McIDAS

Man computer Interactive Data Access System

Multisourcerer Manual

November 1989

Space Science and Engineering Center
University of Wisconsin - Madison
1225 West Dayton Street

Madison, WI 53706

Telephone 608-262-2455

TWX 608-263-6738

Table of Contents

Multisourcerer Manual

Contents Page

INtroduCtionttt e e e e e a e 1-1

Installation and Configuration

InstallaBiON: « « o« & o o dve b0 s LRIRIRA 5 v 4 b boe o e AUTIE S ARIRIAEE 5% 5 s s b s b LLeRIERREEES TI 2-1
ConfigUBRAHON - « » « « % % 5 s 5 5. 5/ B Sl a s 5 v 5 5 5 5 A BLRIR RS 1300 & 3.5 %] a0s o Lo pad MR SSSIRELELC 2-3

Note For Configuration For Bisyncttt ittt it it 2-8
Systiiperatiom - 5ovsco s s LA g b JETRANERE RS A 31
GRCERNRRIIN " -, . o e i i vt s i s v s e s et R R 4-1

GPCI Basic Functional Description

IO Interface Controller v v o v i o vv oo oo o ooeeesosiaioeniesssas 5-1
Bit=SHECHEXOCLEROT * ¢« - v b o o v osia o 5 o aliohale wosi s o th) 5, deier Pobithe s cn RN 5-1
Channel Inputand Output Latches00ttt u... 51
ConditionCode Multiplexer00 v aniuonnasensssss mmeain . tig 51

DeEVICEICOMITOIEE ™. v o os o6 8w s st o w16 16 5 505 % o s o ee e e s ST DR 5-2
MIiCTOPIOCESSOT SECHOM 70 & s o o o s 4 s s o s o sisls o s o0 s o oo 84180 o o o o dpsliatuNEE U 5-2
Shared Resources SECHOM o v i vttt it e et e et et e e e 5-5
MultibuBlIBErfaCe SECtON . & . & .0 o v v v s 6 5.6 & o 5 6 o o o sishalita: s o amogu BT EE BN 5-6

GPCI Detailed Functional Description

I/OlInterface Controller ittt ittt ettt e et eneee s 6-1
BRSHCOPIOUBINOY« « o oo oo s v anooaoosnasessinnesoseoes smalilie 6-1
Channel Inputand Output Latchest iiininnnnnnn 6-5
Condition Code Multiplexer ittt ittt ittt et 6-5
Command PROM LatchandDecode0ituumnenneennnnnnnn 6-5
Regioter File Address GEnOrator « ¢« o o s oo ot v s oo vanssosess miimatlass sy 6-7
DR IS . ot n o el s a0 8 o B vk w8 e 37 s P e e o T T G 6-7
B 6-8

DevicQERBIOBBE . o . ¢ o« s oo osnnssosnscionose oo ninee s oiss s e 6-9
MICIOPIOCESSOE SECMION . . « . . ¢ v o v oo 00 o v b o guibir B lRere T A AT et oAl g ST le ti s 6-9

o S O S o R TR e 6-9
BAGPESSLAMOR00 00 it a e b e e e ke Sl Eh 6-9
Memoryand /OMappedControlt immnnnennn. 6-9
RAM,EPROM and Non-Volatile RAM tiiernennnn. 6-10
Display TransCeiVET v v v v ittt e et e e e e e e e e 6-10

Issued 11/89 i

Multisourcerer Manual

Contents Page
Eoyboatd BoRoder oo oo oo oadinl s d e aa amum e s el vt e 6-11
MITART . . v o oo nasnnssne i bilel oo of UL 6-11
LEDDEVEIS! o « v oo o 6000 o180 5 ¢ bialiars s s o s oo PR AU i s I 6-11
Extended Bus TransCeIVET v i vt ittt e e e e et e e e e e e 6-11
Shared Resources Bus TransCeiVET v v v i v v v o e e e e e e e e e e e 6-12
AddresS BUSITTANSCOIVET . . - « « o ¢« « /6 oo s s 6 & o 5 » o aietmomstiies & S0 Sl 8 0, 6-12
Ready:iGENErALOr .« . . o o o v v o o o5 @l e e o o 6 o ¢ o e SUNNSIURUSIRISI S b 6-12

Shared ReSOUrCeS SECHOM ¢ v v vt v v v et ot e o e oo oo ae e e e e oieee s iess 6-13
Tr-PORERAMI . . . oo oo 05 56 85 nsitd s s os s o s 5ol A 6-13
DataBus TransCeIVEr ¢ v v v i it et et e e et e ettt e e e e e e e e 6-13
Shared Resources Bus TransCeIVET v v v it i vt et e e e e e e e e e e e 6-13
Bidirectional Channel Port i i it ittt e e e e e e 6-13

MultibuSTIOEFACE SECHON © - . . & « o 2 o v o o5 o 5 » 55 6 o5 5 o 5 ollss ois o oSS, | o 6-14
Address Bus TransCeIVEr o i it ittt ettt et e e e e e e e 6-14
Extended Address and Handshake Generatort ovvveuennn. 6-14
DataBus TransCeIVer v it v it it ettt e et e et e et e e e 6-14

CORONSBEHION, &5 v« o v v o oo o 505 o S sl A 516 vt 5300 o % o i b gy siet o Sh U S R S 6-15
DMA Address GENeratoro v i ittt e it et e e e e e 6-15
Channel Port Controllerand DM Busttt nnnn.. 6-16
Shared Resources Arbiter ot v v vt v vt oot oo oo oo oo ooie o s anes 6-17
Multibus Interface and Bus Acquisitionttt 6-17

GPCI Detailed Circuit Description

SchematicConventions i i vttt ettt e e 7-1
Logie CORMERIIONS . . . - 000 o oooonnommunns sy ogns s b MR NS 7-1
VOMETIACE COMIIEE« ..o oo connoianenanmssne s simn sw s sisOEEE It 7-2
BU-SECETRREERREE\ o o oo s s anm s a b s slee mmine vinaat o s o oo SRS 7-2
Channel Inputand Output Latchesttt iennnnnnn 7-6
Condition Code Multiplexer ittt ettt ettt 7-7
DBRONEREINE TOMET . . . oo . oovvvvien o nn o s ik e s o o ws A 7-7
Command PROM LatchandDecode0 0t ennnnn.. 7-9
ROgmuPEE Bt . %, L L L LN L s s e A L L LN L L ST 7-11
Device@omiralIer % & % & & . L L L e e e e A L A L T 7-17
MitfoprocessarSectionl Ll Ll DO TR R 7-17
AddressiEateh! = % 4 8 L% %5 4 L S N s R g T T e 7-17
MmOy R DOUodE © . . . L L L L e e s ke m se s e e n 7-17
JJOPortDecodet iiiiennoteseeeasenesooencnncncss 7-18
A e % o o T e e o o o, L 7-22
R OM e & s L N L L L S L e 7-22
A % % o s s e R S R S i e i 7-22
Display Transceiver and Front Panel Display 7-23
Keyboard EncoderandKeypad00 iuiiininen.. 7-23

I AR L e S L A L T L LS L S, e 7-24
B I . 5 N R e I S 7-26
ExtendedBus TransCeiver: . & . . L 0 % b oo v s ul e e e v e ool e s wie qomiminy s e S 7-26

i Issued 11/89

Table of Contents

Contents Page
Shared Resources Bus Transceiver.cw vieweo o 00000 000k Rt Lol . 1 7-26
Address Bus TTanSCEIVET v v vt v v ittt ettt e e e e e ettt 7-26
ReadyGenerator.c.c.ccoceevee.s lomumadlng onee) oo S FODEL Y |, 7-26

Shared RESOUTCES SECHOM & oo ccvov o v oo aiiin oiaieioinneene oit?e S ROOT LN, . 7-28
Multibhus Interface SOCON ... o vivie oo o 0 0 o oia i iaisine e iae e o e o o 5 NI SR 7-29
AddressBusInterfacettt 7-29
Data BUS TIanSOBIMET o .o cosuc so s o o o ooo ovsihnsions osressnesie oo » « SIHIILNSINENEENG 7-30
MOl SEEIONo.o.ooimmmbibohne o v s o o« oonnd bR s se ssnsme o TIRTS Lo VU 7-31
Control Section OVEIVIEW ittt ittt e e e e e e et 7-31
Control SEction SIgBAISo.. . . oo eie e te e e o oo W RO 7-37
DMA Address Generatorc.......... « « .o o ove Ut rbeadl ooy b LN 7-39
Multibus Interface and Bus Acquisition Signals 7-42

I/O Interface Controller Control Signals uuuunnnn.. 7-44
EOXIL . oo iinins onrnens ioons o boso s oo ans pufheineis <o ee EMENPED i Lonlo2 AL SN 7-45
CRIRLERAEDIER o oooooi oo o0 mmumssns oo o oo ss io vaiva s o o o o oo iay s TUOTRIEES 7-45
PREPEN/ .. .cvo o ioisnn e isne e sansmnis sove s soin s vs o Mool Bt oorennid) B SUCHISINN 7-45

REINIE 0o iiiononenionnns e vmennne oo sk foimeils s sabaims v o seire ve <ode 5o | HRANDSS ISP 7-45
CHELDSE. . oo o e oo o o noies it w6 5ams 2o ns daiws o emoser APPSR, 2551 1 CUDEURIS SRS 7-46

RES/ (..o cioreiovanensie.o.s Jubenall Noligaint) bom sl FLL 00 Dk TREIIRS S Siaen 7-46

CMIN .. cooivioviovio e o oscniopminne dasons kiosss xor JhoESIG B0 N F) NN TSN S R 7-46

CMDIB/ . o oo ioviins ios e v io e s i3 oo e BRI ST 4o 20 v U A BEREREGH S 0T SN 7-46
REAECKYc.ocoimieiosoissiouinsre oot soisienss us SRAREIZ ot Anpe i S BN b S Seain 7-47
(81D, C] L1 (/e PPN | . 11,14 1 1 L PR SRR C T F TR D 7-47
Microprocessor Section Control Signals0uuiunn. 7-48
REGCR/EG. oo io cionons copoimnnsianns soms o oo romiiad s DU L 30imes IV B0 DT o pnit i 7-48

EEESIE.o o ocaods comerns slpsmesins o wornove o5 KratATER ATt SORL ol BT LT o S ST 7-48
KIGUESEo.o oo ivanaiornablons se.saus bs Grixelenbinnimn aTnesss vs vo 4o o/y SRR e smmar kol RIS EIERUERPAN 0 7-48
DR eoonsiasiainiaie e baderens s o o o GITERNE S S0 AR T 7-49

CHEB L. ...c.o o o oo in st hbiesisintins oo 558 4o mmeivons vons v 0o s AN AR AT SOR PR S 7-49

BLOIREL. (oo oo o oo oo simsiisionmsius isias svisslie sosass sores -SISUAORRORNGY 195 %) KIW.CTICEL T el 7-49
DIBELEKY ... ioue .o o oo onononsfomensnsss sonsaose e s LOE0ORNSTNIATS rropad | SR ISINEL S0 7-49
Handshake Generator Control Signals 7-50

GPCI Bit-Slice Microcode Description 81

GPCI Bit-Slice Microcode Functional Description\ttt ... 85
Device Available (code 0000B)ttt e 8-8
Going Ready (code 0010B) - Ui Ly putegd p Jg00 Reapmme) Jig [I L v 8-8
Going Not Ready (code 0011B)t i ittt ittt ettt e 8-8
Pending Status (code 0100B)ttt 8-8
Pending Status Request (code 0101B)ttt ittt e 89
Stacked Status (code 0110B) STRRE MUFDUTY SSFPPTY A0 e 89
Stacked Status Request (code 0111B)o ittt ittt et et 89
Device Busy(code 1000B). JU0 T R B, DL e 8-9
Device Not Ready (code 1010B) S0 o0, DO MG 0 00 a1 8-9
Bevice Not Preseat.(code 1011B). . . .50 oo voe oo oo 9808 00 DRSS, 00 15 89

Issued 11/89

iif

Multisourcerer Manual

Contents Page
Detailed Bit-Slice Microcode Description i 8-10
Routine HSTART (Hard SEart)« e v vms o oo iehobane e SORRISINT) 200 S0l 8-10
Routine WATCON (Wait for ConnecttoChannel) 8-13
Routine STPOL (Poling Loop) - - - « « ¢ v v v v it e et e e e e e e e e e e e e e 8-14
Disconniiet MODIMOHING «.ocainiie v o oo s oe anntebenss MRRISNE ST 205 8-14
COmMEMEERAMENG . - «.c oo cccorninbons o s s omeeroinmsosbhiiy JINIIRERMEE S Sts shi' 8-15
DevicBBEMEGIOUDS.oo v vtinieiaiee o o o oo niersiabeharane TREEENTS SHE S5 8-15
Device Not Available Group ittt e 8-15
SEAMSIGEOUD! o e .« . .o o rone e oo siois tomainaisiisms e s s vio s rooMN e WANPSPSUR ST ERp ot Sy ey 8-16
Device AVallablettt oo n e e etaneiatess CIUTRIERARI IO Y 8-17
Going Not Ready Going Ready Groupottt 8-18
SubrattiBS IMRES Beamc oo ieapals siling s 8-25
Routine CUIS (Control Unit Initiated Sequence)t v i e et e e e 8-28
Routine ISS (Initial SelectionSequence)ttt .. 8-29
ROUBDEBBIKIBY, . .. oo oooioieiiinieia inimineinioie oo nieiare e o-e see o« NGRULEL R SORIRED. | 8-33
Routine CMDDNE (Command DOone) viovoieioiee s oinoeiornroioisss SRS | 8-35
Device SIate SUMMALY o .0 oo o o0 e 0 eia vieeore aisreieriaces oie s ssniaie siere TREIT, . 8-37
Device State 0000B (Device Available)c0vii'uunnn... 8-37
Device States 0011B and 0011B (Ready and GoingNotReady) 8-37
Device State 01008 (Pending Satng).cc .o viaimronsres o soiossrseaiors ore SIBD, 8-37
Device State 0101B (Pending Status Request)o ovvvvsnnnn.. 8-37
Device State 0110B (Stacked Status)ttt 8-37
Device State 0111B (Stacked Status Request)0uiuee.... 8-37
Bevice State 10008 (Device BOSY)c.o o oo 0o JABRSIEIONIET] BUURSE, CRRINRN 8-38
Device State 1010B (Device NotReady)0iuiiinnne... 8-38
Device State 1011B (Device Not Present)o v i ittt i e et eeee e e 8-38
SUbrCRBBEEIEROTIIONE. . .« .o o oseis o 0s o oo s oo ie dreinrere e rsbaiaiong faiate e niase s o EuiNEREN . 8-39
Subroutine CHKPAR (Check Parity)00ttt ennnn.. 8-40
Subroutine FETSTA (FetchStatus)t iiinnnnene.. 8-40
Subroutine GETCMD (Get Command) viiiine e 8-41
Subroutine IMRES (Immediate Response)ttt enennnn. 8-42
Subroutine IMRES4 (Immediate Response Section4)ouuuuuu.. 8-42
Subroutine MADBIN (Move AddresstoBusIn)00ou..... 8-42
Subroutine MCLTIN (Move Controlto TagIn)00uuuevnn... 8-43
Subroutine MSTBIN (Move StatustoBusIn)0iviuennn... 8-43
Subroutines RDRFEX, RDRFDS, RDRFDT,RDRFPS 8-44
Subroutine TCANSD (Test Command and ServiceDown) 8-4
Subroutine TCORSU (Test Command Out or ServiceOutUp) 8-45
Subroutine TELLUP (Tell Microprocessor)o v v v ittt m s oo e e ene e 8-45
SHROMNE TUIPRE oo 0500 0005 0 60 5000 00 m e o o ADTOROahens ctige Srtitin 8-46
Subroutine TUPRST (Tell Microprocessor aboutaReset) 8-46
Subroutines WRRFDA, WRRFEX, WRRFDM, WRRFDSc.''uuun.. 8-47
Branch Routine Descriptionsttt ittt e 8-48
Branch Routine INTDIS (Interface Disconnect)covuuuenennn. 8-49
Branch Routine RPRTUC (Report Unit Check)0ouivunnnnnn. 8-50
Branch Routine SELRES (Selective Reset)uuitininnnennnnen.. 8-51
Branch Routine SYSRES (System Reset)o vviniiineneennnnn. 8-53

iv Issued 11/89

Table of Contents

Contents Page
GPCI Supplemental Data

PALEGUation LISHIEE «.« «cuvmanmuinneheesonessse s st PURBREND 9-1

Symbols and Abbreviations e 9-2
PRVIDEOCREAd A BEIS« oo v e v et aeeoens e se s oo s oltsh’ ses 93
PRVIOLocafed st BEI &EBGL0.0.00 0000 SUFULQIOES s aaaw il 3 9-5
PI6R8Located at BCI4 ittt it e e e e e 9-7
PIGRALocAtedat BEA3 c o v o v ci v oo s nao o oeonsnnoossos osiassiomion os 9-9
PIOREEENERRRR RIS . . i o o (6 6 alar o i 00 0 oo o 66 6 g o6 o o e 5 i 3 T 9-11
P16L8 Located at BG16 ittt e e e e 9-13
P16R8Locatedat BG29ttt ittt e e e 9-15
PURGEOCMEABEBILAL0 v0vnonicoranniococsonsedosaseessoiils 9-17
PEVIOEOBOAMEIRRID . , . . » .« « o v s a5 5 a0 555 6 p0d s e s 50 vaosassssnsns 9-19
P22V10Located at BA4L e e 9-22
P16R4 Located at BALt 9-25
PRRLIOLOGRICABEARVL . . . oo o cco b5 s o0 answmonnnsossnsenesnensesnss 9-27
PSSR I . . oooois v oo v 5% wininn S s 556 b s v N e el 9-30
P2VI0Locatedat AJA1ttt teenneeennoeennnsonnnnsnes 9-32
P2VI0Located at AX28 ot i vttt ittt et it e e et s e e 9-34
P1GRAEGeatedBANY . . . 0 0%« o o oo o TGl s o b s 5 a o e s iR R 9-37
P2L8Locatedat AXI4ttt e e 9-39
PIGLBLOCMEd AL AGA3cooioemiieeneenoooanoeesnsssensessaes 9-41
POREOERIREN AGRE .. o1l s o o o v o iwiminln o o is os b s s v s MRER s 5 o o e ol 9-43
PICIEREUEBRRIRRRER LY . .l . . . 0 i v el s e i s e s e R . & s o o s 9-45
PIGESLOCRBABEBXIG . . . o o« oo o snin s o v animossiovessosoasntassssession 9-47

Schematic Drawings and Assembly Drawing

Channel DriversandReceivers 10-1
CDR Functional Descriptionttt ittt e e e 10-3
DataHandlingSection00t iinnnnnnnn.. 10-3
Interface Control Section ittt e e 10-5
Disconnect CIrCUIS ittt ittt et et e e e e e e e e e 10-6
RESBEGCITCUIL « . o 55 vs « o 605 0ot é oo eris 1o al of o e ot o1 ohiel S Foitel e i o atia st o0 ie ot w1 re IONME 10-6

Board Control Section ittt e e e e e e e e e 10-7
CDR Detailed Circuit Descriptionttt ittt e e 10-9
SchematicConventions i ittt e 10-9
LogicCOMVERons . ,ccvvivoreoosaseonltosassesenenios 10-9
Interface Control Section00t eeeeessnesssossonnanceanon 10-9
SCIECHEIUL . . oo v vioinis v o oo s 0ie 6 6 56 o u o/ o b oneistiie B 5o 5% o oo o v s TN 10-9
SHOUT, . . . e cieie e vne atie o mosis s sisossionoiisesssssssss o 10-10
SECTOIN, . o o 5 o alolis 56 o o leails o o sulabialaioal e o o o o SuBBE o a o we e nee g 10-10
Disconnect Circuit Descriptionttt 10-11
ResetChonit DescriptiiBco0civecsossossosnneesennsis 10-11

Board Control Section i e e e e e e e 10-13
RDAT/,BGENand TLTCH/ it ittt ittt et e e e e e 10-13

IDEINEE Y 5 n . o SR 5 a o R R k=T s o ke Ba e o 5T . S K 10-14

Issued 11/89 v

Multisourcerer Manual

Contents

CDR Supplemental Data

PALEquation Listingscocovcvecinsmopns
Symbols and Abbreviations
PULIE :csippsssssnsvspesonsnsnssmsssss ik

Schematic Drawings and Assembly Drawing

) o = A RN

vi

Issued 11/89

Table of Contents

Figures, Tables and Timing Diagrams

Contents

Figures

Figure 1. Multisourcerer Interface
Figure 2. Multisourcerer Block Diagram
Figure 3. GPCI Basic Block Diagram
Figure 4. GPCI Functional Block Diagram
Figure 5. Bit-Slice Processor Block Diagram
Figure 6. 1/O Interface Controller Block Diagram
Figure 7. Register File State Machine (PAL 6A)

Figure 8. Microprocessor Section Detailed Functional Block Diagram
Figure 9. GPCI Control Section Interconnections
Figure 10. Shared Resources Bus Arbiter (PAL 17)
Figure 11. Autotransfer Controller (PAL 11D)
Figure 12. DMA Controller (PAL 10-Partial)

Figure 13. DMA Counter Decode State Diagram (PAL 15)
Figure 14. Functional Processing Flow Diagram
Figure 15. Initialization and Idle Loop Flow Diagram
Figure 16. Subroutine IMRES Flow Diagram (Sheet 1 of 3)
Figure 16. Subroutine IMRES Flow Diagram (Sheet 2 of 3)
Figure 16. Subroutine IMRES Flow Diagram (Sheet 3 of 3)
Figure 17. System Reset Flow Diagram
Figure 18. CDR Functional Block Diagram
Figure 19. Select OUT and SHOUT/ Generation

Figure 20. CDR Control Logic (Part of PAL A13)

Tables

Table 1. Shared Resources Bus Configuration
Table 2. Microcode Block Originated Control Signals
Table 3. GPCI Bit-Slice Condition Codes
Table 4. Immediate Tester Programming
Table 5. Command Code Definitions
Table 6. Automatic Control Decoder Outputs
Table 7. Register File Address Sources
Table 8. Bit-Slice Register File Data Buffer Controls
Table 9. Memory Map

Table 10. I/O Map

Table 11. MUART Port 1 Control Signal Summary
Table 12. MUART Interrupt Priority
Table 13. Ready Generator Characteristics
Table 14. Shared Resources Transfer Timing Diagram Directory
Table 15. Extended Address Generator Programming
Table 16. PAL Generated Control Signals Described by Timing Diagrams
Table 17. Shared Resources Arbiter State Definitions

Issued 11/89

vii

Multisourcerer Manual

Contents Page
Table 18. PAL Generated Control Signals Not Shown in Timing Diagrams 7-38
Table 19. I/O Map for DMA Counter Control tiinneeenn 7-41
Table 20. Handshake Generator Programming 7-50
Table 21. GPCI Bit-Slice Register Definitionsttt unnn.. 82
Table 22 GPCIRegster FHE B MAD o v o oo vv i v oo asnnmoloisiiess oeiossos bhs 8-4
Table 25 The BevicB Stata Tableo vivv v s oo nniew vnnnuainl o naatiabl 8-7
Table 24. RESPIM/Programmingo it ittt it ittt s e etnneee e 8-26
Table 25. Command Look-UpTable 0o, 8-29
Table 265 DEVICE TYPES .+ « s ¢ s o o s s o o 5 « s shlais s o s 0o o oIS THAUE RN Lisaoionsed FOSE 8-30
Table 27. Modification of Device State and Statusby CMDDNE 8-36
Table 28. Read Subroutines Summary ittt it ittt it ettt 8-44
Table 29. Subroutine TUPRST Summaryo it ittt eennnenneennns 8-46
Table 30. Write Subroutines DataTransfers00t .unn... 8-47
Table 31. Write SubroutinesSummaryttt ttnnnneeennnn. 8-47
Timing Diagrams

TR 5 ¢ ¢ & 84555 555 85 55335 8500 a0 ns S e e o S 7-52
o e T O S R R O ik et o e A 7-53
TIPS « : : o3 0503935 u b emeneanni s Hon o« s T 7-54
TimingPiageamid: . . 5 5 203353 556 5o s s s s s b T L S L 7-55
TORINERREI S « . . . oooooseoaaes s e e M B e L 7-56
TABRIRIIIG - - . ¢« &5 85 sseo s hsae e R s I 7-57
THRTIET- . . . ¢ 3 o 35 56 000000 b b ot JURD R R R Sy iy 7-58
TIMINEDIAEFAMIS: © 5 o o %3 4 5 A% 5 0 5 0655 655 58005 5 50055 6 e ARG REITR, Pk i SN 7-59
TIINEERRIEEID: . . « « o o 6605 0005005 00sbs o0 b o MUIRIE ISR RERCTET TN 7-60
Tinin@ BRI 10 - (v obso. s e s oo SPVGRISRTTUIONRE b TUC NG 7-61
TR EL - . . . o o ccvficoaa i e s a s s o e s s M TEIRUENETUTR, [L 7-62
TS TURERIIREE o0 oqsea e s e mee s s e e nis e ISR o e AREERIE L | . . SED NN 7-63
TIARGINRIIIINES coovsnusampsnnidnses s SlEENs : DUURRE, | o . . S5ivke 7-64
TimioS ENRRAREISo oo n v v oveannenssess s SOMREI RN Becy s eatny 7-65
Timing Diagram 15 e e e e e 7-66
TimingDiagramr 160 00 0iteneneeesss WG SORRDEG. 08I 7-67

viii Issued 11/89

Reader Response

We would like your comments on our manual. Please take a moment to fill out this self-mailing form and return
it to SSEC - McIDAS User Services and Documentation. Thank you for your help.

