UW-Madison.
SSEC Publication No.87.11.11

SYSTEM IMPLEMENTATION NOTES
FOR DOS~BASED PC-McIDAS

Jonathan R. Ide

Space Science and Engineering Center
University of Wisconsin - Madison

November, 1987

U™

REERRRRRRREddRRddad

PEEEEEEEIREREEREERE

TABLE OF CONTENTS

0. Preface

1. PC-McIDAS Design Goals
1.1 Some PC-McIDAS Design Goals
1.2 How the Goals Have Been Met

2. Summary of Interrupt Vector Usage

3. A Few Hardware Considerations
3.1 Interacting With the "Tower"
3.2 Communications Hardware
3.3 Extended Memory

4. SYSCOM -- System Common Area
4.1 Why is SYSCOM Needed?
SYSCOM Structure
SYSCOM Implementation
Accessing SYSCOM
Modifying SYSCOM

[Y
b wN

54 TV iControl

5.1 General Principles of TV Control
5.1.1 TVCTRL Functions
5.1.2 The Software Interface to TVCTRL
5.1.3 The TVCTRL Semaphore

5.2 TVSSEC -- TV Control for the "Tower"
5.2.1 TVSSEC’s Tick Mechanism
5.2.2 How TVSSEC Communicates with the Tower
5.2.3 Specifics of the INT 65H Interface for

TVSSEC _
5.2.4 Full Buffers and Deadlocks
5.3 TVEGA -- TV Control for IBM EGA and VGA

5.3.1 Basic Differences from TVSSEC

5.3.2 TVEGA’s Tick Mechanism

5.3.3 Specifics of the INT 65H Interface for TVEGA
5.3.4 How Frames are Handled

5.3.5 Frame Numbers and the Cursor

6. Communications Drivers

6.1 Overview

6.2 PNETINT -- The Low-Level ProNET Comm Driver
6.3 COMMP -- The High-Level ProNET Comm Driver
6.4 ASYNC -- The Low-Level Async Comm Driver

6.5 COMMA -- The High-Level Async Comm Driver
6.6 Special Requirements for Broadcast Reception

Table of Contents ... 1

7. The Text Window Interface
7.1 Introduction
7.2 Memory Usage
7.3 VIDEO -- The BIOS INT 10H Replacement
7.4 SCREENS -- The Text Window Handler

8. Graphics Drivers
8.1 Introduction

8.2 PVSSEC -- PV for the Tower
8.3 PVEGA -- PV for the EGA and VGA
8.4 PLOTPACK -- The Plot Package for PC-McIDAS

9. Using the IBM EGA and VGA

9.1 Programming Considerations Common to Both the EGA
and the VGA

.1.1 Graphics Memory Organization

.1.2 Reading a Pixel

.1.3 Writing a Pixel

.1.4 Writing an Image

.1.5 Important PC-McIDAS Modules that Read/Write
the EGA/VGA

2 Color Selection on the EGA

3 Color Selection on the VGA

{(e Ve I Ve IV JaVo}

9.
9.

10. The Keyboard-Filter
10.1 PC-McIDAS Keyboard Requirements
10.2 Functional Description of KBIOSF
10.3 Single-Letter Command Handling
10.4 Ctrl-S and Ctrl-Q Handling

11. The PC-McIDAS Command Scanner
11.1 Overview
11.2 Input to the Scanner
11.3 Parsing a Command Line

12. Spawning Subprocesses
12.1 Overview

12.2 The First Kind of Spawn -- Parent Stays in Memory

12.3 The Second Kind of Spawn -- Parent Leaves Mail in
SYSCOM

12.4 The Third Kind of Spawn -- Dynamically-Linked
Subroutines

12.5 Calling Sequences of Spawn-Related Routines

Table of Contents ... 2

13. DOS Functions
13.1 Introduction
13.2 Serializing Access to DOS Functions
13.3 Applications Interface to DOS Functions
13.3.1 File Directory Management
13.3.2 File Creation
13.3.3 File I/0
13.3.4 Flow Of Control
13.3.5 Memory Management
13.3.6 Time and Date
13.3.7 Interrupt Vectors
13.3.8 Miscellaneous

14. The PC-McIDAS Utility Layer
14.1 Introduction
14.2 SYSCOM Access
14.3 McIDAS Command Parameter Retrieval
14.4 LW File System
14.5 Path Names
14.6 Text Output
14.7 Formatting Numerical Output
14.8 Date and Time
14.9 Variable Type Conversion Routines
14.10 Basic Byte-Move Routines
14.11 Pack and Crack Routines
14.12 Logical AND, OR, etc.
14.13 Other Byte and Character Manipulation Routines
14.14 Keyboard
14.15 Communications
14.16 Graphics
14.17 Saving and Restoring Images and Graphics
14.18 Spawning Subprocesses
14.19 Logging Events
14.20 Frame Control
14.21 Lock and Unlock
14.22 Sound Production
14.23 Device Status Checks
14.24 Addressing Utilities
14.25 Timing Control
14.26 Miscellaneous

15. EGA/VGA Graphics and Imagery
15.1 Introduction
15.2 Generating Images Locally
15.3 Host-Generated Images and Graphics
15.4 Saving and Restoring Images and Graphics

Table of Contents ... 3

16. The Command Queue
16.1 Why is a Command Queue Needed?
16.2 Command Queue Implementation

17. Accessing Extended Memory
17.1 Uses of Extended Memory in PC-McIDAS
17.2 EXTMOV -- How It Works and How to Use It

18. Initialization and Configuration Control

18.1 Workstation Configuration and the CONFIG Program
18.2 MCAUTO.BAT -- Boot-Time Initialization of
PC-McIDAS

18.3 Run-Time Initialization of PC-McIDAS

18.3.1 MCINIT.EXE, INITSYS.DAT, and CONFIG.DAT
18.3.2 SCINIT and SCRNEW.EXE
18.3.3 GRINIT.EXE

18.3.4 The LOGON Command and TRMINI

19. Debugging Tools
19.1 Using DEBUG.COM with PC-McIDAS

19.2 Getting Trace Output via a Serial Port
19.3 Miscellaneous Tools

Table of Contents ... 4

lllllllllllllllllll‘

PREFACE

The purpose of these notes is to describe the most
important elements of the systems programs underlying the
implementation of PC-McIDAS workstations under DOS 3.X.
Applications programs are not discussed except in the most
general way, nor are the higher-level Fortran utilities that
are used for such things as accessing PC-McIDAS data bases.
Lower-level utilities are discussed in some detail. The
emphasis is on the underpinnings of the workstation imple-
mentation per se.

Even within the intended scope of these notes, a com-
plete, detailed description is not possible. I have tried
at least to orient the reader sufficiently to allow him/her
to see the big picture and get some idea of where in the
source code to look to answer specific questions or prob-
lems. I have tried also to pay particular attention to the
most impenetrable aspects of the PC-McIDAS implementation,
giving them a more detailed treatment.

These notes have been written in some haste. I have
tried to be accurate, but the final authority must be the
source code itself. Also, there are certain topics I wanted
to cover but time does not permit. These include: BIOS
function interface entry points; command line editting and
the command line stack; the drop-down menu HELP interface;
interactions with the soft tablet interface software; inter-
actions with voice interface software; the scheduler; and
the menu system and function keys. However, I believe I
have covered the topics that will be of greatest benefit to
future maintainers of the software.

For a more general treatment of some of the issues-
described herein, see the following papers:

PC-Based McIDAS. Jonathan Ide. Preprint Volume, 3rd
International Conf. for Meteorology, Oceanography, and
Hydrology, New Orleans, LA, AMS.

The UNIDATA PC-McIDAS Workstation =-- A Technical
Discussion. Jonathan Ide. Preprint Volume, 4th Inter-
national Conf. for Meteorology, Oceanography, and
Hydrology, Anaheim, CA, AMS.

Man-Machine Interfaces Developed for a PC-Based McIDAS
Workstation. Jonathan Ide, Russell Dengel, and Robert
Krauss. Preprint Volume, 3rd International Conf. for
Meteorology, Oceanography, and Hydrology, New Orleans,
LA, AMS.

Preface ... 1

AEREENERERRREREREET

Flexible Menu Creation for the Unidata PC-McIDAS Work-
station. Jonathan Ide. Preprint Volume, 4th Inter-
national Conf. for Meteorology, Oceanography, and
Hydrology, Anaheim, CA, AMS.

The University of Wisconsin-Madison UNIDATA Broadcast
Experiment. Russell Dengel, Jonathan Ide, Raymond
Lord, David Santek, Thomas Whittaker, and J. T. Young.
Preprint Volume, 4th International Conf. for Meteor-
ology, Oceanography, and Hydrology, Anaheim, CA, AMS.

Data Management on the UNIDATA PC-Based Workstation.
Gail Dengel, Russell Dengel, Jonathan Ide, and Raymond
Lord. Preprint Volume, 4th International Conf. for
Meteorology, Oceanography, and Hydrology, Anaheim, CA,
AMS.

Preface ... 2

FERERRREER

PC-McIDAS DESIGN GOALS

Some PC-McIDAS Design Goals

0. Provide a superset of the functionality of existing
(non PC-based) McIDAS terminals.

i Provide a systems environment in which mainframe McIDAS
commands can be ported to the workstation with minimum modi-
fications to mainframe source code.

2% Isolate hardware dependencies, and support a variety of
hardware configurations. Allow the pertinent hardware com-
ponents (graphics devices, communications hardware, pointing
devices, etc.) to be permuted with minimum impact on appli-
cations software. Enable new devices to be incorporated
easily in the future, again with minimum impact on applica-
tions software. Allow a given workstation’s configuration
to be changed easily.

In other words, provide for the development of an
entire family of related workstations that all use the same
scanner, applications programs, and user interfaces, and
allow hardware drivers to be interchanged flexibly.

I Isolate operating system dependencies. Attempt to min-
imize the impact on applications software of the inevitable
future conversion to other operating systenms. (Naturally,
the impact on systems software will be more drastic.)

% Develop new, highly interactive user interfaces. Pro-
vide a framework in which new interfaces can be easily in-
corporated into the system in the future.

PC-McIDAS Design Goals ... 1

(
PEEEEEEEEEEEEEEEREE

How the Goals Have Been Met

X There is a so-called "utility layer" used by mainframe
applications software -- LW file routines (LWI, LWO, etc.),
routines for fetching parameters (IPP, CKWP, etc.), etc. To

the fullest extent possible, this utility layer was repro-
duced in PC-McIDAS. Calling sequences were kept intact
wherever possible, even though the routines themselves had
to be rewritten. Presenting the familiar utility layer
entry points to applications programs made it possible for
mainframe applications to "feel at home" in PC-McIDAS with
minimum modifications to source code.

MicroSoft Fortran currently does not support the full
Fortran 77 standard. The greatest deficiencies are in the
area of string manipulations. A set of utilities were
created to help applications programmers perform the various
kinds of functions supported by mainframe Fortran but not by
Fortran on the AT.

- P Applications communicate with hardware device drivers
through a virtual interface known as SYSCOM (System Common
Area), analogous to UC (User Common) on the mainframe. To
change the current frame number, for example, an application
changes the appropriate value in SYSCOM. The application
need not concern itself with how or on what kind of device
the new frame actually gets displayed.

In addition, a limited number of entry points are
available to applications to perform such functions as
drawing a pixel on a graphics frame. However, these entry
points are implemented in such a way that no hardware
dependent code is actually linked in with the application.
Instead, the entry point activates a software interrupt.

The interrupt handler appropriate to the particular hardware
device in use is installed separately.

All hardware dependent drivers are isolated in resident
interrupt handlers. These drivers are self-contained
modules that are installed at boot-time. Setting a work-
station up for a particular hardware configuration amounts
to providing a mechanism to ensure that the appropriate
versions of the drivers get installed.

PC-McIDAS Design Goals ... 2

IR Y

A configuration program (CONFIG) is provided which
steps the user through a series of questions that define the
workstation’s configuration. CONFIG automatically sets up
the batch files needed to configure the workstation accord-
ing to the user’s specifications. The same software instal-
lation diskettes are used for all PC-McIDAS workstations.

- ¥ DOS function calls are hidden from applications pro-
grams. PC-McIDAS provides a set of Fortran-callable entry
points that perform DOS functions. For many applications,
porting to another operating system will require only that
these DOS function subroutines be recast in the new environ-
ment.

4. Various user interfaces have been developed. They
interact with the PC-McIDAS scanner via SYSCOM, so old user
interfaces can be dropped from the system or new interfaces
developed with minimal impact on the system as a whole.

PC-McIDAS Design Goals ... 3

lllllllllllllllllll‘

SUMMARY OF INTERRUPT VECTOR USAGE

The following interrupt vectors are modified by

PC-McIDAS:

INT 10H

INT 16H

INT 1CH

INT 60H

INT 61H

Replacement for the BIOS video interrupt.
The BIOS code is re-vectored to INT 62H;
VIDEO.EXE is installed under INT 10H.
VIDEO provides INT 10H functionality under
the text window interface. Certain func-
tions not handled by VIDEO are passed
through to the BIOS code via INT 62H.

(See VIDEO.ASM.)

KBIOSF, the replacement for the BIOS
keyboard interrupt. The interrupt vectors
for both KBIOSF and the BIOS keyboard
handler are kept in SYSCOM. KBIOSF is
installed during PC-McIDAS run-time ini-
tialization, de-installed when PC-McIDAS
exits. (See KBIOSF.ASM.)

The "tick" for TVCTRL in EGA/VGA-based
workstations. INT 1CH is the "time-of-
day" interrupt, triggered 18.2 times per
second. (See TVEGA.ASM.)

SYSCOM interface. Access to SYSCOM is
provided by the various functions of INT
60H. (See SYSCOM.ASM.)

Low-level communications drivers. 1In
ProNet-based workstations, the various
functions of INT 61H provide access to the
ProNet interface hardware. (The driver is
PNETINT.EXE; see PINTLNK.ASM, COMINT.ASM
and PNETINT.C) In async-based work-
stations, INT 61H provides access to the
serial port. (The driver is ASYNC1.EXE or
ASYNC2.EXE, depending on whether serial
port 1 or 2 is used; see ASYNC1.ASM and
ASYNC2.ASM, respectively.) High-level
communications functionality (e.g. decod-
ing and processing packets, formulating
reply messages) are handled by the drivers
installed under INT 64H.

Summary of Interrupt Vector Usage ... 1

rlllllllllllllllllll‘

INT 62H

INT 63H

INT 64H

INT 65H

INT 66H

INT 67H

BIOS video interrupt. Re-vectored from
INT 10H (qg.v.).

Graphics/imagery drivers. Functions to
define a graphics window, draw a graphics
point or line segment, or load an image
line. (For EGA/VGA-based workstations,
the driver is PVEGA.EXE; see PVEGA.ASM.
For tower-based workstations, the driver
is PVSSEC.EXE; see PVSSEC.ASM.)

High-level communications drivers. These
drivers process entire packets, leaving it
to the low-level drivers to interface to
the comm hardware. Called from TVCTRL.
(For ProNet-based workstations, the driver
is COMMP.EXE; see COMMP.FOR, PCOMM.ASM,
PUTPCK.ASM, and GETPCK.ASM. For async-
based workstations, the driver is
COMMA.EXE; see COMMA.FOR, ACOMM.ASM,
PUTPCK.ASM, and GETPCK.ASM. For stand-
alone workstations, the driver is
COMMN.EXE; see NCOMM.ASM.)

Software interface to TVCTRL. See chapter
on TVCTRL for description of functions.
(For EGA/VGA-based workstations, see
TVEGA.ASM. For tower-based workstations,
see TVSSEC.ASM.)

Driver for text window interface.
Refreshes text window; handles PageUp,
PageDown, etc.; handles toggle among text
windows, soft tablet, and/or EGA/VGA
frames; etc. Called from TVCTRL. (Driver
is SCRINI.EXE; see SCRINI.FOR,
SCREENS.ASM, and CLRPAG.ASM.)

The use of this interrupt is up in the air
at the time of this writing. It may be
made available to the voice-recognition
handler, which would be called from
TVCTRL. However, INT 67H is used by the
Lotus-Intel-Microsoft Expanded Memory
Management system, so it may be advisable
to leave it alone and use another mechan-
ism to activate the voice-recognition
handler.

Summary of Interrupt Vector Usage ... 2

IEEEEEREEEEEREERREREE

INT 77H

The "tick" for TVCTRL in tower-based
workstations. Triggered by IRQ15, which
in turn is triggered by the TV timing
interrupt in the tower. (See TVSSEC.ASM.)

Summary of Interrupt Vector Usage ... 3

183

AEERERRRRRRERERE

A FEW HARDWARE CONSIDERATIONS

PC-McIDAS applications programs are isolated from
hardware specifics, for the most part. The systems code,
however, needs to interact directly with the hardware in
various ways. Hardware specifics will be discussed in some
detail in the chapters on the various device drivers. The
purpose of this chapter is to give a brief overview of
certain hardware considerations that have impacted the
PC-McIDAS system design in significant ways.

Interacting with the "Tower"

PC-McIDAS is designed to operate in a variety of hard-
ware configurations. One such configuration couples the
workstation computer (IBM AT) with an SSEC/Dataram
video/graphics display unit, otherwise known as a "tower".

The tower was the heart of the "old" (pre-PC) McIDAS
terminal. It contains an 8085 microprocessor that executes
code stored in ROM. The 8085 was used to control the
display in various ways: looping control, cursor drawing,
joystick monitoring, color enhancements, etc. In the pre-PC
McIDAS terminal, communications routines resided in the
tower and comm packets generated on the host were handled
directly by the tower firmware.

In a PC-McIDAS workstation, it is necessary for the
PC-McIDAS system to intercept all comm packets coming from
the host. PC-McIDAS needs to know what is going on and
needs to be able to communicate with the host directly.
Naturally, then, the PC-McIDAS communications software runs
in the AT, no longer in the 8085.

Similarly, PC-McIDAS needs to be able to control many
of the functions formerly handled by the 8085: 1looping,
cursor positioning, etc.

Two possible design paths were considered. It would
have been possible to do away completely with the 8085 and
its associated firmware and control the display completely
from the AT. Alternatively, the 8085 and its firmware could
be retained, and the AT could initiate actions in the tower
by passing to the tower the same kind of comm packets the
tower firmware was used to receiving. After much discus-
sion, the latter approach was taken. It was felt that ‘
reproducing the firmware functionality on the AT was a non-
trivial task with relatively little to recommend it beyond
increased ease of maintenance.

A Few Hardware Considerations ... 1

The hardware interface between the tower (which uses a
MultiBus architecture) and the AT (which uses the AT bus
architecture) is through a pair of interface cards manufac-
tured by Bit3 Corp. One card resides in the AT, the other
in the tower. The interface is via a dual-ported memory
that resides at segment address ODOOOH in the AT.

Two buzzwords are often heard in connection with the
AT-tower interface. The first is "Bit3 card". This refers
to the interface cards mentioned above. Bit3 is a brandname
only; there is no other significance to the name. The sec-
ond buzzword is "02/03 protocol". This refers to the comm
protocol that defines the packets passed between the AT and
the tower (and between the host and old-style McIDAS
terminals). The name stems from the fact that each packet
begins with an 02 byte and ends with an 03. For communi-
cations between the host and a PC-McIDAS workstation, a new
protocol has been instituted. It is referred to as the "FO
protocol". See the chapter on communications.

One significant fact about the Bit3 card: at the time
of this writing there does not exist a version interfacing

the MultiBus to the MicroChannel Architecture, so it is not
yet possible to couple a tower to a PS/2.

Communications Hardware

PC-McIDAS supports two principal communications modali-
ties: .

- ProNet LAN
- Asynchronous serial connection.

Async comm can be via telephone, direct line, or satellite
broadcast.

ProNet workstations require a ProNet interface card in
the AT. Async workstations use the standard IBM serial/par-
allel adapter card or the serial port on the AST Advantage
card or other extended memory card.

At the time of this writing no ProNet interface card
exists that can be used in the PS/2.

A Few Hardware Considerations ... 2

TEREEEEEEEEREEEEEED

Extended Memory

DOS 3.x does not allow programs to run in memory above
640K. BIOS, however, does provide a means of moving data to
or from memory above 640K. PC-McIDAS systems tasks make
extensive use of the ability to store data in so-called
"extended memory" -- memory above 1 megabyte.

There is a catch, however. In order to access extended
memory, the BIOS routine must switch the 80286 into protect-
ed mode, do the move, and then reset the 80286 to get it
back into real mode. This last step involves the keyboard
controller, believe it or not, and is quite slow. Inter-
rupts are disabled throughout, since any interrupt handlers
present will have been written to run in real mode. The
result is that if high-speed interrupt processing is also
going on, interrupts will be lost when extended memory is
accessed. The impact of this was felt in connection with
async comm handling. The problem was solved by using
XON/XOFF control -- see the chapter on communications.

A Few Hardware Considerations ... 3

AERREERRERERREREE

8YSCOM -- SYSTEM COMMON AREA

PC-McIDAS processes communicate with one another via a
resident "mailbox" known as SYSCOM (System Common Area).
Various fields in SYSCOM are defined to have particular
meanings. For example, there is a particular byte allocated
for storing the current image frame number. PC-McIDAS
processes that need to read or modify the image frame number
do so by accessing this byte in SYSCOM.

Why is SYSCOM Needed?
The SYSCOM mechanism is important for two reasons.

First, it provides a means for interprocess
communication, something that is not supported by single-
tasking operating systems like DOS. Not only are global
data values stored there, but SYSCOM is also used for
storing various flags and semaphores used to synchronize
tasks and communicate between processes.

Second, SYSCOM makes it possible to isolate hardware
dependent code from applications. An application can modify
the current image frame number, for example, without having
to know how or on what kind of device the image frame will
actually be displayed.

SYSCOM Structure

SYSCOM is a fluid construct, constantly being extended
and modified. It is highly desirable that it be structured
in a way that lends itself to frequent extensions and
modifications and still allow some internal consistency and
rationality in the way SYSCOM contents are laid out.

For this reason, SYSCOM is structured as a sequence of
blocks of various sizes. Contents are addressed by their
block number and offset within block. This means that any
given block can be enlarged (or shrunk) without causing a
change in the address of any existing SYSCOM item.

SYSCOM -- System Common Area ... 1

TIRRRR DY

Moreover, each block can be defined to contain items
that have a common purpose or meaning. This brings some
consistency and order to the SYSCOM layout. At the time of
this writing, the following SYSCOM blocks have been defined:

Block 0: Terminal Control Block. State of the work-
station. Number of frames, current frame number, cursor
size and color, type of display hardware being used, screen
size, etc. Also various flags and semaphores basic to
workstation operation.

Block 1: Looping Control Block. Image loop, graphics
loop, and opposite loop definitions, and dwell rates.
Supports "random" looping of frames.

Block 2: Applications Data Interchange Block. Values
defined ad hoc for interprocess communications (IPC) among
applications. (Block 0 handles IPC for systems processes
fundamental to control of the workstation itself.)

Block 3: Command Parameter-Passing Block. Used by the
scanner to pass parameters to a PC-McIDAS command.

Block 4: User Interface Block. Values used by the
system to control user interfaces and by user interfaces to
pass commands back to the system.

Block 5: Voice Interface Block. Similar to Block 4,
but specific to voice recognition interfaces.

Block 6: Command Stack Block. Used to store the last
10 commands entered in the current PC-McIDAS session.

Block 7: Frame Palette Block. Used to store color
palettes for frames in EGA/VGA implementations.

Block 8: Communications File Pool Block. Used to
maintain a pool of temporary files used by communications
software.

The definitions of the contents of the various SYSCOM
blocks are detailed in the Appendix.

SYSCOM -- System Common Area ... 2

mlllllllllllllllﬂ

SYSCOM Implementation

The data storage area comprising SYSCOM needs to be
accessible by all system tasks and applications programs.
Moreover, some means must be provided by which these
processes can read or write values in SYSCOM. Ideally,
neither the data storage area nor the means for accessing it
should be linked into any system task or applications
program. One would like to be able to modify the structure
of SYSCOM (enlarging a,block, for example) without having to
relink anything else.

To meet the above requirements, SYSCOM was implemented
in the following way. A resident interrupt handler
(SYSCOM.EXE -- source code in SYSCOM.ASM) was created,
providing the means for accessing SYSCOM. The data storage
area itself is the local data segment of SYSCOM.EXE.
SYSCOM.EXE was installed under user interrupt vector 60H.
To modify SYSCOM, then, all one needs to do is modify
SYSCOM.EXE and install the modified version. No applica-
tions or other system tasks are affected.

Data is laid out within the local data segment as
follows. First there is a block which is not included in
the block numbering scheme detailed above. 1I.e. it precedes
block 0. It consists of segment address pointers to the
other SYSCOM blocks. It is followed by the other SYSCOM
blocks, in order. Because the various blocks are accessed
via segment address pointers and are stored contiguously,
the length of each block (including the block of p01nters)
must be a multiple of 16.

Accessing SYSCOM
Assembler routines access SYSCOM via INT 60H. The

particular function performed by INT 60H is determined by
various register values, as follows:

Register AL -- Function code.
0 = read
1 = write
2 = get segment address of SYSCOM block
3 = initialize (zero out the data area)

Register AH -- SYSCOM block number (O-based).
Register BX -- Offset (bytes, O-based) within block.

Register CX -- Length of item (in bytes).

SYSCOM -- System Common Area ... 3

Registers DS:DI -- Pointer to the address at which the
return value is to be stored (if AL = 0 or 2) or at which is
stored the value to be written (if AL = 1).

