e-folding time and a very long period.

The third EOF is also very unstable for the negative
instance (e-folding time of 7 days, infinite period)
which is shown in Figure 15b; whereas the positive ver-
sion (Figure 1l5a) is only slightly more unstable than
the winter mean flow alone. The fourth EOF (Figure 18)
exhibits modes with e-folding times of about 10 days

for both the positive and negative instances. The ninth

EOF (Figure 17) is very unstable for the negative
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instance exhibiting a mode with an e-folding time of

5.6 days and infinite period.

Whether any of these equilibrium states are stable
depends of course on the value of the frictional decay
rate. However, these results do suggest that it is
unlikely that the negative instances of the second, third
and ninth EOF's may be maintained as stable steady states
of an equivalent barotropic model of the type discussed
here. 1In particular, the North Atlantic blocking mode
(negative instance of the ninth EOF), which previous
studies have suggested may be a stable equilibrium
state, turns out to be the most unstable of all the

regimes investigated.

c) Low order models

In the following analysis the solutions to (4.3.1)
are examined in more detail for the case where zi is
determined from the observations (4.3.4) and only a

relatively small number of modes are allowed into the

model.

i) Method of solution

The general problem of finding all steady solu-

tions to (4.3.1) for an arbitrary truncation is a very
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difficult if not impossible task. The approach taken in
this section is to develop a numerical method which will
find all steady state solutionsifor models having a
reasonably small number of degrees of freedom and
certain restrictions on the model parameters.

The model is extended to allow for a change in the
magnitude of the forcing by including an additional

parameter (o) such that

z dkji 2y 24 " % Pyy 25 +az¥ (4.3.5)
The solution method involves searching a subset of the
phase space defined by the PC's to find regions where
the tendency (LHS of (4.3.5)) is small. These regions
define a set of points which are used as initial guesses
for the multivariate version of Newton's method which,
in turn, is used to determine the final solutions.

The tendency is written in terms of the MSV as

]— d .
== Msv) =Y Ya .z z;:=-Y)) P 2. 2
2 dt k 3 kj "k 73 K 3 Xjr asgw R
+ a ]2( Z, 2% (4,3,.6)

or, in vector and matrix notation
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(MSV) = - gT Pz + azt’ z¥ (4.3.7)

14
2 dt =
where P is the matrix of coefficients pkj (see (4.3.2))

and

1 T
B2 <+ t
Ps 2(P P) (4.3.8)
is a symmetric matrix composed of P and its transpose.
Setting the MSV tendency equal to zero and assuming

Ps is nonsingular, (4.3.7) may be written as

(z - q) P (z - q) =qgP g (4.3.9)
where

q-= % P z* . (4.3.10)

If Ps is positive definite (4.3.9) describes an ellip-
soid of zero KE tendency centered at q inside of which
the KE tendency is positive and outside of which the

tendency is negative. Systems for which PS is positive
definite will be denoted as bounded systems, since this

implies the existence of an ellipsoid of constant KE

inside of which all trajectories are eventually trapped
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(see Lorenz, 1980). When this ellipsoid is contained
within a sufficiently small volume of the phase spacé a
numerical search for all the steady states of the system
is feasible for low order models. The procedure for the
search is described in Appendix D.

The volume and orientation of the ellipsoid (4.3.9)
depends on the eigenvalues (ui) and eigenvectors (ti)

~

of the symmetric matrix
P = A - R (4.3.11a)
s S
which has elements
oS amscatii- Blrl, 65 ) (4.3.11Db)
kj 2

This is seen more clearly when the ellipsoid is rotated

to the standard form

v2 ¥ Ve
L. ca ., 0 4 N4 (4.3.12)
et B

1 1 N

The volume is related to the length of the semi-axes

o T -1 5

- * * o - 3
b. 5 (? PS z /ui) (4.3.13a)
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and the coordinate rotation is given by
z -q="Ty (4.3.13Db)

where T is the matrix of eigenvectors (ti).
In order to insure that PS is positive definite «
must be larger than the largest eigenvalue of the

generalized eigenvalue problem
AL =
det(RS AiA) 0 (4.3.14)

As k is reduced so that it approaches the largest
eigenvalue of (4.3.14), the ellipsoid (4.3.9) becomes
infinitely large since the smallest eigenvalue of PS
approaches zero. The direction and length of the as-
sociated axis (4.3.13a) determines to some extent the
nature of possible large amplitude steady state solu-
tions.

In order to insure a reasonable bound for the system
the value of k = Kp is chosen such that the volume of the
ellipsoid of zero KE tendency (4.3.9) is equal to one

half the volume of the ellipsoid

E z akj Z, zj =y ay Ak (4.3.15)
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where the RHS is the time averaged anomaly MSV of the
observations. Such a constraint is relatively easy £o
apply for an arbitrary truncation and will be used for
most of the equilibrium calculations to follow. See
Appendix D for details on the development of these

constraints.

ii) Characteristics of the solutions

Before applying the general numerical approach out-
l1ined in the previous section, the two component model
will be analyzed more completely by directly solving

(4.3.5) for the equilibrium states

1

(4.3.16)

u. 0~ 0
b

The equations are

o
Il

2
2dkkj Xy - Zdjjk(y - akj) Py X pkj y

(4.3.17a)

2
0 = Zdjjk Xy - 2dkkj(x - akk) - pjk b pjj y

(4.3.17b)

or



where

with

0 = y3 + a y2 + a.y + a

2 1 0

8y = 8,/8; v Ay = 65/8) , ay =8,/8,

. 2 2
61 = —4d1d,(py, + pyy) + (djp, + dlp,)
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(4.3.18)

and

(4.3.19a)