Manual name (from the title page)

Did you find this manual helpful? Did it provide the required information?

Did you find errors or omissions in the manual? Please be very specific.

Please rate this manual on the following items from 1 to 5, with 1 as low and 5 as high.

Text
Graphics
Ease-of-use
Overall

e
[\S I S I S B S]
W WWwWw
&~ A
WD W

What is the best feature of this manual?

What is the worst feature of this manual?

Your name and title

Date

MCcIDAS site

Address

Telephone

Check here if you would like a written reply.

Fold Here

Fold Here

Space Science and Engineering Center

MCcIDAS User Services and Documentation, Room 611

University of Wisconsin - Madison

1225 West Dayton Street

Madison, WI 53706 (

Introduction

Introduction

Issued 11/89

Introduction

SSEC’s development of the Multisourcerer was motivated by the decision to
reduce the proliferation of both the different types and physical number of

I/O devices that are connected to the IBM I/O channel. In addition, the new
generation of I/O devices to be built for the Multisourcerer will be more reliable,
maintainable, and easier to use than the current generation of I/O devices.

The IBM I/O Channel is the means by which data is transferred to and from the
central processing unit of several different kinds of IBM midsized computers,
including the 43XX series around which the current McIDAS family is built.
SSEC has developed a number of specialized I/O devices to connect to the

I/O channel. A different interface was designed for each of these devices and
optimized to the function performed by the device. This approach has some
limitations. One is the growing number of channel interface designs for which
SSEC must provide documentation, maintenance, and spare parts. Another
drawback is the proliferation of physical boxes connected to the I/O channels
of the computer.

To address these problems, SSEC developed the Multisourcerer. The main
component of the Multisourcerer is the General Purpose Channel Interface
(GPCI), a channel interface with sufficient generality to control the current
generation of SSEC I/O devices. Future I/O devices developed at SSEC will
be designed to match the standard established with the Multisourcerer.

The Multisourcerer is also a multi-device controller as shown in Figure 1 on

the next page. That is, multiple ingestors and/or communication devices can

be contained within a single Multisourcerer. Adding a new data stream to an
existing McIDAS system can be as simple as plugging in a new board, connecting
the data source to the back of the chassis, and perhaps upgrading the firmware
PROM s on the Multisourcerer (the software must be present on the IBM
computer to handle the new data source). This procedure contrasts with the
former method of adding a new data stream by finding more rack space for
another box, then connecting another set of heavy I/O cables as well as
connecting the new data source.

In addition to the GPCI, the Multisourcerer has a seven-slot card cage with
room for six devices. It also includes a keypad and single line display to allow
operators and maintenance personnel easy use of the I/O devices. Data transfer
within the Multisourcerer is faster than the IBM I/O channel. This allows us to
use the full bandwidth of the channel.

The Multisourcerer combines performance, flexibility, and ease of use in one
unified design that provides SSEC with a standard method of connecting our
specialized devices to the IBM I/O channel.

Introduction

Appropriate Appropriate POES
Antenna Frame
Electronics Syncs
> GOES AAA
> METEOSAT
> GMS
Communications ««—s{ BISYNC
PRONET
Local Area Network <-—-
PRONET

General Purpose Channel Interface

Figure 1. Multisourcerer Interface

Issued 11/89

Installation and Configuration

Installation

Issued 11/89

10.

11.

Installation

Use the instructions below to install the Multisourcerer.
Remove the Multisourcerer from its packing box.

Take off the top panel of the Multisourcerer and open the front panel. Remove
the interior packing material, inspecting it for additional components.

In separate boxes, you will find the front panel single line display and the
General Purpose Channel Interface (GPCI) card. Taking precautions to
avoid static discharge, remove the display from its packing material.

Mount the display to the inside of the front panel using the plastic screws
provided, inserted into the mounting posts.

Connect the power and signal cables to the display.

Attach the power connector with the bottom pins aligned. The red wire should
be lined up with the bottom pin of the connector on the display.

Attach the signal cable with the brown wire on top.
Replace the top panel of the Multisourcerer.

Remove the GPCI from its packing material. Carefully place the GPCI in the
bottom slot of the Multisourcerer card cage. Do not damage the insulation of
the ribbon cables below the card.

There are three cables to attach to the GPCI card. Attach the cable from the
front panel to the edge card connector J3. Attach the cable from the Driver
Receiver card (the PC card mounted on the side of the chassis) to the edge card
connector J4. Attach the cable from the test port to the edge card connector J5.

Insert the application cards and close the front panel.

Now configure the Multisourcerer using the Configuration information on
page 2-3.

Following configuration, attach the Multisourcerer to the I/O channel. The
cables from the computer are attached to the BUS OUT and TAG OUT
connectors. Terminators are placed on the BUS IN and TAG IN connectors.
The Multisourcerer can also work on a channel with other devices. If this feature
is used, the Multisourcerer can be connected before or after the other device. If
connected before the other device, the cables run from the TAG IN and BUS IN
connectors to the next device. If connected after, the cables run from the other
device to the Multisourcerer’s BUS OUT and TAG OUT connectors. The bar
across the back of the Multisourcerer provides both a place to relieve the strain
on the channel cables attached to the Multisourcerer and a convenient handhold.

Installation and Configuration

14. After connecting the Multisourcerer to the I/O channel, attach the signal cables,
apply power, and turn the Multisourcerer on. Each type of application card
comes with a manual that describes the pin out and signal levels expected by
that card. Please refer to the appropriate manual for further information.

2-2 Issued 11/89

Configuration

Issued 11/89

Configuration

Use the front panel keypad and display to configure the Multisourcerer. You
can save entered parameters in a Non-Volatile RAM (NVRAM). The
Multisourcerer remembers them even when the power is off and (z;utomatically
recalls them during the power-up cycle. Therefore, configuration need only
be performed during the initial installation of the Multisourcerer or when the
application cards are changed. Configuration can be done only when the
Multisourcerer is in diagnostic mode.

Use the procedure below to configure the Multisourcerer.

The General Purpose Channel Interface (GPCI) card, in the bottom slot of
the Multisourcerer, has two switches located at AB1. Switch 1 performs no
function. Switch 2 controls the Multisourcerer’s mode (operational or
diagnostic). To place the Multisourcerer in diagnostic mode, open the front
panel and move switch 2 to OFF.

Close the front panel and power up the Multisourcerer. The display should
show the following prompt:

PRESS D

If it does not, press the RESET switch. This is a prompt to remind you that you
are in diagnostic mode.
Using the keypad,

Press: D

The display response is:

WHICH DIAG. RTN

which means which diagnostic routine do you want.

2-3

Installation and Configuration

2-4

Configuration and diagnostic routines are selected by pushing the appropriate
keys on the keypad. You can view a menu of the available routines one routine
at a time by pressing the S key to scroll through them. Pressing the R key allows
a reverse step to review the previous item. When you see the routine you want
to perform, press the key with the character that appears with that routine.

The following is an example.

You want to run the GPCI diagnostic tests.
Press: S

until you see the following routine displayed:

1 GPCI DIAG

To execute the diagnostics,

Press: 1
Several of the routines require additional information and prompt you to select
an item from a submenu or to answer yes (Y) or no (N). If the choice requires

a submenu, the S and R keys scroll and reverse through the submenu.

The routines currently available are:

Y

Routine

test GPCI *

device tests

go to the Operational Mode

set the channel base address

store parameters in the NVRAM
display a device’s characteristics
add a device to the list

delete a device from the list

store the Checksum of the PROM

AE»>OAULHENR

*You will need to do a reset following this test.

To configure the Multisourcerer, you must set the channel base address (5),
add the devices that are to be installed in the Multisourcerer (A), delete any
unused devices (B), and store these parameters in the NVRAM (6). Each of
these routines is described in greater detail below.

Issued 11/89

Configuration

9 A host computer can address up to 256 devices on an I/O channel. These
devices have distinct addresses which, in hexadecimal, range from 00 to FF.
We call the first digit the channel base address. We call the second digit the
device address. All of the devices installed in a Multisourcerer must have the
same base address. To set the base address,

Press: §
Press: the key for the chosen base address

6. To add a device to the Multisourcerer,
Press: A

The prompt asks you to select the type of device that you want added to the list
of devices present in the Multisourcerer. You can use the S and R keys to help
you recall the number for the type of device. Any application card placed in the
Multisourcerer but not added to this list is ignored. The device type numbers
assigned to various devices are:

Number Device Type
0 Bisync Communication Card
1 Ingestors (see number 7 below)
3 ProNET Communication Card
7. If you choose an ingestor as the device type, the next prompt asks you to select

the ingestor type. The ingestor type can be viewed by pressing the S key and
scrolling through the following choices.

Ingestor Submenu

GOES AAA Ingestor
POES Ingestor
METEOSAT Ingestor
GMS Ingestor

GVAR Ingestor

(= WLV T N S

When you choose the ingestor type, the I/O port address is displayed for
verification that the ingestor is configured properly, e.g.:

2,1/0 = 90.CONT?

To verify that it is properly addressed,

Press: Y

Issued 11/89 2-5

Installation and Configuration

10.

11.

After you choose which device type to add to the list, you are asked to select
the device address. Following this, there is one more prompt. It is:

RWDPE?

which means Report any Write Data Parity Errors. In an operational setting,
this is answered yes.

Press: Y
During initial installation, each device in the range 0-E not added to the list
should be deleted. To do this,

Press: B
Press: the address of the device to be deleted

After initial installation, only delete devices if they are removed from the system.
A device on the list, but physically not present, is ignored.

The final step in configuring the Multisourcerer is saving the new parameters.
To do this,

Press: 6
Press: Y

If this is not done the Multisourcerer reverts to the previous configuration
when it is reset, or when it is powered down and then powered up again.
To inspect the results of your configuring,

Press: 9
Press: the number of the device you wish to check

The display will show the information in the following format:

taa yyyyy
is the device number.
t is the device type (see the Device Type list above).

aa is the device I/O port.
yyyyy is RWDP or NRWDP (reports write data parity errors or no report of
write data parity errors).

Issued 11/89

Configuration

12. When the configuration is complete, return the Multisourcerer to operational

mode by moving switch 2 on the GPCI back to the ON position. Then do
a reset.

13. Return to number 13 on page 2-1 for further installation instructions.

Issued 11/89

Installation and Configuration

2-8

Note For Configuration For Bisync

The Multisourcerer can communicate with a McIDAS workstation, using

the Bisynchronous (Bisync) Communications Protocol, by placing SSEC-
designed Bisync cards in the Multisourcerer and workstation. The card in the
workstation replaces the two ProNET cards. There are several links in this
communications path and they must be mapped correctly to allow data to be
transferred between the host and workstation.

A workstation is referenced by its terminal number (e.g., Txx, where the xx

is a two-digit decimal number) inside the McIDAS software running on the
host. A systems programmer must map the Txx number to a channel address
when generating McIDAS. Check with the systems programmer to get a list
of this mapping.

A second mapping occurs inside the Multisourcerer. Here the channel address
is converted to the physical port attached to the cable going to the workstation.
The cable may be extended indefinitely with a pair of modems. This mapping
occurs in two stages. The first stage is performed by the GPCI, which converts
the channel address to MULTIBUS®* memory and I/O addresses. This is
done automatically once the device is added to the list of those present in the
Multisourcerer. The second stage is done on the specific Bisync card which
communicates with the addressed workstation. This mapping is performed

by attaching the appropriate jumpers on the card edge connector to J2. See
MCcIDAS design note DN3504-026.

The front panel of the Multisourcerer has eight LEDs labeled 0-7. Each one
represents the corresponding channel address and is lit when a data transfer
occurs from that address. The port accessed at this time is determined by the
position of the Bisync card responding to that address. You should follow the
simplest mapping and assign address 0 to slot A, 1 to B, etc. You may also
find it useful to fill out a chart similar to the one that follows.

Channel Txx Port Location
0 A
1 B
2 C
3 D
4 E
5 F
6 G
7 H

*MULTIBUS is a registered trademark of Intel Corporation.

Issued 11/89

oystem uperation

System Operation

System Operation

Multisourcerer operation is controlled from the front panel. In addition to
the keypad and display, there are two switches on the front panel. One is a
RESET switch which is a momentary switch. The other is a DISCONNECT
switch which is a toggle switch. RESET resets the GPCI and all application
cards present in the Multisourcerer. It works only when DISCONNECT is
off. This prevents accidental resets of the Multisourcerer when it is connected
to the channel. The red LED above the DISCONNECT switch is lit when the
Multisourcerer is powered up and the DISCONNECT switch is off. The LED
goes out when the DISCONNECT switch is turned on and the Multisourcerer
is connected to the channel.

Programs that try to access the Multisourcerer when it is disconnected will
report the message "NO PATHS AVAILABLE" on the operator’s console.
All programs that are using the Multisourcerer when it is connected to the
channel should be halted before the Multisourcerer is disconnected. The
Multisourcerer should always be disconnected from the channel before it is
powered down.

The following four functions can be controlled from the keypad when the
Multisourcerer is in the operational mode:

o view the first bank of devices
o change the ready/not ready state of an individual application card
e reset an individual application card

e view the second bank of devices

If accidentally selected, the last two functions are aborted by pressing the
N key. You can view a menu of these functions by using the S (scroll) and R
(reverse) keys. These functions are:

Key Routine

0 view the first bank of devices (0-7)

1 change ready/not ready for a single device
2 reset a single device

4 view the second bank of devices (8-E)

Issued 11/89 ‘ 3-1

System Operation

3-2

Each Multisourcerer application card (also called a device) is assigned a
channel address. The front panel of the Multisourcerer has eight green LEDs,
labeled 0-7. Each one represents the device at the corresponding channel
address. An LED is lit when a data transfer is occurring between the host and
that device. When the 0 key is pushed, the Multisourcerer shows a summary
of the state of each device on the front panel display. Each device is assigned
two display characters. The first character pair corresponds to device 0, the
second character pair corresponds to device 1, and so on.

The first character of the pair indicates which type of application card is
assigned that address. The second character of the pair indicates the state of
the device. The character codes are:

Character Type F Device

B Bisync

A GOES AAA Ingestor
T POES Ingestor

M METEOSAT Ingestor
P ProNET

G GMS Ingestor

\' GVAR Ingestor

A device has one of the five states listed in the table below.

Character Device State
R ready

N not ready

E empty

i signal present

If the device is present, and the Multisourcerer is connected to the channel,
then the device may be either ready (R) or not ready (N). A device that is
ready is operational and responds to any legal command issued to it by
performing the requested function. A device that is not ready also responds
to commands, but indicates that operator intervention is required.

Issued 11/89

GPCI Overview

GPCI Overview

GPCI Overview

The General Purpose Channel Interface (GPCI) is a bus-to-bus converter.

It provides the interface between the IBM System 370 I/O bus and the Intel
Multibus. The GPCI is the main subassembly of the Multisourcerer. The
GPCI design is sufficiently general and flexible to control the current
generation of SSEC I/O devices. The design of future I/O devices developed
at SSEC will match the standard established with the Multisourcerer.

Refer to Figure 2, the Multisourcerer Block Diagram, on the next page. The
Channel Drivers and Receivers board is a printed circuit card. The card is
vertically mounted on the Multisourcerer’s upper-left panel. Functionally,
this card is an extension of the GPCI. The card consists primarily of line
drivers and receivers, and a small amount of control circuitry. The reasons
for making a separate board for these circuits are:

o it frees up enough board space on the GPCI to allow all remaining
GPCI circuits to be located on a single Multibus form-factor wire
wrap board

o it allows required IBM channel I/O control hardware to remain
intact, even when the GPCI is removed

e it contains circuitry that is design stable and unlikely to change

For additional information on the Channel Drivers and Receivers card, refer
to Chapter 10.

As shown in Figure 2, the GPCI consists of two main sections, the I/O
Interface Controller and the Device Controller. Dual processors control

the GPCI. A bit-slice processor controls channel interface functions, and

an 8085 microprocessor controls device functions. The design choice for

the I/O Interface Controller section is a bit-slice processor because its speed
is inherently higher than the channel’s. Thus, the Multisourcerer can make
use of the full bandwidth of the IBM channel. To the remainder of the GPCI
and the Multibus, the I/O Interface Controller makes the IBM channel
appear as an I/O port.

The Device Controller Section is based on an 8085 microprocessor design.
The Device Controller can control up to six Multibus compatible devices
(GPCI occupies the bottom slot of a 7-slot card cage). The Device Controller
Section also provides operator interaction via a 20-key keypad and a 16-
character single line display. The RS232 port allows you to use a monitor

and keyboard during diagnostics and self testing. The port can also be used
for maintenance troubleshooting.

Issued 11/89 ’ 4-1

GPCI Overview

H3H3OH”NOSILINW

snalLinin

]

]
|
(S32IA3Q) _owo
SAHYD —=
NOILYDITddY “ ¥3AIZO3Y
y3TIo4INOO | HITTOHINOD /SH3AIHA
301A30 | 30V4H3LNI 93INNVHO
[o/l
|
|
|
|
! 378v0
HOL1ONANOD 0§
IVNHILNI
304NOS 30HNOS 1HOd o«m_n-_,_@mv_
IVNDIS IVNDIS 1s3lL o el

3OV4H3LNI
O/1 el

T3INNVHO

H31NdWNOD
1SOH

Figure 2. Multisourcerer Block Diagram

Issued 11/89

4-2

GPCI Overview

Issued 11/89

Because of the complexity of the GPCI, it is divided into four subsequent
chapters. These include:

e Chapter 5 - GPCI Basic Functional Description (based on Figure 3)

e Chapter 6 - GPCI Detailed Functional Description (based on Figure 4)
o Chapter 7 - GPCI Detailed Circuit Description

o Chapter 8 - GPCI Bit-Slice Microcode Description

Chapters 5, 6 and 7 provide successively more detailed descriptions of the
GPCIL.

An understanding of the GPCI without an understanding of the IBM I/O
interface requirements and operation would be difficult if not impossible. The
IBM System/360 and System/370 I/O Interface Channel to Control Unit Original
Equipment Manufacturers’ Information Manual (hereafter referred to as the I/O
Reference Manual) describes the interface requirements in detail.

The GPCI and its application cards function as an IBM "control unit" (type-3)
and "devices" respectively. The I/O Channel Interface has several optional
features that are not employed in the GPCI design. For example, the GPCI does
not employ data streaming or the bus extension features. Data In and Data Out
tag lines are very similar in operation, timing, and use to Service In and Service
Out respectively. The GPCI uses only Data In and Data Out. However, Service
In and Service Out are connected to the GPCI via the Channel Drivers and
Receivers board. Section 3 of the I/O Reference Manual describes Data In

and Data Out. These are the only features discussed in section 3 that apply to
the GPCI. The GPCI does not use Metering In and Metering Out.

4-3

GPCI Overview

4-4 Issued 11/89

GPCI Basic
Functional Description S

GPCI Basic Functional Description

Bit-Slice Processor

Channel Input and
Output Latches

Condition Code
Multiplexer

Issued 11/89

GPCI Basic Functional Description

The IBM interface system is a fully interlocked handshaking system. That is,
when the channel or control unit (i.c., GPCI) raises a control signal, that signal
is not allowed to fall until its receipt is acknowledged by the recipient’s raising
of another control signal. In turn, that acknowledge signal cannot drop until

it is acknowledged, etc. The advantage of this interface is automatic matching
of the channel speed to a wide range of data rates.

I/O Interface Controller

The I/O Interface Controller consists of:
e Bit-Slice Processor
o Channel Input and Output Latches
e Condition Code Multiplexer

Refer to Figure 3 on page 5-3. The I/O Interface Controller is built around
the Bit-Slice Processor. This block functions as a high speed (100 nanosecond
instruction cycle time) 4-bit microprocessor. It is controlled by approximately
470 40-bit micro-instructions which are stored in PROMs.

The 8085 microprocessor, its associated buses, the IBM channel, and the
Multibus all handle data in byte-wide formats. Therefore, all data paths
between these sections or buses and the I/O Interface Controller require
data latches for assembling and disassembling data.

The Channel Input Latches assemble the 4-bit words from the Bit-Slice Processor
into 8-bit words. The Channel Output Latches disassemble the 8-bit channel
Data Bus data into 4-bit words and pass them to the Bit-Slice Processor.