Note: If AL = 2 and AH = OFFH, the value returned is
the segment address of the SYSCOM pointers block.

Various Fortran-callable entry points are provided to
enable applications programs to access SYSCOM. These access
routines are implemented as assembler modules that set up
the registers appropriately and activate INT 60H. The
calling sequences are as follows:

CALL POKEB (BLOCK,OFFSET,VALUE) -- Write a byte value :
IVAL=LOOKB (BLOCK,OFFSET) -- Read a byte value

CALL POKEW (BLOCK,OFFSET,VALUE) -- Write a 2-byte word

IVAL=LOOKW (BLOCK,OFFSET) -- Read a 2-byte word

CALL POKEDW (BLOCK,OFFSET,VALUE) -- Write a 4-byte word
IVAL=LOOKDW (BLOCK,OFFSET) -- Read a 4-byte word

CALL POKES (BLOCK,OFFSET, SOURCE, SOFFST, LENGTH) -- Write

a string of bytes, located at offset SOFFST within the byte
array SOURCE

CALL LOOKS (BLOCK,OFFSET,DEST,DOFFST, LENGTH) -- Read a |
string of bytes, returning them to offset DOFFST within the
byte array DEST.

. IVAL=LOOKSB (BLOCK,OFFSET) =-- Return a signed byte value
(i.e. sign-extend the result)

I
!
IVAL=LOOKSW (BLOCK,OFFSET) -- Return a signed 2-byte |
value (i.e. sign-extend the result). |

The VALUE and IVAL variables are assumed to be declared
as 4-byte integers (the standard for all PC-McIDAS inte- |
gers). |

Device drivers generally need to access SYSCOM quite a |
lot. To improve performance, they do not call INT 60H for
each access. Instead, when they are installed they call INT
60H with AH=2 to obtain the segment addresses of the SYSCOM
blocks they will need to access. From then on, they access
SYSCOM locations directly by applying the segment address
and the known offset of the item being accessed.

SYSCOM -- System Common Area ... 4

TEEEEEEEEEEEEEREEEE

Modifying SYSCOM

To modify the definition of a SYSCOM block -- e.g. to
assign a definition to a heretofore unused byte -- you need
only note the new definition in the file SYSCOM.DEF that
contains the SYSCOM layout. Management of SYSCOM.DEF is not
a software issue, but an issue of maintaining consistency
among the various programmers who use SYSCOM. There needs
to be a single, canonical copy of SYSCOM.DEF.

From time to time, however, it is necessary to expand a
SYSCOM block or add a new block. To expand an existing
block, you need only change the appropriate constant defi-
nition at the beginning of SYSCOM.ASM, then reassemble and
relink. To add a block, add a new constant definition and a
new block in the data segment definition and add code under
the SYSSETUP label at the end of SYSCOM.ASM. Use the exist-
ing code as a guide. Be sure that all block lengths are
multiples of 16, and if you are adding a block be sure that
the pointers block is still big enough to hold all the
pointers.

SYSCOM -- System Common Area ... 5

TV CONTROL

Hardware-specific drivers for controlling the display
hardware and associated peripherals (e.g. mouse, joysticks)
are given the generic designation TVCTRL ("TV control").
Individual TVCTRL drivers are created for each display
device supported. Two such drivers exist at the time of
this writing:

TVSSEC - controls SSEC/Dataram "tower"

TVEGA - controls IBM EGA (Enhanced Graphics Adapter) or
IBM VGA (Video Graphics Array)

Each is a resident interrupt handler written in assembly
language.

General Principles of TV Control

Certain considerations apply to all versions of TVCTRL;
they will be discussed in this section. Specifics of the
individual TVCTRL implementations will be discussed in the
following sections.

TVCTRL Functions

TVCTRL is driven by a periodic interrupt, or "tick"
(18.2 hertz for TVEGA, 30 hertz for TVSSEC). On each tick,
TVCTRL inspects the relevant values in SYSCOM and changes
the workstation state as needed to reflect the current
SYSCOM entries. For example, if the image frame number has
changed since the last tick, TVCTRL causes the new image
frame to be displayed on the screen.

TVCTRL governs the pointing devices. If a mouse is
present, TVCTRL polls INT 33H to monitor mouse movement and
mouse button presses. Mouse status is kept up-to-date in
SYSCOM. (Joysticks apply only to the TVSSEC implementation
of TVCTRL so will be discussed below.)

TVCTRL manages image and graphics looping, using the
loop definitions and dwell rates stored in the Looping
Control Block in SYSCOM. It modifies the current image and
graphics frame numbers in SYSCOM as the loop proceeds.

TVCTRL handles other functions related to the

image/graphics display, such as positioning and drawing the
cursor.

N Control ... 1

IR R R R SRR R RRREEEEA

Finally, TVCTRL handles various single-letter commands:
A, B, J, K, L, M, 0, P, V, W, Y, Z. TVCTRL monitors the
keyboard input through the keyboard filter mechanism (see
the chapter entitled "The Keyboard Filter") so it can give
immediate action to single-letter commands entered via the
Alt key. Each implementation of TVCTRL includes a jump
table that governs the handling of the various single-letter
commands.

Various other device handlers are also driven by the
"tick" (communications, text window interface, voice-
recogntion interface). TVCTRL is responsible for triggering
each of these drivers in turn, as appropriate.

The Software Interface to TVCTRL

The main body of TVCTRL responds to the hardware
"tick". 1In addition, each TVCTRL implementation includes an
interrupt handler installed under INT 65H that provides a
software interface by which other processes can interact
with TVCTRL. The particular function performed by INT 65H
depends on the value in the AH register. The INT 65H
functions that apply to all versions of TVCTRL are defined
as follows:

AH=0 Enable TVCTRL only (do not enable other handlers
driven by TVCTRL)

AH=1 Disable TVCTRL only

(AH=2 Used by TVSSEC only; for passing messages to the
"tower". See the section below on TVSSEC.)

AH=3 Return TVCTRL state. Value returned in AL:
AI=0 TVCTRL only disabled
AL=1 TVCTRL only enabled
Al=6 TVCTRL and other handlers it drives
disabled
AlL=7 TVCTRL and other handlers it drives enabled

AH=4 1Initialize TVCTRL. Enable TVCTRL and other
handlers driven by it. Enable keyboard filter.

AH=5 Completely disable TVCTRL. I.e. disable TVCTRL
and other handlers driven by it and disable
keyboard filter.

AH=6 Enable TVCTRL and other handlers driven by it.

TV Contxrol ... 2

AH=7 Disable TVCTRL and other handlers driven by it.

Note: To enable or disable other handlers driven by
TVCTRL really means, in this context, to enable or
disable TVCTRL’s triggering of these handlers. Each of
the individual handlers also has its own enable/disable
mechanism as well.

Fortran-callable interfaces are provided for certain of
these functions. Their calling sequences are:

AH = 0 -- CALL ENBTVC
AH = 1 -- CALL DSBTVC
AH = 4 -- CALL INITVC
AH = 5 -- CALL TVCOFF

All other interactions with TVCTRL are performed by
reading/writing the appropriate values in SYSCOM.

The TVCTRL Semaphore

TVCTRL is not re-entrant, so is not permitted to inter-
rupt itself. It uses a local data flag as a semaphore; if
TVCTRL is entered and the flag shows TVCTRL is already run-
ning, the later instance of TVCTRL exits immediately. Even
if TVCTRL were re-entrant, one would want to use this kind
of semaphore mechanism since there is nothing to be gained
by allowing multiple instances of TVCTRL to be active at
once, and without at least some upper bound on the number of
instances allowed one runs the risk of overflowing the
stack.

TV Control ... 3

S AR R R R R R R R R R R R R RN

—

TVSSEC =- TV Control for the "Tower"

TVSSEC’s Tick Mechanism

In the case of a PC-McIDAS workstation that displays
its images and graphics on an SSEC/Dataram "tower", the
hardware interrupt used to generate the TVCTRL tick is a TV
timing interrupt generated by the tower on every other
vertical retrace, 30 times per second. The AT interrupt
occurs on IRQ15. The first thing TVSSEC does is send an EOI
(End-of-interrupt) code to both of the AT’s 8259 interrupt
controllers to re-enable hardware interrupts. (The 8259’s
are cascaded, with IRQ15 wired to the slave. That’s why
both have to be re-enabled.)

The AT communicates with the tower via an AT-bus-to-
MultiBus hardware interface manufactured by Bit3 Corp.
Besides providing bi-ported memory that resides in the
address space of both busses (at segment 0DOOOH in the AT),
the Bit3 interface allows interrupts on the MultiBus to
generate AT bus interrupts. This is the means by which the
tower’s TV timing interrupt produces an interrupt on the AT.

How TVSSEC Communicates with the Tower

TVSSEC is a somewhat atypical instance of TVCTRL. As
described in the chapter "A Few Hardware Considerations",
the tower contains an 8085 microprocessor that executes code
in ROM. The 8085 takes care of actually displaying a par-
ticular frame on the screen, for example. The AT causes the
8085 to perform a given function by sending to the 8085,
across the Bit3 interface, a comm packet in the same proto-
col the host formerly used to communicate with the tower
directly. There are many functions that in a more typical
instance of TVCTRL would be handled by the AT directly but
which in TVSSEC are handled by constructing a packet and
passing it to the 8085.

Two buffers are used for passing packets between the AT
and the 8085. Both live in the bi-ported Bit3 memory. One,
the so-called "quick buffer", is reserved for high-priority
messages. Since the 8085 does no lookahead in processing
messages sent to it, there is the potential for messages
defining basic terminal state to have to wait in line behind
relatively slow messages that do things like load enhance-
ment tables. The quick buffer is used to let basic terminal
state messages get immediate service. (The other buffer

NVCcontrol ... ' 4

will be called the "slow buffer" in the discussion that
follows.)

Each of the two buffers is divided into two halves, so
the 8085 can be building reply messages in one buffer half
while it reads through the messages received in the other
half. 1In other words, at any given moment one half is
treated as a receive buffer, the other as a transmit buffer.

Use of the buffers is synchronized by several flags
that also live in the bi-ported Bit3 memory. For each of
the two buffers there is a flag that indicates which machine
(AT or 8085) currently controls the buffer, and a flag indi-
cating which of the two halves of the buffer is currently
the receive buffer.

The dialogue is half-duplex. When either machine (AT
and 8085) gains control of a buffer, it immediately proces-
ses the messages in the buffer, formulates a reply (a null
message if no other message is pending), and relinquishes
control of the buffer.

The AT processes only three types of messages from the
8085; there are other types sent by the 8085, but they are
ignored. The three that are processed are:

- ID response (routing code 8AH): the 8085 responds to
an ID request by sending workstation ID, number of
image frames, and number of graphics frames. The AT
ignores the ID, but stores the numbers of frames in
SYSCOM.

- Raw joystick data (routing code 9AH): the 8085 sends
joystick position data. The AT stores joystick posi-
tion in SYSCOM.

- Terminal cursor state (routing code 70H): the 8085
sends cursor position and size data. Which of these
data, if any, are stored in SYSCOM depends on the
cursor link mode.

When the AT receives a message or messages in the quick
buffer (e.g. raw joystick data is constantly coming in), it
processes them and sends back three packets in the quick
buffer:

- Image frame control (routing code 91H)

- Graphics frame control (routing code 92H)

- Primary cursor control (routing code 93H)

TV Controel ... 5

This keeps the tower up-to-date on which frame to
display and where to position the cursor.

When the AT receives a message or messages in the slow
buffer, it processes them and then checks to see if it has
any messages buffered up from applications. Applications-
generated messages (including host-generated messages passed
through by the communications software) are stored in their
own buffer (the applications message buffer) until it’s the
AT’s turn to talk, at which time all pending applications
messages are sent at once.

Specifics of the INT 65H Interface for TVSSEC

Applications that want to send a message to the 8085
pass the message to TVSSEC via the INT 65H interface, using
the following register settings:

AH=2 Function code to send a message to 8085.
DS:SI -- Pointer to the packet to be sent.
CX -- Packet length. (Exclude ETX character, if any.)

The Fortran-callable interface to function AH=2 of INT
65H is:

CALL SENOUT (SENBUF)

where SENBUF is a character array, and the packet in SENBUF
is terminated by an ETX character (ASCII code 3).

Full Buffers and Deadlocks

If the applications message buffer is already full, the
INT 65H code loops until buffer space is available. Buffer
space eventually becomes available because the loop is
interrupted by TVSSEC on each tick, and TVSSEC bails the
applications message buffer as soon as a message is received
in the slow buffer from the 8085.

Some care must be taken to avoid deadlocks. An in-
structive example is provided by a bug that existed at one
time but is now fixed. Recall that one of the functions of
TVCTRL is to trigger the other tick-driven interrupts -- the
communications driver, in particular. Recall also that
TVCTRL uses a semaphore to block re-entry. Formerly, the

TV. Controel ... 6

s R R R R R R R R R R R R R R

call to the communications driver was contained within the
scope of TVSSEC’s semaphore.

This permitted a deadlock in the event that the com-
munications driver called INT 65H to send a packet to the
8085 when the applications message buffer was already full.
(This would happen only very occasionally, usually when an
image or graphic was coming in from the host at the same
time a local PC-McIDAS command was generating packets for
the 8085.) INT 65H would go into a loop waiting for the
buffer to be bailed. The comm driver, in turn, waited for
INT 65H to complete. But since the comm driver was called
from within the critical region of the semaphore, TVSSEC
could not execute, so it never had an opportunity to bail
the applications message buffer. Deadlock. The solution
was to move the call to the comm driver out of the critical
region of the semaphore.

™V Centroel ... 7

TVEGA -- TV Control for the IBM EGA and VGA

Basic Differences from TVSSEC

When the PC-McIDAS workstation uses an IBM EGA (En-
hanced Graphics Adapter) or VGA (Video Graphics Array) as
the imagery/graphics display device, the situation is quite
different from the one described in the previous section.

For one thing, there is no longer an 8085 micro-
processor interposed between the AT and the display; the AT
interacts directly with the EGA/VGA hardware. As a result,
TVEGA must handle functions that TVSSEC can leave to the
8085 (e.g. drawing the cursor). Moreover, TVEGA’s structure
is quite different from TVSSEC’s, since the kind of message
buffering that is the heart of TVSSEC isn’t relevant to
TVEGA.

For another thing, the memory used for storing frames
must reside within the AT itself, not in the tower. Frames
are stored in extended memory. At the time of this writing
16 frames are allocated, but this number could just as well
be made user-configurable.

TVEGA’s Tick Mechanism

The "tick" mechanism used to drive TVEGA is the "time-
of-day" interrupt INT 1CH. This interrupt occurs 18.2 times
per second.

Specifics of the INT 65H Interface for TVEGA

TVEGA itself is installed under INT 1CH; in addition, as was
the case with TVSSEC, there is a software interface
installed under INT 65H. Besides the functions that apply
to all instances of TVCTRL, INT 65H has the following
special functions for TVEGA:
AH=0FOH Erase the cursor before graphics plotting
AH=0F1H Redraw the cursor after graphics plotting
AH=0F2H Force the current frame to be re-displayed

AH=0F3H Set a flag used to prevent TVEGA from updating
the screen

TV Contrel ... 8

tissasasnnsnnnniiil

AH=0F4H Clear the flag used to prevent TVEGA from
updating the screen

AH=0F6H Draw the cursor on a blank screen

More will be said about these functions later on.

How Frames Are Handled

As mentioned above, frames are stored in extended
memory. The set of data areas in extended memory used to
store the frames will be referred to, collectively, as
"frame space".

To display a frame means to move the frame’s data from
frame space (extended memory) to the memory of the graphics
hardware. As described in the chapter "Using the IBM EGA
and VGA", data in the graphics memory are organized in bit
planes. For the sake of efficiency, therefore, the frame
data is stored as bit planes in frame space as well.

Each frame has 350 lines and 640 pixels per line,
making 224000 pixels in all. Each bit plane, therefore,
requires 28000 bytes (224000 bits) of storage. There are 4
bit planes per frame, so each frame requires 4 * 28000 =
108000 bytes of storage. Frames are laid out contiguously
in frame space, 108000 bytes per frame.

When a new frame is to be displayed, the frame is moved
from frame space to the graphics memory one bit plane at a
time. If the frame is moved into the part of graphics mem-
ory currently being displayed, this process causes the col-
ors to flash as the various bit planes are loaded. Fortun-
ately, there are 2 pages of graphics memory available. A
frame is always loaded into the page which is not currently
visible, then the page register is modified to bring that
page into view. This latter process is essentially instan-
taneous, so no flash is visible.

For more details on how to load bit planes into the

graphics memory, see the chapter "Using the IBM EGA and
VGA".

TV .Control ... 9

I B

il

A E S SRR EEREERE.

Frame Numbers and the Cursor

After a frame is displayed, the frame number is drawn
in the lower left corner of the screen. The number is drawn
by TVEGA, rather than by the EG command as is done in tower-
based workstations, because EGA/VGA-based PC-McIDAS supports
saving images to files. One does not want the frame number
to be written into an image that is going to be saved to a
file and possibly restored later to a different frame.

Each time a new frame is displayed (e.g. when looping)
the frame number must be drawn. TVEGA handles the frame
number drawing directly for maximum performance. That is,
it generates the digit characters itself and writes directly
to the EGA/VGA hardware, by-passing BIOS.

The cursor is also drawn by TVEGA directly. It is
drawn only if it has changed or moved, or if a new frame has
been displayed. In other words, it is drawn only as needed.

Each time the cursor is drawn, it is necessary first to
read and save the values of all the pixels that will be
over-written by the cursor so they can be restored when the
cursor is moved. TVEGA has a buffer big enough to support
the largest possible box with cross hairs. TVEGA refuses to
draw a solid cursor because it cannot afford to buffer
enough data to support a large solid cursor.

Drawing a moved cursor is a 3-stage process. First,
the pixels that were over-written the last time the cursor
was drawn have to be restored. Then the pixels that are
about to be over-written have to be saved. Finally, the
cursor is drawn in its new position. To get smooth cursor
movement, it is essential that this process be handled
quickly. TVEGA accesses the EGA/VGA hardware directly,
which is much faster than using BIOS calls.

In a tower-based workstation, the cursor resides con-
ceptually in its own overlay, distinct from the image frame
and the graphics overlay. Images and graphics can be drawn
without worrying about what they might do to the cursor.

An EGA/VGA-based workstation, however, presents new
difficulties. Suppose, for example, that a cursor is drawn
on a blank (black) frame, an image is loaded, and the cursor
is then moved. When the cursor is moved, the pixels over-
written by the cursor will be restored to the values they
had when the cursor was drawn. But the frame was blank
then, so a black "ghost" of the cursor gets drawn into the
image. Analogous problems occur if a graphic is drawn
through a cursor.

TV Control. ... 106

saaaaaaasssRiiiil)

Such difficulties are most easily overcome by erasing
the cursor before loading an image or drawing a graphic and
then restoring it after. The plot package for PC-McIDAS
does just that. The cursor is erased (by calling INT 65H
with AH=0FOH; see above) when INITPL is called; it is
restored (by calling INT 65H with AH=0F1H) when ENDPLT is
called.

Similarly, when a frame is erased, the new cursor is
drawn (by calling INT 65H with AH=0F6H) without first
restoring over-written pixels. Otherwise, one would get a
"ghost" cursor consisting of whatever pixels were under the
cursor when the frame was erased.

TV Cantrol . .. 1%

EEEEEREREREEREREREE

COMMUNICATIONS DRIVERS

Overview

PC-McIDAS is designed to support a variety of communi-
cations links between the workstation and a host computer.
Currently supported are the following:

- ProNET local area network.

- Asynchronous serial comm, up to 19.2 KBaud, via
telephone dial-in, direct line, or satellite
broadcast.

Alternatively, a workstation may be configured to stand
alone.

Which of these modes is currently in use in a work-
station is indicated by the value of Byte 383 of the
Terminal Control Block (TCB) of SYSCOM.

The comm drivers are installed as interrupt handlers
rather than linked into other systems or applications
software. This makes it possible to change a workstation’s
comm mode or implement a new mode without modifying other
software. Only the comm drivers need to be re-installed.

In each case (ProNET and async) there are two levels of
drivers: a low-level driver responsible for interacting

‘with the comm hardware to receive/transmit packets, and a

high-level driver responsible for interpreting and acting
upon packets. These drivers are named as follows:

Low-level High-level
Comm Mode Driver Driver
ProNET PNETINT COMMP
Async ASYNC1, COMMA
ASYNC2
Standalone —— COMMN

Each of these drivers is described in more detail below.

Communications Drivers ... 1

PNETINT -- The Low-Level ProNET Comm Driver

The low-level ProNET driver PNETINT is installed under
INT 61H. PNETINT itself is written in C. It interacts with
the ProNET board to receive and transmit packets. Much of
the very lowest level activity is handled by the ProNET
board itself, transparently to the PC. The particular
function performed by a call to INT 61H depends on the value
in the AH register as follows:

AH=0 =-- Enable receiver.
Input: none
Output: AX = status

AH=1 =-- Check receiver.
Input: ES:BX = pointer to message buffer
Output: AX = status
BX = extended status
CX = message length
DX = node of sender
AH=2 -- Enable transmitter.
Input: ES:BX = pointer to message buffer

CX = message length
DX = destination node

AH=3 =-- Check transmitter.
Input: none
Output: AX = status
BX = extended status

AH=4 -- Correct last receive error.
Input: none
Output: AX = status

AH=5 -- Correct last transmit error.
Input: none
Output: AX = status

=6 -- Reset and connect to ring.
Input: none
Output: AX = status

AH=7 -- Disconnect from ring.

Input: none
Output: AX = status

Communications Drivers ... 2

ARRRRERRERRRRRRENET

The following status codes are defined:

0 -- operation done/successful
1 -- correctible packet error (1-bit protocol,
parity, etc.)

2 == ProNET hardware failure
80H -- operation in progress/wait
FFH -- unrecognized function

The extended status is defined as follows:

BH = ?2?2?2? ??ER
E = current one-bit protocol state
R = one-bit protocol state received
(after receive only)

BL ProNET receive/transmit control status register

Various Fortran-callable functions exist to activate
these functions (see PINTLNK.ASM). Each returns a status.
They are, respectively:

INTEGER FUNCTION ENBRCV
INTEGER FUNCTION CHKRCV (BUFFER, LENGTH,NODE)
INTEGER FUNCTION CORRCV
INTEGER FUNCTION ENBXMT (BUFFER, LENGTH,NODE)
INTEGER FUNCTION CHEKXMT
INTEGER FUNCTION CORXMT
INTEGER FUNCTION COMRST
INTEGER FUNCTION COMDSB

To receive a message, call ENBRCV, then call CHKRCV
repeatedly until a message is found. To transmit a message,
call CHKXMT repeatedly until the previous transmit has com-
pleted, then call ENBXMT. Note, however, that applications
programs never call the above routines. Rather, they are
called by COMMP, the high-level ProNET comm driver.

ProNET workstations maintain a strictly half-duplex
dialogue with the host. The one-bit protocol is a device
for detecting and correcting simple errors in this dialogue.
Under the protocol, the workstation and the host each toggle
between two states. Each state expects an incoming message
to include a predetermined state ID (0O or 1). If an incor-
rect ID is received, a comm error is indicated (e.g. a lost

Communications Drivers ... 3

IREREERERERIRERTNE

packet) and the receiver resends the last message it sent.
For a detailed description, see the document "Host to
Terminal - Terminal to Host System Protocol Description"
(which describes the so-called 02/03 protocol).

In particular, the one-bit protocol enables the work-
station to force retransmission of a packet received in
error. All it has to do is retransmit the last message.
CORRCV and CORXMT both do the same thing: retransmit the
last message.

Communications Drivers ... 4

1111)

COMMP =-- The High-Level ProNET Comm Driver

PNETINT, the low-level driver, takes care of receiving
and transmitting packets. Interpreting and acting on the
packets is handled by COMMP, the high-level driver (source
code in PCOMM.ASM).

COMMP is installed under INT 64H. It is triggered on
each tick by TVCTRL. The triggering of COMMP can be inhib-
ited by setting the flag in Byte 387 of the TCB.

PCOMM.ASM is a long program, but the structure is
fairly straightforward. It is probably worthwhile to point
out a few landmarks, however.

COMMP is not re-entrant, but it uses a local semaphore
to fend off re-entry. Thus, there is no problem with trig-
gering INT 64H from processes other than TVCTRL.

Since the dialogue with the host is half-duplex, the
flow of control through COMMP depends heavily on the state
of a local flag (MYTURN) that indicates whether it is the
workstation’s turn to talk or the host’s. If it is the
host’s turn to talk, COMMP calls a procedure named RECEIVE:;
otherwise, it calls TRANSMIT.

RECEIVE calls CHKRCV to see if a packet has come in.
If so, it calls a procedure DOMSG that parses the packet to
extract the logical packets it contains. For each logical
packet, DOMSG jumps to the section of code appropriate to
the particular routing code in question. If CHKRCV indi-
cates that no packet has come in, RECEIVE exits. Initehat
case, the MYTURN flag does not change, so RECEIVE gets
called again on the next tick. It will continue to get
called on each tick until a packet is received or a timeout
condition arises.

If a received packet cannot be processed in the same
tick in which it was received (e.g. if it contains data that
must be saved in a disk file, but a foreground process is
already using a DOS function; or, e.g., if it contains CRT
text but the CRT text buffer is full because a Ctrl=s iisirin
effect) a flag (HELDOVER) is set and RECEIVE exits. On the
next tick, MYTURN is still clear so RECEIVE gets called
again. Since HELDOVER is set, RECEIVE skips the call to
CHKRCV and treats the heldover packet as if it just came in.
This process is repeated until COMMP is able to process the
packet, at which time HELDOVER is cleared.