— 2 — —
8, = Badjdyi, ¥ 2p,d,(Py; = Piy) - 24Py, (R,

+ 8ad3A

+ Pyy) * 44,pp, 1M

83 = 4ad;dyr,(2py, + Pyy) + Py (P1,Py
2 2
+ 4ap) (@31, - 2a2h))
ah.. 2
54 20d,), (40d, @), + p.p,)) + 20d,p2A

1

(4.3.19Db)

- p;P,)

(4.3.19¢)

(4.3.194)

dl = dkkj ’ d2 = djjk ’ pl SN Pkk ’ p2 T pjj ’

Bys = Py, U8 Pog = Pape
The first component is computed from

— 2 —
X &= (Zdzy + plzy e dezxz)/(ZdlY pl)

(4.3.20)
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The number of steady states is determined from

> 0 1 real, 2 complex conjugate roots

2 3
%r + %7 =0 3 real, at least 2 are equal
(4.3.21)
< 0 3 distinct real roots
where
- 1
c = 3(3al a2) (4.3.22a)
b = X (225 - 9a.a, + 27a.) (4.3.22D)
27 2 271 0 L

and the a, are those in (4.3.18).
Figure 33 shows the number of real solutions for

various values of a and k for the two component models

and "

The former model is chosen because it contains the two
modes which contribute most to the observed variance and
the latter is of interest because of the highly non-

linear nature of the ninth PC (see 4.3a). The heavy
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Figure 33. The number of steady states as a function of
model parameters for the two component models con-
sisting of (a) the first and second PC's and
(b) the first and ninth PC's. The heavy horizontal
arrows indicate the range of frictional decay rates
which allow 3 steady states. Outside of this range
only 1 steady state is possible. The speckled
region indicates that the trajectories are not
bounded and the dashed line connects points having
observationally consistent decay rates (see text -3
for details). Units for k: non-dimensional x 10
Multiply by 12.57 to get units of days-l.

arrows indicate the range of « for which 3 solutions are
found. The speckled region indicates the range of k for
which the system is unbounded (i.e. B i (4.3.9) is not
positive definite). One finds that for reasonable

values of the forcing strength (o = 1) there is only a
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very small range of values of « for which the system is
bounded and more than one equilibrium state is ob- .
tained. It is only with weaker decay rates and/or very
intense forcing that a significant range of parameters
allows for multiple equilibria. The dashed lines con-
nect the points of realistic values of the decay rate
(Kr) as defined in section 4.3ci. As a approaches zero
the range of values of « which allow for multiple
equilibria must lie within the unbounded region since
(4.3.9) has only the trivial solution if Ps is positive
definite and the RHS is equal to zero.

Next the numerical searching technique outlined in
the previous section is used to obtain the equilibrium
solutions for various low order models with up to 5 PC's.
Table 4 lists the steady state solutions for selected
models having parameter values o equal to one and the
frictional decay rate equal to «k_ (see 4.3ci). For each
solution the balance of terms is shown and the solution
to the corresponding linear system is given.

With only the first two PC's in the model only one
solution is obtained and it is stable. This is of course
consistent with Figure 33a which shows that for these
parameter values only one real solution is possible. The

balance of terms shows that the nonlinear contribution



mm G9% 0 Gee1-  €L9°v-  ©IL'0 60€° € LV T (L88°2-) 8LS T~ 6
z80° - 8700 68L°C-  LST'0 962°C 1LZ°0 (SLz T-) 9%0° T v
Ao 912"~ 96T°T-  €€5°T-  069°C TIT°0  S°& (8L5°0) 90Z°- 6S00°0 €
760° T T9T°0 GzZE"0 zLS - zIS°- S6¥°- (296°2-) 691" ¥- z
€25~ 980°- €00°T ZZeT-  626°0 T00" - (95€°T-) pee T T
€CC - 6€0°0 LT6°0 L9T°0 606 - 0T0°0 (LLO°T) T98°0 g
950°0 8ET"0 69z - zLZ 0 991" - GEO" - (6€°-) pze - v
60T°0 v9Z° - ¥SL°0 607"~ €T - p€0°0  SOX (5S5¥°-) €LE*= T900°0 €
982°0 . T00°0 2s0°- vLT - ¥S0°0 €20°- (185°-) 819"~ 4
AR 6%0°0 G60°0 e - €E€P°0 y10°- (9€8° 1) 995°T T
mnm”m mHm”H moq.mu mom.u 997" T L¥9°0 i 625 €~ 090 ©
65S 280 €00°T (174 LOE"T LLS"0 656°€ ;!
mo>“ou mHm”H TLTT7- OHm.u VLL'T 99T  gox 00L°Z= ,.00e0 ©
GZ0°T z80 z62 - 78T 000°T 78570 z6v°L T
780 - mHm.u mwh.m €6070 ¢om.u Lv0'0  op (9%€°0) 0E°0 090 ©
G810 z80 120 12070 €11 T10°0 (265°1-) T9€°- T
880 - 09070 T00°0 £80°0 090°—  L000°- (61€°0) TIE0 oo

2 : : ; A ._ S : . TS00°0
8L0°0 600°0 601"~ TLO®0 6¥0°= 9000 (88€°-) 8¢ °- T
X
(,_0T¥) (0¥ (_0TX) (0T (0 (,_0T¥)  STIE3s (;resutT) (;_0TX) b b
Aeosp  burdIog A ™ e3ed TeauTT uoTINTOS
TeUOT3IOTI UON