The /O Interface Controller generates the Tag and Control signals by assembling
8-bit control words in the Channel Input Latch and transmitting them to the
Channel Drivers and Receivers (CDR) board via the Octal Transceiver block.
Two latches on the CDR board have their inputs wired in parallel. They are

the Output Data Latch, and the Tag and Control Latch. The appropriate latch

is selected and clocked by the I/O Interface Controller via the CDR Control

lines. Thus, most Tag In and Control In lines originate on the CDR board.

The I/O Interface Controller monitors channel control (Control Out) signals
via the Condition Code Multiplexer. This block monitors several other signals,
that are not shown in Figure 3. These signals are discussed in the GPCI
Detailed Circuit Description (Chapter 7).

51

GPCI Basic Functional Description

Microprocessor
Section

5-2

Device Controller

The Device Controller consists of three sections:
e Microprocessor Section
e Shared Resources Section

e Multibus Interface Section

The primary function of the Microprocessor Section is to act as an interface
between the application devices and the I/O Interface Controller. In addition,
it passes device status to the I/O Interface Controller, provides DMA control,
displays status, and allows operator interaction via the keyboard. It also
performs diagnostic testing on many GPCI sections and application cards.

The Microprocessor Section is conventional in design. It is an 8085
microprocessor based system, containing internal address and data buses
which connect the microprocessor to its support components.

The Microprocessor Section is controlled by the program residing in its 16K
byte EPROM (optionally 32K bytes). It contains a 1K byte static RAM for
storing variables such as device state tables, and a nonvolatile RAM (NVRAM)
for storing Multisourcerer configuration variables. The NVRAM retains its
data even when power is off. The configuration variables are altered by the
operator via the keyboard.

The I/O control block provides an interface between the microprocessor,
keyboard, serial test port and display.

The Register File serves as a link between the I/O Interface Controller and
the Device Controller. It passes status and device state information from one
section to the other. To the Bit-Slice Processor, the Register File appears as
a 64-nibble RAM (remember the I/O Interface Controller is a nibble-wide
system). From the microprocessor’s point of view, the Register File appears
as a 32-byte RAM.

The Bit-Slice Processor passes device specific information to the Microprocessor
Section by writing the data into the proper locations (each device has 4 nibbles
assigned to it) in the Register File. Next, the device’s assigned address is loaded
into a specified address of the Register File. Finally, the Bit-Slice Processor
interrupts the microprocessor, telling it to look in the Register File. When the
microprocessor is interrupted, it retrieves the device’s address and uses it as

a pointer to locate the new information in the Register File. Data is passed
from the Microprocessor Section to the Bit-Slice Processor by writing the data
into the proper Register File location. The Bit-Slice Processor locates new data
by sequentially checking each device’s register set for new data, as there is no
true interrupt capability for the Bit-Slice Processor.

Issued 11/89

— e cen e e e it e et Seemn | e e o o e — et ——— S— o—

I/0 INTERFACE CONTROLLER

CDR CONTROL

|
|
|
i
|
|
|
|
|

1/0 CONTROL

BIT - SLICE ||
ek L ol CO!:I())I{;TEION PROCESSOR NVRAM EPROM ||
l : MULTIPLEXER e - - 8085 |
' LN uP
l @'I%« &) FILE H {I |
| | A ~_~ = | |
| | I 4~ \r l [T\ l |
I I

CHANNEL " DUAL U j
! DRIVERS ! | L '?¢ 16 X8 | |
bl UM R s N
| RECEIVERS | 1 < - an ms | LOCAL
| ! o e L/ 1> | R RAM A
| =
l ! C“R 4BIT | | |
| | | < _i ! J L 1
| | —
CHANNEL CHANNEL
| m | INPUT OUTPUT M | A BUFFER . e — el
| f | LATCHES LATCHES [L SHARED —
DATA SHARED |
| ITAG IN, | | RESOURCES F |
L _ _ _ _ _ICONTROL SECTION |
IN OCTAL |] Bl-
TRANSCEIVERS S SRR 1" [T e =S DIRECTIONAL Il
g CHANNEL |, L
(r CHANNEL DATA BUS j‘> PORT (J SHARED RESOURCES BUS |
TRI—PORT
r RAM ||
|l
s _______.______.__ll

Issued 11/89

| MuLTIBUS .-
| INTERFACE _SECTION

MULTIBUS
INTERFACE

Figure 3. GPCI Basic Block Diagram

5-3 and 5-4

GPCI Basic Functional Description

Shared Resources
Section

Issued 11/89

In summary, the Register File provides the following:
o bus width conversion

status and device state temporary storage

data passing (status and device states) between two unsynchronized

systems

data sharing between two systems operating at widely different

data rates

The Shared Resources Bus connects the Tri-Ported RAM, the Multibus, the
Channel, and the Microprocessor Section together. Each of these sources
contains a tri-state bus transceiver or is a tri-state device. At any one time,

only one data source and one data sink use the bus. Before data can be
transferred over the bus, the appropriate transceivers must be enabled, and

the data flow direction through those transceivers must be set. The transceivers
are controlled by bus arbiters and associated control hardware. Because of
the large number of users on the bus, the bus arbitration and control logic is
complex. Table 1 below shows the valid Shared Resources Bus Configurations.

From To Domain
Microprocessor Channel Port I/0
Channel Port Microprocessor I/0
Microprocessor Tri-Port RAM Mem
Tri-Port RAM Microprocessor Mem
Microprocessor Multibus I/0
Multibus Microprocessor I/O
Microprocessor Multibus Mem
Multibus Microprocessor Mem
Channel Port Tri-Port RAM DMA Mem
Tri-Port RAM Channel Port DMA Mem
Channel Port Multibus DMAT/O
Multibus Channel Port DMAT/O
Channel Port Multibus DMA Mem
Multibus Channel Port DMA Mem
Multibus Tri-Port RAM Mem
Tri-Port RAM Multibus Mem
Multibus* Channel Port Mem
Channel Port* Multibus Mem

* Channel Port masquerades (from the Multibus’ view) as a memory block

which is contiguous with the Tri-Port RAM.

Table 1. Shared Resources Bus Configuration

5-5

GPCI Basic Functional Description

Multibus Interface
Section

5-6

The Tri-Port RAM is a 4K byte static RAM. Its address bus can be driven by
the Multibus, the DMA Address Generator, or the microprocessor’s address
bus. This is why it is called the Tri-Port RAM. The microprocessor and the
DMA Generator address the Tri-Port RAM via addresses 7000H-7FFFH.
During DMA transfers, the DMA Generator controls the Tri-Port RAM’s
read/write addressing, and must not exceed address 7FFFH. Multibus/Tri-
Port RAM data transfers occur only when the GPCI is acting as a Multibus
slave, using Multibus addresses 1000H-1FFFH to access the RAM.

The Bidirectional Channel Port block links the Shared Resources Bus, located
in the Device Controller Section, to the Channel Data Bus. The Bidirectional
Channel Port functions as dual back-to-back octal tri-stated latches. Incoming
channel data or outgoing I/O Interface Controller data is latched into the
Bidirectional Channel Port, and is readable by the Shared Resources Bus.
Once on the Shared Resources Bus, this data is available to the Microprocessor
Section, the Tri-Port RAM or the Multibus. For data passing from the Shared
Resources Bus to the channel or Bit-Slice Processor, the data is latched by

the data originator (Multibus or microprocessor) and read by the recipient
(Bit-Slice Processor or the channel).

The Multibus Interface block allows bidirectional communication with the
application cards (six maximum due to chassis limitation).

Issued 11/89

urul Uetalied
Functional Description

GPCI Detailed Functional Description

GPCI Detailed Functional Description

The GPCI Functional Block Diagram is shown in Figure 4 on page 6-3. This
figure is an expansion of Figure 3 and introduces the main control blocks.
Note that the schematic page numbers are listed in each block. This should
make the transition from the functional descriptions to the schematic A
diagrams easier.

1/O Interface Controller

As shown in Figure 4, the I/O Interface Controller consists of the following
blocks:

e Bit-Slice Processor

e Channel Input and Output Latches

e Condition Code Multiplxer

e Command PROM Latch and Decode
e Register File Address Generator

e Register File

e Clock

Each of these is described below.

Bit-Slice Processor

The heart of the I/O Interface Controller Section is the Bit-Slice Processor.
Figure 5 on page 6-6 is an expansion of this block. The Bit-Slice Processor
consists of the Microsequencer, Microcode and Bit-Slice Arithmetic Logic
Unit (ALU) blocks. These three blocks comprise a 4-bit microprocessor with
a pipeline architecture. That is, all three blocks are cascaded and clocked by
a common clock. Thus, the Microsequencer is always outputting the address
that will be used by the Microcode block on the next clock pulse (the
Microcode block has a registered output). The Microcode block’s output is
one clock pulse ahead of the ALU output. In this way, the Microsequencer,
the Microcode block and the ALU form an instruction pipeline.

Issued 11/89 6-1

GPCI Detailed Functional Description

The Microsequencer is an address sequencer/selector that controls the execution
sequence of the micro-instructions stored in the Microcode memory. The Next
Instruction bus selects one of sixteen Microsequencer instructions. Each
instruction can select one of four address sources. These sources are:

o direct input (ADDATO0--ADDATS) which is used for conditional jumps
and calls

e microprogram address register which ustially contains an address one
greater than the previous address

o aregister/counter which retains data loaded during a previous
micro-instruction (not presently used)

o anine-deep last-in first-out (LIFO) stack which provides return address
linkage for subroutine returns and looping

The Microcode block consists of five cascaded 1024-byte PROMs. The cascaded
PROMs feature output data latches which are clocked by the Bit-Slice clock.
The 40 output bits are used as follows:

e 9 bits for Bit-Slice ALU instructions

o 4 bits for Microsequencer instructions

o 9 bits for Bit-Slice Controller jump addresses/data

o 8bits for ALU register addressing

o 1bit for I/O control enable

o 3 bits for Channel Drivers and Receivers (CDR) control
e 5 bits for miscellaneous control

e 1bit is unused

The Bit-Slice ALU is a 4-bit microprocessor slice and can be cascaded to any
number of bits in groups of four bits. The ALU can perform addition,
subtraction, and five logic functions, though only the ADD and three logic
functions (AND, OR and EXOR) are currently used.

The ALU has 16 internal RAM registers. Each RAM register can be selected as
a data source for an instruction. Also, zero can be selected as a data source as
well as the data-in bus (IDAT0-IDAT3). The data sources, ALU function, and
data destination are selected via outputs from the Microcode block. The ALU
also generates four status flags, carry, overflow, zero and negative accumulator
results. At present, only the zero flag is used. The ALU instruction has a data
destination code embedded in it. The data can be written to the data out bus
(ODAT0-ODATS3), one of the RAM registers, or to an internal shift register,
which is not presently used.

6-2 . Issued 11/89

Issued 11/89

Figure 4. GPCI Functional Block Diagram

6-3 and 6-4

FRONT REAR
PANEL PANEL
Y Nl R A s
/0 INTERFACE CONTROLLER | MicroprocEssor secTion | | | 4 (o G s cumry | MULTIBUS INTERFACE SECTION |ler [
1 T | COMMUNICATIONY MULTIBUS INTERRU NI/ H>>
| HANDSHAKE t % ABS—-ABF | |
: CONTROL —<J DMA CONTROL { . : :
= : o DISPLAY = ENCODER ‘ ‘ = :
I o on BIT SLICE FILE : AE1 s MULTI) sess : {
LEXER PROCESSOR ADDRESS UNIVERSAL MICRO— TRISTA ADDRESS
} WS‘ET': rﬂ GENERATOR : ASYNCHRONUOS PROCESSOR gy : AMB—AME | BUS ADRS/-ADRE/ } oA
| L * See (PART OF + | @ LED_DRIVERS RECEIVER AN3 DRIVERS e TRANS— i
P T el ™ o TS BE16) , g AA32 TRANSMITTER MEMORY & 0 CEIVER i
|] [8643 , B8L30 ? | 8 RAM,EPROM AJ3 1/0 MAPPED - 4 Tl AR43,AT43 |
I c | AND Now- | —e—VSTRZ__| 4| | conTrROL 8] | e I
I | g | VOLATILE [AV1 ,AX1 I I
[I RAM I MICROPROCESSOR I
I | AE14,AE24 8 I CONTROL I
I | ABS ,AC21 ADS—AD? %/ (ou iR I |
I REGISTER FILE) i CONTRO! I 8IT wLTiBUS | |
| 2 IDATS—IDAT3 (STATUS DB8-DB7 o s L4 k2 | SLICE INTERFACE | |
I INPUT/OUTPUT) |- EXTENDED s B I CONTROL CONTROL |
I g Soaiaid BJ34 ,BE3M , (EXTENDED BUS) sus (REQIS ey | - :
} :lo-;: .:Jo:: . [> RFACK/ TRANSCEIVER : 14,
| b Be29 Bo1e 5 DBe-DB4 | AT17 s READY 3 ADDRESS & | ADRF/-ADR13//| | |«.
l] T (TO EXTENDED I SHARED GENERATOR | ————=——= == HANDSHAKE K
| z X I | ADDRESS GENERATOR) RESOURCES BA1 Lt i GENERATOR I M
| g COMMAND PROM, ; CONTROL BUS TRANS— I | AX28 B | 5
CHANNEL CEIVER | DMApP—— I
| LATCH AND | AV17 I._<, MICRO- | cONTROL HANDSHAKE | |
| . o M, TR ot || > DECODED CHANNEL -, PROCESSOR SECTION| || oes-pas contmoL | | ‘II-'
I g BC14.BJ1 - BY11 I COMMANDS ACKNOWLEDGE INPUTS | ' [S—
| F e e 21,843 CONTROL i DMA i | |
: [_}] ADDRESS I CHANNEL | B
B B] e e e e e e e e e e e e e e e S Pt e e S e P P o e e S s P P P o s e St P et e S G e P Pt S S St S S Gt S s e e [s e e s e e S e S e e S e S -4 GENERATOR | COMMANDS i)
: SHARED RESOURCES SECTION I AJ2e,AN2E | : i 5
| TRI—PORT ! L4 [} ! |
| 3 RAM ! = MULTIBUS :
_____ [P S | AUTOTRANSFER CONTR 4K x 8 H INTERFACE
I é e T i'ru AU)U | pecooep ! CONTROL I
R | e | CHANNEL | |
e I 8 o : COMMANDS : I
| > |
DMS—DM7 (SHARED RESOURCES BUS) Y I | DATA BUS
Je { OCTAL § BIDIRECTIONAL - T T TRANS- DATS/~DAT?/ : P1
CHANNEL, N1) cos-co? INVERTING CHANNEL TRI—PORT | | CEIVER HI NN
DRIVERS + fre— e
ree TRANSCEIVER PORT RAM CONTROL | | AX43 |
AND : 8c1 8C26 DM_BUS CONTROL ¥ R H H |
RECEIVERS —— —— :
BOARD I 2 3 DONE | : s I
| J L 28
et ——— e e e ———— e e e e e e e o e e e e e e e e e Gt e e e e b e o e e e e e e e [| e s
| CONTROL SECTION |
% -] | | CONTROL (FROM MICROPROCESSOR) p>—C ROMWR D [. . o :
= 5 = 5 } Ac(mom./zl;o: (TO MICROPROCESSOR) —}SRACK/ | ?:WL I
Q CHANNEL INTERNAL HANDSHAKE (DTR UTOTRANSFER -
?. g C] } TAD & OHANNEL CONTROL PORT INTERNAL HANDSHAKE (DRT/) CONTROLLER MULTIBUS CONTROL 4 g
had § CONTROLLER DMA CONTROLLER 9- &
! BC41 CONTROL (FROM PROCESSOR) g .| SHARED RESOURCES |
| ! 3 ARBITER) i
| AUTOTRANSFER CONTROLS = BA41,8A14, "> DMA CONTROL |
{ AX14,8A26 i
| | ‘ HANDSHAKE 3 i
————— coNTROL MULTIBUS |
B ! s INTERFACE |
M : CONTROL |
| |
' MULTIBUS AL '
H : INTERFACE MULTIBUS CONTROL | '
H | eNote 1. Refer to Flgure 4 for an AND| BUS ‘ |
A I IneEEn: v S TR MICROPROCESSOR CONTROLD>— gl ACQUISITION fg— ADRC/ I —
N I AC43,4028. TRI—PORT I
N = BIT SLICE CONTROLp>— .| ‘AF48,A043, ,[— > TRI— RAM CONTROL i
E | ' - !
L e gt e e e R S R o O o DY T TS e | N I S el B e o T o e Spn o o e o e e | s e e e e e B e

1/O Interface Controller

Issued 11/89

Channel Input and Output Latches

This block makes the 4-bit data in and data out buses of the I/O Interface
Controller compatible with the 8-bit parallel data buses of the channel and
microprocessor. All controls (latch clocks and output enables) for this block are
generated within the I/O Interface Controller.

Condition Code Multiplexer

The Condition Code Multiplexer functions as a 1-of-22 line selector. The output
of the multiplexer is connected to the CC/ input of the Microsequencer and
affects the Microsequencer during its execution of a conditional instruction. If
CC/ is low, the conditional instruction is executed. If CC/ is high, the next
sequential instruction is fetched.

The Condition Code Multiplexer is controlled by six of the eight ALU register
addressing lines from the Microcode block. Internally, the multiplexer presents
the true and the inverted version of each signal to the selector logic. In addition,
"Always" and "Never" are internally generated inputs to the selector logic. These
conditions can be used to convert conditional instructions (i.e., conditional jump)
into unconditional instructions (i.e., jump always or never jump).

Command PROM Latch and Decode

Commands from the channel are received by the GPCI during Initial Selection
Sequences (refer to the I/O Reference Manual). Different Shared Resources
Section bus hardware configurations may be required for the same channel
command if directed to different devices. Therefore, the command must be
converted to a device specific command by the Command PROM Latch and
Decode block.

Prior to sending the command, the channel sends the base and device addresses
to the Bit-Slice Processor. The Bit-Slice Processor stores the device address in
one of its internal RAM registers. During the time that the command is valid on
the channel data bus (DC0-DC?7), the command is latched into the Channel Input
Latches. When the command is sensed by the Bit-Slice Processor, it fetches the
device address and uses it to read the "Device Type" code from the Register File.
Together, these two inputs drive the 12 address lines of the Command PROM.
The PROM is programmed to generate a 4-bit output code used by the I/O
Interface Controller and Device Controller to configure hardware necessary for
execution of the command. The microprocessor also uses the command to
determine a specific sequence of instructions which, when issued to the device,
causes the device to execute the command.

6-5

SEQUENCER

MICRO-

BIT-SLICE PROCESSOR

CONDITION

CODE

GPCI Detailed Functional Description

™m
— R a
£av-gav m m m ¥4V 1 43V
oYyse
8.1vaav-o1vaav & L8 £1vA0-91va0
|||||||||||||||||||||||||||||||| =1 ST F o1 1 -|||..w.“
% - (. Ee s rawl TS 2 |
8 | S mﬁ_a_ O 1 —»p8!
3] q e a O k|&|@ e
< = &
& 2 2
= 8 Q)
E [] - E “
= 8 m_m_ NOILONGIS NI e B S £1v30-01va0 [
: HE 3 3 |
> & 0-2-4 = - r————— n
SSERT s gz @ 2 EIvar-aIvai |
8 |
|
JO¥INOD “
|||||||||||| NOPIONHISNE EX3IN B = =%) | & S "% 8 . @s ¥os S 9
(0¥3Z) snuvis - TINNVHO TOMINOD
o aNvy 9vL
o
z %
r ., N o (=]
. yy4 Zn
A ﬁ_ J0UINOD ¥aD S0\ and
P 2 .M_ m _W. o
op- Les| 22863
28 m_ T3NNVHO TONINOD ONV 9VL) S54¥8
<

-

Issued 11/89

Figure 5. Bit-Slice Processor Block Diagram

6-6

1/O Interface Controller

Register File Address Generator

The Register File Address Generator is an address bus selector controlled by

a bus arbiter. The Bit-Slice Processor and the Microprocessor Sections supply
address information to the selector section of the Register File Address
Generator. The arbiter section of the Register File Address Generator monitors
several inputs from the Bit-Slice Processor and the Microprocessor Section to
detect requests for the Register File. It resolves contention during simultaneous
requests for the Register File in favor of the Bit-Slice Processor. Once control

is granted, the section in control maintains control until its read or write
evolution is completed.

Register File

The Register File consists of a 64-nibble static RAM, data multiplexers and
latches. The function of the Register file is 2-way status passing between the
I/O Interface Controller and Device Controller.

Though the Multisourcerer has slots for up to six applications cards (devices),
the GPCI can control a maximum of 15 devices. Thus, the Register File requires
15 storage areas. A 16th storage area is provided for passing GPCI specific
data between the bit-slice side and the microprocessor side of the GPCI. Each
storage area consists of two 2-nibble blocks (four nibbles total). Nibbles 0 and 1
form block 0; nibbles 2 and 3 form block 1; ... nibbles 60 and 61 form block 30
(1EH); and nibbles 62 and 63 form block 31 (1FH). Each device installed in
the GPCI is assigned a hexadecimal "device address." The device’s address
forms the least significant hexadecimal digit of that device’s assigned Register
File nibble-pair address. For example, device address 7 is assigned nibble
blocks 07 and 17, and device address AH is assigned nibble blocks 0AH and
1AH, etc.

Nibble pairs map into bytes and vice versa during Register File writes and
reads by the microprocessor. The lower addressed nibble forms the four LSBs
of the byte. Data multiplexers and data latches, under control of the Register
File Address Generator, assemble and disassemble the microprocessor data
bytes. When controlled by the microprocessor, the lower five microprocessor
address bits select the desired nibble pair. The Bit-Slice Processor selects the
desired nibble by writing the device address to the Register File Address
Generator and specifying one of the four possible nibbles via two address line
inputs from the Jump Address/Data bus.

Issued 11/89 6-7

GPCI Detailed Functional Description

Clock

The clock generator consists of an 18.4 MHz crystal oscillator, frequency dividers
and buffer amplifiers. The 18.4 MHz is buffered and used by the I/O Interface
Controller and the Device Controller. Also, the 18.4 MHz is supplied to a
divide-by-two counter and a divide-by-six counter. These counters produce a
9.216 MHz and a 3.07 MHz clock output. Both sides use the 9.216 MHz clock,
while only the Microprocessor Section uses the 3.07 MHz clock.

6-8 Issued 11/89

Device Controller

Device Controller

The Device Controller, as shown in Figure 4 on page 6-3, consists of these
four sections:

e Microprocessor Section
e Shared Resources Section
e Multibus Interface Section

e Control Section

Microprocessor Section

The Microprocessor Section is conventional in design. It is based on the
INTEL 8085 microprocessor. Refer to the Microprocessor Section of
Figure 4 on page 6-3 for the following discussion.

Microprocessor The INTEL 8085 microprocessor hardware is documented in INTEL’s
Microprocessor and Peripheral Handbook. The INTEL 8080/8085 Assembly
Language Programming Manual provides a good programming reference for
the 8085. Therefore, the documentation here is limited to that which is
necessary to discuss the remaining Microprocessor Section components.