Note that the workstation does not send or receive any
new packets while HELDOVER is set. The comm dialogue is

Communications Drivers ... 5

suspended. The usual case is a packet being held over until
a foreground DOS function completes. Here, the interval is
usually just a few ticks, so it is imperceptible. There are
cases, however, in which the suspension of the comm dialogue
is apparent to the user. For example, if a user enters a
Ctrl-S when a lot of text is coming down from the host,
COMMP’s CRT text buffers will fill and the comm dialogue
will cease. This has several minor side-effects. The LED’s
that signal ProNET activity will stop blinking, and when the
Ctrl-S is countermanded there will be a short pause before
the host realizes the workstation has resumed the dialogue.

When it is the workstation’s turn to talk, the situa-
tion is a little more complicated. Messages to be transmit-
ted can arise either at the applications/scanner level or at
the level of the comm software itself. At the comm software
level there are two main cases:

- Various kinds of packets from the host are requests for
data concerning the state of the workstation. COMMP
takes care of constructing and sending the needed reply
packets, getting the required data from SYSCOM. Cer-
tain kinds of replies are sent only after a specified
delay, so there is a data structure that stores each
pending reply routing code together with a delay count.
The delay counts are decremented on each tick; a reply
packet is constructed for each delay count that reaches
0 on a given tick.

- In the absence of other traffic, the workstation and
host exhange "idle" packets. Whenever the workstation
transmits, the host responds immediately. It is the
workstation’s responsibility, therefore, to insert a
delay before sending an idle packet. The delay "ramps
up" to about 2 seconds when nothing else is going on.

Packets to be transmitted may also be generated by the
PC-McIDAS command scanner or by applications programs. 1In
such cases, the process generating the packet leaves mail in
SYSCOM. The TRANSMIT procedure in COMMP checks to see if
mail is waiting; if so, it takes care of transmitting the
packet. A status is returned in SYSCOM for the generating
process.

Note that a number of logical packets may be generated
on a single tick. It is desirable to send these in as few
physical packets as possible. COMMP has a procedure CHKPACK
that takes care of building up a physical packet, separating
logical packets with inter-record separator (IRS) charac-
ters, and transmitting the physical packet when its buffer
becomes full. CHKPACK calls ENBXMT to send the packet, then

Communications Drivers ... 6

AEERERR

calls CHKXMT in a loop until the packet has actually been
sent. If CHKXMT returns an error status, CHKPACK takes care
of error-handling.

One comment needs to be made about error-handling. If
an error persists after a few retries, a short delay is
inserted before each subsequent retry. This delay =
20 msecs + (2 msecs * workstation’s node address). The
purpose of this computation is to produce a different delay
for each workstation on a given ProNET ring. This is
essential to prevent a dynamic deadlock when the ring token
is lost. Without it, all workstations simultaneously
attempt to reset the ring and the token keeps getting eaten.

Communications Drivers ... 7

ARRRRRERRRRRRRREEEG

ASYNC -- The Low-Level Async Comm Driver

There are two versions of the low-level async comm
driver: ASYNC1 and ASYNC2. The only difference between
them is which serial port they use. They will referred to
collectively as ASYNC.

Having two versions of ASYNC is a somewhat clumsy way
to handle the problem of two possible serial ports. The
problem is that ASYNC must know at install-time which port
it is going to use, but the port number is not initialized
in SYSCOM until MCIDAS run-time. A unified version of ASYNC
could be created, however, and probably should be. For
example, one could write a little program that accesses the
file \MCIDAS\SETUP\CONFIG.DAT to determine which serial port
is going to be used. This program could be run after SYSCOM
is installed but before ASYNC is installed and could ini-
tialize the appropriate SYSCOM value.

Like PNETINT, ASYNC is installed under INT 61H and pro-
vides, under INT 61H, various functions for sending and re-
ceiving packets, etc. ASYNC differs from PNETINT, however,
in that ASYNC also installs code to respond to hardware
interrupts at the byte level. (In the ProNET case, the byte
level processing is handled by the ProNET board.)

The functions performed by INT 61H depend on the value
in the AH register, as follows:

AH=0 -- TInitialize ASYNC.
AH=1 -- Disable ASYNC.
AH=2 -- Receive a packet.
Input: ES:DI = pointer to message buffer
Output: AX = status
CX = message length
=3 == Receive data unconditionally.
Input: ES:DI = pointer to message buffer
Output: AX = status
CX = message length
AH=4 -- Transmit a packet.
Input: DS:SI = pointer to message buffer
CX = message length
Output: AX = status
AH=8 -- Send an XOFF.
Input: none
Output: none
Communications Drivers ... 8

AH=9 -- Send an XON.
Input: none
Output: none

AH=10 -- Send an XOFF and wait for it to take effect.
Input: none
Output: none

(The functions for AH=3 and AH=8 are not used by PC-McIDAS.)

The following status codes are defined:

0 -- operation done/successful
1 -- data overflow/data lost
80H -- operation in progress/wait

FFFFH -- unrecognized function

Certain byte values are interpreted by the host’s con-
troller firmware as control characters, so they are con-
verted to escape sequences. The values that must be escaped
are: 8, 13, 17, 19, 26, 27, 145, 147. Any value from this
list is converted to an ESC followed by the value OR’ed with
60H. On input, therefore, all ESC characters are dropped
and each character that followed an ESC is AND’ed with 90H.

Escape sequences aside, ASYNC assumes all incoming data
are either packets that conform to the FO-protocol or else
are pure ASCII text.

The remainder of this section outlines the structure of
the ASYNC source code.

The hardware interrupt entry point is ASYINT. It does
an IN instruction to get the value of the serial interrupt
ID register. If the ID value indicates an interrupt for
data received, the procedure RCVINT is called to handle the
received byte. If the ID value indicates an interrupt for
transmit holding register empty, XMTINT is called to trans-
mit the next byte. Note that ASYINT must go back and check
the ID register again before it exits. It keeps iterating
until the ID value is clear -- another interrupt may have
been received while the first interrupt was being processed.
Also, ASYINT always gives precedence to receive interrupts.

RCVINT simply buffers data as it comes in. It pays no
attention to packet boundaries, nor does it de-escape ESC
sequences. The "AH=2 -- Receive Packet" function of INT 61H
scans through the input buffer to determine if a full packet
has been received. If so, it returns the de-escaped packet
and modifies the buffer pointers.

Communications Drivers ... 9

Transmission of packets is handled as follows. The
"AH=4 -- Transmit Packet" function of INT 61H moves the
packet to a buffer available to XMTINT, adding ESC sequences
as appropriate. It then enables interrupt on transmit
holding register empty. XMTINT is triggered by the inter-
rupt repeatedly, sending a byte at a time, until the buffer
is emptied. Note that INT 61H does not wait for the trans-
mission to complete. It just loads the buffer, enables the
interrupt, and exits. The actual transmission takes place
asynchronously under interrupt control.

If INT 61H, AH=4 is called to transmit a packet while
another packet is in the process of being transmitted, it
simply exits, returning a busy status. It is up to the
caller to retry later. i

The INT 61H, AH=10 -- "Send XOFF and Delay" function
(procedure ASXOFD) requires a little explanation. Ordinar-
ily, a process sending an XOFF does not want to continue |
until the XOFF has actually taken effect and no more input |
data is being received. ASXOFD sends an XOFF and waits for
an interval that depends on the baud rate. If no character
comes in during that interval, it returns. Otherwise, it
sends another XOFF and waits again, and so on. Moreover,
when the last byte sent by ASYNC was an XOFF, every incoming
byte is immediately answered with an XOFF.

Each time INT 61H is called to send an XOFF, it incre-
ments a counter; each time it is called to send an XON, it
decrements the counter. It only actually sends the XON if
the counter is back to 0. This way, XOFF/XON pairs may be
nested without intermediate XON’s getting sent and prema-
turely restarting data transmission by the host. Not
counted in this way are XOFF’s generated by ASYNC itself i
when its buffer gets nearly full nor XON’s sent when the
buffer later empties out, nor XOFF’s generated by ASYNC when
a byte is received after a prior XOFF. Note that the send-
ing of an internally-generated XON (when the previously full
buffer empties) is suppressed if the XOFF/XON count is
nonzero.

XOFF/XON pacing is needed for another purpose besides
preventing buffer overflow. Without it, serial data are
lost when the workstation accesses extended memory. In
order to access extended memory, the 80286 microprocessor
must be switched into protected mode. Interrupts must be
disabled while the processor is in protected mode since only
interrupt handlers written for real mode are installed.
Whenever interrupts are disabled for a long interval, serial
data will be lost.

Communications Drivers ... 10

—

|

COMMA -- The High-Level Async Comm Driver

COMMA (source code in ACOMM.ASM) is structured somewhat
like COMMP. COMMA has procedures named RECEIVE, DOMSG,
TRANSMIT, DSPCRT, etc. that function analogously to the
procedures with those names in COMMP. There are important
differences between COMMA and COMMP, however.

The async workstation-host dialogue is full duplex, not
half duplex as in the ProNET case. COMMA calls RECEIVE on
each tick on which it has nothing to transmit. Note, how-
ever, that there is a flag in SYSCOM (Byte 396 of TCB) that
blocks COMMA from calling RECEIVE. This flag is used by
PC-McIDAS commands like GETPRD and FONHOM that need to
intercept all incoming data to check for the replies indica-
ting successful dial-in. By blocking calls to RECEIVE they
ensure that COMMA does not get the data before they do.

Other differences: COMMA expects FO-packets or pure
text, and there is no "idle" dialogue in an async connec-
tion.

Async workstations also handle temporary files differ-
ently. Temp files are used to store incoming LW-file pac-
kets. Care must be taken in opening and closing such files.
Suppose a temp file is opened while a PC-McIDAS command is
running. When the command completes, DOS closes all files
that were opened while the command was running, whether or
not it was the command that opened them. DOS expects only
one process at a time to be using files. The temp file may
be closed prematurely.

In the ProNET case, LW-file transfers are infrequent
enough that it is sufficient to hold off opening a temp file
if a PC-McIDAS command is currently running. In the async
case, however, particularly with broadcast reception
(UNIDATA) workstations, LW-file transfers are happening all
the time. The solution in the async case has been to main-
tain a pool of 5 temp files that are re-used over and over.
All 5 files are opened during PC-McIDAS initialization, when
no commands are running. They are kept open until PC-McIDAS
is exitted.

Communications Drivers ... 11

Special Requirements for Broadcast Reception (e.g. UNIDATA)

As noted above, XOFF/XON pacing is needed to keep async
workstations from dropping data when the workstation acces-
ses extended memory. When the workstation is receiving a
satellite broadcast, however, it is impossible to pace the
host.

In this instance, a "buffer box" is interposed between
the broadcast reception hardware and the workstation. The
buffer box allows serial in and serial out, contains a 256KB
buffer, and responds to XOFF/XON pacing. The workstation
gets its data from the buffer box and is able to pace it.

Since the buffer box continues to fill while it is X’ed
OFF, the workstation must be able to bail the buffer faster
than the broadcast is filling it or else the buffer will
overflow. ASYNC is set up to receive at 19.2 KBaud in this
case; the satellite broadcast is at 9.6 KBaud. 19.2 KBaud
is not supported by BIOS. See the ASYNC source code for how
to get around this limitation.

Communications Drivers ... 12

|||||||||||||||||||1

THE TEXT WINDOW INTERFACE

Introduction

The text window interface allows text output to be
parked in any of 10 virtual windows. Any window can be
1nstant1y brought to the screen at any time. Text can be
written in color, positioned on the screen, caused to blink.
Windows can be scrolled up or down.

These are desirable features, but their implementation
poses certain problems. In particular, the existence of the
text window interface must be transparent to non-PC-McIDAS
programs like DOS. Moreover, the windows themselves must be
stored and controlled in a way that gives instantaneous
response and does not steal RAM needed by PC-McIDAS applica-
tions.

To make the text windows interface transparent to non-
PC-McIDAS programs, it was necessary to implement text
reading and writing at the BIOS level, rather than at the
PC-McIDAS applications level. For thls purpose, the BIOS
video interrupt INT 10H was replaced by a new interrupt
handler, VIDEO. Moreover, VIDEO had to be re-entrant.

To keep from without wasting RAM needed by applications
programs, the text windows were stored in extended memory.
To permit instantaneous response, the windows are controlled
by a resident interrupt handler, SCREENS that is triggered
on every "tick". SCREENS is responsible for displaying a
window’s text on the screen, for switching windows,
scrolling them, etc.

The Text Window Interface ... 1

Memory Usage

Memory is reserved for 10 text windows followed by 10
soft tablet windows. These 20 windows are laid out contigu-
ously in extended memory starting at address 200000H (2
megabytes) .

When the AT/PS2 is in real mode, address line 20 is
masked off. The AT designers elected to do this as a cobble
to rescue existing software that relied on wraparound of
addresses above 1 megabyte. Unfortunately, it makes it
impossible to use an in-circuit debugger to view memory in
the 1-2 megabyte range when the 80286 is in real mode. This
is a strong motivation for putting windows and EGA/VGA
frames at addresses starting at 2 megabytes. The memory
from 1-2 megabytes is reserved for a RAM disk in which is
stored the pull-down menu HELP interface.

Each text window has 40 rows, only 23 of which are
actually displayed at any one time. The number 40 could be
increased, though there are performance tradeoffs. The
larger the number of rows, the more work is involved in
scrolling the screen. Each text window is allocated 6406
bytes (1910H), as follows:

Bytes Use
0-1 Row number (0O-based) for top row displayed
2=8 Cursor row number (0O-based)
45 Cursor column number (0O-based)
6-6405 Text data (2 bytes per character: ASCII code

and attribute)

Each soft tablet window is allocated 4000 bytes (OFAH) ;
25 rows * 80 columns * 2 bytes per character.

In addition, a 6406 byte work area is reserved in a
local data segment by SCREENS (in real-mode, i.e. non-
extended, memory). This work area contains the currently
displayed window. The work area is what actually gets dis-
played on the screen. Any operation that modifies the cur-
rently displayed window modifies the work area only. The
work area contents are not stored in extended memory until
the user changes to a different window. This architecture
is necessary because accesses to extended memory are
extremely slow compared to accesses to real-mode memory.

When SCREENS is initialized, it stores in SYSCOM the

segment address of its work area. This is done to allow
VIDEO also to have access to the work area.

The Text Window Interface ... 2

VIDEO =-- The BIOS INT 10H Replacement

The BIOS INT 10H video interrupt is re-vectored to INT
62H. Applications that need, for some reason, to call the
BIOS interrupt code directly may do so by triggering INT
62H.

INT 10H is taken over by a PC-McIDAS module, VIDEO.EXE.
Various INT 10H functions that write text to the screen,
move the cursor, etc. are handled by VIDEO itself. Certain
other functions, such as setting the graphics mode, are
simply passed through to INT 62H. Functions handled
directly by VIDEO include:

Function Description

AH=2 Set cursor position

AH=3 Read cursor position

AH=6 Scroll page up (Clear screen ONLY)
AH=7 Scroll page down

AH=8 Read char and attribute

AH=9 Write char and attribute

AH=0AH Write char

AH=0EH Write TTY

The above functions are defined as for BIOS INT 10H.
For VIDEO, two additional functions are defined:

AH=13H Write string (String may contain
AL=0FFH multiple lines; i.e. embedded
CR/LF’s are ok)

ES:DI == pointer to string

CX == length

BL == attribute
AH=03FH Write TTY

DL == char to write

One of the requirements for VIDEO is that it must be
able to handle calls from non-PC-McIDAS programs. This
means that the window number must be passed through SYSCOM
rather than as a parameter in a register. Byte 6 of the
User Interface Block (UIB) contains the window number used

The Text Window Interface ... 3

by VIDEO. (Byte 5 of the UIB, by the way, contains the
number of the window currently in SCREEN’s work area.)

A call from a non-PC-McIDAS program automatically uses
the current window number, since such a program doesn’t know
to set the window number in SYSCOM, but PC-McIDAS programs
can modify the window number if desired to write to a non-
displayed window. Processes (e.g. COMM) that call VIDEO
from the background must save the current SYSCOM value
before they modify it and call VIDEO, and they must restore
it when control returns from VIDEO.

Calls to VIDEO that need to access the currently dis-
played window act on SCREENS’ work area. Those that access
another window act directly on the contents of extended
memory. If text is written to a window other than window 0,
the default condition is that the text is written to window
0 as well. 1In that instance VIDEO must modify both the work
area and a window in extended memory -- or if neither window
is in the work area, VIDEO must modify two windows in
extended memory.

One of the requirements of VIDEO is that it should be
re-entrant. For this reason, it must store local data on
the stack. One situation where this becomes an important
consideration is in connection with scrolling a window.

Generally speaking, each time a line of text is written
the window must be scrolled one line. This means moving the
entire text contents of the window. One must read the
contents of the window and write it back, shifted one line.
The text that is read must be stored on the stack. The need
to store the text on the stack motivates one to read as few
lines at a time as possible. Performance considerations,
however, motivate one to read as many lines at a time as
possible, since this minimizes the number of accesses to
extended memory.

The current compromise is to allocate 40 lines per
window and scroll 10 lines at a time. When VIDEO is
modifying both the work area and a window in extended
memory, scrolling the window in extended memory causes a
noticeable slowdown in text writing. Increasing the number
of rows per window beyond 40 would worsen performance in
this regard. Some experimentation would be worthwhile,
however, since it would be nice to have access to more than
40 lines per window.

It was necessary to make VIDEO re-entrant because it

can be called freely by unknown, non-PC-McIDAS processes.
It is also necessary, however, to limit the ways in which it

The Text Window Interface ... 4

ti A SRR SRR N RN R R

by VIDEO. (Byte 5 of the UIB, by the way, contains the
number of the window currently in SCREEN’s work area.)

A call from a non-PC-McIDAS program automatically uses
the current window number, since such a program doesn’t know
to set the window number in SYSCOM, but PC-McIDAS programs
can modify the window number if desired to write to a non-
displayed window. Processes (e.g. COMM) that call VIDEO
from the background must save the current SYSCOM value
before they modify it and call VIDEO, and they must restore
it when control returns from VIDEO.

Calls to VIDEO that need to access the currently dis-
played window act on SCREENS’ work area. Those that access
another window act directly on the contents of extended
memory. If text is written to a window other than window O,
the default condition is that the text is written to window
0 as well. In that instance VIDEO must modify both the work
area and a window in extended memory -- or if neither window
is in the work area, VIDEO must modify two windows in
extended memory.

One of the requirements of VIDEO is that it should be
re-entrant. For this reason, it must store local data on
the stack. One situation where this becomes an important
consideration is in connection with scrolling a window.

Generally speaking, each time a line of text is written
the window must be scrolled one line. This means moving the
entire text contents of the window. One must read the
contents of the window and write it back, shifted one line.
The text that is read must be stored on the stack. The need
to store the text on the stack motivates one to read as few
lines at a time as possible. Performance considerations,
however, motivate one to read as many lines at a time as
possible, since this minimizes the number of accesses to
extended memory.

The current compromise is to allocate 40 lines per
window and scroll 10 lines at a time. When VIDEO is
modifying both the work area and a window in extended
memory, scrolling the window in extended memory causes a
noticeable slowdown in text writing. Increasing the number
of rows per window beyond 40 would worsen performance in
this regard. Some experimentation would be worthwhile,
however, since it would be nice to have access to more than
40 lines per window.

It was necessary to make VIDEO re-entrant because it

can be called freely by unknown, non-PC-McIDAS processes.
It is also necessary, however, to limit the ways in which it

The Text Window Interface ... 4

can be interrupted by the PC-McIDAS background processes --
SCREENS and COMM -- that potentially switch the currently
displayed window. The danger is that VIDEO may be in the
middle of writing to the work area, for example, when it is
interrupted by a process that moves a different window into
the work area. When control returns to VIDEO it would then
be writing into the wrong window. To handle this situation,
there is a semaphore (byte 374 in the TCB) that lets VIDEO
prevent SCREENS and COMM from switching windows.

The Text Window Interface ... 5

ARERERE

SCREENS -- The Text Window Handler

Conceptually, there are two distinct aspects to
SCREENS. 1In one aspect SCREENS is tick-driven; in the other
it responds to calls from other processes. (This is similar
conceptually to the situation with TVCTRL, which is tick-
driven but also has its INT 65H interface through which it
can be called by other processes.)

SCREENS is installed under INT 66H. The function per-
formed by INT 66H depends on the value in register AX. The
AH values used may seem weird at first glance, but they are
the scan codes for the keypad keys that govern the window
interface functions. When a keypad key is struck, TVCTRL
just passes to INT 66H the ASCII code (AL) and scan code
(AH) of the key. Naturally, any process can produce the
same effect that a keypad key does if the process sets AL
and AH appropriately and triggers INT 66H. On any tick on
which no keypad key is found, TVCTRL calls INT 66H with
AX=0.

Certain of the AH values correspond to two different
possible functions. This results from the fact that certain
scan codes are associated with two different ASCII codes,
depending on whether NUM LOCK is on. If NUM LOCK is on, the
ASCII code (AL) will be 0. The INT 66H functions are:

If AL>0: Scroll down one line.

The Text Window Interface ... 6

_ AH=0 Tick-driven call. Update the screen.
— AH=71 Switch to window 7.
AH=72 If AL=0: Switch to window 8.
— If AL>0: Scroll up one line.
AH=73 If AL=0: Switch to window 9.
“ If AL>0: Page up.
AH=75 Switch to window 4.
— AH=76 Switch to window 5.
: AH=77 Switch to window 6.
— AH=78 Toggle among text windows, soft tablet,
EGA/VGA frames.
— AH=79 Switch to window 1.
— AH=80 If AL=0: Switch to window 2.
¢
o -

AH=81 If AL=0: Switch to window 3.
If AL>0: Page down.

AH=96 Force EGA/VGA frame to screen.

AH=97 Force soft tablet to screen. (AL=tablet num)

AH=98 Echo keyin only. Do not refresh entire
screen.

AH=99 Force text window to screen. (AL=window num)

AH=255 Initialize.

The functions for AH=0, 96, 97, 98, 99, and 255 are acti-
vated by other processes. They do not correspond to keypad
scan codes.

A Fortran-callable entry point exists to allow other
processes to trigger the INT 66H. The calling sequence is:

CALL WNDINT (AH_REGISTER,AL REGISTER)

Thus, for example, to force text window 5 to the screen a
Fortran program would execute the following statement:

CALL WNDINT (99,5)

When the text windows are visible, SCREENS ordinarily

updates the screen from its internal work area on each tick.

The AH=98 function is called by the scanner when
echoing the command line. It causes the command line only
to updated. :

The Text Window Interface ... 7

AN RRRRRRRRANEES

GRAPHICS DRIVERS

Introduction

Various PC-McIDAS applications programs need to draw
image or graphics pixels in an image/graphics frame. It is
desirable, however, for the applications programs themselves
to be independent of the particular display hardware being
used. To achieve this device independence, low-level
image/graphics entry points are implemented via a software
interrupt. The code that actually interfaces to the display
hardware is installed as a resident interrupt handler (INT
63H) , so it is not linked into any applications program. To
change to a different display device one simply installs the
resident driver appropriate to that device. Applications
programs do not change at all.

The generic name for the image/graphics interface
driver is PV. The version specific to the SSEC-Dataram-
Conrac "tower" display is called PVSSEC. The version for
the IBM EGA/VGA is called PVEGA.

The specific function performed by PV (INT 63H) depends
on the setting of the AL register, as follows:

AL=0 -- Set graphics window

Al=1 -- Draw graphics point

AL=2 -- Draw graphics line segment
AL=3 -- Load tv image line

AL=4 -- Initialize the driver

Fortran-callable entry points are available to enable
applications programs to activate the various PV functions.
They are, respectively:

AL=0 =-- CALL GRWNDW (UPLLIN,UPLELE,LWRLIN, LWRELE)
UPLLIN == Upper left line (0O-based)
UPLELE == Upper left element (O-based)

LWRLIN == Lower right line (0O-based)
LWRELE == Lower right element (0O-based)

Graphics Drivers ... 1

AL=1 -- CALL P (FRAME, LINE,ELEMENT,COLOR,IFLAG)
FRAME == Frame number (1l-based)
LINE == Line number (0-based)
ELEMENT== Element number (O-based)
COLOR == Graphics color (Device dependent)
IFLAG == At the present time, IFLAG should = 1
Al=2 -- CALL GRLINE (FRAME, COLOR, BEGLIN, BEGELE, ENDLIN,
ENDELE, WIDTH, DSHLEN, GAPLEN, GAPVAL)
FRAME == Frame number (l-based)
COLOR == Graphics color (Device dependent)
BEGLIN == Line for beginning pixel in segment
(0-based)
BEGELE == Element for beginning pixel in segment
(0O-based)
ENDLIN == Line for ending pixel in segment
(0-based)
ENDELE == Element for ending pixel in segment
(0-based)
WIDTH == Segment width in pixels
DSHLEN == Dash length in pixels (0 for no dashing)
GAPLEN == Gap length in pixels (0 for no dashing)
GAPVAL == Gap color (device dependent)
(GRLINE is not called by applications programs
directly. See the discussion below of subroutine
DRWLIN.)
AL=3 -- CALL V (FRAME,LINE,PIXEL,NUMPIX,IARRAY,IPLOT)
FRAME == Frame number (1l-based)
LINE == Line number (0O-based)
PIXEL == Starting pixel number (0-based)
NUMPIX == Number of pixels to be loaded
IARRAY == Array containing pixel values
IFILAG == At the present time, IFLAG should = 1
AL=4 -- CALL PVINIT

(By the way, the "PV" nomenclature derives from the
entry points P and V, above.)