- [RUOTSUSWIP-UOU :S3Tun -suo o3 Tenba sT (0) sumcwmum butroxozy 9ay3z pue (3IxXa3

99S) 3U93STSUOD ATTRUOTIRAISSQO 9 03 USSOUD ST (~ ) 93ex Aedop TRUOTIOTIAJ

oyl ‘seosayjuaxed UT USATH ST wa3sAs IedUTT 9yl IO UOTINTOS putpuodsaixod oYL
*SUOT3}EOUNI] [OPOW SNOTIRA IOJF SWId]3 JO SdUBTEJ puB SUOTINTOS S3e3S Apea3s *p 919®eL



138

is very small and the solution is very near to the small
amplitude solution to the linear system. Figure 34é
shows the steady solution as a point on the ellipse of
zero KE tendency (A), along with the ellipse of constant
MSV (B) given by (4.3.15), superimposed on the stream-
lines of the PC tendencies. Within A the system is
gaining energy; i.e., the PC tendency is such that the
trajectories cross the ellipses of constant KE (such as
B) moving towards higher energy. From Figure 34a it is
evident that any solution to this two component system
will follow a spiral trajectory, momentarily gaining a
small amount of energy with each pass through A and
eventually coming to rest at the equilibrium point near
the origin.

For the two component system involving PC's one and
nine, Table 4 shows that three solutions were found. This
confirms the results of Figure 33b which indicates the
existence of three real solutions at the point where the
dashed line intersects the heavy arrow corresponding to
o = 1. Two are stable and one is unstable. One of the
stable solutions is again near the solution to the cor-
reéponding linear system and the contribution from the
nonlinear terms is relatively unimportant. The other

stable solution has much larger magnitudes for the PC's
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Figure 34. Streamlines of the PC tendencies with the
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component models consisting of (a) the first and
second PC's and (b) the first and ninth PC's.
Parameter values are those given in Fig. 33 for the
case where the dashed line intersects o= 1.
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and the nonlinear terms contribute significantly to the
steady state balance. For PC 9, in particular, the.
equilibrium is maintained primarily by a balance between
the advective terms, i.e., by the nonlinear interaction
and beta terms balancing the advection of anomalous
vorticity by the mean flow. The unstable solution also
has important contributions from the nonlinear term.
However, all the advective contributions to the ninth PC
balance have been substantially reduced due to the re-
duction in the magnitude of the first PC.

Figure 34b shows the same results as 34a except now
for PC's one and nine. For this case there are three
equilibrium points on the ellipse of zero KE tendency
(A) . The stable equilibrium near the origin is similar
in character to the single solution for the first two
PC's; for a large portion of the phase space solutions
follow a trajectory spiraling towards this steady state.
Some solutions, however, at first approach the unstable
state (intermediate value of zi) and then move towards
one of the stable states. ~Sti11 others move directly
towards the large magnitude stable state (largest value
of'zi).

As more PC's are allowed into the model only one

equilibrium solution is found for each truncation (with
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o =1, k= Kr). These steady states are stable with
small contributions from the nonlinear terms, and are
generally close to the steady states for the correspond-
ing linear systems. An exception to this occurs for the
five component model when the 9th PC is included (see
Table 4). For this case the nonlinear and forcing terms
provide a significant contribution to the balance. 1In
particular, for PC 9 the steady state is a result of the
nonlinear, beta and mean flow vorticity advection terms
balancing the forcing and anomalous vorticity advection

by the mean flow.
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5. SUMMARY AND CONCLUSIONS

The observed wintertime intraseasonal variability
of the Northern Hemisphere circulation has been analyzed
using a combination of statistical and dynamical methods.
The basic approach has involved a somewhat reversed
analysis method, in which statistical and empirical
methods are first used to identify and quantify the
important modes of variability. Subsequently these modes
are entered into a simplified dynamical model in an at-
tempt to gain further insight into the important processes
governing their behavior. The primary advantage gained
by such an approach is the ability to monitor explicitly
the behavior of realistic modes of variability within a
dynamical setting. The main disadvantages concern the
difficulties associated with the proper identification of
the "true" modes of variation (the EOF's) and an ap-
parently strong sensitivity to model truncation. These
drawbacks are connected with the more general problem
which involves an incompatibility between the model
dynamics and the degrees of f;eedom allowed in the model.
While this incompatibility occurs for most highly
truncated models, it seems to be more apparent for the
EOF model in which the individual modes (1) are

constrainted to a flip-flop type of behavior, (2) involve
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linear combinations of spectral modes which are con-
strained to behave in unison, and (3) are (in the present
case) based on 10-day averaged data. The latter effect-
ively filters out those modes associated with day to day
weather fluctuations.

In order to emphasize the statistical nature, as well
as enhance the physical interpretation of the EOF's, the
analysis is based on deviations from the climatological
mean seasonal cycle and is limited to the winter season.
Guided by the results of a statistical test which com-
pares the variance of the PC's to white noise (Preisen-
dorfer et al., 1981), only the first 12 EOF's are
analyzed in detail. The EOF's are based on a spherical
harmonic expansion of the streamfunction data which
allows for a convenient spectral decomposition of their
spatial structure.

The dominant EOF's are predominantly associated with
zonal wave numbers 0 through 5, and range anywhere from
very localized anomalies to more wavelike structures to
very complicated spatial patterns. While there is a
general shift toward smaller scales as one goes to yet
higher order EOF's, this trend is very weak and seems to
be associated with a general flattening of the spectrum

toward a white noise structure. These results suggest
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a weakness in the EOF representation of an independent
data set. Beyond the large scale features capturedbby
the dominant EOF's a very large number of the spatially
noisy higher order EOF's would be needed to represent
adequately the complete spectrum of spatial scales.