Address Latch The 8085 contains a dedicated 8-bit bus for the upper eight address lines
(AB8-ABF). The lower eight address bits are multiplexed with data and
output on the bidirectional address/data bus (AD0-AD7). The Address Latch
demultiplexes the lower eight address bits using ALE as an "address valid"
strobe. The output of the Address Latch is the least significant 8 bits of the
address bus. The output of the latch joins the upper eight address bits to form
the 16-bit wide address bus (AB0-ABF) which drives the address inputs of the:

e Scratch Pad RAM

e Non-volatile RAM (NVRAM)

¢ EPROM

o Register File

e Memory and I/O Mapped Control

Memory and I/O This block produces 17 control signals for functional blocks of memory and

Mapped Control I/O addresses. Nine of these signals are memory mapped and eight are I/O
mapped. In turn, some of these control signals are inputs to other control
generators, further expanding the memory and I/O mapping. The inputs to
this block are the microprocessor address lines, and several microprocessor
control lines (RD, WR, IO/M, MS0 and MS1).

Issued 11/89 6-9

GPCI Detailed Functional Description

RAM, EPROM and These memory components are addressed by the microprocessor’s address

Non-Volatile RAM bus and have their tri-stated outputs enabled by enable outputs from the
Memory and I/O Mapped Control block. The tri-stated outputs from the
memory components are connected to the Extended Bus (DB0-DB7) which
is connected to the microprocessor’s data bus (AD0-AD7) via the Extended
Bus Transceiver.

The RAM is a static 1K byte RAM which stores variables such as device state
tables, etc. This RAM is also the Scratch Pad RAM.

The EPROM is currently a 16K byte EPROM. It stores the program (firmware)
that the microprocessor executes. It also stores program constants and tables.
The current version of the 8085 program requires nearly all of the 16K bytes of
storage. The 16K byte EPROM can be replaced with a 32K byte EPROM simply
by replacing the plug-in EPROM and moving a jumper. This will prevent major
GPCI board changes due to possible future firmware changes.

The Non-Volatile RAM (NVRAM) provides permanent storage of
Multisourcerer configuration variables. Internally, the NVRAM consists of

a RAM mirrored by an EEPROM (Electrically-Erasable-Programmable-Read-
Only Memory). During configuration of the Multisourcerer, the operator enters
certain device specific parameters via the keyboard. The microprocessor reads
the keyboard via the Keyboard Encoder and writes the data to the RAM section
of the NVRAM. At this time, if power is lost, the newly entered data is lost. To
prevent data loss, the RAM must be copied into the EEPROM section. This

is accomplished by strobing a special storage pin on the NVRAM. This pin is
driven by an output from the MUART (NVSTRY/). In turn, the MUART is
controlled by the microprocessor.

When the sequence described in the Configuration Chapter (Chapter 2) is
executed, the microprocessor issues the EEPROM store command. During
power-up, the EEPROM is downloaded into the RAM section of the NVRAM,
making the configuration data available for microprocessor use. Thus,
configuration need only be performed during initial installation or when
application cards are changed.

Display Transceiver The Display Transceiver connects the 16-character vacuum fluorescent display
module to the 8-bit Extended Bus. The display module is intelligent. That is,
it has its own on-board dedicated microprocessor allowing data to be written to
the display in an ASCII format. Character entry position is programmed by
sending a cursor position to the module. The Display Transceiver provides a
read/write path between the microprocessor and the module. At present, the
display read feature is not used.

6-10 Issued 11/89

Device Controller

Keyboard Encoder

MUART

LED Drivers

Extended Bus
Transceiver

Issued 11/89

The Keyboard Encoder sequentially drives the column wires on a row and
column wired keypad while simultaneously monitoring the row wires. When

a key is pressed, an intersection between a row and a column wire is created,
activating one of the row wires. The Keyboard Encoder contains decoding
logic to determine which key is pressed, based on the active row and column
combination. The Keyboard Encoder encodes the intersection into a 5-bit
binary code and generates an interrupt. Both the interrupt and the keycode
are sent to the MUART. The MUART multiplexes the interrupt onto the INT
interrupt line to the microprocessor. When the microprocessor is interrupted,
it queries the MUART and determines that a keycode is present. The
microprocessor then requests the keycode from the MUART.

The MUART (Multi-Universal Asynchronous Receiver Transmitter) block:

e provides an interface between a serial RS232 test port (J5) and the
microprocessor’s data bus

e provides an interface between the Keyboard Encoder’s 5-bit parallel
output and the microprocessor’s data bus

o multiplexes the Multibus interrupt signal, INT7/, with internally
generated interrupts and applies the multiplexed interrupt signal to
the interrupt input of the microprocessor

e contains five microprocessor programmable counter/timers (can be
cascaded)

e contains an on-board baud rate generator, programmable for 13
common baud rates

o drives the non-volatile store pin on the NVRAM

Eight front panel mounted LEDs provide device activity monitoring. The
LED:s correspond with the device address. That is, LEDO-LED7 represent
device addresses 0-7 respectively. If LED7 is on continuously, it indicates that
LEDO-LEDG6 represent device addresses 8H-EH (8-14 decimal). The operator
can select which bank of devices (upper or lower) is monitored by the LEDs
via the front panel keyboard.

The Extended Bus Transceiver is the connecting link between the DB bus
(Extended Bus) and the AD bus (internal/external microprocessor data

bus). The Extended Bus Transceiver is always enabled, and its data direction
is controlled by the Memory and I/O Mapped Control block. Refer to Figure 4
on page 6-3. The Extended Bus Transceiver transfers data from left to right
(from the DB bus to the AD bus) only while reading the EPROM, RAM,
NVRAM, Register File and Display. At all other times, the Extended Bus
Transceiver transfers data from the AD bus to the DB bus.

6-11

GPCI Detailed Functional Description

Shared Resources
Bus Transceiver

Address Bus
Transceiver

Ready Generator

6-12

This transceiver is similar to the Extended Bus Transceiver above, except it

links the microprocessor’s AD bus to the Shared Resources Bus. Data transfer
direction is controlled by an output from the Memory and I/O Mapped Control
block. The Shared Resources Bus Transceiver transfers data from the Shared
Resources Bus to the AD bus when reading the Tri-Port RAM or the channel
port. At all other times, the transceiver transfers data from the microprocessor
to the Shared Resources Bus. For this reason, this transceiver’s tri-state output is
set to the high impedance state at all times except when the microprocessor is
actually writing data to the Shared Resources Bus. The transceiver’s tri-state
control is driven by an output from the DM Bus Control block.

The Address Bus Transceiver block is driven by the microprocessor’s AB0-ABE
address lines. The output of this block is connected to the AM bus (AM0-AME),
which is the Shared Resources Address bus. This bus can be driven by the
microprocessor (via the Address Bus Transceiver), the DMA Address Generator
(refer to the DMA Address Generator description below), or the Multibus (via
the Address Bus Transceiver). The AM bus can provide addressing for the
Tri-Port RAM and the Multibus. All address sources that share the AM bus
must be tri-state devices, as only one address source is allowed to drive the
address bus at one time. The Address Bus Transceiver’s tri-state control is
driven by an output from the DM Bus Controller block.

The 8085 microprocessor is connected to a wide range of circuits. These circuits
include:

o all application cards (devices), via the Multibus
e Tri-Port RAM

o IBM channel

¢ NVRAM

e Scratch Pad RAM

¢ EPROM

e Display

¢ MUART

o LED Drivers

Register File

These devices have a wide range of response times to the microprocessor’s
read or write commands. The microprocessor has an input pin labeled RDY
(Ready). If this input is low during a microprocessor read or write cycle, the
microprocessor waits until that line goes high before completing the cycle.
Thus, slow circuits can force the microprocessor to wait until they have
performed the read or write process, by holding the RDY pin low. The Ready
Generator combines the individual "ready” responses from the circuits listed
above and produces a single output to the RDY pin on the microprocessor.

Issued 11/89

Device Controller

Tri-Port RAM

Data Bus Transceiver

Shared Resources
Bus Transceiver

Bidirectional Channel
Port

Issued 11/89

Shared Resources Section

The Tri-Port RAM is a 4K byte static RAM. Its input/output data bus is
connected to the Shared Resources Bus, and its address bus is connected to
the AM bus. Thus, the RAM is a public storage device. The Multibus, channel
port, and microprocessor can read and write data from and to the RAM. The
RAM’s "write" and "output enable" controls are driven by outputs from the
Multibus Interface and Bus Acquisition block.

This block is also part of the Multibus Interface and is described on the next
page.

This block is also part of the Microprocessor Section and is described on the
adjacent page.

The Bidirectional Channel Port consists of back-to-back octal latches. Each
latch has a separate latch control and tri-state enable. The Channel Port
Controller latches channel data into the channel side octal latch. This data is
available to the Shared Resources Bus under control of the DM Bus Controller.
The DM Bus Controller latches Shared Resources Bus data into the Shared
Resources side octal latch. This data is available to the DC bus under control
of the Bit-Slice Processor.

6-13

GPCI Detailed Functional Description

Address Bus
Transceiver

Extended Address and
Handshake Generator

Data Bus Transceiver

6-14

Multibus Interface Section

All application cards (devices) connect to the GPCI via the INTEL Multibus.
Therefore, the GPCI requires a Multibus Interface Section to make the GPCI
compatible with the Multibus. The four groups of signals that make up the
Multibus are address, data, bus acquisition and control signals. The Multibus
Interface Section is complicated by the fact that the GPCI can act as either a
Multibus master or slave.

The AM bus is connected to the Multibus via the Address Bus Transceiver.
When the GPCI acts as a bus master, the AM bus acts as a Multibus address
source. During this time, the microprocessor or the DMA Generator provides
input to the Address Bus Transceiver via the AM bus. The Address Bus
Transceiver acts as a bus transmitter. When one of the application cards acts

as a bus master (GPCI acts as a bus slave), the Address Bus Transceiver is
configured as a bus receiver. The Multibus Interface and Bus Acquisition block
(Figure 4, lower-right corner) drive the direction and tri-state controls on the
Address Bus Transceiver.

The Address Bus Transceiver links AM0-AME to the least significant 15 bits
of the Multibus, resulting in 32K bytes of addressing capability. This capability
is expanded to 1M bytes by the Extended Address and Handshake Generator.
This block drives five additional Multibus address lines, and controls several
miscellaneous handshake lines. The microprocessor controls the extended
address portion of the Extended Address and Handshake Generator by writing
data to I/O port 30H. It controls the handshake signals by writing data to I/O
port 31H. The handshake lines are functionally part of the Control Section.
These handshake lines are used by the I/O Interface Controller and the DMA
Address Generator. These signals are discussed in detail in the Detailed
Circuit Descriptions (Chapter 7).

The Data Bus Transceiver is nearly identical to the Address Bus Transceiver.
It links the Shared Resources Bus to the Multibus. Its tri-state output is
controlled by the Multibus Interface and Bus Acquisition block.

Issued 11/89

Device Controller

Control Section

The Control Section consists of the:
e DMA Address Generator
o Channel Port Controller
e DM Bus Control
e Multibus Interface and Bus Acquisition

The DM Bus Control block includes the Autotransfer Controller, the DMA
Controller, and the Shared Resources Bus Arbiter. In simplest terms, the
Control Section controls the Shared Resources Bus gateways, Multibus
arbitration, and DMA address generation. Since all major sections of the GPCI,
IBM channel, and Multibus have access to the Shared Resources Bus, the
Control Section receives inputs from all of these sections.

DMA Address Generator The DMA Address Generator is microprocessor programmable. It is
programmed in response to a data transfer type channel command, requiring
a DMA transfer. Whether or not a data transfer command results in a DMA
transfer depends on the coding in the Command PROM portion of the
Command PROM Latch and Decode block. At present, all DMA transfers
controlled by the GPCI’s DMA Address Generator must include the channel
as a data source or sink. That is, only DMA data transfers between the channel
and the Tri-Port RAM, or between the Channel and Multibus are allowed.
Data transfers between the channel and the microprocessor occur, but these
transfers are not DMA types.

DMAs can be either memory or I/O transfers, depending on the transfer source
and/or destination. For memory type DMAs, the DMA Address Generator is
programmed with a starting address and an ending address. Each time a byte

is transferred, the generator increments its address and compares it to the
ending address. The DMA transfer terminates when the two addresses match.
Programming the generator for an I/O transfer involves sending a byte count to
the DMA generator. Prior to transferring the first byte, the generator sets an
internal counter to zero. After each byte transfer, the counter is incremented
and compared to the initial byte count value. When a match occurs, the transfer
is terminated.

Issued 11/89 6-15

GPCI Detailed Functional Description

Channel Port Controller
and DM Bus

6-16

Ideally, the Channel Port Controller and DM Bus Control block would be
combined to form a Shared Resource Controller. However, due to the

complex nature of such a controller, no standard IC exists at the present time
that could implement the entire task. The final design choice was to design
three small controllers, interconnect them, and control them with a master
arbiter. The DM Bus Control block contains the arbiter and two controllers,
the Autotransfer Controller and the DMA Controller. The remaining controller
is the Channel Port Controller.

During a data transfer involving the channel, two of the controllers are active.
The Channel Port Controller is active during all channel data transfers. The
DMA Controller is active only during DMA transfers involving the channel.
The Autotransfer Controller is active during non-DMA transfers involving the
channel. The IBM channel, Multibus, and microprocessor transfer data using
interlocked handshake signals. The Autotransfer Controller and DMA
Controller interact with the Multibus’ and microprocessor’s handshake signals.
The Channel Port controller interacts with the channel’s handshake signals.

The purpose of each controller is to convert the resource-specific handshake
signals into internal handshake signals. These signals are DRT/ and DTR/.
DRTY/ is an output of the Autotransfer and DMA Controllers and an input to
the Bidirectional Channel Port. DTR/ is an output of the Bidirectional Channel
Port and an input to the Autotransfer and DMA Controllers. In the example
data transfer below, assume the transfer is from the microprocessor to the
channel:

e the microprocessor tells the Autotransfer Controller it has data for
the channel (WR goes high)

e the Autotransfer Controller tells the Channel Port Controller that a
data transfer request is pending (DRT/ goes low)

o the Channel Port acknowledges the transfer request (DTR/ goes low)

o the Channel Port Controller tells the channel data is available (the
Data In tag line goes high)

e the channel reads the Bidirectional Channel Port’s latched data and
acknowledges receipt of the data (the Data Out tag line goes high)

o the Channel Port Controller acknowledges the channel’s receipt of
data by dropping the Data In tag line

o the channel acknowledges the fall of Data In by dropping Data Out

o the Channel Port Controller tells the Autotransfer Controller that the
channel read the data (DTR/ rises)

o the Autotransfer Controller tells the microprocessor that the channel
received the data (SRACK/ goes low)

o the Autotransfer Controller completes the process by raising SRACK/

Issued 11/89

Device Controller

Shared Resources
Arbiter

Multibus Interface and
Bus Acquisition

Issued 11/89

When a transfer command is received, the resource requests control of the
DM bus via a control signal to the Shared Resources Arbiter. The Shared
Resources Arbiter grants control if no other DM bus transfers are in progress.

When a system containing more than one bus master is interconnected via a
Multibus, a bus priority resolution scheme is required to ensure that the highest
priority master is granted bus acquisition. In such a system, when two or more
bus masters request the bus simultaneously, the bus priority resolution logic
grants bus acquisition to the highest priority bus master.

The Multibus can be configured for serial or parallel priority resolution.

Serial resolution is practical for resolving priority when a few bus masters are
involved; parallel resolution resolves priority for a larger system, involving many
bus masters. The GPCI uses a serial system. In a serially arbitrated Multibus
system, requests for system bus access are ordered by priority on the basis of
bus slot location. Each master on the bus notifies the next lower priority master
when it needs to use the bus, and each master monitors the bus request status
of the next higher priority master. Thus, the masters pass bus requests from one
to the next in a daisy chain fashion.

Currently, the GPCI has the highest Multibus priority (Jumper selected). The
Bus acquisition logic arbitrates bus requests for use of the Multibus from the
Channel Port controller, DMA Controller and Microprocessor Section.

The Multibus Interface Section links the Multibus memory and I/O read and
write control signals to the GPCI. When the GPCI acts as a bus master, the
Multibus Interface generates these Multibus control signals. The GPCI
responds to the Multibus memory and I/O read and write control signals when
the GPCI acts as a bus slave. The DM Bus Control block plays a minor part in
the Multibus interface by linking the transfer acknowledge signal (XACK/) to
the GPCI. While operating as a bus master, the GPCI monitors XACK/; while
acting as a bus slave, the GPCI acts as a source for XACK/.

6-17

GPCI Detailed Functional Description

6-18 Issued 11/89

GPUI Detalled
Circuit Description

GPCI Detailed Circuit Description

Schematic Conventions

Logic Conventions

Issued 11/89

GPCI Detailed Circuit Description

The schematic diagrams of the GPCI are shown on SSEC drawing #6450-0465
(Revision E, dated 3/13/87). For discussion purposes, the I/O Interface
Controller and the Microprocessor sections are based on the I/O Interface
Controller Detailed Functional Block diagram (Figure 6 on page 7-3) and the
Microprocessor Section Detailed Functional Block Diagram (Figure 8 on

page 7-19) respectively. These drawings are hybrids. They possess the
advantages of block diagrams in that identical function chips are combined into
single blocks, and buses are shown as single lines. However, they also show the
source and destination of each control signal. The remaining sections of the
GPCI are described using the schematic diagrams and the GPCI Functional
Block Diagram (Figure 4 on page 6-3).

The GPCI is built on a Multibus wire-wrap form factor board. Pin locations
on the board are described by the column designator (alpha) and row number.
Each IC schematic circuit symbol has a three- or four-character label that
describes the column and row where pin 1 of that IC is located. The Detailed
Circuit Description that follows refers to the ICs by this location label (i.e., a
741892 IC whose 1 pin is located in Column BR and row 46 is referred to as
BR46). When reference is made to a schematic circuit symbol of a multiple
section device, the symbol ID is used, followed by a hyphen and the letter
designator. The symbol ID alone refers to single section ICs.

Logic signal names are indicated by all uppercase letters and numbers (i.c.,
ODATO0). A logic signal name ending with an overline or a trailing slash
represents an active low signal (i.e., DRT or DRT/). The slash is used exclusively
throughout this description, regardless of the active low symbol used on the
schematic. A note of caution is appropriate here. There are several state
machine diagrams in the following discussions. These diagrams show the logic
signals that cause transitions from one state to another. These drawings use a
bar over the signal to indicate a zero volt condition. Absence of an overbar
indicates a "high" voltage condition.

Several conventions can be used to describe the state of a logic signal. Some

of these conventions are true or false, high or low, one or zero, and active or
inactive. In the remaining GPCI discussion, all logic states are described by
using "high" and "low." This convention best describes the physical condition
of a logic signal and is better suited for troubleshooting. The binary "1"s and "0"
shown in the state machine diagrams represent "highs" and "lows" respectively.

The Tri-Port RAM was formerly called the Dual-Port RAM. The Tri-Port
RAM’s logic signals are acronyms based on its former name. Any logic signal
beginning with DP (Dual-Port) involves the Tri-Port RAM. Also, DSGO
(Dual-Port Slave Go) is a Tri-Port RAM signal name.

GPCI Detailed Circuit Description

1/O Interface Controller

Bit-Slice Processor

Bit-Slice microprocessor theory is beyond the scope of this documentation.
Additional information on bit-slice design is presented in Advanced Micro
Devices’ Bipolar Microprocessor Logic and Interface Data Book. In particular,
refer to the AM2901 and AM2910 descriptions. Also, refer to the microcode
listings and the GPCI Bit-Slice Microcode Descriptions in Chapter 8.

Refer to Figure 6 on the adjacent page and the Bit-Slice Processor section of
the Detailed Functional Description (pages 6-1 and 6-2) as necessary. The
Bit-Slice Processor consists of the Microsequencer, the Microcode PROMs
(registered outputs) and the Bit-Slice ALU. Together, these components
function as a pipeline architecture 4-bit microprocessor. Since the Bit-Slice
Processor is conventional in design, this description focuses on control signals
and interaction with other functional blocks of the GPCI.

The Bit-Slice Processor generates several control signals which are direct
outputs from the Microcode block. This block consists of five 1024 byte PROMs
cascaded together to form a 1024-word by 40-bit wide output. Nine of these bits
are used for external control. Table 2 on page 7-5 identifies these nine control
bits and their purpose.

CDCK/, CDDIR, CAQ and CAL1 are inputs to the CDR’s Board Control
section. The Bit-Slice Processor drops CDCK/ when it needs to latch valid CD
bus data into the appropriate latch on the CDR. CAQ and CA1 form a 2-bit
address that selects the appropriate CDR latch when passing data from the
GPCI to the CDR. CAOQ and CA1 also control a buffer on the CDR board that
allows channel input data to be read. CDDIR controls bidirectional latches
and buffers on the CDR board. For additional information on CAQ and CA1,
refer to the CDR section.

IOC functions as an enable signal for BN45, the Bit-Slice Control Logic
block. The Control Logic block allows eight additional control signals to be
developed under control of IOC. For additional information on BN45, refer
to the Bit-Slice Control Logic block description below.

The remaining control signals shown in Table 2 are discussed in later sections.