The PV interrupt handlers (i.e. PVSSEC and PVEGA) are
intended to be called via the entry points listed above.
Accordingly, they are set up to take their parameters from
Generally speaking (there are certain excep-
tions, see below), each of the entry points GRWNDW, P,
GRLINE, V, and PVINIT simply sets the AL register to the
appropriate value and performs the INT 63H instruction. The

the stack.

Graphics Drivers ... 2

T

stack is unaffected, except that 6 bytes (flags register and
far return address) are pushed by the INT 63H instruction
itself. PV (INT 63H) extracts its parameters from the
stack, allowing for the extra 6 bytes.

It is intended, moreover, that PV is called only from
the foreground. Background drivers (e.g. TVCTRL) that need
to write to an image/graphics frame do so directly. In par-
ticular, no attempt is made either to make PV re-entrant or
to serialize access to it.

The preceding remarks pertain to all versions of PV
(i.e. PVSSEC, PVEGA, and any future implementation). The
following two sections will describe considerations that
pertain specifically to PVSSEC and PVEGA.

In addition to the above entry points, PC-McIDAS sup-
ports the entry points in the usual McIDAS plot package --
INITPL, PLOT, and ENDPLT, in particular. The PC-McIDAS plot
package is discussed in the third section below.

PVSSEC =-- PV for the Tower

As is described more fully elsewhere (see the chapters
"A Few Hardware Considerations" and "TV Control"), PC-McIDAS
workstations that use the SSEC/Dataram "tower" are con-
trolled by having the AT formulate comm packets that are
passed to the 8085 in the tower. To pass such a packet to
the 8085, a program invokes INT 65H.

To support the implementation of PVSSEC, four new rout-
ing codes have been added to the so-called 02/03 protocol
used for AT-to-tower communications. These new routing
codes support 8-bit data. They are defined as follows:

Routing code 60H -- Set graphics window (default is
full screen).

Bytes 1-2 -- Upper left element (O-based)
Bytes 3-4 -- Upper left line (0O-based)
Bytes 5-6 -- Lower right element (0O-based)
Bytes 7-8 -- Lower right line (0O-based)

Graphics Drivers ... 3

Routing code 61H -- Graphics point draw (draws only
points that are within the current

window).
Byte 1 == Graphics frame number
Byte 2 == Graphics color
Bytes 3-4 -- Element (0O-based)
Bytes 5-6 -- Line (0-based)

Routing code 62H -- Graphics line segment draw (draws
only points that are within the
current window).

Byte 1 == Graphics frame number
Byte 2 == Graphics color
Bytes 3-4 -- Starting element (0-based)
Bytes 5-6 -- Starting line (0O-based)
Bytes 7-8 -- Ending element (0O-based)
Bytes 9-10 -- Ending line (0-based)
Byte 11 -- Width of segment in pixels
Byte 12 —-- Dash length (0 for no dashing)
Byte 13 == Gap length (0 for no dashing)
Byte 14 =~svGapscolor
Routing code 63H -- TV image line load
Byte 1 -- Image frame number
Bytes 2-3 -- Starting pixel within line (0-based)
Bytes 4-5 -- Line number (0-based)
Bytes 6-7 -- Number of pixels (max=number of
pixels in a full 1line)
Bytes 8-N .-- Pixel values (8 bits per pixel)

In the case of PVSSEC, the initialization function
(AL=4) is a no-op. It is present purely for symmetry with
PVEGA, where it is needed.

PVEGA -- PV for the EGA and VGA

A certain amount of the functionality in PVEGA is now
obsolete. At one time, PC-McIDAS on the EGA supported use
of graphics modes 4 and 6 with a variable number of
image/graphics frames stored in lower memory. There was a
PC-McIDAS command called EGA that let the user change the
number of frames or the graphics mode. PVEGA still supports
this functionality.

When used in graphics mode 4 or 6, PVEGA needs quick

access to frames’ segment addresses and offsets of lines
within a frame. These values are stored in tables for quick

Graphics Drivers ... 4

lookup. The tables are updated by PINIT and SETP whenever
the graphics mode is changed (which nevers happens in the
current implementation). It would make sense at some point
to extract these tables and the accompanying functionality
from PVEGA, PINIT, SETP, and GRINIT (GRINIT is described
below). This would save 1-2 KB of memory.

The IFLAG parameter used by the P and V entry points
(see the "Introduction" to this chapter) also reflects the
functionality in graphics modes 4 and 6. It used to be
possible to write to a frame not currently displayed and to
draw pixels by XOR-ing. IFLAG allowed one to select the
mode of drawing.

There is a program called GRINIT that is spawned to
initialize the graphics subsystem when MCIDAS.EXE is started
up. Under the old functionality, GRINIT was a subroutine
called from MCIDAS. GRINIT needed to be linked into MCIDAS
because it allocated memory used for the image/graphics
frames. It could not be a separate program, or its memory
would be freed as soon as GRINIT exitted. The EGA command
that allowed the user to change the number of frames or the
graphics mode would leave mail in SYSCOM and exit. MCIDAS
then would notice the mail and call GRINIT to reallocate
memory appropriately and call PINIT and SETP as described
above.

Under the current implementation, however, the user is
not permitted to dynamically modify the number of
image/graphics frames within a PC-McIDAS session, so it is
possible to divorce GRINIT from MCIDAS itself. GRINIT is
now spawned as a separate program to reduce the size of
MCIDAS.EXE.

Graphics point and video line drawing are implemented
by accessing the EGA/VGA hardware directly. See the chapter
"Using the IBM EGA and VGA".

Graphics line segment drawing is not implemented in
PVEGA. See the discussion below of subroutine DRWLIN.

Graphics Drivers ... 5

PLOTPACK -- The Plot Package for PC-McIDAS

The standard plot package entry points familiar to
mainframe McIDAS programmers are implemented in PC-McIDAS
(see PLOTPACK.FOR). For the most part, the entry points act
as McIDAS programmers expect them to. A few comments should
be made, however, about INITPL, PLOT, and ENDPLT.

INITPL on the EGA/VGA causes the frame automatically to
be brought to the screen. It also erases the cursor auto-
matically.

PLOT on the SSEC/Dataram tower calls GRLINE to send a
packet to the 8085; the line segment is drawn by the 8085.
PIOT on the EGA/VGA calls a Fortran subroutine called DRWLIN
that generates the appropriate calls to P, the graphics
point drawer. DRWLIN also takes care of omitting points
outside the window. When the line segment being drawn is
entirely within the window and has a one-pixel width with no
dashing, DRWLIN uses Bresenham’s Algorithm for maximum effi-
ciency. DRWLIN is also one of the few places in PC-McIDAS
where a large number of INTEGER*2 (not INTEGER*4) variables
are used -- this is also done to increase efficiency. Some
applications call DRWLIN directly, I believe, so this entry
point should probably be retained.

In the EGA/VGA implementation, pixels are drawn in
graphics memory only. They are not saved in the frame space
in extended memory until ENDPLT is called. ENDPLT also
takes care of re-drawing the cursor.

Graphics Drivers ... 6

Iillllllllllllllll‘

USING THE IBM EGA AND VGA

Among the imagery/graphics devices supported by
PC-McIDAS are the IBM Enhanced Graphics Adapter (EGA) and
the IBM Video Graphics Array (VGA). For both of these
devices it is necessary, if we are to get adequate perform-
ance, to interact directly with the graphics hardware rather
than use the BIOS graphics video functions. The purpose of
this chapter is to describe how to program the EGA and VGA
hardware.

At the time of this writing, PC-McIDAS uses the VGA as
a glorified EGA. The VGA supports all the EGA’s graphics
modes, and PC-McIDAS uses only mode 16 (350 lines by 640
elements by 16 colors), an EGA mode. In most respects, the
EGA and VGA are programmed identically in mode 16. The only
differences arise in handling color palette selection.

The first few sections below will describe the program-
ming considerations common to both the EGA and VGA in mode
16. Following them will be a section on EGA palette selec-
tion, then one on VGA palette selection.

Programming Considerations Common to Both the EGA and VGA

The following sections will assume graphics mode 16 and
a fully-populated EGA/VGA memory, without bothering to say
so repeatedly. Much of what will be said does not actually
require these assumptions, but trying to provide a com-
pletely general exposition would be more trouble than it’s
worth.

Graphics Memory Organization

Graphics memory is organized in two pages (0-1). Page
0 begins at segment OAOOOH; page 1 begins at segment OA80O0H.

Within a page, memory is organized in 4 bit planes (0-
3). That is, the bit 0’s of all pixels in a page are stored
contiguously, followed by all the bit 1’s, etc. The purpose
of the bit plane construct is to allow the various bit
planes within a page to share the same address space, reduc-
ing by a factor of 4 the address space required. When a
program accesses a particular address in graphics memory, it
may access any of the 4 bit planes at that address. Which

Using the IBM EGA and VGA ... 1

:

bit plane is actually accessed is determined by a register
setting, as described below.

Within a given bit plane, each byte contains 1 bit from
each of 8 pixels. Each byte is organized as follows: the
high-order bit corresponds to the leftmost pixel, the low-
order bit to the rightmost. Pixels are stored left-to-right
across a screen row; screen rows are stored top-to-bottom.

Reading or writing to a bit plane is a two-stage pro-
cess. First, execute an OUT instruction to a command
register that specifies whether you want to read or write.
Second, execute an OUT instruction to a so-called "map"
register that defines which bit plane you want to access.
After these two steps have been done, you can address the
graphics memory just like any other part of memory.

Reading a Pixel

To read a pixel, you must read each of the 4 bytes (one
per bit plane) containing the 4 bits making up the pixel
value, extract from each of these bytes the bit correspond-
ing to the pixel in question, and combine the pixel’s bits
to make a nibble containing the pixel value.

Only one step requires knowledge of the EGA/VGA hard-
ware: reading a byte from a bit plane.

Suppose registers have been initialized as follows:

DS = segment address of page

SI = offset within bit plane of desired byte
(i.e. ROW*80 + COL/8)

BL = bit plane (0-3)

To read the appropriate byte for the pixel, do the
following:
MOV DX, 3CEH port for command register to
read bit planes

e we we wo we

MOV AL,4 command to enable reading of
bit planes
OUT DX,AL enable bit plane reading

MOV DX, 3CFH
MOV AL, BL
OUT DX,AL

read map select register

number of bit plane (0-3)
select the bit plane for
reading

we we we “we

MOV AL,DS:[SI] get the desired byte

~e

Using the IBM EGA and VGA ... 2

Writing a Pixel

Writing a pixel is more than just the inverse of read-
ing one. To write a pixel, you need to modify 1 bit in each
of 4 bytes (1 byte for each bit plane). But in each of the
4 bytes, you want to modify only the bit corresponding to
the pixel in question. The other bits must retain their old
values.

The natural thing to try is to set up the graphics
memory for a write operation, then use AND/OR instructions
to set the appropriate bits directly. This does not work,
however. When the graphics memory is set up for writing, it
cannot be read. The AND/OR instructions do not work cor-
rectly; they return values as if the byte in question was
clear to start with.

As a result, writing a pixel must be a read-modify-
write operation. You must first read the current value of
the byte you want to write to, then modify the appropriate
bit, and finally write the modified byte back to the gra-
phics memory.

Reading a byte is described in the previous section.
Writing a byte is done similarly.

Suppose registers have been initialized as follows:

ES = segment address of page

DI = offset within bit plane of desired byte
(i.e. ROW*80 + COL/8)

CL = bit plane (0-3)

CH = byte value to be written

To write the byte to the bit plane, do the following:

MOV DX, 3C4H port for command register to

write bit planes

Ne “e we we we

MOV AL,2 command to enable writing of
bit planes

OUT DX,AL enable bit plane writing

MOV DX, 3C5H ; map mask register

MOV AL,1

SHL AL,CL i need a 1 in the bit corres-
i ponding to the bit plane

OUT DX,AL ; select the bit plane for

writing

Using the IBM EGA and VGA ... 3

f

MOV ES:[DI],CH ; store the value

NOTE: When reading a bit plane, you set the map register
to the number of the bit plane itself. When writing a bit
plane, you set the map register to have a 1 in the bit cor-
responding to the bit plane.

Writing an Image

When writing a single pixel, you are required to
preserve the neighboring pixels. This necessitates the kind
of read-modify-write implementation described above.

When writing an entire image, however, there is no such
requirement, so you do not need to read bytes before writing
them. You can set up a bit plane for writing, then move in
a whole string of bytes at once using the MOVS or STOS
instructions in block-move mode.

PC-McIDAS implements full-image writing in two differ-
ent ways, depending on context. TV control writes images a
whole bit plane at a time. Commands like DF and RSTI, how-
ever, write them a line at a time.

Writing an image a whole bit plane at a time is more
efficient, since one sets the EGA/VGA registers only once
per bit plane per image. Writing an image a line at a time
requires setting the registers once per bit plane per each
line of the image. However, the former method, despite its
greater efficiency, cannot be used to load an image that is
visible on the screen while it is being loaded. It causes
the image colors to flash as the various bit planes are
loaded, because the interval between successive refreshes of
the screen is much less than the length of time required to
load the image.

Important PC-McIDAS Modules That Read/Write the EGA/VGA

The driver that handles reading or writing a pixel is
PVEGA.ASM.

A quarter-tone image is loaded via HLFTON.ASM. A 16-
level image is loaded via HRSIMG.ASM.

Important routines involved in saving an image to a

disk file are SAVHRS.ASM, BITPLN.ASM, and EXTMOV.ASM. For
restoring a previously saved image see RSTHRS.ASM.

Using the IBM EGA and VGA ... 4

FEEEEEEEEEEEEEEREEES

TVEGA.ASM, the TV control module for EGA/VGA work-
stations, also accesses the EGA/VGA hardware directly in a
variety of ways.

Color S8election on the EGA

In graphics mode 16, the EGA permits 16 colors to be
displayed at one time. These 16 colors can be selected
freely from a set of 64 colors supported by the hardware.
(Each color consists of 1 bit each for R, G, B and 1 bit
each for R’, G’, B’, the latter being intensity bits.)

A set of 16 selected colors is known as a "palette".
Palette selection is accomplished via the BIOS video inter-
rupt, using the subfunction defined by AH=10H, AL=2. 17
values can actually be defined; the 17th is the "overscan"
color, which for PC-McIDAS is always 0, or black.

The palette for each PC-McIDAS frame is stored in the
Frame Palette Block of SYSCOM. TVEGA takes care of setting
the correct palette each time an image is brought to the
screen. Note that different frames can employ different
color palettes.

When an image is saved to a disk file using the SAVI
command, the palette is saved with it, and the palette is
restored when the image is restored using the RSTI command.

Color Selection on the VGA

The VGA supports a much greater number of possible
colors than does the EGA: 64 * 64 * 64 = 262,144 colors
rather than just 64.

The color selection process occurs in two stages on the
VGA. You still specify a palette of 16 colors out of 64,
but you can also specify the 64 available colors themselves
by giving 6-bit red, green, and blue intensity levels (the
so-called "color register" values) for each. The latter
selection process occurs via the BIOS video interrupt, using
the subfunction defined by AH=10H, AL=12H.

PC-McIDAS turns the two-stage color selection process
back into a one-stage process. The palette is always set to
colors 0-15. Color selection then amounts to setting the
color registers for colors 0-15. (We do not care what
colors are set for 16-63 since these are never used.) This

Using the IBM EGA and VGA ... 5

TEEEEEEEEEEREEREIED

means specifying 48 one-byte values -- the red, green, and
blue intensity levels for each of 16 color levels.

When a VGA is being used, the Frame Palette Block in
SYSCOM is given a different interpretation from that given
when an EGA is used. In the EGA setting, there are 16 sets
of 16 bytes -- one 16-color palette for each of 16 frames.
In the VGA setting, there are 16 sets of 48 bytes -- 16
(R,G,B) triplets for each of 16 frames.

When a VGA image is saved to a disk file using the SAVI
command, the 48 color register values are saved, and they
are restored if the image is restored using the RSTI
command.

Using the IBM EGA and VGA ... 6

THE KEYBOARD FILTER

PC-McIDAS Keyboard Requirements

There are two functional requirements that necessitate
special handling of keyboard input in PC-McIDAS:

1) When a single-letter command is entered using the
Alt key, the command must be executed immediately, even
if other keystrokes precede it in the typeahead buffer.
Similarly, if a key on the keypad is pressed to switch
to a new text window, etc., the keystroke must not wait
in line in the typeahead buffer.

2) Ctrl-s and Ctrl-Q must be implemented to stop and
start text output to the screen. Since PC-McIDAS
by-passes BIOS and DOS in writing text output to the
text window interface, PC-McIDAS must handle Ctrl-S and
Ctrl-Q on its own. Ctrl-S and Ctrl-Q must take effect
immediately, even if other keystrokes precede them in
the typeahead buffer.

Satisfying these functional requirements depends, in
both cases, on the systems software being able to look ahead
in the typeahead buffer and filter out keystrokes requiring
immediate attention. The module that makes possible such a
filtering operation is called KBIOSF.EXE.

Functional Description of KBIOSF

Programs, including DOS itself, ordinarily access key-
board input via BIOS INT 16H. The particular function per-
formed by INT 16H depends on the value in the AH register,
as follows:

AH=0 =-- Return the next available keystroke
AH=1 -- 1Indicate if a keystroke is waiting
AH=2 -- Get the current shift status code

(The last function is not used by PC-McIDAS.)

The basic idea of KBIOSF is to replace the BIOS INT 16H
with a new handler that provides the same functions as does
INT 16H, but provides lookahead functions as well.

KBIOSF maintains two local typeahead buffers. The rea-
son for two buffers is to allow two filtering passes: one

The Keyboard Filter ... 1

to implement Ctrl-S/Ctrl-Q handling, the other to implement
single-letter command handling and text window/soft tablet
control. These two buffers will be referred to as the "1st
pass buffer" and the "2nd pass buffer". More will be said
about these buffers below.

KBIOSF implements the three functions implemented by
BIOS INT 16H -- as it must do to provide the interface
expected by DOS and other non PC-McIDAS programs. The only
difference is that the functions for AH=0 and AH=1 look not
in the BIOS typeahead buffer but in the 2nd pass buffer.
The following additional functions are defined:

AH=80H -- Enable keyboard filter

AH=81H =-- Disable keyboard filter

AH=82H -- Get the next available keystroke, if any,
from the 1st pass buffer.

AH=83H =-- Put a keystroke in the 2nd pass buffer.

AH=84H -- Get the next available keystroke, if any,
from the BIOS typeahead buffer.

AH=85H =-- Put a keystroke in the 1st pass buffer.

AH=86H -- 1Initialize

Each keystroke moves through the filter in the follow-
ing way. The Ctrl-S/Ctrl-Q handler takes a key from the
BIOS typeahead buffer via function AH=84H. If the key is
Ctrl-S or Ctrl-Q it is handled and thrown away. If not, it
is put into the 1st pass buffer via function AH=85H. The
single-letter command handler takes the key from the 1st
pass buffer via function AH=82H. If it is a key that can be
handled in the background, it is handled and thrown away.
Otherwise, it is put into the 2nd pass buffer via function
AH=83H. This makes the key available to applications pro-
grams that access keystrokes through the normal function
AH=0.

In other words, in the 1st pass buffer all Ctrl-S and
Ctrl-Q characters have been filtered out. 1In the 2nd pass
buffer, all single-letter commands handled by TVCTRL and all
keypad keystrokes for controlling the text windows and soft
tablet have also been filtered out.

The Keyboard Filter ... 2

8ingle-Letter Command Handling

On each tick, TVCTRL triggers KBIOSF to get a key from
the 1st pass buffer.

If a key is returned, TVCTRL looks to see if it is an
Alt key for a single-letter command handled by TVCTRL; if
so, TVCTRL handles it and throws it away. TVCTRL also looks
to see if the key is one of the keypad keys used to control
the text window interface and soft data tablet. If SO,
TVCTRL triggers SCRINI (see the chapter on "The Text Window
Interface") and throws the key away.

Otherwise, TVCTRL triggers KBIOSF to put the key into
the 2nd pass buffer to make it available to applications
programs and the scanner.

Ctrl-s8 and Ctrl-Q Handling

If Ctrl-s is pressed, text output to the screen is sus-
pended until another keystroke is entered. If the latter
keystroke is a Ctrl-Q or another Ctrl-S, it is thrown away.
The implementation of this functionality is a bit compli-
cated.

There is a flag in the Terminal Control Block of SYSCOM
(the Ctrl-s flag) that indicates if a Ctrl-S is currently
active. (I.e. the flag=1 if and only if text output is
currently suspended by a Ctrl-S.) There are three places in
the system where the state of this flag makes a difference:

1) in VIDEO.EXE, the BIOS INT 10H replacement,

2) in SCRINI.EXE, the text window interface handler,

3) in KBIOSF.EXE, the keyboard filter.

Moreover, there are three places in the system where
the state of the flag can be changed:

1) in VIDEO.EXE, the BIOS INT 10H replacement,
2) in TVCTRL, and

3) in NXTKEY, the subroutine that applications call to
get the next keystroke.

Each time VIDEO is triggered to write text to the

screen, it takes the next waiting keystroke (if any) from
the BIOS typeahead buffer and sets or clears the Ctrl-S

The Keyboard Filter ... 3

flag, as appropriate, depending on what keystroke it gets
and on the existing state of the Ctrl-S flag. If the
keystroke is neither Ctrl-S nor Ctrl-Q, VIDEO triggers
KBIOSF to put the keystroke into the 1st pass buffer.

Then, if the Ctrl-S flag is set, VIDEO goes into a
loop, scanning the BIOS typeahead buffer, as above, until
the Ctrl-S flag clears. By having this kind of
Ctrl-S/Ctrl-Q handling in VIDEO itself, the system is
assured of getting immediate response to Ctrl-S/Ctrl-Q
keystrokes. Moreover, the system is not suspended by Ctrl-S
unless some process actually attempts text output to the
screen.

So, VIDEO takes care of Ctrl-S and Ctrl-Q handling so
long as VIDEO is being called. Note that VIDEO also takes
care of getting keys from BIOS and stuffing them into the
1st pass buffer. But what if no text output is currently
being generated, so VIDEO is not being called? Clearly,
some other process must also get keys from BIOS; otherwise,
the keyboard would go dead whenever VIDEO is not being
called.

The other process that scans the BIOS typeahead buffer
is TVCTRL. It also checks for Ctrl-S and Ctrl-Q before
putting a key into the first pass buffer. It is necessary
to have TVCTRL, as well as VIDEO, check for Ctrl-S/Ctrl-Q.
Otherwise, there is a race condition: if TVCTRL gets its
hands a Ctrl-S before VIDEO does, the Ctrl-S is not noticed
until control returns to the MCIDAS.EXE level and NXTKEY is
called. TVCTRL’s Ctrl-S/Ctrl-Q handling differs from
VIDEO’s in that TVCTRL does not loop if the Ctrl-S flag is
set. There is no need to loop until some process actually
triggers VIDEO to send some text to the screen.

SCRINI, the text window interface handler that is
triggered on every "tick", does not bother to refresh the
text screen if the Ctrl-S flag is set. The screen cannot
change while the Ctrl-S flag is set -- a process that wanted
to change the screen would have to call VIDEO and would loop
there -- so refreshing the screen on every tick would be a
waste of machine cycles.

Finally, there is a time-out associated with Ctrl-sS.
When the Ctrl-S flag is set, SCREENS increments a counter on
each tick. If the counter times out, SCREENS clears the
Ctrl-S flag. KBIOSF clears the counter on each keystroke.

The Keyboard Filter ... 4

AESREEEEEEEEEEEEREE

THE PC-McIDAS COMMAND SCANNER

Ooverview

PC-McIDAS commands may be entered at the keyboard or
through one of a variety of user interfaces. 1In either
event, a "command line" is generated -- i.e. a sequence of
characters representing a PC-McIDAS command or sequence of
commands together with the command parameters. The
PC-McIDAS system must be able to accept the command line,
determine what action is appropriate to process the
PC-McIDAS command or sequence of commands, and cause the
appropriate action to be undertaken. The system routines
responsible for handling command lines in this way are known
collectively as "the scanner".

In PC-McIDAS, the scanner comprises a separate execut-
able module, MCIDAS.EXE (see MCIDAS.FOR, SCSCNX.FOR, etc.).
There are also some non-scanner functions included in
MCIDAS.EXE, but these are unimportant for the present
discussion. To run PC-McIDAS, one runs MCIDAS.EXE.

MCIDAS.EXE consists essentially of a big loop that
looks for input from the keyboard or one of the user
interfaces. When a full command line has been received,
MCIDAS calls SCSCNX to parse the command line. The action
taken depends on the kind of command found. It may be
passed to TVCTRL or the mainframe, or an executable module
may be activated locally on the workstation.

Input to the Scanner

There are various ways in which a command line may be
received by the scanner.

1) It can be received a character at a time through a
sequence of calls to GETKEY. The characters returned
by GETKEY can arise in several ways:

a) They can be entered at the keyboard (returned
by calls to NXTKEY).

b) They can be contained in an active batch file
activated by the RUN command.

c) They can be obtained from the string table when

a function key or a single-letter numeric key is
pressed.