Some of the dominant EOF's were found to be as-
sociated with the more familiar observed modes of vari-
ability. 1In particular, the first three EOF's seem to
exhibit a range of behavior encompassing an index cycle,
the Pacific/North American pattern and the North Atlantic
oscillation. The fourth and ninth EOF's were found to
be related to some aspects of North Pacific and North
Atlantic blocking, respectively. The negative version
of the ninth EOF, when superimposed on the mean flow bears
a striking resemblance to the classical North Atlantic
block.

Comparisons with other studies and approximate
standard errors for the PC variances suggest a large
amount of intersample variability in the EOF patterns.
However, an index cycle—tybe mode was found in all the
studies compared, usually in association with the first
EOF, or the second EOF when the seasonal cycle is not
removed. In the latter case the first EOF describes the

seasonal cycle. Similarities were found in some cases
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with higher order EOF's; most surprising is the repro-
ducibility of the ninth (North Atlantic blocking) EOF.

The dynamical basis for this study centers on an
equivalent barotropic model which includes the effects
of surface friction, orography and surface pressure
tendencies (long wave correction term). In addition,
planetary vorticity advection by the divergent wind is
included, leading to a generalized form of the orography
and longwave correction terms. The seasonal cycle enters
into the anomaly equations via the advective terms and
as an inhomogeneous forcing due to the fact that the mean
flow does not, by itself, satisfy the vorticity equation.
The inhomogeneous forcing is not a function of time due
to the stationarity assumption and the seasonal cycle is
replaced by a constant equal to the climatological mean
winter value. The complete EOF model consists of 40
quadratically nonlinear equations for the PC tendencies.
The restriction to 40 PC's (out of a possible 119) is
primarily a consequence of the excessive computational
requirements for the nonlinear terms.

By formulating the model as a linear multiple re-
gression problem in which the predictors involve only
the parameterized terms, it was found that the boundary

terms contribute very little to the remaining variance.
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These results are very likely explained to some extent
by the crudeness of the parameterizations and the in-
adequacies of the barotropic model. For the case of the
orography these results may also suggest the unimportance
of direct orographic effects on the anomalies at the 500 mb
level relative to the effects of the advection of mean
flow vorticity. The latter term is similar in form to
the orography term where the mean flow vorticity acts as
a "dynamic orography". With such an interpretation,
major "mountain chains" are located along the east
coasts of North America and Asia, and extensive
"valleys" are found throughout the subtropics. The
relative unimportance of the orographic term and
particularly the friction term is a result which is
qualitatively similar to the results obtained in the
Kruse (1983) statistical study of an equivalent baro-
tropic model. However, detailed comparisons are dif-
ficult, due to the fact that the present model is based
on deviations from a base state.

Peculiarities of the £runcated EOF model include
the inability of the model to conserve both energy and
enstrophy simultaneously, and the results (from the
regression) indicating that the longwave correction is

not needed. The latter is contrary to the results of
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the Kruse (loc. cit.) study and seems to be a filtering
effect of the EOF expansion. The effective total wave
numbers of the first 40 PC's lie in the range of 7 to 12;
whereas, the retrograde characteristics of the non-
divergent barotropic model are primarily associated with
waves having total wave numbers less than 6.

The mean flow/anomaly interaction and beta terms are

by far the dominant components of the EOF model. However,
the strong negative correlation exhibited by these two
terms results in a much reduced combined variance,
comparable to that of the tendency and anomaly advection
terms. Signficiantly smaller variance is associated with
the orography and friction terms. As a simple measure of
the EOF model's predictive skill, correlations between
the observed tendency and the tendency calculated from
the RHS terms of the model were computed. For the 40
component model the dominant PC correlations ranged from
greater than 0.55 for the fifth and ninth PC's to less
than 0.4 for the sixth, eighth and eleventh PC's.
Future work suggested by these results involves a more
detailed investigation of the synoptic situations and
associated PC compositions which lead to particularly
good or bad forecasts.

Results of a 365 day winter simulation starting from




148

mean flow initial conditions identified the mean flow
advection of anomalous vorticity as an important ehergy
source and emphasized the need for a more detailed
inspection of the stability properties of the climato-
logical mean flow. A major result of this study is the
identification of the zonally varying wintertime mean
flow as a potentially important energy source for some
of the dominant wintertime EOF's. A perturbation anal-
ysis of the climatological mean winter flow consisting
of individual EOF patterns showed that when friction is
neglected fhe largest potential growth rates (e-folding
times of about 16 days) occurred for the second and third
PC's with generally weak or negative growth rates beyond
the thirteenth PC. For the case of the January 1-10
mean flow the third and twelfth PC's show a dramatic
increase in growth rates (9.9 and 13 day e-folding times,
respectively). This is consistent with and supports the
recent findings of Simmons et al. (1982) concerning the
barotropic instability of the 300 mb climatological mean
January flow. They suggeéted that barot;opic instability
is a major source of the low frequency variability of
the wintertime Northern Hemisphere circulation.

A peak blocking month (May) was also analyzed in

order to investigate the possibility that the springtime
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climatological mean flow might show a preference for
growing perturbations consisting of the blocking EOF's.
Results of this analysis showed a dramatic drop in the
growth rates for almost all the PC's for the May average
flow. 1In particular, the fourth (North Pacific blocking)
and the ninth (North Atlantic blocking) PC's exhibited
essentially zero growth rates. Part of the reason for
the overall drop in growth rates is very likely the
general decrease in the intensity of the mean springtime
circulation; however, it may also be due in part to an
incompatibility between the wintertime perturbation
patterns (EOF's) and the springtime base state.