7-2 Issued 11/89

AB#-AB3

Crem Migroproseseor Section .
r BIT-SLICE PROCESSOR ___________ ————————7—7"7"77 , - % —‘I 2xeLx IDAT8-IDAT4
| COIR | __T
: e COIR 1 BL43 © Control Sectlon CLOCK BL43 : oot — - . O S
| (=28 A8 IS —L— g | | REGISTER FILE ADDRESS {
| [Ba=27] —CA1 e i I I GENERATOR I
CDCLK COCLK/ L 1C-] | 1
| Q4=31 = AB@-AB3 MICRO— !
' SI8-SI3__instrustion Select | oo | recismen processor | |
: I : FiE REGISTER :
' ' ' o ARF1-ARF4___| Apomess |
| — {——IDATE-IDATS = o ||
! - To Control i BE18 PARY OF |
| MICRO- ‘:“lz" . _COCLK __ section i i ODAT@-ODAT3 BE1s o4 |
| SE—— (Regimtered | | B ——'El |
| PROMsS) | | |
: YO-Y8 agddress —3 BSCLK { |
2 |
| | |
I BN1.PR2 , B R ST T, I
I PR1 ,PRE . Ly TEEEEETET [S = [
{ = 1218 | Mmoo eV |
I ———— BIT—SLICE 1 REGISTER FILE |
I AG—-A3 AL 11 >—LNEN/ |
: To Control Sectlon —g-tR B83-B3 : : RFACK __ 1o ARF1—ARF4 HNEN/ :
: i R | — | Fromaiere= | recisten REGISTER MICRO- :
| [Ja=2s | PURST/ A8, o ™ pe ’ FILE LNEN | FILE PROCESSOR I
i oc 11 etiah CONTROL HNEN REGISTER ol LA
: ‘;:cl::cropmr : : »—%‘-——y TRFE DRE-DR3 FILE LATCH To Illcro—}
on _—] e AND BUFFER processor
| ADDAT@—-ADDATS8 11 ;mmﬂ ARFS8 |
e B Lo 7 A— £~ RROE/| pe3s.paze
: : } >__ = m. Na‘ () :
: ADDAT@—-ADDATS8 [:
LI
| I 1 |
—————————————————————————————————————— A 11 |
[I E§ IDAT8-IDAT4 !
sr:r9=
My R R R R] (R e S e e e A e S o S i S s i S s S e e i
b | 3 I Bl | e oo w0 ot |
'?A‘:Nttlbﬁs BI-B83 2 H ODAT@-ODAT3 & + COMMAND PROM LATCH AND DECODE :
co1 AD—A2 11 BJ4S | |
18 7 coormon [T eteiliRRa 01 ! g ¥ == | || IDAT®, IDAT 1, 1DAT3 !
DA | a ——————————————————————————————— *
‘::la o?:;wr zgmmm' <—<°‘m“" } LNEN = From DMA _ AEN/ gm'"m""rw =
T3] CHLFLT/ o % | BIT-suice | HEN M —— : o Section s |
| ﬁ -q—%L-q From] °._8°.c o BR ™ Control ler | g Proooos.d'::r »OFFSL/ | :
r—g: e S 2 Multibue BSINT, CHLDSC a
S 7™ e RFINTA _, %l;::;'f:eo I _’f“ _—%3_—51:51;: : & PCLK | BE4d Controls To :
ARTS ODATB-ODAT3 : __"ﬂggz-}:g- e [ToT o oo o : < m"m Control Sectlon :
precee—. | 1 :
| D R |
| I T R — = e s T T e s e s e e e e e 1 a1 1 |
Lt -——| | CHANNEL INPUT & OUTPUT LATCHES I IDAT#-IDAT3 :
| —+—+ I
| ODATS-ODAT3 I || | 7 J |
J4—13 }-SHT, —» ® ¢ CHANNEL p CHANNEL — P COMMAND pr— I
a3 13016+ muepiare At s ADDATR-ADDATS : INPUT LATCH | pCg-DC7 T |11 _pce-pey | waTow HIGH NIBBLE _| couuns !
o4 ‘ | - OTCS/ : ;E"’__B‘EE BCi4 IHEN/ | g9 ,‘j‘,’, : : EEé: yl,.‘,",’, _‘M., By21 |
BX13 |_RFINT___ 1o RST 6.5 In Microprocessor Sectlon | e _—— I
@ RFINTA o From Microprocessor Sectlon | 1 1 JI
e e e e e o e e e e e e e e e e G e e e e e G e e G e s S S o G — S ' e — — — ——— — —— ——
ODAT@-ODAT3 (TO CHANNEL PORT CONTROLLER) ODAT@-ODAT3
DCB—-DC7 (TO OCTAL INVERTING TRANSCEIVER) (TO BIDIRECTIONAL CHANNEL PORT) DC@-DC7
Figure 6. 1/0 Interface Controller Block Diagram 7-3and 7-4

Issued 11/89

1/O Interface Controller

Control Signal Purpose
10C (1/0 Control) Enables the Bit-Slice Control Logic Block
CDCK/(Channel Data Clock) Latches Data, Tag and Control signals
on the CDR
CDDIR (Channel Data Controls the Direction of the Data Flow on
Direction) the CDR and GPCTI’s Octal Inverting
Transceiver (part of the Shared Resources
Section)
RFLOCK (Register File Inhibits 8085 access of the Register File
Lock)
OTEN/ (Output Enable) Enables the Channel Input Latch (BC14)
PRPEN/ (Processor Port Allows the Bit-Slice to read the DM Bus
Enable) Data from the Bidirectional Channel Port
(BC26)
CRYIN (Carry In) Latches the Bit-Slice Data into the
Bidirectional Channel Port (BC26)
CAO0, CA1 (Channel CDR Control
Address)

Table 2. Microcode Block Originated Control Signals

Issued 11/89 7-5

GPCI Detailed Circuit Description

Channel Input and Output Latches

The Channel Input Latch consists of PAL 4 located at BC14 (see sheet 2 of
the schematics). BC14 assembles Bit-Slice nibbles into bytes for exporting to
the DC bus. The output data from BC14 is passed to the IBM Channel. From
the Channel’s perspective, it is input data. This is where BC14 got its name.
BC14 can also pass data to the Shared Resources Bus.

OTCS/ must be low while writing to either nibble of BC14. The Bit-Slice
Processor uses ADDAT4 and ADDATS as nibble-select lines when loading
data into BC14. If ADDAT4 and ADDATS are both low, ODAT0-ODAT3
are latched into the lower nibble of BC14. If ADDAT4 is high and ADDATS
is low, ODATO0-ODATS3 are latched into the upper nibble of BC14. The lower
nibble and upper nibble of BC14 are output to DC0-DC3 and DC4-DC7
respectively when OTEN/ goes low.

The Channel Output Latch consists of latches BJ1 and BJ11 which have the
opposite function of BC14 above. That is, BJ1 and BJ11 simultaneously latch
the upper and lower DC bus nibbles respectively when latch control CDCLK/
(Channel Data Clock) goes high. The I/O Interface Controller reads the lower
or upper nibble by dropping ILEN/ (Input Low Enable) or IHEN/ (Input High
Enable) respectively. BJ1 and BJ11 each have two sets of outputs, a tri-state set
and a totem pole set. The tri-state sets are enabled by ILEN/ and IHEN/, as
described above, and connect to IDATQ-IDAT3. The totem pole outputs are
always active, and drive the least significant eight address pins of the Channel
Command Mapper (see the Command PROM Latch and Decode section that
starts on page 7-9).

7-6 Issued 11/89

1/O Interface Controller

Immediate Tester

Issued 11/89

Condition Code Multiplexer

The IBM channel is connected to the GPCI via a fully interlocked I/O interface.
The I/O Interface Controller is a part of the GPCI end of that interlocked
handshake scheme. At all times, the proper handshake action is indicated by
interface signal conditions on the Tag and Control lines. Therefore, the I/O
Interface Controller must monitor the Tag Out lines (Data Out, Command Out,
and Address Out) and Control signals (Suppress Out, Operational Out, Service
Out, Select Out, and Hold Out). The I/O Interface Controller monitors these
lines via the Condition Code Multiplexer. In addition, the Condition Code
Multiplexer monitors several status signals from other sections of the GPCI.

The Condition Code Multiplexer consists of PALs®* BG1, BE16 and BE1
(see sheet 2 of the schematics). The Condition Code Multiplexer can select
either state (true or inverted) of 22 external inputs plus internally generated
"Always" and "Never" conditions. Thus, the generator acts as a 1-of-46-line
selector. It selects a particular line via the A and B buses. The A bus (A0
and A1 only) selects one of the three chips, while the B bus (B0-B3) selects
one of 16 lines within that chip. Since the A and B buses are outputs of the
Microcode block, output selection of the condition Code Generator is
controlled by the Bit-Slice Processor. Table 3 on the next page summarizes
the conditions which can cause CC/ to go low.

The Bit-Slice Processor must frequently test the status of more than one control
line. Since the Bit-Slice Processor has no true interrupt capability, it must test
these control line combinations frequently. One method of performing this
function is to test the status of each control line of interest on a frequent basis
to ensure that channel activity is monitored effectively. However, this approach
is unsatisfactory since it requires excessive microcode execution time. A
preferred approach is to provide programmable hardware that can monitor
desired combinations of control lines and produce a single output to the
Condition Code Multiplexer. Then the microcode can test the single output
when desired. The Immediate Tester performs these tests. Its output signal

is RESPIM/ (Respond Immediate).

The Immediate Tester (BX13 on sheet 2) is programmed by writing to I/O
port 23H. The data on ODAT0-ODAT?2 (Output Data bits 0-2) determines
which test(s) will be performed by the Immediate Tester. Table 4 on the next
page describes the programmable tests. If Operational Out falls, RESPIM/
will always go low, regardless of the programmed test.

The inputs to the Immediate Tester are LSUT/ (Latched Suppress Out),

LOPT/ (Latched Operational Out), LADT/ (Latched Address Out), and

LSHT/ (Latched SHT/-Select Out and Hold Out). These signals are outputs of
BE1 (part of the Condition Code Multiplexer) because this chip had four unused
D-latches available. Functionally, these latches are part of the Immediate Tester.

*PAL is a registered trademark of Monolithic Memories Inc.

GPCI Detailed Circuit Description

7-8

A B B
2 7 CARRY F CARRY/
6 ZERO E ZERO/
5 RFINTA D RFINTA/
4 CTL2 c CTL2/
3 CHLFLT/ B CHLFLT
2 DISCNT/ A DISCNT
1 CHPAR/ 9 CHPAR
0 ALWAYS 8 NEVER
1 7 SUPOUT/ F SUPOUT
6 DAT/ E DAT
5 OPOUT/ D OPOUT
4 SEROUT/ C SEROUT
3 COMOUT/ B COMOUT
2 ADROUT/ A ADROUT
1 SHOUT/ 9 SHOUT
0 ALWAYS 8 NEVER
0 1 GO F GO/
6 PAUEN/ E PAUEN
5 RESPIM/ D RESPIM
4 EOXL [EOXL/
3 OUTDAT3 B OUTDAT3/
2 OUTDAT2 A OUTDAT2/
1 OUTDAT1 9 OUTDATY/
0 OUTDATO0 8 OUTDATO0
Table 3. GPCI Bit-Slice Condition Codes
ODAT2 ODAT1 ODAT0 PORT23 TEST
low low high high SHT/ going low
low high low high SUT/ going low
high low low high ADT)/ going high
low low low low no change
low low low high SHT/ going high

ADT/ (Address Out) monitoring is not presently used.

Table 4. Immediate Tester Programming

Issued 11/89

1/O Interface Controller

Command PROM Latch and Decode

The Command PROM Latch and Decode consists of the totem pole output
sections of BJ1 and BJ11, the Channel Command Mapper (BJ21), and the
Automatic Control Decoder (BE43).

BJ1 and BJ11 latch the channel’s command. The latched command drives

the eight least significant address pins on BJ21. Prior to sending the command,
the channel sends the device address which is stored in the Register File by

the Bit-Slice Processor. When the new command is received and latched, the
Bit-Slice Processor fetches the device address and uses it as a pointer to locate
the device’s "device type" code stored in the Register File. The address of a
given cell in the Command PROM is selected by feeding the channel command
to the eight LSBs and the device type to the four MSB address pins of the
Channel Command Mapper (BJ21). BJ21 produces a 4-bit device specific
command code output (see Table 5 below). When the Bit-Slice Processor
drops CPEN/, the 4-bit output code is written to the IDAT bus. IDATO,
IDAT1 and IDATS3 are inputs to the Automatic Control Decoder (BE43).
BE43 is also enabled by CPEN/.

Mapper

Output Definition

0000 0) Immediate

0001 (6)) Not Assigned

0010 2) Not Assigned

0011 3) Not Assigned

0100 (C)) Test I/O

0101 %) Not Assigned

0110 (6) Not Assigned

0111 @ Illegal

1000) Data XFER READ Micro (Sense)
1001) Data XFER READ Multibus

1010 (A) Data XFER READ DMA (Memory)
1011 (B) Data XFER READ DMA (I/O)
1100 © Data XFER WRITE Micro

1101 (D) Data XFER WRITE Multibus

1110 (E) Data XFER WRITE DMA (Memory)
1111 (F) Data XFER WRITE DMA (I/O)

Table 5. Command Code Definitions

Issued 11/89 7-9

GPCI Detailed Circuit Description

When a new device type is added to the Multisourcerer, a new Command
PROM map must first be made, assigning each command a value. Commands
that are not used should be assigned a value of 7 (0111).

The Automatic Control Decoder (PAL 5, located at BE43) produces six
outputs used by the Control Section. IDATO, IDAT1, IDATS3, and control
signals OFFSL/, CPEN/, AEN/, and AUTOST/ are inputs to BE43.

The outputs from BE43 are shown in Table 6 below, and are discussed in
greater detail in the Control Section description which starts on page 7-31.
Table 6 was developed from the PAL 5 equations located in the GPCI
Supplemental Data Chapter (Chapter 9).

Signal Description

CMDO0 latched and inverted value of IDATO when CPEN/
goes low (LSB of the Command PROM output)

CMD3/ latched and inverted value of IDAT3 when CPEN/
goes low (MSB of the Command PROM output)

GOTBUS/ GPCI has use of the Multibus (bus master)

AUDMA/ active during DMA transfers between a channel and
another resource

AUXFER/ active during non-DMA transfers between a channel
and another resource

AUMBUS/ active during non-DMA transfers between a channel
and the Multibus

Table 6. Automatic Control Decoder Outputs

Additional information on these control signals can be found in the Shared
Resources description (page 7-28) and the Control Section description

(starting on page 7-31).

7-10 Issued 11/89

1/O Interface Controller

Issued 11/89

Register File Section

The Register File Section, shown in Figure 4 on page 6-3, consists of the
Register File Address Generator and the Register File. In turn, each of
these blocks consists of several subsections. Figure 6 on page 7-3 shows the
subsections which compose the Register File Address Generator and the
Register File. Refer to the Register File Functional Description (page 6-7)

as necessary.

Since the Register file is shared by the microprocessor and Bit-Slice
Processor sections, the Register File Address Generator contains a control
section (Register File Control block on Figure 6) which arbitrates contention
for the Register File. When one of the requesting sections is granted access
to the Register File, the control section allows that section’s addressing bus
(ODAT or AB) to address the Register File.

The Register File Control block consists of the Register File State Machine
(PAL 6, located at BG43) and Register File Output Decode (PAL 7, located
at BG16). Figure 7 on the next page shows the various states of the Register
File State Machine. The states are defined by the levels on the state output
signals RFQA/, RFQB/, RFQC/ and RFQD/.

Each of the bubbles in Figure 7 contains a 4-bit binary code. This code
represents the physical output of BG43. The leftmost bit represents RFQA/;
the rightmost bit represents RFQD/. As noted in the Logic Conventions, all
logic signals are shown in physical convention. That is, a signal with no overline
is read as "high," while a signal with an overline is "low."

Note in Figure 7 that state 1111 is common to two loops. One loop includes
state 1110, while the other contains all other states. The loop containing 1110
is the Bit-Slice Processor’s read/write loop; the other loop services the
microprocessor. There is a separate microprocessor path for reading and
writing. These separate read/write paths are required because the processor
reads and writes 8-bit words, while the Register File stores 4-bit words. The
WALIT states provide extra clock cycles required to clock latches and qualify
chip enable strobes before processing the second 4-bit word.

External to PAL 6, RFQA/ is also called GO. GO is an active high signal and

is applied to one of the inputs of the Condition Code Multiplexer. When the
Bit-Slice Processor wants to access the Register File, it raises RFLOCK
(Register File Lock). Assuming the state machine is currently servicing a
microprocessor request, the state machine will finish the current request, and
return to state 1111. Now, because RFLOCK is active, the state machine goes to
state 1110. After raising RFLOCK, the Bit-Slice Processor enters a monitoring
loop that tests GO. The Bit-Slice Processor recognizes that it has control of the
Register File when GO goes high.

7-11

GPCI Detailed Circuit Description

DCS/-RFLOCK
e ol RFLOCK-DCS/ TR
’_ abcd
0 RFLOCK &%)
DCS/‘RFLOCK/
CONTROLLER RD/WR

TO REG. FILE

0110

READ LOWER NIBBLE
WRITE LOW NIBBLE

FROM REG. FILE
0 TO REG. FILE 0

MICROPROCESSOR
RD/WR TO REG. FILE

WAIT
READ UPPER NIBBLE WRITE HIGH NIBBLE
FROM REG. FILE TO REG. FILE
(OUTPUT RFACK/) b
RFCS/
RFCS/

RFACK)

Figure 7. Register File State Machine (PAL 6A)

7-12 Issued 11/89

1/O Interface Controller

The Bit-Slice Processor performs a double read or write instruction after
gaining access to the Register File. The reason for the double read or write
instruction is to meet setup requirements for generating BRFRD/, BRFWR
and RFWE/ (Bit-Slice Register File Read, Bit-Slice Register File Write, and
Register File Write Enable, respectively). These control signals are outputs
of PAL 6, as are the state output lines (RFQA/ - RFQDY/).

Since RFWE/, BRFRD/ and BRFWR have internal inputs from the state
outputs, two BSCLK (Bit-Slice Clock) pulses are required to clock data
through the cascaded registers. Each Bit-Slice instruction requires one
BSCLK pulse. This is why two read or write instructions to the Register File
are required. The first BSCLK pulse latches the state outputs and qualifies
the inputs to the control signal latches. The second BSCLK pulse latches the
control signals. Additional information on BRFWR, BRFRD/ and RFWE/
can be found in the descriptions of the circuits in which they are used (refer
to sheet 3 of the schematics).

The Register File Output Decode logic consists of PAL 7 located at BG16,
and is shown on sheet 3 of the schematics. BG16 decodes the state outputs
of BG43 to produce seven control signals. Four control signals (RFACK/,
RROE/, LNEN/ and HNEN/) are used during microprocessor accesses of
the Register File. The remaining output signals (ARF0, ARF5 and ARF6)
are active during microprocessor or Bit-Slice Processor Control. They drive
three Register File address pins (A0, AS and A6 respectively). Table 7 below
shows the signal source for each Register File address line.

Signal Source Signal Source

if 8085 is if Bit-Slice is
Signal in Control in Control
ARF1-ARF4 AB(O-AB3 ODAT0-ODAT3
ARF0 State Machine ADDAT4
ARF5 AB4 ADDATS
ARF6 (none) ADDAT6

Table 7. Register File Address Sources

Issued 11/89 7-13

GPCI Detailed Circuit Description

The Register File Address Generator consists of part of BE16 (PAL 1 on sheet
2 of the schematics), and half of BL30. Together, these chips act as a four-line
multiplexer. The output of the multiplexer, ARF1-ARF4, drives address input
lines A1-A4 on the Register File. Both chips have tri-state output controls that
are driven by GO. When GO is high, BE16’s outputs are enabled. When GO

is low, buffer BL30’s outputs are enabled. BE16 latches data when RFLOCK
goes high. Table 7 on page 7-13 summarizes the signal sources for ARF1-ARF4.

The Bit-Slice Register File Data Buffer consists of bidirectional buffer BJ45,
located on sheet 3 of the schematics. This component transfers Register File
output data to the Bit-Slice Processor’s input data bus (IDAT0-IDAT3) during
the Bit Slice Processor’s Register File read cycles. BJ45 transfers Bit-Slice
Processor output data from the ODAT bus to the Register File. BRFRD/

and BRFWR control the direction of data through BJ45. Table 8 below
summarizes the data flow through BJ45.

BRFRD/ BRFWR Action
. 0 0 DR bus goes to the IDAT bus
(Read Cycle)
0 1 not allowed
1 0 tri-state
1 1 ODAT bus goes to DR bus (Write Cycle)

Table 8. Bit-Slice Register File Data Buffer Controls

The Microprocessor Register File Latch and Buffer consists of buffer BE30
and PAL 8 (located at BG29). Both chips are located on sheet 3 of the
schematics.

When the microprocessor writes data to the Register File, it writes the address
to the Register File Address Generator and writes the data onto the DB bus.

It holds the data until it receives an acknowledge (RFACK/). The upper or
lower nibble of the DB bus data is transferred to the DR bus by dropping the
appropriate nibble enable line (HNEN/ or LNEN/ respectively - refer to the
Register File Output Decode above). The low nibble (DB0-DB3) is stored first,
then the upper nibble (DB4-DB7). After the upper nibble is stored in the
Register File, the Register file Control logic drops RFACK/.

7-14 Issued 11/89

1/0O Interface Controller

Issued 11/89

To read data from the Register File, the microprocessor writes the address to
the Register File Address Generator and raises RD. The processor enters wait
states until RFACK/ goes low, indicating that the data on the DB bus is valid.
Refer to Figure 7 on page 7-12. When the Register File Control section receives
a read request from the microprocessor, it must assemble the requested nibbles
into a byte, and write the byte of data onto the DB bus. The byte is assembled in
PAL 8, under control of the Register File State Machine. Inputs to PAL 8 are
the state code outputs of PAL 6. PAL 8 uses state 0101 as a latch strobe to latch
the lower nibble. It uses state 0011 as a latch strobe to latch the upper nibble.
PAL 7 (Register File Output Decode) uses state 0011 to generate RFACK/.

The Register File consists of RAM BJ34, and is located on sheet 3 of the
schematics. BJ34 is a 1024 by 4-bit static RAM. However, because its upper
four address pins are grounded, it functions as a 128-word by 4-bit RAM. The
addressing scheme for the Register File is described in the GPCI Detailed
Functional Description Chapter (page 6-7).

7-15

GPCI Detailed Circuit Description

Signal Definition Address/Port Process
RFCS/ Register File Chip Select 6800H-69FFH (RD & WR)
DPCS/ Tri-Port Chip Select 7000H-7FFFH (RD & WR)
OFFSL/ OFF-BOARD Select 08000H-FFFFFH (RD & WR)
OFFSL/ OFF-BOARD Select I/O Ports (RD & WR)
40H-7FH
SDDR/ Shared Resources Data Direction 7000H-FFFFH (RD)
I/O Ports (RD)
18H-1FH
MND/ Memory-No Delay 0000H-67FFH (RD)
6CO0H-6FFFH (RD & WR)
SPCS/ Scratch Pad RAM Chip Select 6CO0H-6FFFH (RD & WR)
MDDR/ Memory Data Direction 0000-6FFFH (RD)
PMCS/ Permanent Memory Chip Select 0000-67FFH (RD)
NVCS/ Non-Volatile RAM Chip Select 6A00H-6BFFH (RD & WR)

7-16

Table 9. Memory Map

Issued 11/89

Device Controller

Address Latch

Memory Address
Decode

Issued 11/89

Device Controller

Microprocessor Section

Refer to Figure 8 on page 7-19. As stated in the GPCI Detailed Functional
Description Chapter, the microprocessor chip (AN3) is not documented in
detail here, since it is documented by its manufacturer.

Refer to Figure 8 and sheet 4 of the schematics. The Address Latch consists

of AT1. ATY’s D-inputs are driven by the microprocessor’s bidirectional AD
bus. AT1is a transparent octal latch. That is, while its enable pin (pin 11) is
high, its outputs follow its inputs. When pin 11 goes low, the D-inputs are
latched. Pin 11 is driven by the ALE output from the microprocessor (pin 30).
ABO-AB?7, the outputs of AT1, join the A8-AF outputs from the microprocessor
to form the 16-bit address bus (AB0-ABF).

The Memory Address Decode block consists of PAL 13A, located at AV1
(sheet 5). Inputs to AV1 consist of the nine MSBs of the microprocessor’s
address bus (AB9-ABF), and microprocessor control signals RD, WR, IO/M,
MS0 and MS1. RD and WR (Read and Write respectively) are outputs of
inverter AG14, sections G and H respectively. MS0 and MS1 are simultaneously
high during the microprocessor’s "opcode fetch" cycle. These signals ensure that
no opcode fetches occur, except from on-board PROM and RAM. The signal
IO/M establishes the signal’s domain (I/O or memory). IO/M is high during

I/O port addressing and low during memory addressing.