The PC-McIDAS Command Scanner ... 1

e T T RS e

A sequence of characters returned by GETKEY becomes a
command line when a carriage return is encountered.

2) A command line can be sent from a host computer and
posted in SYSCOM by the communications software. Such
a command is waiting if LOOKB(2,82) .NE.O, in which case
the scanner calls COMKYN to retrieve the command.

3) A command line can be generated by a user interface
and posted in SYSCOM. Such a command is waiting if
LOOKB(2,243).NE.O. In that event, the scanner calls
USRKYN to retrieve the command. This same mechanism is
also used by commands that want to leave mail to spawn
another command when they complete.

4) A command line can be generated by a voice-recog-
nition interface and posted in SYSCOM. Such a command
is waiting if LOOKB(5,0) .NE.O.

Parsing a Command Line

When the scanner has received a command line, it calls
SCSCNX to parse the command line and take appropriate
action. Other routines relevant for the parsing process are
MCTOKN, MCTOK2, KYNANL, and TOKANL. String expansion is
also done at this time.

SCSCNX loops through the sequence of PC-McIDAS commands
contained in the command line. Each command is parsed and
the command parameters are stored in SYSCOM. The command is
then sent to the host (via SNDKYN) or executed locally on
the workstation (via KSPAWN) , as appropriate.

If any command in a Sequence of commands leaves mail in
SYSCOM to start another command, that new command is handled
before continuing with the Sequence of commands. This is
necessary so the "mail" is not lost if a later command in
the sequence also leaves mail to start a command.

The PC-McIDAS Command Scanner ... 2

SRR EEREEEREERRRERN

SPAWNING SUBPROCESSES

overview

There are a variety of scenarios in which one PC-McIDAS
program (the parent process) needs to start up (spawn) an-
other PC-McIDAS program (a child process, or subprocess).
Three main kinds of spawn occur in PC-McIDAS. The principal
mechanism used to implement each kind of spawn is the SPAWN
utility in the MicroSoft C Library.

In the first kind of spawn, the parent process remains
in memory and causes the child process to run as an ordinary
DOS executable. The parent is suspended until the child
completes, then the parent resumes. One example: all
PC-McIDAS commands are spawned by the scanner. Another
example: many PC-McIDAS commands spawn sub-commands trans-
parently to the user.

When the first kind of spawn is used, the parent and
child are both in memory at the same time. Consider, for
example, the DFG command. When the DFG command line is
entered, MCIDAS spawns DFG; then DFG spawns LODIMG, say.
While LODIMG is running, all three programs -- MCIDAS, DFG,
and LODIMG -- are in memory. It often happens in such cases
that a parent does not have sufficient memory available to
spawn a needed child.

The second kind of spawn handles such cases. Here, the
parent does not remain in memory while the child runs. In-
stead, the parent leaves mail in SYSCOM and exits, and
PC-McIDAS takes care of spawning the child. There is some
loss of flexibility in that the child must run after the
parent has completed. This has not been a very great
hindrance in practice, however. An example of this kind of
spawn is provided by commands like IGTV that leave mail to
run MAP after they complete.

The last kind of spawn is involved in the PC-McIDAS
implementation of the SQW facility of mainframe McIDAS. SQW
allows a program to dynamically link in subroutines at run-
time. PC-McIDAS implements SQW by spawning a child on the
first call to SQW, then simply jumping to the child on
subsequent calls. This mechanism is used to link dynamical-
ly to navigation modules.

Spawning Subprocesses ... 1

The First Kind of Spawn -- Parent Stays in Memory

The underlying modules here are ISPAWN, KSPAWN, and
LSPAWN. Each calls the MicroSoft C Library SPAWN utility to
spawn a child process.

ISPAWN is called by ISQX. KSPAWN is called by SCSCNX,
JSQX (indirectly), and KSQX (indirectly). LSPAWN is called
by LSQX.

ISPAWN simply spawns the child process. If the child
program is not found on the PC, it is not sent to the host.

KSPAWN does what ISPAWN does, and it also re-enables
CTRL-BREAK checking for the child. CTRL-BREAK checking is
disabled while MCIDAS is running to prevent the user from
accidentally aborting MCIDAS itself. When MCIDAS spawns a
PC-McIDAS command, it must use KSPAWN (which it does, indi-
rectly, via SCSCNX) to enable the user to CTRL-BREAK out of
the PC-McIDAS command, if needed. A child uses ISQX or
ISPAWN, since CTRL-BREAK checking has already been enabled
for the child.

LSPAWN is the same as ISPAWN except that if the child
program is not found on the PC, and if the PC is configured
to communicate back to a host computer, a packet will be
sent to run the child on the host. LSPAWN is called by
LSQX, which is called by DUO, for example.

When the child to be spawned is a DOS command, the
SYSTEM entry point in the MicroSoft C Library is used,
instead of SPAWN. SYSTEM loads a new copy of the DOS com-
mand processor COMMAND.COM. A PC-McIDAS entry DOSCMD is
provided to enable PC-McIDAS commands easily to spawn DOS
commands.

Spawning Subprocesses ... 2

S EERRRRRRRRRRRRR D

The Second Kind of Spawn -- Parent Leaves Mail in SYSCOM
Suppose a PC-McIDAS command CMD1 wants another command

CMD2 to run immediately following completion of CMD1. Then
CMD1 should include code like the following:

CHARACTER CMD(160)

(Put the text for CMD2, including parameters and
trailing blanks, in the array CMD)

C---- Store CMD2 in SYSCOM
CALL POKES(2,244,CMD,0,160)
C---- Set SYSCOM flag to indicate a command is pending

CALL POKEB(2,243,1)

When CMD1 exits, CMD2 will be run. The various rou-
tines (ISQX, JSQX, KSQX, SCSCNX) that may have been used to
start up CMD1 all include (directly or indirectly) code to
check SYSCOM for a pending command and spawn it. Note that
the command will be spawned from CMD1l’s parent, not neces-
sarily from the PC-McIDAS scanner.

The Third Kind of Spawn -- Dynamically-Linked Subroutines

DOS does not directly support any form of dynamic link-
ing of subroutines at run-time, so the implementation of SQW
presents some problems.

The calling sequence of SQW is: CALL SQW(CPGM,N,M).
N and M are arrays of arbitrary size through which para-
meters may be passed. The intent is that CPGM will be
called as a subroutine with N and M passed as parameters.
Moreover, if CPGM is SQW’ed repeatedly by a single command
there should not be a lot of overhead associated with calls
after the first one.

The basic idea of the PC-McIDAS implementation is to
make CPGM a separate DOS executable that is spawned on the
first call and jumped to on subsequent calls. Among other
things, SQW stores pointers to N and M in SYSCOM so CPGM can
find them.

Spawning Subprocesses ... 3

RRERRREEE

Suppose you want to SQW a command named CPGM. Put the
body of CPGM in a subroutine CPGM1, say, with the following
calling sequence:

SUBROUTINE CPGM1 (N,M)
(The actual code for CPGM goes here.)
END

CPGM itself will be a stub consisting of the following:

PROGRAM CPGM
EXTERNAL CPGM1
DATA IFIRST/1/
IF (IFIRST.EQ.1) THEN
CALL PRGLOC
IFIRST=0
ENDIF
CALL LNKSQW (CPGM1, LOOKDW(3,854) , LOOKDW (3,858))
GOTO 1000
CALL CPGM1
1000 CONTINUE
END

LNKSQW is an assembler routine that sets up a call to
CPGM1 using the addresses of N and M. Note that the CALL
CPGM1 statement above label 1000 is never executed. It is a
kludge to cause the linker to link in the subroutine CPGM1.
(It is assumed here that CPGM1l resides in a separate Fortran
module.) This is admittedly a gross cobble, but appears to
be necessary.

PRGLOC is a routine that determines where the SQW’ed
program is stored in memory and saves this information in
SYSCOM. The first time SQW is called, the MicroSoft C
Library SPAWN utility is used to load and execute the SQW’ed
program.

However, subsequent calls to SQW with the same value
for the CPGM parameter do not go thru SPAWN again. Instead,
an assembler routine called PRGCAL gets the data that PRGLOC
stored in SYSCOM, sets up registers as needed, and jumps to
the SQW’ed program’s location in memory. It is necessary,
therefore, that no other SPAWNs have been done in the mean-
time. The great advantage of this scheme, of course, is
that it enables one to use SQW to dynamically "1link" in code
(e.g. navigation transformations) that can then be invoked
repeatedly without incurring the overhead of re-loading it
each time it is called.

Spawning Subprocesses ... 4

i

Calling Sequences of Spawn-Related Routines

SUBROUTINE ABORT (RETURN_CODE)
Abort a process with return code.

SUBROUTINE ABRTCD (ITYPE, ICODE)
Return the abort type and return code of a
subprocess.

SUBROUTINE DOSCMD (COMMAND, STATUS)
Spawn a DOS command. COMMAND=CHARACTER(160) .

FUNCTION ISPAWN (CPROGRAM_NAME)
Append .EXE to CPROGRAM_NAME and spawn it. Return
status through function value.

FUNCTION ISQX(CPROGRAM,NUM_TOKENS_IN_CTOKEN_ARRAY,
CTOKEN ARRAY)
Spawn PC-McIDAS command named in CPROGRAM. CTOKEN is
array of command line tokens.

FUNCTION JS8QX (COMMAND)
Spawn PC-McIDAS command(s). COMMAND=CHARACTER (160) .

FUNCTION KSPAWN (CPROGRAM NAME)
Same as ISPAWN except re-enables CTRL-BREAK checking
for child.

FUNCTION KSQX(COMMAND, COMMAND LENGTH)
Same as JSQX except does not require 160 character
input parameter. Use especially when passing a string
constant for COMMAND.

FUNCTION LNKSQW(SUBROUTINE_NAME,NADDRESS,MADDRESS)
Explained in section on Dynamically-Linked
Subroutines.

FUNCTION LSPAWN (CPROGRAM_NAME)
Same as ISPAWN except will send command to host if not
found on workstation.

FUNCTION LSQX(CPROGRAM,NUM_TOKENS_IN_CTOKEN_ARRAY,
CTOKEN_ARRAY)
Same as ISQX except will send command to host if not
found on workstation.

FUNCTION PRGCAL (PSP_SEGMENT, DATA_SEGMENT)

Explained in section on Dynamically-Linked
Subroutines.

Spawning Subprocesses ... 5

FUNCTION PRGLOC
Explained in section on Dynamically-Linked
Subroutines.

FUNCTION S8PWNER (STATUS, CPROGRAM_NAME)
Handle errors encountered in spawning subprocesses.

FUNCTION 8QW(CPROGRAM,N,M)
Spawns a subprocess allowing arbitrary arrays N, M to
be passed. Explained in section on Dynamically-Linked
Subroutines.

Spawning Subprocesses ... 6

DOS FUNCTIONS

Introduction

Various PC-McIDAS applications and system modules need
to have access to DOS functions -- e.g. to perform file I/O.
Two main issues arise in connection with the use of DOS
functions:

1) DOS functions as implemented in DOS 3.X are not
re-entrant. 1I.e., DOS is not implemented in a way that
allows it to 1nterrupt itself, to have one process start up
a DOS function when another process’ DOS function is already
in progress. However, PC-McIDAS needs to use DOS functions
asynchronously in the background, so some means must be pro-
vided to serialize access to DOS functions.

2) It is desirable for applications programs to be
1gnorant of the details of the operating system. To the
maximum extent possible, applications’ source code should be
operating system independent.

The following sections describe how PC-McIDAS has dealt
with these two issues.

Serializing Access to DOS Functions

As described above, it is necessary to prevent an
asynchronous background task from initiating a DOS function
when the background task has interrupted a foreground task
that is in the process of using a DOS function. The back-
ground task needs to wait its turn; i.e. access to DOS func-
tions must be serialized.

To accomplish this serialization of access, a front-
end, DOSFUNC.EXE, is installed under INT 21H, the general
software 1nterrupt vector for DOS functions. The front-end
sets a semaphore and jumps to the code formerly installed
under INT 21H. When control returns to the front-end, the
semaphore is cleared. DOSFUNC must be careful to emulate
correctly the INT and IRET instructions to make the front-
end transparent to client processes (which may not even be
PC-McIDAS programs). In particular, the flags reglster
cannot be stepped on. The semaphore is stored in SYSCOM, so
is accessible by all processes.

Any background task (TVCTRL, COMM, SCREENS) that needs
to use a DOS function first checks the semaphore to see if

DOS Functions ... 1

another DOS function is in progress. If so, the background
process waits until the next "tick" and tries again.

The most common case is that COMM has received a data
packet that needs to be filed away on the hard disk, re-
quiring the use of DOS functions. If the semaphore is set,
COMM will hold the packet over until the next tick, at wthh
time it will treat the packet as if it just came in. If
necessary, the packet will be held over for a number of con-
secutive ticks.

Applications Interface to DOS Functions

PC-McIDAS includes various Fortran-callable subroutines
that allow applications programs to access DOS functions
without the appllcatlons' having to include DOS implemen-
tation details in their source code.

Actually, most of the DOS function interface subrou-
tines are seldom, if ever, called directly by applications
programs themselves. Rather, they are hidden below another
interface layer. For example, most PC-McIDAS commands use
the LW-file interface instead of directly calling routines
like FOPEN, FREAD, etc. Similarly, no PC-McIDAS applica-
tions dlrectly call routines like GETMEM and FREMEM.

The DOS function interface subroutines are important to
the systems programmer, however. For example, they make it
p0551b1e to convert the LW-file utilities to another operat-
ing system simply by replacing FOPEN, FREAD, etc.

The available interface subroutines are summarized
below:

File Directory Management

SUBROUTINE FATTRI (CFLNAM,IATTRB,ISTAT) - Function 43H.
Set a file attribute.

SUBROUTINE FEXIST (CFLNAM,ISTAT) - Function 4EH.
Determine if the named file already exists.

SUBROUTINE FFIRST (CFLNAM,CENTRY,ISTAT) - Function 4EH.
Return first directory entry matching the file name.

SUBROUTINE FNEXT (CFLNAM, CENTRY, ISTAT) - Function 4FH.
Return next directory entry matching the file name.

DOS Functions ... 2

SUBROUTINE FRENAM (CNAME1l,CNAME2,ISTAT) - Function 56H.
Rename a file.

SUBROUTINE FSIZE (IHANDL,ISIZE) - Function 42H.
Return the size in bytes of a file.

SUBROUTINE GATTRI (CFLNAM,IATTRB,ISTAT) - Function 43H. ‘
Return a file attribute.

SUBROUTINE GETDSK (AVAIL,CLUSTR,BYTES,SECTOR) -

Function 36H. Return info about free space on disk
drive.

INTEGER FUNCTION IFRDSK - Function 36H.
Return number of bytes available on default disk drive.

File Creation

SUBROUTINE FCLOSE (IHANDL,ISTAT) - Function 3EH.
Close a file handle.

SUBROUTINE FCREAT (CFLNAM,ISTAT,IHANDL) - Function 3CH.
Create a file handle.

SUBROUTINE FDELET (CFLNAM,ISTAT) - Function 41H.
Delete a file handle.

SUBROUTINE FOPEN (CFLNAM,ISTAT,IHANDL) - Function 3DH.
Open a file handle.

SUBROUTINE FTEMP (CPATH,ISTAT) - Function 5AH.
Create a uniquely named temporary file.

File I/0

SUBROUTINE EPOINT (IHANDL,ISTAT) - Function 42H.
Move file pointer to end-of-file.

SUBROUTINE FPOINT (IHANDL,OFFSET,ISTAT) - Function 42H.
Move file pointer to a given offset.

SUBROUTINE FREAD (IHANDL,NBYTES,IBUFF,ISTAT,NUMRD) -
Function 3FH. Read bytes from a file.

SUBROUTINE FWRITE (IHANDL,NBYTES,IBUFF,ISTAT,NUMWR) -
Function 40H. Write bytes to a file.

DOS Functions ... 3

ITTITTTTEEETTEY

i

-

Flow of control

SUBROUTINE ABORT (ICODE) - Function 4CH.
Abort a program, passing ICODE as the return code.

SUBROUTINE ABRTCD (ITYPE,ICODE) - Function 4DH.
Return the abort type and code of a subprocess.

Memory Management

SUBROUTINE FREMEM (IADDR,ISTAT) - Function 49H.
Free a block of memory previously allocated via GETMEM.

SUBROUTINE GETMEM (NBYTES,IADDR) - Function 48H.
Request memory allocation.

SUBROUTINE MEMAMT (PARAS,ISTAT) - Function 48H.

Return number of paragraphs in largest block of memory
currently available.

Time and Date

SUBROUTINE GETTIM (HHMMSS) - Function 2CH.
Return current time.

SUBROUTINE GETYMD (YYMMDD) - Function 2AH.
Return current date.

Interrupt Vectors

SUBROUTINE GETVCT (INTNUM,SEGMNT,OFFSET) -
Function 35H. Return an interrupt vector.

SUBROUTINE SETVCT (INTNUM,SEGMNT,OFFSET) -
Function 25H. Set an interrupt vector.

Miscellaneous

SUBROUTINE CTRBRK (IFLAG) - Function 33H.
Enable or disable ctrl-break checking.

SUBROUTINE DOSPRM (CPARMS,LENGTH) - Function 62H.
Return the parameters from the DOS command line.

SUBROUTINE GTPRMS (CPARMS,NPARMS) - Function 62H.

Return the first NPARMS parameters from the DOS command
line.

DOS Functions ... 4

SUBROUTINE GETENV (BUFFER,NBYTES) - Function 62H.
Return the first NBYTES bytes of the DOS Environment.

SUBROUTINE GETSEG (PSPSEG,DATSEG) - Function 62H.
Return PSP address and data segment address for
currently executing process.

SUBROUTINE SETDTA - Function 1AH.
Set Disk Transfer Address to its default location.

DOS Functions ... 5

THE PC-McIDAS UTILITY LAYER

Introduction

There are a variety of utility subroutines available to
mainframe McIDAS programs. These utilities are known col-
lectively as the "utility layer". To facilitate the porting
of mainframe McIDAS source code to the PC-McIDAS environ-
ment, it was necessary first of all to recreate the utility
layer in PC-McIDAS.

Most of the utilities are intrinsically dependent on
the operating system and/or the hardware architecture (e.qg.,
byte addressing within words) and therefore had to be re-
written for PC-McIDAS. Every effort was made to reproduce
faithfully the calling sequences and functionality of the
various routines.

In some cases, however, calling sequences had to be
modified. MicroSoft Fortran does not, at the time of this
writing, support variable length character strings and the
various functions related to such strings. 1In particular,
when a string is passed to a subroutine, the called sub-
routine has no way to determine the string’s length. Either
the caller and callee must agree always to pass a string of
a particular length, or the calling sequence must include an
argument that specifies the string length.

For certain utility routines (e.g. INDEX), therefore,
it was necessary to modify the calling sequence to add a
length argument. 1In all such cases, the name of the utility
was changed (e.g. INDEX became JINDEX). Had the names been
left unchanged, there would have been no automatic way to
detect instances where a programmer porting a mainframe
McIDAS module neglected to modify a calling sequence appro-
priately. The linker does not check in any way that calling
sequences agree across modules. Nor is any run-time error
message generated. By changing the names, we create a
situation in which unmodified calls will give rise to
"Undefined Reference" errors at link-time. It is strongly
recommended that this practice be continued.

Various utility routines, grouped by function, are
described below. Not included are utilities ordinarily used
only by specialized subsystems of PC-McIDAS -- e.g. MCTOKN,
which is called by the scanner, or SKIO, which is called by
the scheduler.

The PC-McIDAS Utility Layer ... 1

Also not included here are specialized utilities for
interfacing with DOS functions -- e.g. FREAD, FWRITE, etc.
See the chapter "DOS Functions". Similarly, BIOS interface
utilities -- e.g. SETMOD, SETPAL -- are described elsewhere.
See the chapter "BIOS Functions".

In what follows, variable names are chosen to be
descriptive, not necessarily to follow Fortran name-length
or implicit typing conventions.

Assume the following statements are in effect:

IMPLICIT INTEGER (A-B,D-2)
IMPLICIT CHARACTER*12 (C)

Variables with names like COLOR or COLUMN are integers,
however, and variables named CHAR are CHARACTER*1. Assume
all integer variables are 4-byte integers, unless otherwise
indicated.

SYSCOM Access

INTEGER FUNCTION LOOKB (BLOCK,OFFSET)
Retrieve a 1-byte, unsigned SYSCOM value.

INTEGER FUNCTION LOOKDW (BLOCK,OFFSET)
Retrieve a 4-byte SYSCOM value.

SUBROUTINE LOOKS (BLOCK, OFFSET, DESTINATION_ ARRAY,
STARTING_OFFSET_WITHIN_ARRAY,NUM BYTES)
Retrieve an arbitrary number of bytes from SYSCOM.

INTEGER FUNCTION LOOKSB (BLOCK,OFFSET)
Retrieve a 1-byte, signed SYSCOM value (i.e. sign-
extend).

INTEGER FUNCTION LOOKSW (BLOCK,OFFSET)
Retrieve a 2-byte, signed SYSCOM value (i.e. sign-
extend).

INTEGER FUNCTION LOOKW (BLOCK,OFFSET)
Retrieve a 2-byte, unsigned SYSCOM value.

SUBROUTINE POKEB (BLOCK,OFFSET,VALUE)
Store a 1-byte SYSCOM value.

SUBROUTINE POKEDW (BLOCK,OFFSET,VALUE)
Store a 4-byte SYSCOM value.

The PC-McIDAS Utility Layer ... 2

SUBROUTINE POKEB(BLOCK,OFFSET,SOURCE_ARRAY,
STARTING_OFFSET_WITHIN_ARRAY,NUM_BYTES)
Store an arbitrary number of bytes in SYSCOM.

SUBROUTINE POKEW (BLOCK,OFFSET,VALUE)
Store a 2-byte SYSCOM value.

McIDAS Command Parameter Retrieval

FUNCTION CKWP(CKEYWORD,ARGUMENT_NUM,CDEFAULT)
Return character string keyword parameter.

FUNCTION CPP(ARGUMENT_NUM,CDEFAULT)
Return character string positional parameter.

SUBROUTINE CQFLD (CSTRING)
Return quote field. CSTRING=CHARACTER(160).

REAL*8 FUNCTION DKWPHR(CKEYWORD,ARGUMENT_NUM,DDEFAULT)
Return double-precision real positional time
parameter. DDEFAULT=REAL*S8.

REAL*8 FUNCTION DPP (ARGUMENT_NUM, DDEFAULT)
Return double-precision real positional parameter.
DDEFAULT=REAL*S8,

REAL*8 FUNCTION DPPHR(ARGUMENT_NUM,DDEFAULT)
Return double-precision real positional time
parameter. DDEFAULT=REAL*S.

REAL*8 FUNCTION DPPLL(ARGUMENT_NUM,DDEFAULT)
Return double-precision real positional lat/lon
parameter. DDEFAULT=REAL*S.

FUNCTION IKWP(CKEYWORD,ARGUMENT_NUM,IDEFAULT)
Return integer positional parameter.

SUBROUTINE INIKYN
Must be called at beginning of any PC-McIDAS command.
Parameter-passing will not work without it.

FUNCTION IPP(ARGUMENT_NUM,IDEFAULT)
Return integer positional parameter.

FUNCTION IPPYD(ARGUMENT_NUM,IDEFAULT)
Return integer positional date parameter.

The PC-McIDAS Utility Layer ... 3

SUBROUTINE KWNAMS (DIMENSION_OF_CARRAY,NUM_KEYWORDS_FOUND,
CARRAY)
Return names of all keywords in command line,
except DEV=.

FUNCTION NEKWP (CKEYWORD)
Return number of values associated with a keyword.

SUBROUTINE UNPARS (COMMAND)
Reconstruct command text from parameters in SYSCOM.
COMMAND=CHARACTER(160)

LW File System

FUNCTION LBI(CFILENAME,BEGIN_BYTE,NUM BYTES, IARRAY)
Read bytes from an LwWw-file.

FUNCTION LBO(CFILENAME,BEGIN_BYTE,NUM_BYTES, IARRAY)
Write bytes to an Lw-file.

FUNCTION LWC(CFILENAME)
Create an LW-file.

FUNCTION LWCLOS (CFILENAME)
Close an LwWw-file.

FUNCTION LWD (CFILENAME)
Delete an LW-file.

FUNCTION LWEXIS (CFILENAME) :
Determine if a specified LW-file exists.

FUNCTION LWI (CFILENAME, BEGIN_WORD,NUM_WORDS, IARRAY)
Read 4-byte words from an LW-file.

FUNCTION LWNAME (CFILENAME)
Check an LW-file name for validity.

FUNCTION LWO(CFILENAME,BEGIN_WORD,NUM_WORDS,IARRAY)
Write 4-byte words to an LW-file.

FUNCTION LWOPEN (CFILENAME, IHANDLE)
Open an LW-file. Return the file handle.

FUNCTION LWRNAM (CFILENAME]1 ,CFILENAME2)
Rename an LW-file.

The PC-McIDAS Utility Layer ... 4

Path Names

CHARACTER*80 FUNCTION KYPATH(CFILENAME)
Return ASCII file name with path prefix
C:\MCIDAS\COMMANDS.

CHARACTER*80 FUNCTION KYPATZ (CFILENAME)
Return ASCIZ file name with path prefix
C:\MCIDAS\COMMANDS.

CHARACTER*80 FUNCTION LWPATH (CFILENAME)
Return ASCII file name with path prefix
C:\MCIDAS\DATA.