A more complete normal mode analysis with the 40
component model showed that for the climatological mean
winter flow the fastest growing mode (e-folding time of
16.7 days) is fixed in space and is dominated by the
second, fourth and twelfth EOF's. However, a sensitivity
test revealed a very strong dependence of the growth
rates and particularly the periods of the fastest growing
modes on the level of EOF truncation. This is partly a
result of an interchange of modes occurring for succes-
sive truncations when no one dominantly unstable mode
exists. However, other apparently spurious unstable

modes which occur for intermediate truncations suggest
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a more serious truncation problem.

The nonlinear aspects of the model have been
examined when all the boundary terms except the dissipa-
tion are neglected. An inspection of the time averaged
EOF interactions shows that the ninth PC is most strongly
influenced by interactions with other modes. By far the
dominant interaction occurs between the second (associ-
ated with fluctuations in the North Atlantic jet) and the
ninth (North Atlantic blocking) PC's. The inhomogeneous
forcing is found to be dominated by the ninth PC; this
implies the existence of an important anticyclonic
vorticity source in the North Atlantic.

Flow regimes consisting of the climatological winter
mean flow and a single dominant EOF have been tested for
their stability in order to examine the possibility that
such patterns exist as steady state solutions to simple
forced barotropic models. For this analysis the in-
homogeneous forcing is chosen to be that which is neces-
sary to maintain the constructed base state. All 40
PC's are allowed into the-perturbation equations. Each
of the base states examined were found to be more un-
stable than the mean flow by itself. 1In particular, the
base states involving the negative instances of the

second, third and ninth EOF's were found to be very
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unstable with the fastest growing modes having e-folding
times of less than seven days. The North Atlantic
blocking mode (negative ninth EOF) is the most unstable,
indicating a very strong nonlinear transfer of energy
out of this mode. These results seem to contradict the
soliton theory of blocking (e.g. McWilliams, 1980) in
which the nonlinearities are responsibe for maintaining
the mode against the effects of dispersion.

Simple low-order nonlinear models were investigated
in more detail to examine the possibility of multiple
equilibria. In order to find all the equilibria for the
low order models a numerical method was developed which
searches the ellipsoid of zero kinetic energy tendency.
The success of this method hinges on the need to restrict
the search to a reasonably small region of phase space.
Therefore, for each model truncation (except for the
two-component models) a single value of the decay rate
was chosen such that the PC trajectories are eventually
trapped in a phase space volume consistent with the
observed mean kinetic energy of the anomalies.

For the two-component models the solutions were
computed directly from a third order polynomial, as well
as by the searching method, in order to verify the tech-

nique. Multiple equilibria were found; however, in
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general these solutions involved unrealistically low
values of the decay rate and/or unrealistically large
values of the inhomogeneous forcing. For the model
consisting of the first and ninth PC's, three solutions
were found for realistic parameter values. Two of the
solutions are stable and one is unstable. One of the
stable solutions is near the solution to the correspond-
ing linear system, while the other two have large
magnitudes with important contributions to the steady
state balance from the nonlinear terms. As more com-
ponents were allowed into the model only one solution was
found for realistic parameter values. This solution is
stable and generally very near to the linear solution
with only small contributions from the nonlinear terms.
These results do not support the near resonance
multiple equilibria mechanism of the low order barotropic
models with orography and thermal driving. To the extent
that the atmosphere is equivalent barotropic, the present
study suggests that the 500 mb streamfunction anomalies
do not significantly "feelh the direct effects of the
orography. Instead the presence of the mean flow plays
a dominant role as an orographic type term as well as
an important energy source for the anomalies. While

multiple equilibria are found for some values of the
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model parameters, the exact mechanism is not clear. For
realistic values of the decay rate large amplitude
equilibria are associated with directions in the PC

phase space given by the most unstable eigenvector of the

energy related terms (mean flow advection of the anomalous

vorticity and dissipation). 1In addition, these results
emphasize the need for an inhomogeneous forcing in order
for multiple equilibria to occur in the presence of
realistic damping.

In the present model the residual inhomogeneous
forcing exhibits important anticyclonic vorticity sources
in the North Atlantic and off the west coast of North
America. Therefore, blocking-type flows are most likely
to occur as a quasi-linear response to the direct forcing
in these areas. 1In order to determine the nature of this
forcing it is likely that one must turn to more comp-
licated multi-level models which directly include the
effects of baroclinicity and thermal forcing. Frederik-
sen (1982).has examined the stability of a 3-dimensional
flow typical of the Northern Hemisphere winter. It was
found that for certain values of the static stability
the fastest growing modes in a two-layer spherical
quasigeostrophic model exhibited high-low dipole struct-

ures in both the Pacific and Atlantic oceans. Such an
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instability which depends on the vertical structure of
the atmosphere would show up as a residual forcing in

the present barotropic model.
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APPENDIX