Table 9 on the adjacent page shows the outputs of AV1, addresses, and their
domain (Memory or I/O).

PMCS/, SPCS/ and NVCS/ enable the EPROM (AB6), the Scratch Pad RAM
(AE14 and AE24), and the Non-Volatile RAM respectively (AC21).

SDDR/ controls the data flow direction of AV17 (Shared Resources Bus
Transceiver) located between the Microprocessor Section and the Shared
Resources Bus (DM bus).

MDDR/ is combined with an output from the I/O Port Decode (IDDR/) to
drive the direction control pin on the Extended Bus Transceiver (AT17).
Refer to the IDDR/ description below. AT17 passes data between the
microprocessor and the memory blocks (EPROM, RAM and Non-Volatile
RAM) and the Register File via the Microprocessor Register File Latch
and Buffer.

RFCS/ is used by the Register File (see Bit-Slice Processor Description)
during microprocessor read/write operations involving the Register File.

7-17

GPCI Detailed Circuit Description

1/0 Port Decode

7-18

DPCS/ is low while read/write operations involving the Tri-Port RAM are in
progress (refer to the Shared Resources Section Description on page 7-28).

OFFSL/ is low during off-board memory and I/O read/write operations. This
signal is low only when the GPCI is acting as a Multibus master.

MND)/ generates a low input to the Ready Generator (BA1) when performing
a read/write operation involving the EPROM or Scratch Pad RAM. MND/
prevents the microprocessor from entering a wait state when accessing these
memory components. Note that the address space of the Non-Volatile Memory
(slower access time) is not included in the makeup of MND/. The Non-Volatile
RAM is slower, and requires one wait state for reliable operation.

The I/O Port Decode consists of PAL 14, located at AX1 (sheet 5 of 7). Inputs
to AX1 consist of AB3-AB7 (part of the microprocessor’s address bus), and
control signals RD, WR and IO/M. The control signals serve the same purpose
as they do in the Memory Address Decode section. The 8085 microprocessor
outputs the I/O address simultaneously on the upper (AB8-ABF) and lower
(AB0-AB?7) halves of its address bus. Thus, AB3-AB7 contain the five MSBs
of an I/O port address during I/O reads and writes. Table 10 below shows the
outputs of AX1, their I/O port addresses, and signal destination.

Signal Definition Port Address Destination

IND/ I/O No Delay 00-0FH, BA1 (SHT. 4)
20H-3FH

XIOCS/ Extral/O Chip Select 30H-37H AX28 (SHT.7)

DMACS/ DMA Chip Select 20H-2FH AJ41 (SHT. 6)

CHPS/ Channel Port Select 18H-1FH AG28, AX14 (SHT. 7)

MUCS/ MUART Chip Select 00-0FH AJ3 (SHT. 4)

LLCS/ LED Latch Chip Select 38H-3FH AA32 (SHT. 5)

DSPEN/ Display Enable 10H-17H Display, AE1 (SHT. 5)
BAI1 (SHT. 4)

IDDR/ I/O Data Direction 10-17H (RD) AT17 via AE36
(SHT. 5)

Table 10. /O Map

Issued 11/89

r—'"';,',{"' MEMORY AND /0 MAPPED CONTROL —'—1'
9
| Piom Tty :
i wR |
| RD - MULTIBUS ADDRESS GEN |
i 10/M — NvCS/ | 1©oM_] 1/0 PORT DMA SECTION : :
I v ADDRESS R REG. FILE DECODE SHARED RESOURCES ARSITER |
| DF.CODE CONTROL SIG. GEN. i
| OFFSL/ 5, BUS ARBITER Ax1 Ty R
I AV1 2:"/ r- } $ DMA CONTROLLER
} sPCS IDDR/ |
| PMCS, | —fp REGISTER FILE IN
| MD 4 I BIT SLICE SECTION
| |
I 31 | ADDRESS
' DBDIR 3 d 2 | BUS
L AE38 ! TRANSCEIVER —MAE———p.
ABBS—ABF __ABS—ABF g I v v T B AL43,
- AM43
] b e o RAM, EPROM AND | —q =
I [NONVOLITILE RAM |
ADDRESS |
LATCH } 2568x4 :
NON-VOL.
} AC21 I = TO/FROM REGISTER
FILE IN BIT SLICE
4 EN >—RES/ B e E WR | SECTION
/u _ABo-ADF > ‘STR cs !
e | TO DMA GENERATOR
MICROPROCESSOR ol | NVCS I
AN 8 }
I | SPCS] SHARED
CHLDSC . W7
PPN L RMO_OM7
o RENT _ _IRsST 6.5 'IN—TAH - .o ! [i | RESOURCES
INTRI INT i - { TRANSCEIVER
ALE w[___.. AG14-0 EXTENDED BUS | ADS-AD I
| gd TN WR L | e LR e R e e e — = — L A7
\:;/ 7 - TRANSCEIVER R/ 2
RDY INTA INTA/ WR/ AT17 L SREN —
o EN
AG14~H DISPLAY
.. ¢ = ADE-AD7 TRANSCEIVER A 50 Ry oy
AE1 WR D J FRONT
LROY 3 A RD/ - PANEL
— 298 pal 7/
w AB0 B = a8/
RDY, P16 NVSTR/ I J
SRAC 1 - [>DSPEN/ Ny DeS/ 4 E
o RFAC READY INT " :‘NE-S,- 77 o
— ,‘”7 GENERATOR INTAZ| INTa
IND
B— BA1 o ITA g MULTI— KEYPAD
—Ves 7 ®- v UNIVERSAL
DSP < INTEN/ P14 Ree CH. i
ALE & ALE AJ; TRAN
i INT? _(MULTIBUS INTERRUPT INPUT) l e ;‘g,m—)
T3t RXD (COMMUNICATIONS TEST PORT RECEIVE DATAZ’ RxD pa la—lEEX PATA _ 5 DITS) ":¥
: TXD __ (COMMUNICATIONS TEST PORT TRANSMIT DAT. - =p>-
J3 T T
33 oot P:;g p17 | (KEYBOARD ENCODER INTERRUPT) 7/
O P10 ENCODER
Mucs =
>_;-Q cs AG1
_pee-pe7 | L.EnD. =
DRIVER —3 > - FRONT
PANEL
AA32 LEDe
> RES/ ATIR
e L T

Issued 11/89

Figure 8. Microprocessor Section Detailed

Functional Block Diagram

7-19 and 7-20

Device Controller

Issued 11/89

IND/ provides an immediate I/O acknowledge signal to the Ready Generator
for all on-board I/O port reads and writes (ports 00-3FH), except ports

10H-1FH. Ports 10H-17H are used for communicating with the 16-character
vacuum fluorescent front panel display. Ports 18H-1FH address the channel

port.

Microprocessor/channel communication paths are via the DM bus. If the
communication paths are busy during a microprocessor I/O read or write
request, the microprocessor is forced to wait until the DM Bus Controller
grants permission for communication to proceed. Because the channel
access time is variable, IND/ cannot generate the acknowledge signal for
microprocessor/channel communication. The microprocessor/channel I/O
acknowledge signal (SRACK)) is generated by the DM Bus Controller.

IND/ cannot be used as the acknowledge signal when communicating with
the display (refer to DSPEN/ below). The front panel display contains its
own on-board microprocessor. If that microprocessor is busy, the 8085
microprocessor may have to wait until the display’s microprocessor is ready
to send or receive data (see DSPEN/ below).

XIOCS/ is used as a latch signal by the Extended Address and Handshake
Generator (AX28). For additional information, refer to the Control Section
or the Extended Address and Handshake Generator description.

DMACS/ enables DMA Address Generator programming by the
microprocessor. Once the DMA Address Generator is programmed,
DMACS/ is no longer required for a DMA transfer. Refer to the Control
Section or the DMA Address Generator for additional information.

CHPS/ causes the DM Bus Control block to generate a Shared Resources
Request (SRREQ/) when the 8085 microprocessor attempts to read or write
data from or to the channel. The Shared Resources Bus Arbiter portion of
the DM Bus Control block processes the SRREQ/ request signal, eventually
granting the microprocessor access to the DM bus and the Bidirectional
Channel Port (BC26). CHPS)/ is also applied to AG28 (part of the Multibus
Interface and Bus Acquisition Section) where it is combined with the
microprocessor’s RD and WR signals to form CHLEN/ (Channel Latch
Enable) and CHLCK/ (Channel Latch Clock). CHLEN/ and CHLCK/
control the DM bus side of the Bidirectional Channel Port. For additional
information, refer to the Control Section description that begins on page 7-31.

MUCS/ enables the MUART. See the MUART description on page 7-24.

LLCS/ latches data on the DB data bus onto the LED driver (AA32). The
front panel LED channel activity indicators are driven by AA32.

7-21

GPCI Detailed Circuit Description

RAM

EPROM

NVRAM

7-22

DSPEN/ functions as a chip select for the front panel display’s data bus
transceiver (AE1), a transfer acknowledge for the Ready Generator, and a
chip select for the display module. For additional information, refer to the
Display Transceiver and Front Panel Display (page 7-23) and the Ready
Generator (page 7-26) descriptions.

IDDR/ is ORed with MDDR/ (described in the Memory Address Decode
Description above) by inverting input OR gate AE36, section B. The output
of this gate (DBDIR) controls the direction of data flow through the Extended
Bus Transceiver (AT17).

Refer to sheet 5 of the schematics. The RAM consists of two cascaded 4-bit
by 1K static RAM chips located at AE14 and AE24. AE14 stores the four
LSBs of the DB bus; AE24 stores the four MSBs of the DB bus. The DB bus
is bidirectional and connects to the microprocessor’s AD bus via AT17, the
Extended Bus Transceiver. The chip select pin (pin 8) is driven by SPCS/, an
output of the Memory and I/O Mapper. SPCS/ is low for memory addresses
6CO00H-6FFFH. The write enable pins (pin 10) are driven by the
microprocessor’s WR/ output control signal (pin 31).

The EPROM consists of AB6, and is shown on sheet 5 of the schematics.

AB6 is organized as a 16K byte EPROM. It is enabled by the PMCS/ memory
mapped control signal generated by AV1. PMCS/ is low for memory addresses
0000-67FFH. ABG6’s data output port connects to the DB bus (refer to the
RAM description above).

The NVRAM consists of AC21, and is shown on sheet 5 of the schematics.
AC21 is organized as a 256-nibble RAM, mirrored by a 256-nibble EEPROM
(Electrically Erasable Programmable Read-Only Memory). The chip select
pin is driven by NVCS/, an output of AV1. NVCS/ is low for memory addresses
6A00H-6BFFH. The write enable pin (pin 11) strobes DB bus data into the
RAM portion of the NVRAM. The entire RAM is copied to the EEPROM
portion of the NVRAM if pin 9 (Store) goes low. Pin 9 is driven by NVSTR/,
an output of the MUART. The EEPROM contents are dumped to the RAM
if pin 10 (RCLL - Recall) is strobed low. Pin 10 is driven by RES/ which goes
low during board resets.

Issued 11/89

Device Controller

Display Transceiver and
Front Panel Display

Keyboard Encoder
and Keypad

Issued 11/89

The Display Transceiver (AE1) is located on sheet 5 of the schematics. It
connects the DB data bus to the front panel display. AE1 is enabled by
DSPEN/, and is low during a port read or write to port address 10H-17H
(refer to the I/O Port Decode on page 7-18). The direction of data through
AEL is controlled by the microprocessor’s RD signal. While writing to the
display, RD is low, causing AE1 to pass data from the DB bus to the display.

The front panel display is enabled by DSPEN/, and requires TTL data in 8-bit
ASCII format. In addition to DSPEN/ and the 8-bit DD bus, the display
requires RD, WR, and ABO from the 8085 microprocessor. When ABO is low,
ASCII control or character data can be read from or written to the display using
RD or WR respectively. When ABO is high, commands can be written to the
display by pulsing WR high; status can be read from the display by pulsing

RD high.

AG1, the Keyboard Encoder is located on sheet 4 of the schematics. The chip
is enabled at all times since its output enable pin is grounded. The chip contains
its own on-board oscillator, encoding circuity, switch debounce circuitry, and
pull-ups. The front panel keyboard (20 keys) is wired as a matrix, with four
columns and five rows. Each row wire (Y1 - Y5) is pulled high by one of the
chip’s internal pull-up resistors. The column wires (X1 - X4) are sequentially
pulsed low, and the row wires are continuously monitored.

When a key is pressed, a connection is formed between one of the row wires
and one of the column wires. If a key is pressed, the connected row wire goes
high when the connected column wire is pulsed. When activity is sensed on a
row wire, the Keyboard Encoder encodes the row and column intersection,
latches the 5-bit code into the output register, and pulses its "Data Available"
pin high. The Data Available signal is connected to an input port on the
MUART and serves as a Keyboard Encoder interrupt. AG1’s output register
is also connected to the MUART. For additional information, refer to the
MUART description below.

7-23

GPCI Detailed Circuit Description

MUART

7-24

AJ3, the MUART (Multi-Universal Asynchronous Receiver Transmitter) is
located on sheet 4 of the schematics. AJ3 consists of:

e two programmable, parallel 8-bit I/O ports (P10-P17 and P20-P27)

e five 8-bit programmable timer/counters; four can be cascaded to form
two 16-bit timer/counters

o cight-level priority interrupt controller

o baud rate generator, programmable for 13 common baud rates up to
19.2K bits/second

e serial asynchronous communications interface

Port 2 (P20-P27) receives the 5-bit key code data from the Keyboard Encoder.
These five bits are applied to P20-P24. P25 is grounded and P26-P27 are
tied high.

Each pin on Port 1 (P10-P17) is programmed as an input or output pin in
accordance with the Port 1 control register contents. If the value of a bit in
the control register is "1", the corresponding Port 1 pin is an output pin; if the
bit is "0", the corresponding pin is an input. Pin P17 is under control of a bit
in Command Register 1. When this bit is set, P17 generates an interrupt when
its input level goes from low to high. The Keyboard Encoder Interrupt (Data
Available) output is connected to P17. Table 11 below describes the use of
each pin on Port 1.

Port Input/Output Purpose

P10 Input DONE - DMA Transfer Complete
P11 (not used)
P12 (not used)

P13 Input EOXL - Channel Indicates End of Transfer

P14 Output INTEN/ (Interrupt Enable) - see note below

P15 Input Control Signal ALE - see note below

P16 Output NVSTR/ - Non-Volatile RAM Store

P17 Input Interrupt - Keyboard Encoder (see Port 2 above)

Note: If the 8085 attempts to write to or read from a nonexistent resource
(i.e., a de-installed application card), the 8085 enters a permanent wait state
because it will never receive an acknowledge input to its Ready Generator.
INTEN/ is the output of Timer 5 which is reset and retriggered by the ALE
signal applied to Port 15. Thus, Timer 5 is reset every time the 8085 does an
opcode fetch cycle (ALE goes high). During a wait state, opcode fetch
cycles do not occur. INTEN/ is generated if the acknowledge response time
exceeds the delay programmed into the timer. INTEN/ is an input to the
Ready Generator that causes a pseudo RDY input to the 8085. This pseudo
RDY signal ends the wait state.

Table 11. MUART Port 1 Control Signal Summary

Issued 11/89

Device Controller

Issued 11/89

Signals DONE (DMA completed) and EOXL (channel End of Transfer
Latched) are applied to Port 1 pins P10 and P13 respectively. Although these
signals do not generate interrupts, they are readable by the 8085. During a
DMA, the 8085 periodically reads (polls) Port 1 on the MUART and tests bit 0
to determine if the DMA is completed. Likewise, during a channel transfer,
bit 3 is tested to determine if the channel has indicated an end of transfer.

The serial asynchronous communication port is used for serial communication
with an external terminal. TXD and RXD are the transmit and receive data
lines respectively. The data transmission baud rate is a function of AJ3’s
internal baud rate generator. The baud rate frequency is programmable, and
controlled by the 8085. Currently, the asynchronous communication port is
set for 19.2K baud, 8-bit ASCII, no parity, and one stop-bit.

The eight-level priority interrupt controller section of the MUART arbitrates
eight sources of interrupts, including the external interrupt input (Multibus
INT7/). Table 12 below shows the priority of interrupts, as determined by
the MUART.

Source Priority

Timer 1 0 (highest)
Port P17

INT 7/

Timer 3

Receiver Interrupt
Transmitter Interrupt
Timers 2 & 4

Timer 5

N AW

(lowest)

Table 12. MUART Interrupt Priority

7-25

GPCI Detailed Circuit Description

LED Drivers

Extended Bus
Transceiver

Shared Resources

Bus Transceiver

Address Bus

Transceiver

Ready Generator

7-26

AA32, the LED Drivers chip, is located on sheet 5 of the schematics. AA32 is
an octal D-type latch, having a master clear input (pin 1). AA32 is latched by
LLCS/ which goes low for I/O port address 38H-3FH. Its D-inputs are driven by
the DB bus. The anode of each front panel mounted LED is connected to the

+ 5VDC supply; each cathode is connected to an output of AA32. An LED

is "on" if its cathode is pulled low by its respective driver in AA32. AA32is
cleared by RES/.

The Extended Bus Transceiver consists of AT17 which is shown on sheet 5 of
the schematics. AT17 connects the microprocessor’s AD bus with the DB bus.
AT17 is always enabled since pin 19, its enable pin, is grounded. The direction
of data flow through AT17 is determined by DBDIR which is the output of an
inverting input OR gate located at AE36-B. This gate produces a high output
if MDDR/ or IDR/ goes low. DBDIR goes high while reading I/O ports
10H-17H (Front Panel Display), and reading memory addresses 0000-67FFH
and 6CO0H and 6C00-6FFFH (RAM, EPROM, and NVRAM).

The Shared Resources Bus Transceiver consists of AV17, and is shown on
sheet 6 of the schematics. It connects the DM bus (Shared Resources bus) with
the microprocessor’s AD bus. AV17 is enabled by SREN/, an output of the
Shared Resources Arbiter. The direction control of AV16 (pin 1) is driven by
SDDR/. SDDR/ is an output of the Memory and I/O Mapper shown on sheet 5
of the schematics. It goes low when reading I/O ports 18H-1FH (Channel Port)
or reading addresses 7000H-FFFFH (Tri-Port RAM and off-board).

The Address Bus Transceiver consists of AR43 and AT43. These chips are
shown on sheet 6 of the schematics. They link the AM bus with the Multibus’
address bus (ADR0/-ADRE/). AR43 and AT43 are enabled by BOEN/, an
output of the Multibus Interface and Bus Acquisition circuits. The direction
control for AR43 and AT43 is driven by SLAVEGOY/, an output of the Shared
Resources Arbiter. When SLAVEGOY is high, the AM bus drives the Multibus
address lines; when SLAVEGO is low, the Multibus address lines drive the
AM bus.

The Ready Generator consists of PAL 12, located at BA1. This circuit drives
the RDY pin on the 8085, thereby controlling the number of wait states during
a memory mapped or I/O mapped read or write cycle. Several inputs to BA1
are clocked into latches by MCLK (Microprocessor clock), resulting in a delay
of up to one MCLK clock period. The remaining inputs to BA1 are ORed
together, resulting in zero wait states. The latched signals are ORed with the
zero wait state signals to produce RDY. Table 13 on the adjacent page lists the
inputs to the Ready Generator, and the number of MCLK clock cycle delays.

Issued 11/89

Device Controller

Signal Source Delay (MCLK cycles)
MND/ Memory Address Decode (AV1) 0
IND/ I/O Port Decode (AX1) 0
NVCS/ Memory Address Decode (AV1) 1
DSPEN/ I/O Port Decode (AX1) 1

RFACK/ Register File Output Decode (BG16) 1 (see notes below)

SRACK/ DM Bus Controller (AX14) 1 (see notes below)
INTA/ Microprocessor (AN3) 0
INT See Note in Table 12 1

INTEN See Note in Table 12

Notes: RFACK!/ is a read/write acknowledge signal generated by the Register
File upon completion of a read or write cycle. However, since the Register
File is shared by the Bit-Slice Processor and the 8085, the Register File may
already be busy when the 8085 attempts a read or write cycle. The arbiter
portion of the Register File will prevent the 8085 from accessing the Register
File until after the Bit-Slice completes its cycle, possibly resulting in a delay

of RFACK/. After RFACK/ goes low, RDY goes high on the next rising edge
of MCLK.

SRACK/ is a read/write acknowledge signal from the Shared Resources
Arbiter portion of the DM Bus Controller. Since the DM bus is shared by
several resources, it may be busy when the 8085 attempts to use the bus. Thus,
SRACK/ may be delayed. After SRACK/ goes low, the Ready Generator
generates the RDY signal on the next rising edge of the MCLK.

Table 13. Ready Generator Characteristics

Issued 11/89 7-27

GPCI Detailed Circuit Description

Shared Resources Section

The GPCI’s shared resources consist of the Tri-Port RAM, channel port,
microprocessor and Multibus. Data transfers from one resource to another
occur over the DM bus. Except for the Tri-Port RAM, all resources are
connected to the DM bus via tri-state bus transceivers. The Tri-Port RAM
contains a tri-state output, and is connected directly to the DM bus. The
Control Section controls the DM bus by controlling the direction of data
flow through the transceivers and activating the appropriate tri-state enables.
Primarily, the Control Section controls the Shared Resources Section.

The Functional Description Section shows the various data transfer capabilities
between the resources, as well as the data transfer domains. This section
describes those transfers via timing diagrams which begin on page 7-52. The
timing diagrams show the interlocked handshake signals and many of the
control signals originating in the Control Section. They also show signal cause
and effect. The diagrams show the transfer of two or more bytes of data, but
do not attempt to show contention resolution when more than one resource
simultaneously attempts to control the DM bus. Refer to the Control Section
on page 7-31 for additional information on various control signals. See Table
14 below to determine which timing diagram describes a particular transfer.

From To Domain Timing Diagram
Microprocessor Channel Port I/0 1
Channel Port Microprocessor I/0 2
Microprocessor Tri-Port RAM Mem. 3
Tri-Port RAM Microprocessor Mem. 3
Microprocessor Multibus I/O 4
Multibus Microprocessor I/O 5
Microprocessor Multibus Mem. 4
Multibus Microprocessor Mem. 5
Channel Port Tri-Port RAM DMA Mem. 6
Tri-Port RAM Channel Port DMA Mem. 7
Channel Port Multibus DMAYT/O 8
Multibus Channel Port DMA I/O 9
Channel Port Multibus DMA Mem. 8
Multibus Channel Port DMA Mem. 9
Multibus Tri-Port RAM Mem. 10
Tri-Port RAM Multibus Mem. 10
Mulitibus* Channel Port Mem. 11and 13
Channel Port* Multibus Mem. 12 and 13

*Channel masquerades (from the Multibus’ view) as a memory block which is
contiguous with the Tri-Port RAM.