CHARACTER*80 FUNCTION LWPATZ (CFILENAME)
Return ASCIZ file name with path prefix
C:\MCIDAS\DATA.

CHARACTER*12 FUNCTION NOPATH(CFILENAME WITH PATH)
Strip path prefix from ASCII file name.
CFILENAME WITH_ PATH=CHARACTER*80

CHARACTER*12 FUNCTION NOPATZ (CFILENAME WITH_ PATH)
Strip path prefix from ASCIZ file name.
CFILENAME WITH_PATH=CHARACTER*80

CHARACTER*80 FUNCTION STPATH(CFILENAME)
Return ASCII file name with path prefix
C:\MCIDAS\SETUP.

CHARACTER*80 FUNCTION STPATZ (CFILENAME)
Return ASCIZ file name with path prefix
C:\MCIDAS\SETUP.

CHARACTER*80 FUNCTION VTPATZ (CFILENAME)
Return ASCIZ file name with path prefix
for root directory of RAM Disk.

Text Output
SUBROUTINE CDEST (CLINE, IVALUE,WINDOW,ROW,COLUMN, COLOR)

Display a line of text terminated by ’$$’.
CLINE=CHARACTER (*)

The PC-McIDAS Utility Layer ... 5

SUBROUTINE DDEST (CLINE, IVALUE)
Display a line of text terminated by ’$$’.
CLINE=CHARACTER (*)

SUBROUTINE EDEST (CLINE, IVALUE)
Display a line of text terminated by ’$$’.
CLINE=CHARACTER(*)

SUBROUTINE EDESTC (CLINE, IVALUE,WINDOW, COLOR)
Display a line of text terminated by ’$$’.
CLINE=CHARACTER(*)

SUBROUTINE LTQ (CLINE)
Display or print a line of text terminated by ’$$’.
CLINE=CHARACTER(*)

SUBROUTINE MSTQ (CLINE, TEXT ATTRIBUTE)
Display a line of text terminated by ’$$’.
Replaces mainframe McIDAS TQ.
CLINE=CHARACTER/(*)

SUBROUTINE PRINT (CLINE)
Print a line of text terminated by ’$$’.
CLINE=CHARACTER (*)

SUBROUTINE SCRACK(PAIR,CHAR,COLOR, BACKGROUND, BLINK)
Decode a (character,attribute) pair.

SUBROUTINE SDEST (CLINE,IVALUE)
Display a line of text terminated by ’$$’.
CLINE=CHARACTER(*)

SUBROUTINE SDESTC (CLINE, IVALUE,WINDOW, COLOR)
Display a line of text terminated by ’$$’.
CLINE=CHARACTER/(*)

SUBROUTINE SDESTO (CLINE, IVALUE)
Display a line of text terminated by ’$$’.
Forces text to Window 0, color=white.
CLINE=CHARACTER(*)

INTEGER*2 FUNCTION SPACK(CHAR,COLOR, BACKGROUND, BLINK)
Encode a (character,attribute) pair.

FUNCTION TQSET (DEVICE)
Set/examine current default display device.

The PC-McIDAS Utility Layer ... 6

SUBROUTINE WNDINT (AH_REGISTER,AL REGISTER)
Invokes interrupt for text window interface.
E.g. CALL WNDINT(99,N) brings text window N to the
screen. See SCREENS.ASM for complete list of
functions. |

Formatting Numerical Output

FUNCTION CFD(DVALUE,DECIMAL_PLACES)
Convert REAL*8 DVALUE to CHARACTER*12.

FUNCTION CFE (RVALUE,DECIMAL_PLACES)
Convert REAL*4 RVALUE to CHARACTER*12.

FUNCTION CFF (RVALUE,DECIMAL_PLACES)
Convert REAL*4 RVALUE to CHARACTER*12.

FUNCTION CFI (IVALUE)
Convert INTEGER IVALUE to CHARACTER*12,
right-justified, leading blanks.

FUNCTION CFU(IVALUE)
Convert unknown IVALUE to CHARACTER*12,

left-justified.

FUNCTION CFZ (IVALUE)
Convert INTEGER IVALUE to hexadecimal CHARACTER*12,
right-justified, four leading blanks.

-

I

-

{
-
[

|

I

I
-
|

I
\-
|

i

FUNCTION CLFI (IVALUE)
Convert INTEGER IVALUE to CHARACTER*12,
left-justified.

SUBROUTINE CLZERO (CTEXT, LENGTH)
Replace leading blanks with text 0’s.
CTEXT=CHARACTER (*)

FUNCTION NDIGS (IVALUE)
Returns number of digits in text representation of

INTEGER IVALUE.

The PC-McIDAS Utility Layer ... 7

Date and Time

SUBROUTINE CONVRT (IVALUE, CTEXT)
Convert HHMMSS time or DDDMMSS lat/lon value to HH:MM
or DDD:MM format, left-justified.

SUBROUTINE GETDAY (YYDDD)
Return current Julian date.

SUBROUTINE GETTIM (HHMMSS)
Return current time.

SUBROUTINE GETYMD (YYMMDD)
Return current date.

FUNCTION IDMYYD(IDAY,IMONTH,IYEAR)
Return Julian date.

Variable Type Conversion Routines

REAL*4 FUNCTION ALIT(C)
Convert CHARACTER*4 to bitwise identical REAL*4.

FUNCTION BCD(I)
Convert integer to binary coded decimal.

CHARACTER*4 FUNCTION CLIT(I)
Convert integer/real to bitwise identical CHARACTER*4.

REAL*8 FUNCTION DFTOK(C)
Convert CHARACTER*12 text representation of a
numerical token to REAL*S.

REAL*8 FUNCTION DLIT(C)
Convert CHARACTER*8 to bitwise identical REAL*S.

FUNCTION IDROND (D)
Round a REAL*8 value.

FUNCTION IFTOK(C)
Convert CHARACTER#*12 text representation of a
numerical token to INTEGER*4 (rounded).

SUBROUTINE II(FIELD WIDTH,IVALUE, CSTRING,

OFFSET_IN_CSTRING)
Convert integer to text string.

The PC-McIDAS Utility Layer ... 8

AR

FUNCTION IROUND (X)
Round a REAL*4 value.

FUNCTION LIT(C)
Convert CHARACTER*4 to bitwise identical INTEGER*4.

Basic Byte-Move Routines

SUBROUTINE BIGMOV (SOURCE_SEGMENT,DEST_SEGMENT,NUM BYTES)
Move bytes using segment addresses. NUM BYTES is
allowed to exceed 64K.

SUBROUTINE EXTMOV (SOURCE_ADDR, DEST_ADDR, NUM_WORDS)
Move 2-byte words. ADDR’s are 24-bit physical
addresses, including addresses in extended memory.

SUBROUTINE MOVB(NUM_BYTES,SOURCE,DEST,DEST~OFFSET)
Move bytes.

SUBROUTINE MOVC(NUM_BYTES, SOURCE, SOURCE_OFFSET, DEST,
DEST_OFFSET)
Move bytes.

SUBROUTINE MOVCR(NUM_BYTES,SOURCE,SOURCE_OFFSET,DEST,
DEST_OFFSET)
Same as MOVC, but move is made right-to-left. Use
when SOURCE is to left of DEST and they overlap.

SUBROUTINE MOVPTR (NUM_BYTES,SOURCE_ADDR,DEST ADDR)
Move bytes, using pointers to source and destination.

SUBROUTINE MOVW (NUM_WORDS, SOURCE, DEST)
Move 4-byte words.

SUBROUTINE MOVWR (NUM_WORDS , SOURCE, DEST)
Same as MOVW, but move is made right-to-left. Use
when SOURCE is to left of DEST and they overlap.

SUBROUTINE MVARSG (SOURCE, DEST_SEGMENT,NUM_BYTES)
Move bytes from array to segment.

SUBROUTINE MVPAD (NUM_BYTES, SOURCE, SOURCE_OFFSET, DEST,

DEST_OFFSET,DEST_LENGTH)
Move bytes, padding to end of DEST with blanks.

The PC-McIDAS Utility Layer ... 9

SUBROUTINE MVPADR(NUM_BYTES, SOURCE, SOURCE_OFFSET, DEST,
DEST_OFFSET,DEST_LENGTH)
Same as MVPAD, but move is made right-to-left. Use
when SOURCE is to left of DEST and they overlap.

SUBROUTINE MVSGAR (SOURCE_SEGMENT,DEST,NUM_BYTES)
Move bytes from segment to array.

SUBROUTINE MVSGSG(SOURCE_SEGMENT,DEST_SEGMENT,NUM_BYTES)
Move bytes from segment to segment.

Pack and Crack Routines

SUBROUTINE CRACK(NUM_BYTES, SOURCE, DEST)
Crack byte array into INTEGER*4 array.

SUBROUTINE CRACK2 (NUM_BYTES, SOURCE, DEST)
Crack byte array into INTEGER*2 array.

SUBROUTINE CRACKB(NUM_ITEMS,SOURCE,SOURCE_OFFSET_IN_BITS,
NUM_BITS_PER_ITEM,DEST,SIZE_OF DEST VALUES IN BYTES,
SIGN_EXTEND FLAG)

Crack bits into a BYTE, INTEGER#*2, or INTEGER*4 array.
It is assumed that source bits are stored in the order
natural for IBM 4381.

SUBROUTINE CRACKN(NUM_ITEMS,HI_LO_ FLAG,SOURCE,DEST,
SIZE_OF _DEST VALUES IN_ BYTES)
Crack nibbles into a BYTE, INTEGER*2, or INTEGER*4
array. HI_LO_FLAG=1 means crack most significant
nibble first.

SUBROUTINE PACK(NUM_BYTES, SOURCE, DEST)
Pack least significant byte of INTEGER*4 array values
into a byte array.

SUBROUTINE PACK2 (NUM_BYTES, SOURCE, DEST)
Pack least significant byte of INTEGER*2 array values
into a byte array.

SUBROUTINE SWBYT2 (IARRAY,NUM_ WORDS)
Reverses the order of bytes in each 2-byte word of
IARRAY.

SUBROUTINE SWBYT4 (IARRAY,NUM_WORDS)
Reverses the order of bytes in each 4-byte word of
IARRAY.

The PC-McIDAS Utility Layer ... 10

Logical AND, OR, etc.

SUBROUTINE FLAND (IARG1l,IARG2)
Return in IARG1 the logical AND of arguments.

SUBROUTINE FLOR(IARG1,IARG2)
Return in IARG1 the logical OR of arguments.

SUBROUTINE FLXOR (IARG1l,IARG2)
Return in IARG1 the logical XOR of arguments.

FUNCTION LAND (IARG1,IARG2)
Return logical AND of arguments.

FUNCTION LOR(IARG1l,IARG2)
Return logical OR of arguments.

FUNCTION LXOR(IARG1,IARG2)
Return logical XOR of arguments.

Other Byte and Character Manipulation Routines

SUBROUTINE BLKA(NUM_4 BYTE_WORDS, IARRAY)
Fill with ASCII blanks.

SUBROUTINE CLEANA (NUM_ BYTES, IARRAY)
Change unprintable characters to blanks.

SUBROUTINE CLEANW(NUM 4 BYTE WORDS, IARRAY)
Change unprintable characters to blanks.

SUBROUTINE ERASE (SEGMENT,NUM_BYTES)
Zero out a section of memory.

FUNCTION IC(CSTRING,OFFSET)
Extract a character from a string.

FUNCTION ISAN(IARG)
Returns 1 if and only if all 4 bytes of IARG are ASCII
alphanumeric (A-Z,0-9,blank).

FUNCTION ISBLNK(CSTRING,LENGTH_IN_ BYTES)

Returns 1 if and only if CSTRING consists entirely of
ASCII blanks.

The PC-McIDAS Utility Layer ... 11

FUNCTION ISCANS (CSTRING,LENGTH_IN_BYTES, CHAR)
Returns l1l-based offset of first occurrence of CHAR in
CSTRING. O if not found.

FUNCTION ISCHAR(IARG)
Returns 1 if and only if all 4 bytes of IARG are
printable ASCII characters.

FUNCTION JCMPS (NUM_BYTES, STRING1,STRING1_OFFSET, STRING2,
STRING2_ OFFSET)
Returns 1 if and only if STRING1 and STRING2 are
identical through the specified number of bytes.

FUNCTION JINDEX(CSTRING1,LENGTH1,CSTRING2,LENGTH2)
Returns l1l-based offset of first occurrence of CSTRING2
in CSTRING1. O if not found. Replaces mainframe’s
INDEX function.

FUNCTION NMCHAR (CSTRING, LENGTH_OF_CSTRING,
OFFSET_OF FIRST_ CHAR,OFFSET OF LAST_ CHAR)
Return the number of characters in a string, plus
offsets of first and last char. Replaces mainframe’s
NCHARS function.

SUBROUTINE SQUEEZ (CTEXT, LENGTH)
Compresses text by compressing strings of consecutive
blanks to a single blank. Modifies LENGTH accord-
ingly.

SUBROUTINE STC(IVALUE,CSTRING,OFFSET)
Store least significant byte of IVALUE at O-based
OFFSET in CSTRING.

SUBROUTINE STOREC (REPEAT_ COUNT,BYTE,DEST,DEST OFFSET)
Store consecutive copies of BYTE (e.g. to fill with
0’s or blanks).

SUBROUTINE UPCASE (CHAR)
Convert CHAR to upper case.

SUBROUTINE ZEROW(NUM_4 BYTE WORDS, IARRAY)
Zero out an array.

Keyboard

SUBROUTINE CAPLOF
Turn CAPS LOCK off.

The PC-McIDAS Utility Layer ... 12

SUBROUTINE CAPLON
Turn CAPS LOCK on.

SUBROUTINE CLTYBF
Clear typeahead buffer.

SUBROUTINE GETKEY (ISCAN,IASCII)
Get next keystroke from keyboard, batch file, or
l function key string, as appropriate.

SUBROUTINE GETKBD(ISCAN,IASCII)
Get next keystroke from keyboard.

' SUBROUTINE NUMLOF
Turn NUM LOCK off.

SUBROUTINE NUMLON
Turn NUM LOCK on.

l SUBROUTINE NXTKEY (ISCAN,IASCII)
Get next keystroke from keyboard; handle CTRL-S and
CTRE~Q.

Communications

SUBROUTINE RCVTXT (BUFFER, PACKET LENGTH, STATUS)
Return a packet from async comm. BUFFER should be at
least 768 bytes. . STATUS: O=success, l=data lost,
80h=no packet available.

SUBROUTINE QRQROR (BUFFER)
Send FO-protocol packet(s) to host.

SUBROUTINE SENOUT (BUFFER)
Send 02/03-protocol packet(s) to tower. Buffer
terminated by ETX (=03).

l SUBROUTINE SERIAL(CSTRING,IVALUE)
Send string terminated by ’$’ and text representation
of IVALUE to serial port 1. For debugging.

I SUBROUTINE SNDKYN(COMMAND, STATUS)
Send McIDAS command(s) back to host in TRB-packet.
I SUBROUTINE SNDMSG(MESSAGE,NODE_NUMBER, STATUS)
Send message to another node. Status < 0 == failed.

The PC-McIDAS Utility Layer ... 13

IS328sanassannsanisg

SUBROUTINE

SNDTXT (COMMAND, STATUS)

Send McIDAS command(s) back to host as pure text.

SUBROUTINE
Send an

SUBROUTINE
Send an

Graphics

SUBROUTINE

SNDXOF
XOFF.

SNDXON
XON.

DRWLIN (DEVICE_NUMBER, FRAME, BEG_LINE, BEG ELEM,

END_LINE,END_ELEM,COLOR,WIDTH,IPLOT,DASH_FLAG,
INIT FLAG)
Draw a line segment.

SUBROUTINE
Same as

SUBROUTINE
Erase a

SUBROUTINE

ENDPLT
mainframe ENDPLT.

ERASEG (FRAME)
frame.

GRLINE (FRAME, COLOR, BEG_LINE,BEG_ELEM,

END_LINE,END_ELEM,WIDTH,DASH_LENGTH,GAP_LENGTH,
GAP_COLOR)
Draw a line segment on tower-based workstation.
Should not be called by applications, since it is
device-dependent. (Called by DRWLIN).

SUBROUTINE
Same as

SUBROUTINE
Same as

SUBROUTINE

INITPL (FRAME,WIDTH)
mainframe INITPL.

PLOT (LINE, ELEM, PEN)
mainframe PLOT.

WRTEXT (UPPER_LEFT_LINE,UPPER_LEFT ELEM,

HEIGHT,CTEXT, NUM_CHARS, COLOR)
Draw text on graphics.

Saving and Restoring Images and Graphics

SUBROUTINE

Append .

restore

GETPIC (CFILENAME, FRAME)
PIC extension to filename. If file exists,
its image to frame.

The PC-McIDAS Utility Layer ... 14

SUBROUTINE RSTIMG (FRAME,CFILENAME)
Restore a saved image.

SUBROUTINE SAVIMG (FRAME,CFILENAME)
Save an image.

SUBROUTINE SAVPIC(CFILENAME, FRAME)
Append .PIC extension to filename; save image in file.

Spawning Subprocesses

SUBROUTINE ABORT (RETURN_CODE)
Abort a process with return code.

SUBROUTINE DOSCMD (COMMAND, STATUS)
Spawn a DOS command. COMMAND=CHARACTER(160).

FUNCTION ISPAWN (CPROGRAM_NAME)
Append .EXE to CPROGRAM NAME and spawn it. Return
status through function value.

FUNCTION ISQX(CPROGRAM,NUM_TOKENS_ IN_ CTOKEN ARRAY,
CTOKEN_ARRAY)
Spawn PC-McIDAS command named in CPROGRAM. CTOKEN is
array of command line tokens.

FUNCTION JSQX (COMMAND)
Spawn PC-McIDAS command(s). COMMAND=CHARACTER(160).

FUNCTION KSPAWN (CPROGRAM NAME)
Same as ISPAWN except re-enables CTRL-BREAK checking
for child.

FUNCTION KSQX(COMMAND,COMMAND LENGTH)
Same as JSQX except does not require 160 character
input parameter. Use especially when passing a string
constant for COMMAND.

FUNCTION LNKSQW(SUBROUTINE_NAME,NADDRESS,MADDRESS)
Explained in chapter "Spawning Subprocesses".

FUNCTION LSPAWN (CPROGRAM_ NAME)
Same as ISPAWN except will send command to host if not
found on workstation.

The PC-McIDAS Utility Layer ... 15

FUNCTION LS8QX(CPROGRAM,NUM_TOKENS_IN_CTOKEN_ ARRAY,
CTOKEN_ARRAY)
Same as ISQX except will send command to host if not
found on workstation.

FUNCTION PRGCAL (PSP_SEGMENT,DATA_SEGMENT)
Explained in chapter "Spawning Subprocesses".

FUNCTION PRGLOC
Explained in chapter "Spawning Subprocesses".

FUNCTION SPWNER(STATUS,CPROGRAM_NAME)
Handle errors encountered in spawning subprocesses.

FUNCTION SQW(CPROGRAM,N,6M)
Spawns a subprocess allowing arbitrary arrays N, M to
be passed. Explained in chapter "Spawning
Subprocesses".

Logging Events

SUBROUTINE STAMP (CTEXT)
Insert date/time stamp at beginning of CTEXT.
CTEXT=CHARACTER*80.

SUBROUTINE UNILOG (CTEXT)
Add message to UNIDATA.LOG file. CTEXT=CHARACTER*80.

Frame Control

SUBROUTINE DSPFRM
Force current frame to be refreshed. Used on EGA/VEGA
workstations; for example, when palette is changed.

FUNCTION OPPFRM
Returns number of frame opposite to current frame.

SUBROUTINE SETFRM (FRAME)
Set current frame to the given frame number.

SUBROUTINE SHOFRM (FRAME)
Force frame to screen.

The PC-McIDAS Utility Layer ... 16

l Lock and Unlock

SUBROUTINE LOCK(CNAME)
' Stub for compatibility with mainframe.

SUBROUTINE LOCKR(CNAME)
Stub for compatibility with mainframe.

SUBROUTINE SLOCK(CNAME)
Stub for compatibility with mainframe.

' SUBROUTINE UNLOCK (CNAME)
Stub for compatibility with mainframe.

Sound Production

SUBROUTINE BEEP
Produce a beep sound.

SUBROUTINE S8OUND (FREQUENCY, TWENTIETHS OF A SECOND)
Produce a tone.

Device Status Checks

SUBROUTINE CHEKFLP(IBUFF,ISTAT)
Return status of floppy drive. IBUFF=INTEGER(1000).
ISTAT=128 if drive not ready.

FUNCTION PRSTAT()
Returns printer status.

Addressing Utilities

FUNCTION LOCVAR (VARIABLE)
Returns segment:offset address of VARIABLE.

FUNCTION PHYSAD (LOCVAR)

Returns 24-bit physical address corresponding to
real-mode segment:offset address in LOCVAR.

The PC-McIDAS Utility Layer ... 17

FUNCTION SBEGVAR(VARIABLE)
Returns segment address of VARIABLE.

Timing Control

SUBROUTINE DELAY (TWENTIETHS_OF_A_SECOND)
Delay using BIOS INT 15H. This routine is suspect --
BIOS INT 15H is apparently non-reentrant. Since COMM
uses INT 15H also, DELAY shuts down communications
while it’s waiting. For an alternative, see WAIT,
below.

SUBROUTINE WAIT (TWENTIETHS_OF_ A SECOND)
Wait for specified period of time. This routine
uses TV control ticks rather than BIOS INT 15H
(see DELAY, above). Actually, CALL WAIT(1l) waits
0 sec. to .05 sec., CALL WAIT(2) waits .05 sec. to
.1 sec., etc. Hence, one should probably use a
minimum of 2 for the input value.

Miscellaneous

SUBROUTINE BRKPNT
Trip the DEBUG breakpoint. For debugging.

SUBROUTINE SETCLK (BCD_CENTURY,BCD_YEAR,BCD MONTH, BCD DAY,
BCD_HOURS, BCD_MINUTES, BCD_SECONDS, YEAR,MONTH, DAY,
HOURS ,MINUTES, SECONDS)

Set both CMOS clock and DOS date/time.
See FUNCTION BCD(IVALUE).

SUBROUTINE STDERR (ERROR_STATUS)
Produce error messages for standard DOS error codes.

SUBROUTINE TRMNL (ITERM)
Return terminal number.

SUBROUTINE USRMOU
Polls mouse, setting user mouse values in SYSCOM.

The PC-McIDAS Utility Layer ... 18

EGA/VGA GRAPHICS AND IMAGERY

Introduction

EGA/VGA-based PC-McIDAS workstations are capable of
generating images and graphics locally and of receiving and
displaying images and graphics generated on a host computer.

Local graphics (as opposed to imagery) generation is
discussed in the chapter "Graphics Drivers". Various
details concerning the EGA/VGA hardware are discussed in the
chapter "Using the IBM EGA and VGA".

The purpose of this chapter is to describe, for
EGA/VGA-based PC-McIDAS workstations: how images (as
opposed to graphics) are generated locally; how host-
generated images and graphics are handled; and how images
and graphics are saved to hard disk and later restored.

Generating Images Locally

To display an image locally, one could call the gra-
phics driver for every point or every line in the image.
This turns out to be too slow, however.

For optimal performance, two assembly language routines
were created for displaying images. One, called HLFTON,
handles "quarter-toned" images; the other, called HRSIMG,
handles images displayed directly. HLFTON is called by a
PC-McIDAS command LODHFT, which in turn is spawned by DFG
(spawned by XXDF). Similarly, HRSIMG is called by a
PC-McIDAS command LODIMG, which is also spawned by DFG.

Each of these routines writes directly to the graphics
memory. Each is capable of displaying up to 64K of data per
call. Each passes the data through a look-up table, making
it possible to enhance the image without modifying the
underlying data.

The calling sequences are as follows:

CALL HRSIMG (MODE, PAGE,IMAGE_DATA,LEVELS, LINES, ELEMS,
SCRLIN, SCRELE)

where:
MODE == graphics mode...13, 14, 15, or 16
(PC-McIDAS only uses mode 16)
PAGE == page in graphics memory (0 or 1)
IMAGE_DATA == array of image data, 8 bits per
pixel

EGA/VGA Graphics and Imagery ... 1

AR iT

LEVELS == look-up table (see below)

LINES == number of image lines in IMAGE_DATA
to display on this call (<= 64K of
data per call)

ELEMS == number of elements per line

SCRLIN == starting line on screen (0-based)

SCRELE == starting elem within starting line

CALL HLFTON(PAGE,IMAGE_DATA,LEVELS,LINES,ELEMS,SCRLIN)
where:

PAGE == page in graphics memory (0 or 1)

IMAGE_DATA == array of image data, 8 bits per
pixel

LEVELS == look-up table (see below)

LINES == number of image lines in IMAGE_ DATA
to display on this call (<= 64K of
data per call)

ELEMS == number of elements per line

SCRLIN == starting line on screen (0O-based)

Everything here is self-explanatory except for LEVELS,
the look-up table. LEVELS is an array of 256 bytes.

In the case of HRSIMG, LEVELS maps 8-bit data values to
graphics levels 0-15. A program can set the LEVELS any way
it wants, but the usual case is to set it up to give a
linear mapping based on a specified minimum level, maximum
level, and number of levels. There is a Fortran-callable
subroutine SETLVL (no parameters) that sets up a LEVELS

array for this usual case. It receives its parameters via a
COMMON block:

COMMON /PALCOM/LEVELS (256) , PALETS (17) , CUTOFF (13),
MINLVL,MAXLVL, NUMLVL

The relevant values here are MINLVL, MAXLVL, and NUMLVL.