A. COMPUTATIONS
1. Real and complex expansions

The complex expansion of the streamfunction in terms

of odd spherical harmonics (Yg) is

16 Oy m im A m
A, 6,t) = § y v, " (E)e @ P_*(¢) |
n =1 m =-n o o |
o o o

(n -m_ odd) \
o o

g U (£) Y _(X,9) (A.1) u

(nu-ma odd) h

where Pﬁ is the normalized associated Legendre function

of the first kind defined in Platzman, 1962, where P;m

= PQ. In practice, the streamfunction data were expanded

in the real domain as (Kruse, 1983) i

15 16 |

v, 0,t) = § I (a)°(t) cos m |
m=0 n=m+1 (A.2) \
+ a1 (e) sin m}vZ=5__(-1) " (4)

where the real and complex coefficients are related by
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(=1) (Am,o - iAm’l) , m >0

m /2 "

wn = (A.3)
m,o

2. The EOF's

The EOF calculation is based on 10-day averaged
values of the real spectral coefficients (A.2). Each
year is divided into the 36 time periods shown in
Table Al. The climatological seasonal cycle is defined

as

A

‘fj B AS (A.4)

Ne~10
€S>

k=1 ~KJ

where ﬁkj is the 10 day averaged (135 x 1) vector of
real streamfunction coefficients for the kth year (1-10)
and the jth period (1-36). Deviations from the seasonal
cycle are computed as

A

Ty . = - ¢S A.5
?k] %kj %j ( )

Note that
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J k=1 ~k3

where the sum over j refers to an arbitrary interval

of the year (see Table Al).

The real winter EOF's are the (135 x 1) eigen-

vectors of the covariance matrix

c =l gyl

10 » 12 (A.7)

where ( )T denotes a transpose and the number of
periods within a year is 12 for the winter season (Dec.
2 - March 31). V¥ is the (135 x 120) matrix of anomaly
vectors defined in (A.5). The eigenvector/value com-
putations were done in double precision using routines
found in the International Mathematical and Statistical
Libraries (IMSL).

With the use of (A.3), the real EOF's (fi) computed

from (A.7) may be related to the complex EOQOF's (ei) by

& 7T Xy (A.8)

where T is the unitary matrix
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Table Al. Time averaging interval used to develop the
basic data set employed in the EOF computations.
The winter EOF's are based on time periods 1-9 and
34-36 of each year.

Time Beginning Ending
Period # of days date (00Z) date (122)
1 10 Jan 1 Jan 10
2 10 Jan 11 Jan 20
3 10 Jan 21 Jan 30
4 10 Jan 31 Feb 9
5 10 Feb 10 Feb 19
6 10 (11 on Feb 20 Mar 1
7 10 leap yr) Mar 2 Mar 11
8 10 Mar 12 Mar 21
9 10 Mar 22 Mar 31
10 10 Apr 1 Apr 10
11 10 Apr 11 Apr 20
12 10 Apr 21 Apr 30
13 10 May 1 May 10
14 10 May 11 May 20
15 10 May 21 May 30
16 10 May 31 Jun 9
17 11 Jun 10 Jun 20
18 11 Jun 21 Jul 1
19 11 Jul 2 ' Jul 12
20 11 Jul=13 Jul 23
21 11 Jul 24 Aug 3
22 10 Aug 4 Aug 13
23 10 Aug 14 Aug 23
24 10 Aug 24 Sep 2
25 10 Sep 3 Sep 12
26 10 Sep 13 Sep 22
27 10 Sep 23 Oct 2
28 10 Oct_ 3 Oct 12
29 ' 10 Oct 13 Oct 22
30 10 Oct 23 Nov 1
31 10 Nov 2 Nov 11
32 10 Nov 12 Nov 21
33 10 Nov 22 : Dec 1
34 10 bec 2 Dec 11
35 10 Dec 12 Dec 21

36 10 Dec 22 . Dec 31
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nh nh +1
(0 ' iyt ;
/2 /2
m(]. mO.
gty % gty 3
/2 /2
Hh nh +1
-1) 2i(-1 2 (A.9)
/2 /2
mO(. mOL
T T
/2 /2
0 1
1

The elements of the real EOF's have been arranged in a
sequence of the cosine/sine coefficients with the (m = 0)

cosine coefficients occurring last.

3. EOF model coefficients

For each element of ei, (A.8) may be written more

explicitly as
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e, (y) = % thxi(Q) (A.lQ)

where tYQ are the elements of (A.9). The computation of
the EOF model coefficients is based on the real versions
of (3.2.4) which are determined by substitution of
(A.10) .

As an example, the real form of (3.2.4a) is

akj = % xk(Q) Xj(l)cz (A.11)
where c2 = ng(nﬁ + 1). The real form of (3.2.4f) is
127
gkj = lzl {xk(l) xj(z + 1)
(2 odd)
- xk(z + 1) Xj(’”}mz (A.12)

and the real version of (3.2.4c) is

% D (x (0 x;(00) x0077)

. (a.13)

+ xk(Q) xi(R ) xj(l )}122,2

where
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(A.14)

The subscript y in tYl has been dropped since the sums

in (A.13) involve only positive m. .., 1s computed

L
L7
in double precision from formulas given in Silberman

(1954) and
is +is_ _.+is_ ..
e i ) ) _
(L - de ’)(l - éom ’;) (A.1l5a)
2 2
isg,,
SZQ,Q,’Q,” = (_1) (l - (SOmQI”)
is +is_ .
- {tapy¥e Kk - 57 9
om

2

(1L - dom ‘) (A.15Db)
2
isl,
839979 = (71 i domz,)
is +is_ ..
T U A
om
2
(1 - 60m ) (A. 15c)




where
1l , sine term
is =
0 , cosine term
and
. 3 Arese m, = 0
emy 0 , otherwise

The sum in (A.13)
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involves 56,664 terms for the case of

triangular truncation at total wave number 16 limited to

the odd harmonics.