Table 14. Shared Resources Transfer Timing Diagram Directory

Issued 11/89

Device Controller

Address Bus
Interface _

Issued 11/89

Multibus Interface Section

The GPCl is linked to its application cards via the Multibus. The Multibus
Interface Section links the remainder of the GPCI to the Multibus, and consists
of three signal blocks (refer to Figure 4 on page 6-3). These blocks are the
Address Bus Transceiver, the Data Bus Transceiver, and a Control Interface
Section consisting of the Multibus Interface and Bus Acquisition block and part
of the DM Bus Control block. The Extended Address portion of the Extended
Address and Handshake, together with the Address Bus Transceiver, make up
the Address Bus Interface.

The GPCI can act either as a Multibus master or Multibus slave. As a bus
master it drives the Multibus address lines to address memory and I/O ports
located off-board on the various application cards. As a bus slave, the GPCI’s
Address Bus Interface must respond to off-board bus masters’ requests for
resource access. The resources on the GPCI that are accessible by off-board
Multibus masters are the IBM channel port and the Tri-Port RAM. Thus, the
Address Bus Interface must be bidirectional. The lower 15 bits of the address
bus are linked to the GPCI’s AM bus by octal inverting transceivers AR43
and AT43 (Address Bus Transceiver). The upper five bits are linked by the
Extended Address and Handshake Generator.

Internally, AT43 and AR43 act as back-to-back inverting tri-state octal buffers.
When the output enable (OE/) pin is high, both sets of buffers are in a high
impedance state. When OE/ is low, the transfer (T) pin determines which set

of buffers is active. When T is high, the transfer is from A to B; when T is low,
the transfer is from B to A. The T pins on both chips are driven by SLAVEGO/.
The OE/ pins are driven by BDEN/ (Board Enable). SLAVEGOY/ is an output
of the DM Bus Control block, and goes low when an off-board Multibus master
is granted control of a GPCI resource. Thus, when control is granted to an
off-board master, AR43 and AT43 act as address line receivers. BDEN/ is low
anytime the GPCI is acting as a bus master or bus slave

Full compliance with the Multibus interface specifications requires 20 address
lines. The 15 LSB address lines are linked by the Address Bus Transceiver.
The Extended Address Generator links the five MSBs of the Multibus address
bus to the GPCI. The Extended Address and Handshake Generator consists
of PAL 16, located at AX28, and is shown on sheet 7 of the schematics

PAL 16, an AMPAL22V10, uses five registered outputs to drive the extended
address lines, and four additional registered outputs for control (handshake).
All registers are clocked by XIOCS/ (Extra I/O Chip Select). XIOCS/ is an
output of the I/O Port Decode (AX1), and is active for port addresses 30H-37H.
The five extended address registers are programmed by the microprocessor
when writing data to I/O address 30H; the four control lines are programmed
by writing data to port 31H.

7-29

GPCI Detailed Circuit Description

Data Bus Transceiver

7-30

Two important features of this PAL are that it has an external reset input
(RES/) to each of its registers, and the active state (high or low) of each output
is programmable. When RES/ goes low, each output goes to its inactive state.
ADREF/ is programmed as an active high output (goes low during reset), while
ADRI10/ - ADR13/ go high. Therefore, a reset sets the Multibus default address
to 08000H. This eliminates the need to reprogram the Extended Address
Generator after a power-up reset, since the present GPCI configuration uses
addresses 08000H-FFFFFH as off-board (Multibus) addresses.

The Extended Address Generator is programmed by the data on the five LSBs
of the DB bus while writing to port address 30H (see Table 15 below).

DB4 DB3 DB2 DB1 DBO0 Bit Asserted
0 0 0 0 0 ADRF/

0 0 0 1 0 ADR10/

0 0 1 0 0 ADR1Y/

0 1 0 0 0 ADR12/

1 0 0 0 0 ADR13/

Table 15. Extended Address Generator Programming

The tri-state outputs of the Extended Address Generator are enabled when
BDEN/ is low and SLAVEGOY/ is high. These conditions occur only when the
GPCl is acting as a Multibus master.

Since the Handshake Generator portion of PAL 16 is functionally part of the
GPCI Control Section, it is discussed in detail in that section.

The Data Bus Transceiver consists of AX43, and is shown on sheet 6 of the
schematics. AX43 is an inverting octal transceiver that links the Multibus
data bus (DAT0-DM?7) to the Shared Resources bus (DM0-DM7). AX43 is
enabled by BDEN/ which is low anytime the GPCI acts as a bus master or bus
slave. BDT/R drives the direction control of AX43. It is described in the
Control Section description below.

Issued 11/89

Device Controller

Control Section
Overview

Issued 11/89

Control Section

The Control Section was first introduced in Figure 4. In addition to the DM
Bus Control (Shared Resources section control), the Control Section includes
a DMA Address Generator, and a Multibus Interface and Bus Acquisition
section. The Control Section Description is organized as follows:

e Control Section Overview

e General Control Section Originated Signals

e DMA Address Generator Signals

o Multibus Interface and Bus Acquisition Signals

Control signals which originate in other sections of the GPCI and are used
outside of the originating section are also described here.

The Control Section controls resource access to the DM bus. The DM bus is
common to the:

o Channel Port

e I/O Interface Controller
e Microprocessor Section
e Tri-Port RAM

e Multibus

The DM Bus Control section consists of the Shared Resources Arbiter and
two sub-controllers: the DMA Controller and the Autotransfer Controller.
Both sub-controllers and the arbiter function as separate finite state machines.
Each state machine consists of a PAL. Depending on the type of transfer and
the resources involved, one or more of the sub-controllers will be active. The
resource arbiter (PAL 17A) controls sub-controller activity. In turn, the Shared
Resources Arbiter receives inputs from the Automatic Control Decoder, a
part of the Command PROM Latch and Decode block in Figure 4. Finally,
the Automatic Control Decoder is responsive to channel commands,
microprocessor access of Multibus memory and 1/O space, Multibus bus
master status, and channel data transfer status.

Figure 9 on the next page shows the interconnections between these blocks

of control logic. It does not show all output control signals. The Shared
Resources Arbiter, the Autotransfer Controller, and the DMA Controller are
represented by state diagrams. Figures 10, 11 and 12 (on pages 7-33, 7-34 and
7-35) represent the Shared Resources Arbiter, the Autotransfer Controller and
the DMA Controller, respectively. Note in Figure 10 that the Autotransfer
Controller is enabled in Shared Resources Arbiter states b, c and e. The DMA
Controller is enabled in state d. The timing diagrams, which begin on page 7-52,
show the relationships between the various signals in Figure 9.

7-31

e—— LLVO0—$1¥00 3OMS—UE e
/NVO] le—— /10 ozXvY H
Sioa—™ @« 0UINOD 3D1TS-LIE id¥od o/

Issued 11/89

7 NI A FiXveviva /5410
= uzwm gg&ﬁ_: ﬂ-lucl“u....lv Lxod)
r ﬁﬂﬁ“mm lcﬂn:m_._..:! !ﬁtxﬂrhﬁ
-ounv -~

Figure 9. GPCI Control Section Interconnections

EPIV ErOV

AUITIOUINOD
yavayy

ONV ¥3Liadv e

GPCI Detailed Circuit Description

sngiinn | (Hdddd

7-32

Device Controller

(81 1+ TVd) WVHDVIA 3LVLS
H3ITTOHLINOD H34SNVHLOLNY 33S x x
937 snalLINN

P

/D3HATSA

. oqe

000y
o

HOSS3O0Hd/TINNYHO

H4440-0000
$3Ss3Haayv

/D3HATISA-/034

WVH LHOd—H1

Hd4441-HOO0O0!L
* 83ss3daav

oqe
oLO
S

/O3HATISA

(0L #+ 1Vd) NYHDVIA 3LVYLS
H3ITIOHLINOD YNQA 33S %

931 VA 937 HOSS3IO0HJOHOINW

L~ KT

.

4 N 4 £

HOSS300Hd H34SNVHL O1NnY

/034VYNa TINNVHO ANV AWVH ‘d'L
' HOSS3IOOHd HIISNVHL
e ’ OLNY-NON TaNNVHO ONV
Lol % 2qe (SNEILINW) aHVO8 440
P *%0 L} /SNENNY+/SAHO+/H3JXNY
0
. o..’\cmmmm
/O3HYWQA-/O3H %00 |
q
/034YS
/034YWa
/O3IHATISA-/D3H
/0344S
oqe)
pre ey 1 w 1 e OIYATISA-YO#
2 0 X D3IYUS-YO#+
D3IYUSP#
O3yysS-e :D3Y

Figure 10. Shared Resources Bus Arbiter (PAL 17)

7-33

Issued 11/89

GPCI Detailed Circuit Description

AUXFER/

DTR/,DRT/

CDDIR‘AGO/ ___
WR-AUMBUS/
+MWTC/-AUMBUS/

'CDDIR=0, DATA TO CHANNEL FROM
MULTIBUS, TR-PORT RAM, PROCESSOR

CDDIR=1, DATA FROM CHANNEL TO
MULTIBUS, TR-PORT RAM, PROCESSOR

|
I
|
|
- DTR/ WR'AUMBUS/
RD-aumBus/ | ° | +MWTC/-AUMBUS/
+MRDC/-AUMBUS/ | DTR/
] \
1000 | 0010
d | h
RD-AUMBUS/ I DTR/
+MRDG/-AUMBUS/ |
DTR/ | _WR'AUMBUS/ _
: | b +MWTC/-AUMBUS/
1010 0011
- I i
DTR/ |
WRDG/-AUMBUS/ | W—R'Al,"w— Lo
+FD-AUMBLS/ I +MWTC/-AUMBUS/ DTR/
| Y
I DRT/
l
I
|

Figure 11. Autotransfer Controller (PAL 11D)

7-34 Issued 11/89

Device Controller

DMAGO/
(ACTIVATE DMAREQ/)

DMAGO/-CDDIR

DRT/-DTR/

(IF DATA TO TR
DTR/+DRT/| pORT RAM, THEN
ACTIVATE DMAI)

DTR/+DRT/

DTR/ Y (ACTIVATE
o 100 1\ PMACTL)
d
(ﬁfﬁ%?{f = (DRT/ GOES
ACTIVE)
DTR/ DTR/

(ACTIVATE

CHLCK/
& DMAL/)
OFFBOARD
OFFBOARD DMA TO TR
(DMA FROM (MULTIBUS DMA) (MULTIBUS DMA) PORT RAM

TRHPORT AMF

DMAV/

(DEACTIVATE
DMAREQ/
& DMACTL/)

1000
g

DATA FROM CHANNEL
(CDDIR =1)

(DRT/ & DMAV) (DMAV/ & CHLCK/)

DATA TO CHANNEL
(CDDIR=0)

Figure 12. DMA Controller (PAL 10-Partial)

Issued 11/89 7-35

GPCI Detailed Circuit Description

Signal PAL Origin Timing Diagram(s)
DAN/ 9 1,2,6,7,89,11,12
DTR/ 9 1,2,6,7,89,11,12
AUTOST/ 9 8,9,11,12
PRCK/ 9 2,6

DRT/ 10,11B 1,2,6,7,8,9,11,12
PACK/ 11B 1,2,11,12
CHLCK/ 10,11B,20A 7

CHLEN/ 10,11B, 20A 2,6

DMAI/ 10 6,7,8,9
DMAREQ/ 10 6,7,8,9
DMACTL/ 10 6,7,8,9

DPCE/ 20 3,6,7,10
DPWR/ 20 3,6,10

PMWT/ 20 48

PMRD/ 20 39

PIOW/ 20 4.8

PIOR/ 20 59

BS0/ 19A 4,5,8,9
SRACK/ 18 1,234,5
SREN/ 18 3

XACK/ 18 4,5,89,10,11,12,13
VSLVREQ/ 18 10,11,12,13
SRREQ/ 18 1,2,3,4,5
DMAGO/ 17A 6,7,8,9
SLAVEGO/ 17A 10

ARBQA/* 17A 3-13
ARBQB/* 17A 3-13

ARBQC/* 17A 3-13

*PAL 17A is the Shared Resource Arbiter. Figure 10 is the state diagram for the arbiter.

Table 16. PAL Generated Control Signals Described by Timing Diagrams

7-36

Issued 11/89

Device Controller

Control Section Most of the Control Section signals are generated by PALs. The PAL equations

Signals in the GPCI Supplemental Data Chapter (Chapter 9) describe these signals.
Therefore, for those signals generated by PALs and shown on one or more of
the Shared Resources Section timing diagrams, no additional discussion is
provided other than a listing of the timing diagrams in which they appear. PAL
generated control signals that are not shown in one or more timing diagrams are
functionally described, but the PAL equations provide the detailed description.
Control signals that are not generated by PALs and do not appear on any of the
timing diagrams receive the greatest attention here.

Table 16 on the adjacent page lists those control signals that are PAL generated,
and appear on one or more of the timing diagrams that begin on page 7-52. It
also lists the timing diagram(s) that show the signal.

ARBQA/, ARBQB/ and ARBQC/ define the states of the arbiter, as shown

in Table 17.
ARBQA/ ARBQB/ ARBQC/ STATE
1 1 1 a
1 0 0 b
1 1 0 c
1 0 1 d
0 0 0 e
0 1 1 f
0 0 1 g
0 1 0 h
1 = high, 0 = low

Table 17. Shared Resources Arbiter State Definitions

Note in Figure 10 that ARBQA/ is also called SLAVEGO/.

Table 18 on the next page shows those Control Section signals that are PAL
generated, but do not appear on any timing diagrams.

Issued 11/89 7-37

GPCI Detailed Circuit Description

7-38

Signal PAL Function

BDT/R #19A Multibus Data Transmit/Receive
BDEN/ #19A Multibus Data Enable

LCDIR/ #19A Latched Channel Data Direction
SREN/ #18 Shared Resources Enable
DSGO/ #17A Dual Port Slave Go

LDONE #15 Latched DMA Done

HI0/ #15 AJ26 Selection Input

HIY/ #15 AJ26 Selection Input

HI2/ #15 AJ26 Selection Input

LI0/ #15 AN26 Selection Input

LIy #15 AN26 Selection Input

L12/ #15 AN26 Selection Input

ACI/ #15 DMA Address Counter Increment
WCl/ #15 DMA Word Counter Increment

Table 18. PAL Generated Control Signals Not Shown in Timing Diagrams

BDT/R (Multibus Data Transmit/Receive) controls the direction of the data flow
through the Data Bus Transceiver. BDT/R is described in the Multibus Interface
and Bus Acquisition description.

BDEN/ (Multibus Data Enable) drives the output enables on the Multibus
Address Bus and Data Bus Transceivers. This term is low when the GPCI
acquires the Multibus (GPCI is bus master), or when an off-board master is
granted access to the GPCI (GPCI is bus slave). BDEN/ is described in the
Multibus Interface and Bus Acquisition description (page 7-43).

LCDIR/ (Latched Channel Data Direction) is the latched channel direction
control (CDDIR).

SREN/ (Shared Resources Enable) is low during shared Resource Arbiter
states b and c (see Figure 10 on page 7-33). SREN/ controls the enable pin on
the Shared Resources Bus Transceiver (AV17) located in the Microprocessor
Section. When SREN/ is low, AV17 can pass data to or receive data from the
DM bus.

DSGO/ (Dual-Port Slave Go) is low when the GPCI is acting as a Multibus
slave, and an off-board master is performing a transfer to the Tri-Port RAM.
This signal goes low upon entry into Shared Resource Arbiter state g, and
stays low until VSLVREQY/ goes false (exit from state h). This signal is used in
the generation of DPCE/ (Dual-Port Chip Enable) and DPWR/ (Dual-Port
Write). These signals drive the Tri-Port RAM’s CE/ and W pins respectively
(see PAL 20 on sheet 7 of the schematic).

The remaining signals in Table 18 are all part of the DMA Address Generator.

Issued 11/89

Device Controller

DMA Address
Generator

Issued 11/89

The DMA Address Generator consists of two cascaded 8-bit slice address
generators (AJ26 and AN26), and a counter controller (AJ41). These
components are shown on sheet 6 of the schematics. Together, AJ26 and
AN26 function as a 16-bit programmable DMA address generator. Counter
control of the DMA address generator is accomplished by AJ41. AJ41is a
PAL programmed as a 4-state state machine, having an integral state decoder
and an instruction code generator.

AJ26 and AN26 are Advanced Micro Device’s AM2940 DMA address
generator chips. These chips generate sequential memory addresses for use

in the sequential transfer of data to and from the IBM channel. They also
maintain a word count and generates a DONE signal when a programmable
terminal count or address is reached. The AM2940 can be programmed to
increment or decrement the address in any of four control modes, and executes
eight different instructions. The present version of the 8085 firmware sets the
control mode and the address counter mode in accordance with the device
involved in the DMA.

In the GPCI’s application of the AM2940, AN26 functions as the least
significant 8-bit DMA address generator and AJ26 functions as the most
significant 8-bit DMA address generator. The two chips are cascaded by
connecting the WCO/ and ACO/ (Word Carry Output and Address Carry
Output, respectively) of AN26 to the WCI/ and ACI/ (Word Carry Input and
Address Carry Input, respectively) of AJ26. Word count and address
incrementation are controlled by the inputs to WCI/ and ACI/ on AN26.
These inputs are driven by outputs from the controller. The controller also
drives the three instruction selection pins (10, I1 and I2) on each address
generator chip.

LIO-LI2 drive instruction selection pins I0-12 respectively on AN26; HI0-HI2
drive selection pins I0-12 respectively on AJ26. Table 19 on page 7-41 shows
the 13 valid instruction selection codes that can be generated by the controller,
and the DMA function performed by each code.

7-39

GPCI Detailed Circuit Description

BMAI/PCLK

INCREMENT
WORD COUNT

ACTIVATE DMA
ADDRESS INCREMENT
IF LDONE AND MEMORY
TYPE DMA

Figure 13. DMA Counter Decode State Diagram (PAL 15)

7-40 Issued 11/89

Device Controller

Issued 11/89

HHHLLL
I/O0 AAA ITIIII
Location 2 1 0 R/W DMA Function 210210
20 000 W Load Control (Low) HHHLLL
000 R Read Control (Low) HHHLLH
21 001 W Load Word CNT (Low) HHHHHL
001 R Read Word CNT (Low) HHHL HL
2 010 W Load ADDR CNT (Low) HHHHLH
010 R Read ADDR CNT (Low) HHHLHH
23 011 W REINIT (Low & High) HL LHLL
011 R Illegal
24 100 W Load Control (High) LLLHHH
100 R Read Control (High) LLHHHH
25 101 W Load Word CNT (High) HHLHHH
101 R Read Word CNT (High) LHLHHH
26 110 W Load ADDRCNT (High) @ HLHHHH
110 R Read ADDR CNT (High) LHHHHH
27 111 W Illegal
111 R Illegal
"Low" and "High" refer to the respective bytes of the 16-bit address.

Table 19. 1/0 Map for DMA Counter Control

The state machine portion of the counter controller drives the WCI/ and
ACV inputs to the DMA generator chips, and captures and latches the
DONE signal. Figure 13 on the adjacent page is the state diagram for the
state machine. During the following discussion, refer to Figure 13 (DMA

Counter Control State Diagram), and Timing Diagrams 14 (page 7-65) and
15 (page 7-66). Timing Diagram 14 shows DMA control during the DMA
transfer shown in Timing Diagram 9 (page 7-60). Timing Diagram 15 shows
DMA control during transfers shown in Timing Diagrams 6 through 8 (pages
7-57 through 7-59). Note in Timing Diagrams 14 and 15 that WC/ is always
active during state machine states ¢ and d. Also note that ACI/ is active only
while performing a memory type DMA transfer, allowing the address output
to sequence upward only during a DMA memory transfer. During an I/O
DMA transfer, the address output is frozen at its initial value.

7-41

GPCI Detailed Circuit Description

Note that the 2940 chip is programmed the same for both I/O and Memory DMA
transfers. The difference is in the control signals WCI/ and ACI/.

As shown in Timing Diagrams 6 through 9, it is possible for DMAI/ to occur
in either phase of 4 PCLK. This presents a problem for latching the signal
DONE. Because of the manner in which WCI/ is controlled, DONE goes
true one address count sooner than desired, and returns false during the last
transfer. The desired response is for DONE to go true immediately following
the last required increment of the counter, and stay true until reset by an
external signal. LDONE (Latched DONE) is formed by testing for DONE
being high during state c, and if high, holding the signal until PAUEN/
(Processor Auto Enable) goes high. The processor raises PAUEN/ in
recognition of the end of the DMA transfer.

One of the primary functions of the state machine is to delay WCI/ and ACI/
for one 2XCLK clock period if DMAI/ occurs in phase with u PCLK. By doing
so, the relationship between WCI and DONE remains constant, regardless of
the DMA mode, source, or destination. If the state machine detects DONE
while # PCLK is high, it proceeds through state d as if DONE was not true,

but then goes to state b. The state machine remains in state b until PAUEN/
goes false. LDONE is an enable input to all terms in the DMA Controller
state machine, and causes the state machine to reset to its idle state when
LDONE goes true. Since DMALI/ is an output from the DMA Controller,

no additional DMAI/ pulses occur after LDONE goes true.

Multibus Interface and Refer to sheet 7 of the schematics. The Multibus Interface and Bus Acquisition

Bus Acquisition Signals block shown in Figure 4 on page 6-3, arbitrates Multibus access in a multi-
master environment. This block controls the Address Bus Transceiver, the
Data Bus Transceiver and the Multibus control signal interface. The Multibus
control interface consists of parts of AX14, AG28 and AE45. Bus Acquisition
is accomplished by AG43 and AC43.

Because the Multisourcerer is a multi-master system, Multibus arbitration is
required to multiplex the GPCI onto the multi-master Multibus without
contention problems. Multibus arbitration is performed by AC43, a Multibus
Arbiter IC. Arbitration is based on priority resolution. There are two types

of priority resolution schemes, serial and parallel. AC43 performs the priority
resolution and can support either scheme, though the serial scheme is presently
used. The GPClI is currently the highest priority master. This is established via
a jumper between AB42 and AA42, grounding BPRN/ (Bus Priority In). The
BPRO/ (Bus Priority Out) signal from AC43 is connected to the BPRN/ of

the next highest priority master. This BPRN/ and BPRO/ daisy chaining
scheme is extended to all bus masters, with the lowest priority bus master’s
BPRO/ open.

7-42 Issued 11/89

Device Controller

Issued 11/89

The CBRQ/ (Common Bus Request) pin from each bus master is wire-ORed
together. When a bus master requires the bus, it pulls CBRQ/ low, informing
the controlling master that a lower priority master wants the bus. When the
controlling master completes its bus operation (if one was in progress), it
drives BUSY/ high. BUSY/ is monitored by all bus masters. If BUSY/ is high,
the next highest priority bus master gains control of the bus. If this bus master
is the requesting master, it is granted access to the bus. If this bus master is not
the requesting master, it passes the request to the next master. The requesting
master drives BUSY/ low, preventing all other bus masters from controlling the
bus until the controlling master completes its operation and drives BUSY/ high.
AC43 acquires the Multibus, as described above, when its BS0/ input pin goes
low. This pin is driven by AG43, the Bus Arbiter Controller.