MINLVL and MAXLVL are O-based. SETLVL stores values in the
LEVELS array.

In the case of HLFTON, LEVELS maps 8-bit data values to
the range 0-24, since quarter-toned images are capable of
representing 25 apparent shades of grey (8 shades mixing
black and dark grey, 8 mixing dark grey and light grey, 8
mixing light grey and white, plus 1 for all white).

For examples of the use of HRSIMG, HLFTON, and SETLVL,
see the source files LODIMG.FOR and LODHFT.FOR.

EGA/VGA Graphics and Imagery ... 2

Host-Generated Images and Graphics

EGA/VGA-based PC-McIDAS workstations that have a com-
munications link to a host computer may receive images and
graphics packets generated on the host. Such packets con-
form to the so-called FO-protocol. The following imagery
and graphics routing codes are defined:

Routing code 30H -- Erase frame
Byte 0 == Frame number

Routing code 31H -- Graphics line segment(s)

Byte 0 == Frame number
Byte 1 == Color
Byte 2 == Dash length (0=solid)
Byte 3 == Gap color (0=solid)
Byte 4 == Gap length
Byte 5 == Line width in pixels
Bytes 6-7 == Number of line segments defined
in this packet
Bytes 8-9 == Starting line number (O-based) for
segment 1
Bytes 10-11 == Starting element number (0O-based)
for segment 1
Bytes 12-13 == Ending line number (O-based)
for segment 1
Bytes 14-15 == Ending element number (O-based)
for segment 1
Bytes 16-17 == Ending line number (O-based)
for segment 2
Bytes 18-19 == Ending element number (O-based)
for segment 2
etc. (Line segments 2-N are assumed to
each start where the previous
segment ended.)
Routing code 32H -- Line of image data
Byte 0 == Frame number
Bytes 1-2 == Line number
Byte 3 == Image type
Bytes 5-N == Image data, 4 or 8 bits per pixel

Image types: the various image types differ in
whether they call HLFTON (quarter-toned images)
or HRSIMG; the look-up table used; the color
palette used; and the number of bits per pixel
in the image data.

Type
Type
Type

0 -- HRSIMG/14 levels/VIS.PAL/8 bits
1 -- HLFTON/25 levels/QUARTER.PAL/8 bits
2 -- HRSIMG/14 levels/IR.PAL/8 bits

EGA/VGA Graphics and Imagery ... 3

)

Type 3 -- HRSIMG/256 levels/VIS.PAL/4 bits
Type 4 -- HRSIMG/256 levels/QUARTER.PAL/

4 bits
Type 5 -- HRSIMG/256 levels/IR.PAL/4 bits
Type 6 -- HRSIMG/16 levels/QUARTER.PAL/8 bits

(The "levels" item here is the NUMLVL value used
in calling SETLVL with MINLVL=0, MAXLVL=255.
See above.)

One possible approach to handling these packets would
be to have the communications software display them immedi-
ately as they come in. There are various difficulties in
this approach, however. For one thing, it would mean link-
ing into the comm software a lot of image/graphics-handling
code. Since the comm software is resident, this would
entail a permanent loss of RAM even for users who never
generate images/graphics on the host. For another thing, it
would mean potentially interrupting a foreground task that
is already writing to the screen on one frame and having the
comm software attempt to write to another frame. This is
potentially a very messy proposition.

The approach that was taken instead was to have the
comm software store incoming image/graphics packets in a
system LW-file GQUEUE.SYS. This graphics queue file is
organized as a circular queue, with the head and tail
pointers stored in SYSCOM, hence available to all tasks.
Two entry points, GETPCK and PUTPCK, are used to retrieve
and store packets in this file. (GETPCK and PUTPCK are also
used in connection with the command queue file; see the
chapter "The Command Queue".)

The scanner, in between PC-McIDAS commands, checks the
graphics queue head and tail pointers in SYSCOM to see if
there are packets waiting in the queue to be processed. 1If
so, the scanner spawns a PC-McIDAS command GPCKTS. GPCKTS
bails the graphics queue, displaying as it goes. GPCKTS
takes control of the display, forcing the relevant frame to
the screen and preventing (via a flag in byte 15 of block 2
of SYSCOM) the user from switching to another frame or
window. Note that more packets may be coming in while
GPCKTS is running; in fact, this is the usual case. The
comm software will continue to file packets away in the
background.

S SR EEBEEEEED

When GPCKTS finds it has emptied the queue completely,
it delays for a short interval (the length of which depends
on comm mode and baud rate) and retries before giving up and
exitting. This is done to keep GPCKTS from having to be

EGA/VGA Graphics and Imagery ... 4

loaded repeatedly when there are short pauses in the comm
stream.

GQUEUE.SYS is opened at initialization time and remains
open throughout the PC-McIDAS session. The file handle for
GQUEUE.SYS is stored in SYSCOM.

Saving and Restoring Images and Graphics

Images and graphics that are displayed on an EGA or VGA
may be saved to a disk file for later recall. These
so-called "picture" files store the image/graphic in bit
plane format, so their recall to the screen is optimized.

Each picture file begins with a 128-byte header:

Byte 0 == Graphics mode
Bytes 1-48 == Color palette
Byte 49 == Type code

For EGA’s, only 16 bytes are used for the color
palette; the remaining 32 are undefined. In particular, the
overscan register is neither saved nor restored. For VGA'’s,
the palette values are 16 (R,G,B) triplets.

The type code = 0 if the picture is a graphic, 1 if the
picture is an image. Images have 256 bytes of navigation
data appended following the bit plane data.

Bit plane data is stored with bit plane 0 first, bit
plane 3 last.

There are two subroutines, written in assembler for
optimal performance, that handle the core of the saving and
restoring process. They are SAVHRS and RSTHRS. They are
called in turn by SAVIMG and RSTIMG, with the following
calling sequences:

CALL SAVIMG (FRAME,LW FILE NAME)
CALL RSTIMG(FRAME,LW FILE_ NAME)

It is these latter routines that should be called by any
PC-McIDAS command that needs to save/restore picture files.

RSTIMG will not permit a picture to be restored if the
current graphics mode is different from the mode under which
the picture was saved. It does not, however, defend against
attempts to restore on a VGA a picture saved on an EGA, or
vice versa.

EGA/VGA Graphics and Imagery ... 5

R EEEEEREEEEERRERERE

Note that there exists a program SHOPIC.EXE that lets a
user display a picture without having PC-McIDAS running or
even installed. This lets a user who has EGA/VGA
Sshift-PrintScreen software get hardcopy of an image or
graphic.

EGA/VGA Graphics and Imagery ... 6

THE COMMAND QUEUE

Why is a Command Queue Needed?

PC-McIDAS workstations that have a communications link
to a host computer may receive from the host computer
requests to execute locally certain PC-McIDAS commands.

Such host-generated commands may be received at the work-
station more quickly than they can be serviced. There is no
upper bound on the size of the backlog that could be gener-
ated. Some mechanism is needed so that host-generated com-
mands do not fall on the floor if they cannot be executed
right away.

One possible strategy -- in fact the stategy originally
adopted by PC-McIDAS -- is for the communications software
not to accept a host-generated command packet until it can
be serviced. This is nice and simple, but unfortunately it
can lead to a deadlock in ProNET-based workstations.

Suppose, for example, the host sends an LB command
followed immediately by a CS command, and the CS is refused
while the LB is running. The LB command, like certain other
PC-McIDAS commands, needs to send a packet to the host.
This is done to inform the host of the workstation’s new
loop bounds. Here’s where the deadlock arises. The ProNET
comm software is strictly half-duplex. Because it is
refusing the packet for the CS command, the comm software
remains in its receive state, and it cannot get out of that
state until it accepts the CS command packet, which it
cannot do until the LB command completes. The LB command
cannot complete, however, until the comm software gets into
its transmit state and sends to the host the packet gener-
ated by LB. Deadlock.

Command Queue Implementation

The solution adopted by PC-McIDAS is to accept all
host-generated commands as they come in. They are queued up
in a system LW-file called QUEUE.SYS. QUEUE.SYS is a circu-
lar queue, and the head and tail pointers are stored in
SYSCOM.

The communications software takes care of queueing and
de-queueing packets. So long as the queue is non-empty, all
incoming packets (other than image/graphics packets, which
have their own queue) are stored in the command queue. This
ensures that packets are handled in the order in which they

The Command Queue ... 1

were sent. There is one exception: IDLE packets are not
queued at all, since they are no-ops.

Also, so long as the queue is non-empty, the comm
software gives precedence to the packets in the queue. It
eats packets from the head of the queue, and stores packets
at the tail of the queue, until it catches up and the queue
is again empty.

There are two entry points, PUTPCK and GETPCK, for
storing packets in and retrieving them from the queue file.
These same entry points are also used for the graphics queue
file, GQUEUE.SYS. QUEUE.SYS is opened at initialization
time and remains open throughout the PC-McIDAS session.

Note that there is still a very small possibility,
which will probably never be realized in practice, that the
queue file, which is 16K bytes long, may fill up. What
happens then? So long as the queue file is full, incoming
packets are allowed to fall on the floor. At least that way
there is no deadlock.

Note that it is essential that image/graphics packets
are filed in their own queue, not the command queue.
Otherwise, the command queue really might fill up, since
image/graphics commands come thick and fast when they come.
(See the chapter "EGA/VGA Graphics and Imagery" for a dis-
cussion of the queue for image/graphics packets.) What
happens when the graphics queue gets full? 1In this case,
incoming image/graphics packets are refused, not thrown
away. This does not lead to a deadlock in practice since
GPCKTS will be running, locking out commands like LB that
might produce a deadlock.

i

The Command Queue ... 2

SRR RRRRERE

T

ACCESSING EXTENDED MEMORY

Uses of Extended Memory in PC-McIDAS

PC-McIDAS runs in real-mode under DOS 3.X, so programs
cannot execute in extended memory (i.e. memory above 1
megabyte in the address space). Extended memory can be
used, however, to store data and programs, either by using a
virtual (RAM) disk or by using BIOS function 15H, subfunc-
tion 87H. PC-McIDAS uses extended memory in the following
ways:

1-2 megabytes -- RAM Disk containing the following DOS
files:

INTERF.EXE == drop-down menu HELP
INTERFAC.DAT == data file for INTERF.EXE

(Note that INTERF.EXE does not execute in extended
memory. Its executable is stored there to enable
it to be loaded more quickly than if it were
stored on the hard disk. MCIDAS.EXE knows to load
INTERF.EXE from the RAM disk, and INTERF.EXE knows
to read its data from the RAM disk. I.e. these
are "hard-wired".)

2 megabytes and up -- Various PC-McIDAS data structures
accessed via BIOS INT 15H:

10 Text windows
10 Soft tablet windows
16 EGA/VGA frames (if applicable)

(Note that these are not DOS files, nor is DOS
even aware that this space has been "reserved".
PC-McIDAS takes care of initializing this space
(see SCRNEW.FOR) and maintaining its contents.

It is "reserved" only in the sense that there are
no other processes around to step on it.)

A natural question: Why aren’t the data structures
that are stored starting at 2 megabytes set up as DOS files
using a RAM disk? The problem with that approach is that
DOS is not re-entrant, so background processes would not be
able to get access to those data structures when a fore-
ground process was using a DOS function. There are a number
of functional requirements of PC-McIDAS, however, that imply

Accessing Extended Memory ... 1

%lmllllllllmlll‘

that background processes must be able to access the data
structures in question any time they need to. These func-
tional requirements include such things as being able to
switch text windows or loop frames while foreground tasks
are running.

EXTMOV -- How it Works and How to Use It

The files stored in RAM disk are accessed via ordinary
DOS file I/O routines. The data structures stored at 2
megabytes and up, however, are accessed via BIOS INT 15H,
subfunction 87H.

This BIOS function is described in the AT Technical
Reference. It requires the caller to set up a block move
Global Descriptor Table. The source and destination addres-
ses are specified in 24-bit physical address form. The
amount of data to move is specified in 2-byte words. Note
that the BIOS function is capable of moving at most 64K
bytes (32K words).

There is a PC-McIDAS subroutine EXTMOV that sets up the
BIOS INT 15H call. EXTMOV has the following calling se-
quence:

CALL EXTMOV(SOURCE_ADDRESS,DEST_ ADDRESS,NUM_WORDS)

The source and destination address are 24-bit physical
addresses. To determine the 24-bit address of a variable or
array in real-mode address space, use the following func-
tions:

FUNCTION LOCVAR(VARIABLE) -
Returns segment:offset address of VARIABLE.

FUNCTION PHYSAD (LOCVAR)
Returns 24-bit physical address corresponding to the
real mode segment:offset address in LOCVAR.

For example, the phsical address of IARRAY, say, is given
by:

ADDRESS=PHYSAD (LOCVAR (IARRAY))

EXTMOV sets up the call to the BIOS function. There is
a granularity constant in EXTMOV that determines the amount
of data moved per call to the BIOS. Like the BIOS function,
EXTMOV handles at most 64K bytes per call, but it moves the
data in chunks, according to the granularity. Interrupts

Accessing Extended Memory ... 2

i

are disabled by the BIOS function; the granularity makes it
possible to tune EXTMOV if interrupts are being lost.

The BIOS function disables interrupts because it puts
the 80286 into protected mode. Switching back to real mode
is a slow process, so interrupts remain disabled for quite a
long interval. No matter how the granularity is set, serial
data is lost if the baud rate is high. To prevent the loss
of serial data, EXTMOV sends an XOFF at the beginning and an
XON at the end.

Accessing Extended Memory ... 3

sasas R R RRRR R

INITIALIZATION AND CONFIGURATION CONTROL

Workstation Configuration and the CONFIG Program

PC-McIDAS is designed to support a whole family of
workstations with a variety of hardware/software config-
urations. A single, unified set of PC-McIDAS installation
software is used for all workstations.

Some means must be provided to let a user specify the
particular hardware configuration to be used in a given
workstation. This is done via the program CONFIG.EXE in the
\MCIDAS\SETUP subdirectory.

CONFIG steps the user through a series of questions
about the workstation configuration. The responses are
stored in the file \MCIDAS\SETUP\CONFIG.DAT. Each time
CONFIG runs, it uses the existing version of CONFIG.DAT to
supply the default responses, and it modifies CONFIG.DAT as
needed as the user’s responses change. Note that this means
that if CONFIG.DAT gets lost or damaged, running CONFIG
generally will not fix it. It is necessary, in such an
instance, to copy CONFIG.DAT anew from the first instal-
lation diskette.

A user can run CONFIG as often as he/she pleases, e.g.
to switch a workstation back and forth between a ProNET and
an async comm link.

The CONFIG.DAT file is read by MCIDAS.EXE at run-time
to initialize certain values in SYSCOM.

Besides modifying CONFIG.DAT, CONFIG does the
following:

- constructs MCAUTO.BAT, the boot-time initialization
batch file (see below)

- if the computer is an AT, copies AUTOEXEC.AT and
CONFIG.AT from \MCIDAS\SETUP to AUTOEXEC.BAT and
CONFIG.SYS, respectively, in the root directory

- if the computer is a PS/2, copies AUTOEXEC.PS2 and
CONFIG.PS2 from \MCIDAS\SETUP to AUTOEXEC.BAT and
CONFIG.SYS, respectively, in the root directory.

Note that \AUTOEXEC.BAT and \CONFIG.SYS get over-written
each time CONFIG is executed. If a user wants to modify
AUTOEXEC.BAT or CONFIG.SYS, therefore, the best way to do it
is to modify the corresponding file back in \MCIDAS\SETUP.

Initialization and Configuration Control ... 1

S S aaRRRRRRNARRRRE)

MCAUTO.BAT -- Boot-Time Initialization of PC-McIDAS

At boot-time, the AUTOEXEC.BAT batch file invokes the
batch file \MCAUTO.BAT. MCAUTO installs the PC-McIDAS
device drivers, initializes the printer port, copies several
data files, and starts up PC-McIDAS.

The MCAUTO.BAT is created by CONFIG.EXE. Its contents
depend on the hardware/software configuration of the work-
station. The contents are as follows:

ECHO OFF

CD C:\MCIDAS\SETUP

CHKENV
(CHKENV inspects the DOS Environment to see if it con-
tains a string MCIDAS=INSTALLED. If so it aborts with
errorlevel=1; otherwise errorlevel=0.)

IF ERRORLEVEL 1 GOTO INSTALL

ECHO PC-McIDAS device drivers have already been installed.

GOTO RUN

:INSTALL

NMLOFF
(NMLOFF turns NUM LOCK off.)

SYSCOM
(Installs SYSCOM. SYSCOM must be installed before other
drivers.)

VIDEO
(Installs BIOS INT 10H replacement.)

KBIOSF ‘
(Installs keyboard filter.)

DOSFUNC
(Installs DOS function semaphore front-end.)

SCRINI
(Installs SCREENS, the text window interface handler.)

ASYNC2
(Installs low-level async comm driver for port.2.;: If
port 1 is to be used, this would be replaced by ASYNC1.
If ProNET comm is to be used, this would be replaced by
PNETINT. If no comm link is to be used, this would be
deleted altogether.)

COMMA
(Installs high-level async comm driver. If ProNET comm
is to be used, this would be replaced by COMMP. If no
comm link is to be used, this would be replaced by
COMMN.)

TVEGA
(Installs TV control for the EGA/VGA. If a tower were
being used, this would be replaced by TVSSEC.)

Initialization and Configuration Control ... 2

s

iSSRERRSEEERRREEE

PVEGA
(Installs graphics driver for the EGA/VGA. If a tower
were being used, this would be replaced by PVSSEC.)

MODE COM1:96,N,8,1,P
(Initializes serial port 1 for printer. Actual command
varies depending on port used, baud rate, etc.)

COPY INTERFAC.DAT E:

(Copies to the RAM disk the data file for the drop-down
menu HELP. The letter used to designate the RAM disk
varies depending on the number of other drives present.)

COPY INTERF.EXE E:

(Copies to the RAM disk the executable image for the
drop-down menu HELP. The letter used to designate the
RAM disk varies depending on the number of other drives
present.)

COPY C:\MCIDAS\SETUP\UNIDATA.MNU C:\MCIDAS\SETUP\MENU.DAT
(Copies the menu file to be used. The name of the source
file may vary. If the menu system is not to be used,
this command will not appear.)

CHKINI
(Determines if the file \MCIDAS\SETUP\INITSYS.DAT exists.
If so, it aborts with errorlevel=0; if not, errorlevel=1.
INITSYS.DAT is deleted at boot-time to force a full work-
station initialization on the first LOGON. CHKINI is
used simply to avoid a disconcerting "File Not Found"
error message from DOS when the file deletion is done.)

IF ERRORLEVEL 1 GOTO NODEL

DEL INITSYS.DAT

:NODEL

SET MCIDAS=INSTALLED
(Enters the string MCIDAS=INSTALLED into the DOS Environ-
ment, so that later invocations of MCAUTO before a reboot
will not re-install device drivers.)

tRUN

CD C:\MCIDAS\COMMANDS

COMMAND /C MCIDAS
(Start up MCIDAS.EXE. COMMAND.COM is re-invoked to avoid
certain DOS actions related to batch files. E.g., if a
user Ctrl-Break’s out of a PC-McIDAS command, we don’t
want DOS to butt in and ask if we want to abort the batch
file (MCAUTO).)

Users should be discouraged from modifying MCAUTO.BAT.
The reason MCAUTO.BAT was split off from AUTOEXEC.BAT, in
fact, was to make it easy for users who need to modify
AUTOEXEC.BAT to do so, with lessened likelihood of their
disrupting the PC-McIDAS initialization process.

Initialization and Configuration Control ... 3

SN RN RN RN NN RRRRE]

Run-Time Initialization of PC-McIDAS

When MCIDAS.EXE is invoked, it goes through a number of
initialization steps. For some steps, it calls subroutines:
for others, it spawns independent programs. The latter
method is used where possible, because it helps reduce the
size of MCIDAS.EXE. MCIDAS.EXE is resident and running
throughout a PC-McIDAS session, so memory used by MCIDAS.EXE
is memory that is unavailable for PC-McIDAS commands.

The main steps in run-time initialization are the
following:

1) Check DOS Environment for string MCIDAS=INSTALLED
to verify that device drivers have been installed.

2) Clear screen; display "Please stand by..."

3) Disable Ctrl-Break checking. (User is prevented
from Ctrl-Break’ing out of MCIDAS.EXE; Ctrl-Break is re-
enabled within PC-McIDAS commands, however.)

4) 1Install INT 16H interrupt vector for keyboard
filter.

5) Zero out SYSCOM. (Note that this means SYSCOM
values cannot be initialized at boot-time without some
provision here to save-and-restore.)

6) Spawn MCINIT.EXE. See below.

7) Delete temporary files from \MCIDAS\DATA.

8) If using async comm, initialize comm here and send
an XOFF. (XOFF sent so we don’t lose data while initial-

izing extended memory.)

9) Call SCINIT to initialize extended memory used by
text window interface, etc. See below.

9) Spawn GRINIT.EXE to initialize graphics drivers.
See below.

10) Start up TV control.
11) Clear the type-ahead buffer.
12) If using ProNET comm, reset and get on the ring.

13) Determine amount of available memory and display
message.

Initialization and Configuration Control ... 4

SRR RRRRRRR

14) If configured to transmit commands to a host, send
transparent LOGOFF command.

15) If a menu-driven workstation, generate LOGON and
MENU commands.

16) Enable text window interface.
17) If async, send an XON.

18) Enable high-level comm driver.

There are many other, minor initialization steps, con-
sisting mostly of calls to POKEB, POKEW, or POKEDW to ini-
tialize various flags in SYSCOM. These are commented in the
source code (see MCIDAS.FOR), and should be self-explana-
tory.

MCINIT.EXE, INITSYS.DAT, and CONFIG.DAT

Two data files are initimately connected with PC-McIDAS
run-time initialization. Both are in subdirectory
\MCIDAS\SETUP.

The first file is CONFIG.DAT. As has been discussed
above, CONFIG.DAT contains a description of the
hardware/software workstation conflguratlon selected by the
user. Its contents are modified via CONFIG.EXE.

The second file is INITSYS.DAT. When a user exits
PC-McIDAS via the EXIT command, the contents of the Terminal
Control Block (TCB) and Looping Control Block (LCB) of
SYSCOM are saved in INITSYS.DAT. If MCIDAS.EXE is re-
invoked, the TCB and LCB are restored, so loop bounds, etc.,
retain the values they had.

MCINIT calls three subroutines: SYSINI, LBINIT, and
KYNLST. The most substantial of these is SYSINI. It is
SYSINI that reads INITSYS.DAT, if INITSYS.DAT exists, and
stores its data in SYSCOM. Having done so, SYSINI reads
CONFIG.DAT and stores its data in SYSCOM. Note that this
means that CONFIG.DAT takes precedence. SYSINI does a
number of other SYSCOM initialization steps, such as ini-
tializing the palettes for EGA/VGA frames.

If no file INITSYS.DAT exists, SYSINI applies certain

default values. 1In addition, it sets a flag that causes the
first LOGON command to run through its full initialization

Initialization and Configuration Control ... 5

FRRRRRRRRRRRRRRERER

sequence. Note that MCAUTO.BAT deletes INITSYS.DAT at boot-
time. This forces a full initialization after each boot.

The second subroutine called by MCINIT is LBINIT. This
initializes the internal copies of string table data.

The third subroutine called by MCINIT is KYNLST. This
constructs the SYSCOM list of PC-McIDAS commands present in
\MCIDAS\COMMANDS. This list is used by the scanner to
determine if a given command should be spawned locally or
sent to the host. As an aside, it may be mentioned that the
DO8 command in PC-McIDAS also calls KYNLST before exitting.
This is done in case the DOS command has been used to
add/delete a PC-McIDAS command to/from \MCIDAS\COMMANDS.

SCINIT and SCRNEW.EXE

MCINIT calls SCINIT to initialize the text window
interface as well as the soft tablets and EGA/VGA frames.
SCINIT spawns SCRNEW.EXE to do the extended memory initiali-
zation. Then SCINIT enables:

= VIDEO, the BIOS INT 10H replacement
- SCREENS, the text window interface handler
- INTERF, the drop-down menu HELP

SCINIT also calls DSPREL to display the initial PC-McIDAS
text containing the release number. Note that this means
that to change the release number one must modify DSPREL and
relink MCINIT.EXE (not MCIDAS.EXE).

GRINIT.EXE

GRINIT initializes various values used by the PV
graphics driver. See the source code.

The main point to be made here is that GRINIT has gone
through a lengthy evolution, as a result of which its
structure is somewhat obscure. At one time, EGA work-
stations stored their frames in real-mode RAM. The number
of frames allocated could be changed dynamically during a
PC-McIDAS session, via a command called EGA. To implement
this, it was necessary to have EGA set a flag which was
detected by MCIDAS.EXE when control returned from EGA.
MCIDAS called GRINIT as a subroutine to actually deallocate
the old frames and allocate and initialize the new ones.
This had to be done from code linked into MCIDAS so that the
allocated memory would belong to MCIDAS and therefore would
not disappear with the completion of the EGA command.

Initialization and Configuration Control ... 6

There is still a lot of code in GRINIT to implement
this earlier architecture. Since GRINIT is now spawned as a
separate program this code will not work. That’s the bad
news. The good news is that this partlcular code will never
be invoked any longer and since GRINIT is a separate, tran-
sient program the wasted code space is harmless. The code
has been left in simply to save it for possible future use.