B. 1Identities of the EOF coefficients

1. Symmetry of akj

ajk & z CY ej(Y) ek(Y)

E Sy ej(Y) ek(Y.)

where use was made of the fact

and ¢c— = c .
Y Y

g c? ej(Y) ek(Y)
akj
that Ek(y) = ek(7)
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2. Symmetry of ukj

These coefficients may be rewritten as

Uy = L ryy) e; (v) e, (v)

y
+ ++, — ++, —
* é r,(y") ej(Y ) e () + e (') ej(y)
Since rl(y) = rl(y), it follows from Bl that ukj = ujk'

3. Antisymmetry of gkj

I

Iy = 1 Im oeiln) () =i g m- ey (V) ey (¥)

Y

-1i z mY ej(y) ek(y)

= —gkj (note that m; = -m )

4. Properties of the EOF interaction coefficients
In the following derivations, it is necessary to
make use of the redundancy relations of the coupling

integrals, L These are (see Platzman, 1962)

YBa
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Lyvea = "Lyap (B.1a)

8o = Lay e

LYBa = LBYa (B.1c)
Let L¢Ba =i LYBG and IyBa = (CB - ca) L¢Ba' It follows
from (B.la) that IYBa = IYGB"

(1) Symmetry of d

kji
d.:=23 3558 (y) e (p) e fa) I
1y 2 Y o B k 1 J YBo
=135y 78 () e (a) e (p) 1 =d
& oo Ble i §P tyag T %kii
(ii) dkji + djki + dijk & 0

Following a development similar to that of

Platzman (1960) d may be written as

kji

Ae5i T T

N| -

% % e, (v) g cd'L¢Bu{ei(B) ej(a)
# ei(a) ej(B)} (B.2)

Let



= *
QYBj y c, esla) L

where

YB3 B3

since from'(B.l)

8a T 7 Dgya
Then
@ vy W= = Y VM Ioa s L s 00
Ji 2 % B yBkij yBkji
where
D s e, (y) ej(B) Q gi

and from (B.4)

D= .. = =D, . .
yBkJ1 Byjki

Therefore

(B.

(B.

(B

(B.

(B

(B.

3)

4)

.5)

6)

.7)

8)
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5. Antisymmetry of rlkj
Let
= -— 8 *
MYB g ( Cawu) LYBu
where, from (B.5)
M, = - M—
YB By
Then
rlkj = g z FYBkj

(B.9)

(B.10)

(B.11)
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where
FYBkj = ek(y) ej(B) MYB (B.12)
and
FYBkj = = Fg?jk (B.13)
Therefore
rl =yYJYF .. ==-7Y7Y) F—.
ol B
A yBk]
= —rlkj

6. Antisymmetry of the simplified orography
If the advection of planetary vorticity by the

divergent wind is neglected and a constant coriolis

parameter is assumed, (3.1.4) simplifies to f0 = sin ¢q
and term D of (3.2.3) becomes M‘E zj fﬁj where

J

fﬁj = E g % ha ek(y) ej(e) L;Ba (B.1l4a)
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and
M° = a fO/H* (B.14Db)

The antisymmetry of (B.l4a) folows from B5 by substitut-

ing ha for (—caw2).

C. Conservative properties of the EOF model

Unlike the spectral model, the EOF model does not,
in general, conserve both energy and enstrophy for
arbitrary model truncations. In the following, two
alternative model formulations are given: one approach
conserves enstrophy but not energy and the other, based
on a diagonal form of the tendency term, conserves
neither property. When all of the EOF's are included
both energy and enstrophy are conserved, independent of

the model formulation.

1. Enstrophy conserving formulation

The spectral model with only the nonlinear and beta
terms is

c

» a _]; _ .
YWy T2 g % Vel piCpei o) Bypar il ¥y (d)
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Multiplying by CY and expanding (C.l) in terms of EOF's

leads to
Y b .2y =V Vzud 8., +7 2.4l (c.2)
: kj 73 L R B % J “kJ
where bkj is given in (3.2.8d),
T 1ie - : .
dkji g % 2 CY 2(cB ca) ek(y)ej(B)ei(a)LYBa
(C.3)
and
i c im e e. C.4
The enstrophy (ENS) tendency is
1 d v .
5 ¢ (ENS) = E Z, ) bk] 23
4
=3y z{Y Y 2z =z, 4.
K k i3 i 73 "kji
+ 2. 9. . C.5
% 3 Ficy? (C.5)

In the following, it is shown that d .. and gij satisfy

the same properties as d

kji

ki and gkj' respectively, and

therefore the ENS tendency is zero.
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(i) Symmetry of dkji

This follows directly from B4i.

(1ii) dkji + djki + dijk =0
Rewrite d7.. as
kji
P R —
degi = 7 3 D) c.C, e (v) 2 LYpoley (B) e (a)
Y O §
& ej(a) ei(B)} (C.6)
Let
i e ! L* Co7
anj % e](B) B ( )
where
%53 = 7 yj | R

since from (B.1l)

x _ = - T*
LYBG LGBY (C.9)

Then
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1
d”.. = - = g e L .
kji 2 E g cyca{Dyakjl e Dyaklj} (C» 10}
where
DYOiji = 8.0y anj e; (a) (C.11)
and
Therefore
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(iii) Antisymmetry of gkj
This follows directly from (B.3) since c; = cy.

2. Model formulation with a diagonal tendency term

Next it is shown that when the tendency term is
diagonal neither energy or enstrophy are identically con-
served unless all the EOF's are allowed in the model.