The LOGON Command and TRMINI

Logging on to a PC-McIDAS workstation can be a two-
stage process. The LOGON command logs the user on to the
workstation itself. Then, if the workstation is configured
to transmit commands to a host, LOGON generates a LOGON
command for the host computer and sends it off. The LOGON
command sent to the host has parameters appended to it that
identify the workstation type and software release level.

In addition, LOGON performs a number of initialization
steps both locally and on the host computer. These
initialization steps are handled chiefly by a subroutine
called TRMINI.

For workstations configured to transmit commands to a
host, TRMINI generates a number of host commands that are
appended (separated by semicolons) to the LOGON sent to the
host. Among these are such commands as:

- GD ... to set graphics defaults, especially the type
of graphics device (SSEC or EGA)

- PCCLOC ... to cause the host to send back a PCCLOC
command with the host’s date and time appended; this
synchronizes the workstation’s clock with the host’s

- LB ... to inform the host of the workstation’s loop
bounds

- ECHO ... to cause the host to send back the text
message "Initialization completed." when the host commands
have completed.

It is important that the commands are all sent in one
command line (TRB) rather than in a series of command lines.
Otherwise, there is no way to predict the order in which the
commands will be executed on the host. Commands that
execute before the host LOGON completes will be rejected.

Initialization and Configuration Control ... 7

S S SRR EREERE.

DEBUGGING TOOLS

Using DEBUG.COM With PC-McIDAS

DEBUG.COM, the DOS debugger, is useful for debugging
PC-McIDAS commands. Suppose you want to debug a command
called BLAH.EXE within PC-McIDAS. Enter the following PC-
McIDAS command:

DOS "DEBUG BLAH.EXE

This will invoke DEBUG. PC-McIDAS provides an entry point

SUBROUTINE BRKPNT

that can be inserted into the BLAH source code to set a
breakpoint at a desired point. You cannot specify an
address to BRKPNT; the breakpoint is simply tripped when
BRKPNT is called. The breakpoint is an INT 3 instruction
(HEX CC). When the breakpoint is triggered, use DEBUG’s ’‘E’
command to replace the INT 3 with a NOP (HEX 90) and step
past it with the /T’ command. If desired, you can then use
’E’ again to restore the NOP to an INT 3 if you expect the
breakpoint to be hit again later and you want it to be
tripped.

To trace through a Fortran program from the beginning,
without a breakpoint, it helps to know a few things. Invoke
DEBUG via

DEBUG BLAH.EXE

Then, enter the 'R’ command. DEBUG will display the reg-
ister contents. When DEBUG first loads a Fortran program,
it initializes the segment registers to point to the Program
Segment Prefix. To find the first Fortran instruction, you
must add 100H to the PSP segment address. Recall, however,
that the segment register contents are shifted by one hex
digit. Hence, you add not 100H but 10H to the contents of
DS. Suppose, for example, that DS contains the value 23A2H
when BLAH.EXE is first loaded. The first Fortran instruc-

tion, then, is located at address 23B2:1. Enter the DEBUG
command

G 23B2:1

to break at the first instruction. You can use T, P, and G
to trace through from there.

Debugging Tools ... 1

11 ER R

Interpreting the assembler code generated by Fortran
takes a little practice. The most easily recognized state-
ments are subroutine and function calls. Calls are preceded
by a series of PUSH’es -- a segment and offset (one PUSH
each) are pushed for each parameter passed to the subrou-
tine/function. It is easy, therefore, to see how many
parameters a call has. This can be used to help you figure
out where you are in the source code. To see what value is
being passed as a parameter, a good place to trap is at the
point at which the parameter address (address, note, not
value) is being pushed on the stack. Function calls can be
distinguished from subroutine calls, since immediately upon
return from a function the AX and DX register contents are
moved to memory (since the function value is returned
through the AX and DX registers).

Another type of statement easily recognizable in the
assembler code is an assignment statement in which an inte-
ger constant is moved to a variable. The integer constant
appears in the assembler MOV statements, so is easily
spotted.

DEBUG is much less useful for debugging background
device drivers and interrupt handlers since it is not poss-
ible to get control at a breakpoint in the background.
DEBUG can still be used to trace through such a device
driver outside of PC-McIDAS, though. Suppose you want to
trace the interrupt handler for INT xxH. Invoke DEBUG
without specifying a file name; i.e.

DEBUG

Then use the ‘A’ command to assemble an INT xxH instruction.
Use 'T’ to execute that instruction. You are now in your
interrupt handler. Set the registers to the values expected
by the handler, and proceed.

Getting Trace Output Via a Serial Port

It is often the case that one has to debug conditions
in real-time. Just tracing through a program in isolation
is not good enough. For such cases, a useful technique is
to output trace text at 9600 baud to a Televideo monitor.
Many of the device drivers already contain code to enable
such a trace. They use various conditional assembly flags
to determine whether the trace is enabled or not.

Debugging Tools ... 2

LSRR R SRR R R

The trace code assumes the monitor is attached to
serial port 1. To initialize the port, enter the following
DOS command:

MODE COM1:96,e,7,1

Sometimes I have found it helpful to output to a 4800 baud
serial printer instead. That way I can pour over the trace
output at my leisure.

One has to use some care in tracing from background
device drivers. Bugs that involve timing-dependent inter-
actions among background processes may change their behavior
if too much trace output is produced. I have found it
extremely helpful in such cases to do something like the
following.

Suppose some background process is crashing, and you
are not sure who the culprit is. Have each suspect process
output a single character upon entering, a different char-
acter upon leaving. What I usually do, for example, is
output a lower case character upon entry (’v’ for VIDEO.EXE,
for example) and the same character in upper case upon
leaving.

Such a trace is usually fast enough not to disturb the
condition you are trying to examine, and it lets you deter-
mine in which process the crash is occurring. This tells
you were to start looking. Note that the trace routines
also allow you to output the contents of registers or
variables or arbitrary strings of data.

To trace from a Fortran program, use the following
entry point: ,

SUBROUTINE SERIAL(CTEXT,IVALUE)
CTEXT is a text string terminated by a single dollar-sign.
IVALUE is an integer displayed after the text; IVALUE is
displayed even if it is 0.
Miscellaneous Tools

Naturally, there are a number of bugs for which DEBUG
and serial traces are not the answer. There are two In-
Circuit debuggers for AT’s at SSEC. I have found them to be

indispensable at times.

One often needs to know the scancode associated with a
particular key. There is a program SCANCODE.EXE that dis-

Debugging Tools ... 3

plays the scan code and ASCII code for any keystroke. Use
CTRL-C to get out of SCANCODE.

One often wants to inspect or modify the contents of
SYSCOM from within PC-McIDAS. Use the PC-McIDAS commands
LOOK and POKE.

Debugging Tools ... 4

LSS SRR RRRRRERER R

¥

FEERERRRRRRRRREERERY

lllHlllHHiHlll”

APPENDIX =-- SYSCOM DEFINITION

Bytes Item

0-1 terminal number
2-9 8-char terminal id

10 data tablet

13 joystick

12 mouse

13 printer

14 touchscreen

15 monochrome display

16 lo-res graphics display

17 hi-res graphics display

18 SSEC video terminal

19 number of fixed disks in PC

20 computer type (1=AT,2=PS/2)

21 not used

22 flag=1 means RESET command must be run to reset async
COMM

23 tv control interrupt rate (ints per second)

24 plus-key toggle type

-- toggle inactive

-- toggle between text windows and soft tablet
-- toggle among text, tablet, and EGA imagery
-- toggle between text and EGA imagery

WN RO

(The TCB is set up for 3 (logical) graphics devices and 1 video
device. Graphics device 1 refers to graphics on the video
device.

Almost all applications programs will deal only with device 1.
An exception is the user interface subsystem.)

(Each device has a device type code. The following device types
are defined currently:

== no device

== SSEC/Dataram video device

== IBM Color Graphics Adapter

== IBM Enhanced Graphics Adapter or Video Graphics Array)

WNEFEO

Appendix -- SYSCOM Definition ... 1

ERRRREREER

Display device 1 (video device):

25
26
21=30
31532
33-34

35=36

37a38
39
40-41
42-43
44-47
48
49
50
51
52
53
54
855
56
57
58
59
60-61
62-63
64-65
66-67
68

69
17071
BS73
74-75
7697
78
E)
80
81
82-85
86-87
88-89

90-91

92593

device type

number of graphics frames

total space reserved for graphics frames (bytes)
start segment of reserved space

start segment of graphics video RAM for device --
even lines

start segment of graphics video RAM for device --
odd lines

bytes per line

max graphics color

lines per graphics frame

elements per graphics frame

bytes per graphics frame

current graphics frame

current graphics mode

color palette

background color

default line width

default dash length

default gap length

default gap color

flip flag

draw flag

graphics screen height (units=0.1 inch)

graphics screen width (units=0.1 inch)

cursor size (vertical)

cursor size (horizontal)

cursor position (line)

cursor position (element)

cursor type (1l=box, 2=xhair, 3=box&xhair, 4=solid box,
5=star wars)

cursor color

2nd cursor size (vertical)

2nd cursor size (horizontal)

2nd cursor position (line)

2nd cursor position (element)

2nd cursor type

2nd cursor color

cursor mode (O=single cursor, l=dual cursor)

number of image frames

total space reserved for image frames (bytes)
start segment of reserved space

start segment of image video RAM for device --
even lines

start segment of image video RAM for device --
odd lines

bytes per line

Appendix -- SYSCOM Definition ... 2

PEERERERREEEE

94
95=96
97=98
99=102
103
104

105

106-114

max image color

lines per image frame
elements per image frame
bytes per image frame
current image frame

dual channel video display flag (O=disabled,

flag=1 means VGA

not used

Graphics device 2:

115
116
117=120
124=322
128=324

125-126

127-128
129
130-131
432-133
134-137
138
139
140
141
142
143
144
145
146
147
148
149
150=4151
152=153
154=155%
166-157
158

159
160=461
162=163
164-165
166=167
168

device type
number of graphics frames

total space reserved for frames (bytes)
start segment of reserved space
start segment of graphics video RAM for device --

even lines

l=enabled)

start segment of graphics video RAM for device --

odd lines
bytes per line
max color
lines per frame
elements per frame
bytes per frame
current frame
current mode
color palette
background color
default line width
default dash length
default gap length
default gap color
flip flag
draw flag
image height (units=0.1 inch)
image width (units=0.1 inch)
cursor size (vertical)
cursor size (horizontal)
cursor position (line)
cursor position (element)
cursor type (1l=box, 2=xhair,
5=star wars)
cursor color
2nd cursor size (vertical)
2nd cursor size (horizontal)
2nd cursor position (line)
2nd cursor position (element)
2nd cursor type

3=box&xhair,

4=so0lid box,

Appendix -- SYSCOM Definition ... 3

169
170
171-184

2nd cursor color
cursor mode (O=single cursor,
reserved

Graphics device 3:

185
186
187-190
191=192
193=1:94

195-196

397=198
199
200-201
202-203
204-207
208
209
210
211
2312
243
214
215
216
217
218
249
220=-221
222-223
224-225
226-227
228

229
230-231
280-233
234-235
236-237
238
239
240

241-252

device type
number of graphics frames

1=dual cursor)

total space reserved for frames (bytes)
start segment of reserved space
start segment of graphics video RAM for device --

even lines

start segment of graphics video RAM for device --

odd lines
bytes per line
max color
lines per frame
elements per frame
bytes per frame
current frame
current mode
color palette
background color
default line width
default dash length
default gap length
default gap color
flip flag
draw flag
image height (units=0.1 inch)
image width (units=0.1 inch)
cursor size (vertical)
cursor size (horizontal)
cursor position (line)
cursor position (element)
cursor type (1l=box, 2=xhair,
5=star wars)
cursor color
2nd cursor size (vertical)
2nd cursor size (horizontal)
2nd cursor position (line)
2nd cursor position (element)
2nd cursor type
2nd cursor color
cursor mode (O=single cursor,

reserved

current relative image frame

3=box&xhair,

4=s0lid box,

1=dual cursor)

Appendix -- SYSCOM Definition ... 4

|

AN NNRNNNRNNNNRNNNRR

254

255

256

257

258
259-260
261-262

263
264

265

266
267

268

269

270
271
272
278
274
275
276
297
278
249

280

281-287

288
289

290=291
292-293

current relative graphics frame

logical device currently owning data tablet’s shared
physical device
default graphics device (which logical device is
referred to by commands unless the GDEV= keyword

is present)

flag=1 means INITSYS.DAT was absent when McIDAS came
up so we need to do a full workstation initialization
next time a user logs on

scheduler counter used to initiate PCCLOC command

counter for timing scheduler

count limit after which schedule is checked and counter
is reset

terminal is remote (=1), local (=0)
terminal is video (-1), nonvideo (=0)

flag=1 means tvctrl calls mouse interrupt

ok for COMM to write to screen (=1) or not ok (=0)

tv control tick-counter (used by COMM to control idle
messages)

flag=1 indicates DOS function is in progress (see
DOSFUNC.ASM) (see byte 345 also)

flag=1 indicates tv control should stop eating keyboard
chars (used to allow applications to read from
keyboard directly)

j-toggle (connect graphics to loop control)

k-toggle (image frame visible/blank)

1-toggle (looping on/off)

n-toggle (pseudo-color on/off)

p-toggle (connect joys to cursor position control)

v-toggle (loop velocity cursor)

w-toggle (graphics frame visible/blank)

y-toggle (connect frames to loop control)

z-toggle (connect joyl to size control)

o-toggle (O=image frame loop in force; 1l=oppos loop in
force)

m-toggle (link mouse to cursor)

reserved

single-letter command entered without ALT key
who owns the cursor (0O=mouse,l=joystick)

joyl position (line)
joyl position (element)

Appendix -- SYSCOM Definition ... 5

294-295
296-297
298

299

300-301
302
303
304

305

306-307
308=302
310
3961
3q2=313
314-315
316
Jar/=318
J19=320
321
J@e =323
324-325
326
327

328-331
332

333
334
335
336-337

8'8=339

340

joy2 position (line)

joy2 position (element)

joyl flag (O=disconnected, 1l=controls cursor position,
2=vernier size control, 3=controls cursor size,
4=velocity cursor)

joy2 flag (0O=disconnected, l=controls cursor position,
2=vernier size control, 3=controls cursor size,
4=velocity cursor)

unused

data tablet shares physical device with other functions

data tablet is currently displayed

when tablet displayed, logical device which previously
owned device

flag set to 1 when LOGON sent to host, cleared when
PCCLOC runs on AT.. used to let AT know when host
logon has completed so AT can proceed with commands
in initialization string table, etc.

mouse line

mouse element

mouse active

mouse: left button pushed

mouse: vertical position when left button pushed
mouse: horizontal position when left button pushed
mouse: right button pushed

mouse: vertical position when right button pushed
mouse: horizontal position when right button pushed
mouse: both buttons pushed

mouse: vertical position when both buttons pushed
mouse: horizontal position when both buttons pushed
mouse: cursor visibility

mouse: cursor type

reserved
flag=1 means menu system in use

flag=1 means we are ready to accept graphics/image
packets from host

flag used by async COMM to decide when to start
accepting packets after init

tv control tick-counter (used by COMM to control xon
messages)

touchscreen position (vertical)
touchscreen position (horizontal)

flag=1] means log all commands for UNIDATA workstation

Appendix =-- SYSCOM Definition ... 6

341
342

343

344

345

346-7

348
349

350-351
352-353
354
355
356
357358
358 =360
361
362

363
364-5
366-7
368

369

370
37
372

373
374

flag=1 means comm has timed out for UNIDATA broadcast
flag=1 means disable comm timeout checking for UNIDATA
broadcast

flag=1 means echo command being sent to host (for
debugging)
flag=1 indicates frame numbers should not be displayed

flag=1 means COMM needs to do a DOS function (see byte
268 also)

tick counter for UNIDATA workstations to signal COMM
timeout

data tablet pen state (0=up, 1=down)
data tablet pen proximity state (0O=pen not near tablet,
l=pen near)

data tablet max x coord + 1
data tablet max y coord + 1

data tablet -- tv space mode

data tablet -- inactive area (border) around outside
data tablet -- cursor following state

data tablet -- lower left corner of tv space (line)
data tablet -- lower right corner of tv space (element)
data tablet -- when to start significant event

data tablet -- what type of event to start

file handle for graphics packets queue

‘head of graphics packets queue

tail of graphics packets queue
unused

semaphore used to indicate if a command is
running...each time a program is spawned, the
semaphore is incremented...each time a program
finishes, the semaphore is decremented...used to
prevent COMM from opening a file while a command is
running...otherwise, file will be closed when command
completes

flag=1 means left mouse button activates user interface
from scanner

flag=1] means tv control should NOT call text window
handler

flag=1 means BIOS video function should be intercepted
flag=1 means send debugging text to serial port

flag=1 means text window handler should NOT display
window and comm should not write to screen...flag is

Appendix =-- SYSCOM Definition ... 7

375
376
377-380
381-382
383
384
385-386
387
388-389
390
391
392
393

394
395

396

39
398=399
400-401
402-403
404-405
406-407
408
409
410
411
412-428
429

430-433
434-437

semaphore used by video int to prevent text window
from switching while video int is in midst of writing
to window
flag=1 means output halted by control-S

message is waiting to be transmitted

address of message buffer

node address of destination

COMM method in use (0=Standalone, 1=Pronet, 2=SNA,
3=Phone, 4=Satellite)

flag=1 means command or scanner waiting to hear if
message was sent ok

node address of host

flag=1 means COMM is temporarily down

workstation’s node address

baud rate (1=110,2=150,3=300,4=600,5=1200,
6=2400,7=4800,8=9600,9=19200)

parity checking (1=no,2=even,3=odd)

data bits (1=7 bits,2=8 bits)

stop bits (1=1 bit,2=2 bits)

int mask for 8259-1 int controller
int mask for 8259-2 int controller

flag=1 means COMM should not receive data...some other
process wants to intercept it

comm port used by async comm
counter for Ctrl-S timeout
graphics page boundary: left
graphics page boundary: right
graphics page boundary: top
graphics page boundary: bottom
file handle for thread 1

file handle for thread 2

file handle for thread 3
number of open LW files

palette for EGA hi-res modes

flag=1 means text window interface should not echo
command line

segment:offset of BIOS keyboard handler
segment:offset of KBIOSF keyboard filter routine

Appendix -- SYSCOM Definition ... 8

}llllllllllllllll

438-447 unused

0-255 primary frame number array
(indexed by current relative image frame in TCB)

256-511 graphics frame number array
(indexed by current relative graphics frame in TCB)

512-767 opposite frame number array
(indexed by current relative image frame in TCB)

768-1023 number of ticks to delay before next step
(indexed by current relative image frame in TCB)

The first byte in each array is the number of entries in the
array. The succeeding bytes each contain a frame number -- the
number of the frame to be displayed when the relative frame
pointer points to that place in the array. A -1 entry implies
end-of-list.

Defined as needed a la positive UC.

0 flag=1 indicates user logged on to PC

1 flag=1 indicates user logged on to host (perhaps
unsuccessfully)

2 flag used by GKS to indicate world coords = device
coords

3 flag=1 means previous command was PROMPT

4 flag=1 means command line editor is in INSERT mode

5 unused

6-9 address of scanner’s copy of COMMON block LBCOM1

HO=1'3 address of scanner’s copy of COMMON block LBCOM2

14 flag=1 if COMM is writing a line on screen

15 flag=1] means current command was initiated via a

function key

Appendix -- SYSCOM Definition ... 9

[lllllllllllllllllllw

16 flag=1 means RSTI failed to find file to restore...used
by IGTV, for example, to decide whether to redraw
graphic...

357 set to 1 by "G" key

18 set to 1 by "Q" key

19-22 user’s initials

23-24 cursor line for TABWRM

25526 cursor element for TABWRM

27 EXIT flag

28 restore data tablet label’s color when tablet is
returned to screen

29-30 label’s line

3i=32 label’s element

33 label’s height

34-45 label string

46 length of label string

47 label’s color

48 auto-context table flag

49-52 current nav file #

53-56 current MD file #

57-60 current grid file #

61-62 project number

63-70 software release level

71572 byte number of head of command queue file

73-74 byte number of tail of command queue file

75=~96 unused

7™ flag=1 means a command is running ...
used by UNIDATA workstations to decide when to
display "Please stand by..." message

78-79 segment address of tables used by P interrupt

80-81 segment address of tables used by V interrupt

82 flag=1 means COMM has command for scanner to run

83-242 command passed by COMM to scanner

243 flag=1 means user interface has command for scanner to
run

244-403 command passed by user interface to scanner

404 semaphore to indicate a dial-in product is being
received

405-564 command to be run when a flush is received and
semaphore is clear

565-568 local latitude
569-572 local longitude

Appendix -- SYSCOM Definition ... 10

sERRENENRERNERRRER

573-576

2=65
66-833
834-837
838-839

840

841

842-853
854-861
862-869
870-871
872-873

874-875
876-3875

9=168

169

local WX station ID

NFOUND. ...number of tokens

NKEYW. ...number of keywords

NARR. ..number of tokens per keyword (64 x 1 byte)
CTOK(12,64)....the tokens (64 x 12 bytes)
IDEVAL....DEV= settings

DEFOFF....offset in TCB of data for pertinent graphics
device

GRINIT flag....l means graphics memory must be
initialized
2 means this is first init....3 means GrInit should

do nothing but display ‘available memory’ message...
Batch flag....1l means we are starting a batch file
batch file name

addresses (far) of two arrays passed by ISQW

name of SQW’ed program

PSP segment of SQW’ed program

data segment of SQW’ed program

number of local commands
names of local commands (CHARACTER*6(500))

flag=1 disables toggle out of frame display

.segment for window work area (window to show on next
tick)

window number displayed on previous tick
window number for work seg
active window number for BIOS

flag=1 means need to re-echo command (e.g. after just
switching back to window after displaying frame)

for EGA-based system: graphics page currently
displayed

command text for command currently being entered

window for text

Appendix -- SYSCOM Definition ... 11

170

171

172
173

174
175
176
177

178
179

180-191
192-203
204-215
216-227
228-239
240-251
252=263
264-275
276=287
2885299
300-3113

344

345
346
347
348
349

350-749

75057751
b2=753
754

EGA state:

0=text, 1l=tablets,

2=frames

flag=1 means UNIDATA menu in place...don’t write to
menu windows

color

for text

color in attribute byte form

flag=1
flag=1
flag=1
flag=1

means ’‘+’ key has been hit
means TABLET program is active
means data tablets are visible
means menu interface cannot build commands

depth of command stack
current position in command stack

string
string
string
string
string
string
string
string
string
string
string

flag=1
keybo

table
table
table
table
table
table
table
table
table
table
table

name
name
name
name
name
name
name
name
name
name
name

means
ard..

for
for
for
for
for
for
for
for
for
for
for

currently active data tablet

data
data
data
data
data
data
data
data
data
data

tablet
tablet
tablet
tablet
tablet
tablet
tablet
tablet
tablet
tablet

window
window
window
window
window
window
window
window
window
window

VoL WNEFO

scanner does not accept commands from
.used by UNIDATA workstations to restrict

input to function keys...also implies text from host

not e

choed...

lowest text window number used by UNIDATA menus

current tablet number

color
color
color

table
flag

mouse
mouse
mouse

for
for
for

for
(50

echoing commands
error messages
’'Done’ messages

command name (6 bytes)
window (1 byte)
color (bits 0-3)
blink (bit 4)
mode (bits 5-7)

line
element
active

Appendix -- SYSCOM Definition .

setting commands’ window, color, and clear
entries; entry format=

WL

755 mouse: left button pushed

756-757 mouse: vertical position when left button pushed
758-759 mouse: horizontal position when left button pushed
760 mouse: right button pushed

761-762 mouse: vertical position when right button pushed
763-764 mouse: horizontal position when right button pushed
765 mouse: both buttons pushed

766-767 mouse: vertical position when both buttons pushed
768-769 mouse: horizontal position when both buttons pushed
770 left mouse button tick counter

VL e right mouse button tick counter

772-775 start address of text windows in extended memory
776-779 start address of frames in extended memory (for
EGA-based systems)

780 flag=1 means user wants to use ENTER key as line feed
781 flag=1 means ENTER/line feed has been entered
782 flag=1 means keystroke came from Fkey or batch file

0 flag=1 means voice interface has a command ready
1-161 buffer for voice interface command
162-383 to be defined

—————————————————————————————————————— ——————————————————————————

If EGA:
0-15 Palette for frame 1
16-31 Palette for frame 2

240-255 Palette for frame 16

If VGA:
0-47 Color regs for frame 1
48-95 Color regs for frame 2

l Appendix -- SYSCOM Definition ... 13

720-767 Color regs for frame 16

BLOCK 8: COMM File Pool Block

0-4 flag=-1 means corresponding file available for
use...flag > 0 indicates command waiting...take
highest numbered command first

5-9 file handles for 5 pre-opened temp files used by COMM

10-22 name of 1st file (followed by null)

23-35 name of 2nd file (followed by null)

36-48 name of 3rd file (followed by null)

49-61 name of 4th file (followed by null)

62-74 name of 5th file (followed by null)

75-234 command to unravel 1st file

235-394 command to unravel 2nd file

395-554 command to unravel 3rd file

555-714 command to unravel 4th file

715-874 command to unravel 5th file

Appendix -- SYSCOM Definition ... 14

T F R R RN RRRRRERER

BBBBBBBBBBB

(I

. i i ’ :
J ¥ : 9
\