Let

e, (v) ejm (C.13)

Then

YYv. 2z z.= (C.14)
3 kjy 'k

The spectral model is written as

m
. l .Y
b =5— L Y v, ¥ (lc, - c )L +i Xy  (C.15)
Y 2cY o B ¢ B 7R ; o’ TyBo CY Y

Then
2, = E g z; Zj,diﬁi + % z5 g£5 (C.16)
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where
: _ CB_Cu

arso =3 1 1 & by} eyla) ¥ (8) L .. E7)

o i 2 ¥ £ B CY YBa
and

m o
A 17(- .18
gkj % y Y) ej(y) (C.18)

One half the tendency of (C.14) is

z T o2 = Z, 24 Z v, .d ~
g Jj E ky'k g z 2 J £ '8 E kj ksr
+ VY 2, Zg y Vi gﬁé (C.19)
s J k ]

where
E ij di;r
Ct
=1 Jle, - c e la) e (B) ] Lot eyt
a B A
LY)BU % ek(Y) ek(y') (C.20)

and if all the EOF's are included (see (2.2.12b))
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E e (Y) e (y7) = 6YY' (C.21)
Therefore
djsr (as in B4) if t =1
E vkj dksr = (C.22)
djsr (as in Cl) if t = 2
And finally
t
v A zzc—l“() (y7) i Y e, (y)
g = e.(y) e_(y im . e, (v
- kj “ks g Y,CY, J s v g k
Ek(y’) {c.23)
If all the EOF's are included
gjs (as in B3) 1if t =1
E vkj Fee = % (C.24)

gjs (as in Cl) 1if t = 2

It follows that both the energy (MSV) and ENS tendencies
are identically zero only when all the EOF's are allowed

in the model.

D. A technique for finding steady state solutions to
special nonlinear systems

The search for solutions outlined in 4.3ci is only
feasible if the ellipsoid of zero kinetic energy (KE)

tendency is confined to a reasonably small volume of
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phase space. In the following, a procedure is given
which, for an arbitrary model truncation, provides the
minimum value of k that insures the surface of zero KE
tendency is bounded (forms an elllipsoid) inside of which
the KE tendency is positive and outside of which the KE
tendency is negative. Furthermore, a method is outlined
which provides a seemingly reasonable value of the
frictional decay rate (Kr) by reducing the volume of the
zero KE tendency ellipsoid to a specified fraction of the
volume of the constant MSV ellipsoid determined from the

observations.

1. Choosing the frictional decay rate to insure that Ps
is positive definite

From (4.3.9)

g .
(? ” g) Ps (% < g) . Psg (D.1)
where
P = kA - R (D.2a)
s S
and
q =% p Ll gx (D.2b)
2 2 S
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Since A is positive definite and Rs is symmetric, there
exists a nonsingular matrix U (see Bellman, 1960, pp. 58-

59) such that
U P U,= I - A* (D.3)

where A* is a diagonal matrix of the generalized eigen-

values determined from
_ * o
det(Rs AiA) 0 (D.4)

If k is chosen to be greater than the maximum A;, UT PSU
is positive definite. Since U may be written as a
product of unitary and positive definite matrices
(Bellman, 1960) it follows that PS is also positive
definite. As k is reduced in magnitude so that it ap-

T

proaches max (A;), the smallest eigenvalue of U PS U

approaches zero and, therefore, Ps also becomes singular.

2. A frictional decay rate (x_J) based on energy
constraints £ .

The ellipsoid of zero KE tendency (D.1l) may be

written in the standard form
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y2 y2 y2
il Pt SR R (D.5)
b2 b2 b2
1 2 N
where
_ T 5
bi = (f e f/ui) (D.6)
= 2 p7l _u
? s Ps & (D.7)

and the u; are the eigenvalues of PS.

The ellipsoid of constant MSV of the observations

is
zT Az = ) a A, = C (D.8)
3 iy kk "k T 70 :
k
or
2 2 2
v v v
S+t 2+ .. t=1 (D.9)
dl d2 dN
where

o
d. = =% (D.lO)
1 Lli

The Ak are the variances of the data PC's, the u; are

the eigenvalues of A, and z = T v, where T is the matrix
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of eigenvectors of A.
In order to obtain a reasonable bound on the
ellipsoid of zero KE, the ratio of the volumes of (D.5)

and (D.9) are constrained so that

N N

Ib,/ T4, =v (D.11)
! i¥ . i

i=1l i=1

or

N

) LE/K—X;

St i scgy? /N (D.12)
Y (K-Xi)z
=1

where the A; are the generalized eigenvalues given in

(D.4) and
T = UET iz * (D.13)

After some experimentation, y was chosen to be 0.5.

This value seemed to result in a reasonable size of the
zero KE tendency ellipsoid relative to the observed MSV.
The solution (Kr) was deterﬁined numerically by re-
writing (D.12) in the form f(k) = 0 and decreasing «
from the value found in D1 until a sign change occurred,
The final solution was determined by an algorithm found

in IMSL (zbrent).
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3. Discretization of the zero KE tendency ellipsoid
The search of the ellipsoid (D.5) is conducted over

the points in the Y direction defined by
Wy & === bl (D.14)
where kl g1gl, 1T ,E2T S 2Ml,and Ml is the number of

gridpoints along the bl semiaxis (excluding the origin).

For each Yq the points along the successive axes are

then
Ml—k.
Vo o= el b (D.15)
] M, J
where
Mo,yM. 4l e o epu2l, =M. i for .2 <, Pie N
] ] 1 £ =
kj £ (D.1l6a)
M., 2M.-M. for j = N
J 13 4
and
j-1
. 2 2.2 § i 2. %
MJ g Ml (Ml z (Ml ki) ) (D.16b)
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