AC43 drives AEN/ (Address Enable) low when the GPCI gains control of the
Multibus. AEN/ is used by PAL 19A to form BDEN/ (Board Enable described
below), and GOTBUS/ (see PAL 5 on sheet 2 of the schematics). GOTBUS/
is used by PAL 18A to form SRREQ/, VSLVREQ/ and SRACK/. SRREQ/
and VSLVRE(QY/ are input signals to the Shared Resources Arbiter (PAL 17A).

AG43, the Bus Arbiter Controller, drives BS0/ (pin 16) low when the GPCI
requests the Multibus (GPCI wants to be the controlling master). When BS0/
goes low, AC43 gains control of the Multibus as described above. AG43
drives BS0/ low under the following conditions:

e the microprocessor attempts a non-DMA memory read or write from
or to an application card in the Multisourcerer

o the channel requests a memory or I/O DMA read or write transfer
involving an application card in the Multisourcerer

AG43 also produces the Address Bus and Data Bus Transceiver enable and
direction controls. BDEN/ (Board Enable) enables both transceivers and

the Extended Address Generator. BDEN/ goes low when the GPCI acts as the
bus master or bus slave. BDT/R, the Data Bus Transceiver’s direction control,
goes low if:

e an off-board bus master writes to the GPCI or the channel
o the GPCl is a bus master and the microprocessor reads the Multibus

o the channel performs a DMA read involving the Multibus

The Multibus read/write control signals are:
¢ MWTC/ (Memory Write Control)
¢ MRDC/ (Memory Read Control)

IOWC/ (I/O Write Control)

IORC/ (I/O Read Control)

e XACK/ (Transfer Acknowledge)

7-43

GPCI Detailed Circuit Description

1/0 Interface Controller
Control Signals

7-44

MRDC/, MWTC/ and XACK!/ are bidirectional; IOWC/ and IORC/ are
unidirectional. As a bus master, the GPCI must drive MWTC/, MRDC/,
IOWC/ and IORC/. The GPCI monitors XACK/ when acting as a bus master.
As a bus slave, the GPCI responds only to MWTC/ and MRDC/, and acts as

a source for XACK/. AG28 generates PMWT/, PMRD/, PIOW/ and PIOR/.
These signals are the drive signals for MWTC/, MRDC/, IOWC/ and IORC/
respectively. These signals are inputs to four tri-state line drivers in AE45.
These line drivers are active when GOTBUS/ goes low, i.e., the GPCI is the
bus master.

CCLK/ (C Clock) and BCLCK/ (B Clock) are Multibus clock signals. All
Multibus bus masters must be able to drive these clock signals, though in a
particular system only one bus master is allowed to drive these signals. Usually,
the highest priority bus master drives the signals. The GPCI is the highest
priority bus master and drives the BCLCK/ and CCLK/ signals via NAND gates
AE36-D and AE36-C respectively. The NAND gates function as inverters, and
are driven by the 9.216 MHz # PCLK clock signal.

The following signals originate in the I/O Interface Controller Section and
are used externally to that section:

o EOXL (End of Transmission Latched)
e CDIR/ (Channel Direction)

e CDDIR (Channel Data Direction)

e PRPEN/ (Processor Port Enable)

e RFINT (Register File Interrupt)

o CHLDSC (Channel Disconnect)

e RES/ (Reset)

¢ CMD(/ (Command Zero)

o CMD3/ (Command Three)

e RFACK!/ (Register File Acknowledge)
e CDCLK (Channel Data Clock)

Issued 11/89

Device Controller

EOXL

During a data transfer between the channel and another resource, the channel
can signal the end of the transfer via specified signal sequences on the control
lines. The Bit-Slice Processor monitors this condition via the Condition Code
Multiplexer. When the Bit-Slice Processor recognizes the end of the transfer, it
lowers EOX/ (End of Transfer). EOX/ is an input to PAL 1 located on sheet 2
of the schematic. PAL 1 inverts and latches EOX/ to form EOXL, and holds
the signal until PAUEN/ (Processor Auto Enable) goes false. EOXL is an input
to the MUART (Microprocessor Section) and the Channel Port controller.
The microprocessor monitors EOXL (via the MUART) to determine when the
transfer is complete. When the transfer is complete, the microprocessor drives
PAUEN/ false, unlatching EOXL. The Channel Port controller uses EOXL

to form AUTOST/ (Automatic State). AUTOST/ is used by the Channel Port
controller, DMA Address Generator and Multibus interface logic.

CDIR/ and CDDIR

IC BLA3-H (sheet 2 of the schematics) inverts CDDIR to produce CDIR/.
CDIR/ and CDDIR are used by the Channel Drivers and Receivers board to
control data flow through its transceivers. CDIR/ also controls the direction

of data flow through BC1 (Octal Inverting Transceiver - see Figure 4). CDDIR
is used by the Channel Port Controller to control the direction of data flow
through the Bidirectional Channel Port.

PRPEN/

This signal is a direct output of the Microcode PROMs (BL1, located on
sheet 1 of the schematics). PRPEN/ allows data that has been latched into
the DM side of the Bidirectional Channel Port (BC26) to be enabled onto the
DC bus. '

RFINT
This signal is an output of the Immediate Tester (PAL 21, located on sheet 2
of the schematics). When the Bit-Slice Processor wants the microprocessor

to look in the Register File for new data, it directs PAL 21 to raise RFINT.
RFINT is connected to the RST 6.5 interrupt pin on the microprocessor.

Issued 11/89 7-45

GPCI Detailed Circuit Description

CHLDSC

CHLDSC is connected to the RST 7.5 interrupt pin on the microprocessor.
This signal is generated by the Bit-Slice Control Logic block (see Figure 6)
when the Bit-Slice Processor determines that the Multisourcerer operator
has placed the DISCONNECT switch in the "disconnect" position. The
interrupt informs the microprocessor of the pending disconnect request,
causing the microprocessor to perform various shutdown processes on active
application cards.

RES/

RESY/ is produced by wire-ORing PURST/ (Power Up Reset) and INITY/.
PURST/ is generated on the Channel Drivers and Receivers board and is
described in that chapter. INIT/ is the Multibus initialization signal. RES/:

e clears the Microcode PROM registers

o forms PACK/ (see PAL 11D on Sheet 3)

o resets the microprocessor

o resets the Shared Resources Arbiter (PAL 17A)

e resets the Extended Address and Handshake Generator (PAL 16)

CMDY/

This signal is generated by BE43, the Automatic Control Decoder portion of
the Command PROM Latch and Decode logic (see Figures 4 and 6). CMD0/
is the output of a latch strobed by CPEN/ (Command PROM Enable). The
data input to the latch is ID0. When CPEN/ is true, the IDO line is driven by
the LSB output of the Command PROM. Thus, CMD(/ is the latched and
inverted LSB of the most recent command lookup code. CMD(/ is an input
to the DMA Address Generator, and the Multibus Interface and Bus
Acquisition logic.

CMD3/
This signal is generated in a manner similar to that of CMD(/ above, except
the data input is ID3. CMD3/ indicates a data transfer channel command. It

is used by PAL 16 (sheet 7) to form PAUEN/. PAUEN/ is active only during
data transfer commands.

7-46 Issued 11/89

Device Controller

Issued 11/89

RFACK/

This signal is an output from BG16 in the Register File Control portion of the
Register File (see Figure 6). When the microprocessor reads data from or
writes data to the Register File, an unspecified delay may occur as a result of
contention with the Bit-Slice Processor. As a result, the microprocessor may
require forced wait states to prevent it from continuing on to its next instruction
before its present instruction is successfully completed. The microprocessor
enters wait states if its RDY pin is low. RDY is driven by the Ready Generator
(BA1). One of the inputs to the Ready Generator is RFACK/. The Register
File State Machine (PAL 6) generates RFACK/ only after the write process is
completed, or read data is valid and stable.

CDCLK/
This signal is generated by a Microcode PROM (PR4). It clocks the channel
command into the Command Latch portion of the Command Latch and

Decode logic (see Figure 6 and sheet 2). CDCLK/ also clocks data into the
Channel Port Controller (BC41).

7-47

GPCI Detailed Circuit Description

Microprocessor Section The following control signals originate in the Microprocessor Section:
Control Signals

e RFCS/ (Register File Chip Select)
e DPCS/ (Dual Port Chip Select)

e XIOCS/ (Transfer I/O Chip Select)
¢ DMACS/ (DMA Chip Select)

e CHPS/ (Channel/Port Select)

e BLOK (BUS LOCK)

DPLCK/ (Dual Port Lock)

RFCS/

This signal is an output of the Memory Address Decode chip (AV1 - see

sheet 5 and Figure 8 on page 7-19), and is mapped to memory addresses
6800H-69FFH. RFCS/ is an input to the Register File state machine (PAL 6A,
located at BG43), and must be low for the state machine to enter the
microprocessor read/write loops (see Figure 7 on page 7-12).

DPCS/

This signal is an output of the Memory Address Decode chip (AV1 - see
sheet 5 and Figure 8), and is mapped to memory addresses 7000H-7FFFH.
DPCS/ is used to form DPCE/ (Dual-Port Chip Enable), the Tri-Port RAM’s
Chip enable. DPCE/ is required during microprocessor write and read
operations involving the Tri-Port RAM. DPCS/ is also applied to PAL 18A
to form SRREQ/ (Shared Resources Request). SRREQ/ is a control signal
used by the Shared Resources Arbiter.

XI0CS/

This signal is an output of the I/O Port Decode chip (AX1 - see sheet 5 and
Figure 6 on page 7-3), and is mapped to I/O port addresses 30H-37H. XIOCS/
is used as a latch clock by the Extended Address and Handshake Generator
(PAL 16 - see sheet 7). Refer to the Extended Address and Handshake
-Generator description (page 7-29) for more information.

7-48 Issued 11/89

Device Controller

DMACS/

This signal is an output of the I/O Port Decode chip (PAL 14, located on sheet
5), and is mapped to I/O port addresses 20H-2FH. DMACS/ is an input to the
DMA Address Generator Controller (PAL 15 - see sheet 6). DMACS/ must
be low for the microprocessor to program LI0-LI2 and HIO-HI2, which are
instruction select lines used by the DMA Address Generator chips. For more
information, refer to the DMA Address Generator description (page 7-39).

CHPS/

This signal is an output of the I/O Port Decode chip (PAL 14, located on sheet
5), and is mapped to I/O port addresses 18H-1FH. CHPS/ is used by the
Shared Resources Arbiter (PAL 17A) during a microprocessor/channel data
transfer. Refer to Timing Diagrams 1 and 2 on pages 7-52 and 7-53, and
Figures 8 and 9 on pages 7-19 and 7-32.

BLOK

BLOK is driven by the microprocessor’s SOD (Serial Output Data) pin, and

is controlled by firmware. This signal is applied to AC43 pin 16 (LOCK/).
AC43 is the Multibus bus arbiter. BLOK prevents the GPCI from surrendering
the Multibus to any other bus master, regardless of bus priority.

DPLCK/

DPLCK! is asserted by the 8085 when it writes data to I/O port 31H that drives

DB2 high. When asserted, this signal prevents the Multibus from accessing the
Tri-Port RAM.

Issued 11/89 7-49

GPCI Detailed Circuit Description

Handshake Generator Control signals that originate in the Multibus Interface Section are generated
Control Signals by the Handshake Generator portion of the Extended Address and Handshake
Generator block (see Figure 4 on page 6-3).

The four control signals from the Handshake Generator section (PAL 16) are:
e PAUEN/ (Processor Auto Enable)
e RFINTA (Register File Interrupt Acknowledge)
e CTL2 (Control Latch 2)
e DPLCK/ (Dual Port Lock)

These control signals are programmed by data on the five LSBs of the DB bus
while writing to port 31H. See Table 20 below.

DB4 DB3 DB2 DB1 DBO0 Control Signal
0 0 0 0 0 (not used)

0 0 0 0 1 *PAUEN/

0 0 0 1 0 (not used)

0 0 1 0 0 DPLCK/

0 1 0 0 0 RFINTA

1 0 0 0 0 CTL2

* The state of PAUENY/ is determined by CMD3/. If CMD3/ is low, PAUEN/
will go true (low). CMD3/ is low while processing a data transfer command.
Refer to the Command PROM Latch and Decode Section description (pages
7-9 and 7-10).

Table 20. Handshake Generator Programming

PAUEN/ is an input to the Condition Code Multiplexer, the Channel Port
Controller and the DMA Address Generator. PAUEN/ is the microprocessor’s
acknowledgement of a data transfer command from the channel. It informs
other sections of the GPCI that the microprocessor is ready to support the
transfer. The Bit-Slice Processor detects this condition by monitoring the
PAUEN/ input to the Condition Code Multiplexer.

7-50 Issued 11/89

Device Controller

Issued 11/89

When PAUEN/ goes low, the Channel Port Controller terminates the data
transfer sequence. The Channel Port Controller combines PAUEN/ with three
other transfer terminator signals to produce AUTOST/ (Automatic State), one of
the main control signals used by the Channel Port Controller. For additional
information on AUTOSTY, refer to the timing diagrams that start on the next
page. Finally, PAUEN/ serves as an enable for the DMA Address Generator’s
state machine (refer to the DMA Address Generator description on pages 7-39
through 7-42).

The Tri-Port RAM was originally called the "Dual-Port RAM." DPLCK/

(Dual Port Lock) is an acronym based on the Tri-Port RAM’s former name

for a control signal that can lock out the Multibus from accessing the Tri-Port
RAM. Also, when DPLCK/ is low (Multibus cannot access the Tri-Port RAM),
it enables the transfer acknowledge signal (XACKY/) each time the Multibus
attempts to read from or write to the Tri-Port RAM.

RFINTA is the microprocessor’s acknowledgment of an interrupt generated
by the Register File state machine. When the Bit-Slice Processor has new
status information to pass to the microprocessor it loads the status into the
appropriate cell in the Register File and interrupts the microprocessor. Then
the Bit-Slice Processor enters a loop that monitors for an acknowledgment

of that interrupt. RFINTA/ (Register File Interrupt Acknowledge) is the
microprocessor’s acknowledgment of the Bit-Slice Processor’s interrupt.
RFINTA/ is applied to the Condition Code Multiplexer, where it can be
tested by the Bit-Slice Processor. When RFINTA/ goes low, it informs the
Bit-Slice Processor that the status has been read.

7-51

GPCI Detailed Circuit Description

7-52

At the time this manual went to press, the Timing Diagrams were not
released from Engineering. Therefore, we could not include them in
this document. When they are released, we will forward them to you.
We apologize for any inconvenience this may cause.

Issued 11/89

GPUI Bit-dlice
Microcode Description

GPCI Bit-Slice Microcode Description

GPCI Bit-Slice Microcode Description

The I/O Interface Controller causes the IBM channel to appear to the
remainder of the GPCI as an I/O port. The I/O Interface Controller performs
those IBM channel-specific interface activities required for bidirectional
transmission of data and status. The I/O Interface Controller is under control
of the microcode stored in five PROMs.

The GPCI and the Multisourcerer’s application cards function as an IBM I/O
control unit and I/O devices respectively. The IBM System/360 and System/370
I/0 Interface Channel to Control Unit Original Equipment Manufacturers
Information Manual (hereafter referred to as the "I/O Reference Manual")
describes the interface requirements between the IBM channel and control
units (i.e., GPCI). The GPCI’s hardware and microcode are in compliance
with this reference.

Each Multisourcerer is assigned a contiguous block of 16 I/O addresses by
assigning it the MSD of a two-digit hexadecimal I/O address. The MSD is
referred to as the "base address," while the LSD is the "device address."
Application cards are assigned a unique device address (OH-EH); device
address FH is reserved for the GPCI. The device address forms the LSD
of the I/O address block. The GPCI can service up to 15 I/O devices.

The Bit-Slice Processor contains 16 bytes of internal RAM contained in the
ALU. This RAM is referenced throughout this description as "Register x"
(Register 0-Register FH). These registers are defined in Table 21 on the
next page.

Issued 11/89 8-1

GPCI Bit-Slice Microcode Description

Registers Definition Register Definition
Register 0 Device State Register 8 Extra Status
Register 1 General Purpose Write Register 9 Device Type
Register 2 Command Register Address Register A Device Address
Register 3 Command Code Register B Base Address
Register 4 Channel Control (Low) Register C Not Assigned

3 ADDRIN Register D Polling Address

2 OPIN

1 REQIN Register E State Flags

0 PSOUT 3 Undefined

2 Address Enable

Register 5 Channel Control (High) 1 Supress Enable

3 SL3 (Relay) 0 Shout Enable

2 SL2 (Relay)

1 SL1 (Relay) Register F State Flags

0 STATIN 3 General Purpose Flag*

2 Disconnecting

Register 6 Status (Low) 1 Stacked Status**

3 Channel End 0 Pending**

2 Device End

1 Unit Check

0 Unit Exception
Register 7 Status (High)

3 Attention

2 Status Modifier
1 Control-Unit End
0 Busy

* This flag has two different meanings depending on context. In the write data routine, this flag
is set to indicate that a parity error is to be reported if detected. Elsewhere in the code the flag
indicates that a system reset is being performed.

** When both of these are set it means the previous command had indicated chaining. The
Bit-Slice processor suspends the polling loop and waits for the next command from the
Channel.

Table 21. GPCI Bit-Slice Register Definitions

8-2 Issued 11/89

GPCI Bit-Slice Microcode Description

Issued 11/89

Communication between the I/O Interface Controller Section and the Device
Controller Section is via the dual port Register File. The Register File allows
status to be passed from one section to the other. The Register File is defined

in Table 22 on the next page and provides two bytes (four nibbles) of status for
each device. Though the Register File is accessible by both sections, all
reference to particular locations within the Register File is by its Microprocessor
Section address (6800H-681FH upper or lower nibble). Table 22 shows the
Microprocessor Section address mapping for the Register file.

Actual data transfers from and to the channel are not handled directly by the
Bit-Slice Processor. The data transfers are accomplished by hardware. The
Bit-Slice Processor monitors these transfers and controls pre-transfer and
post-transfer sequences as well as fault sequences before, during and after
the transfers.

This discussion does not attempt to document the microcode on an instruction
by instruction basis. This approach would be tedious and excessively detailed.
Instead, a Functional Processing Flow analysis (Refer to Figure 14 on page 8-6),
a Detailed Processing Flow analysis and microinstruction listings (located in
the GPCI Supplemental Data Chapter) are provided. Also provided is a brief
description of each routine and subroutine.

8-3

GPCI Bit-Slice Microcode Description

Microprocessor Bit-Slice
Address Register

Definition

6800H-680EH Registers 0-E

6810H-681EH

680FH Register F

681FH

Processor Status
3 AT (Attention)
2 DE (Device End)
1 UC (Unit Check)
0 UE (Unit Exception)
Device State
3 DS3
3 DS3
2 DS2
1 DS1
0 DSO

Extra Status
3 CE (Stacked Channel End)
2 BR (Busy Reported)
1 UC (Stacked Unit Check)
0 N/A

Device Type
3 DT3 00 = Bisync
2 DT2 01 =Ingestor
1 DT1 02=ProNET
0 DTO

Device Modifier
3 DM3
2 DM2
1 DM1
0 DMO
Device Address
3 DA3
2 DA2
1 DA1
0 DAO

Auxiliary State *
3 Command Reject
2 Intervention Required
1 Bus-out Check
0 Equipment Check
Channel Address (Read Only)
3 CA3
2 CA2
1 CAl
0 CA0

* When the entire nibble equals zero, the meaning of the abnormal indication is
to perform a selective reset on the specified device.

Table 22. GPCI Register File Bit Map

8-4

Issued 11/89

GPCI Bit-Slice Microcode Functional Description

Issued 11/89

GPCI Bit-Slice Microcode Functional
Description

Refer to Figure 14 on the next page. When power is first applied or the
RESET switch on the front panel of the Multisourcerer is pressed, the I/O
Interface Controller begins executing HSTART (Hard Start). HSTART
initializes the ALU registers and the Device States located in the Register
File. Then, HSTART exits to WATCON (Wait for Connect to Channel)
which monitors the front panel switch marked DISCONNECT. As
documented in pages 2-21 through 2-23 of the I/O Reference Manual,
connection to and disconnection from the IBM channel must not disrupt
other devices connected to the channel. Also, you should perform
disconnections only after all pending I/O device activity is completed.

The status of the DISCONNECT switch informs the I/O Interface Controller
of the operator’s intentions. WATCON prevents the I/O Interface Controller
from activating any channel tag or control line until after the DISCONNECT
switch has been switched to the "connect” position. Then WATCON sequences
three relays on the Channel Drivers and Receivers board. These relays connect
the GPCI to the channel without causing disruption of any channel tag or
control signals. This process is referred to as a physical connection. After

the connecting process is completed, WATCON exits to STPOL.

STPOL (polling loop) is the I/O Interface Controller’s idle routine. It
performs two major functions. First, it monitors the channel’s control lines
to determine if the channel is requesting an Initial Selection Sequence or
acknowledging a control unit’s request for service. Second, STPOL
sequentially tests (polls) the device states stored in the Register File for
requested service.

Device State monitoring is not as time critical as channel monitoring.

. Therefore, Device State monitoring consists of fetching a particular device

state from the Register File, testing the device state for requested service

and, if service is requested, beginning a Control Unit Initiated Sequence by
activating the Request In line. Until the requested services are completed,
the polling address is frozen, preventing further testing of device states. Once
the requested service has been completed, STPOL increases the polling
address and repeats the process described above for the next device.

To achieve a high data throughput, channel service requests must be

handled rapidly. The Bit-Slice Processor has no true interrupt capability
and must, therefore, emulate this feature. Programmable hardware monitors
several channel control lines and generates a single output (RESPIM/) which
can be monitored by the Condition Code Multiplexer. RESPIM/ is tested
every few lines within the STPOL code. If RESPIM/ is low, subroutine
IMRES is invoked to interpret the channel’s control line activity. Because of
the Bit-Slice Processor’s speed and the frequency with which RESPIM/ is
tested, the Bit-Slice Processor performs as if it was interrupt driven.

8-5

GPCI Bit-Slice Microcode Description

INTAUIZE B8IT—SLICE

REGISTERS

WATCOM

DISCONNECT

SWITCH IN

DISCONNECT

POSIMON
& 2

CONNECT GPCI
TO CHANNEL

DISCONNECT
SWITCH IN

DISCONNECT
POSITION
?

et T ——

DISCONNECT

| DEVICES. THEN
DISCONNECT FROM
CHANNEL

VALID ADDRESS

RETRIEVE DEVICE STATE
USING POLLING ADDRESS

RAISE REQUEST IN.
SET "STATUS PENDING"
fLAc

?

REQUEST

IN HIGH 7

P = o o e o o o o e o e e e e = = = = - = = = — - ——————

o 0 B e e ' 585 g 6 e e s i d)

8-6

Figure 14. Functional Processing Flow Diagram

Issued 11/89

GPCI Bit-Slice Microcode Functional Description

Issued 11/89

When the channel wants to send a command to one of the devices, it places
the base and device addresses on the Bus Out lines and raises Address Out,
Select Out and Hold Out. The rise of Select Out and Hold Out causes
RESPIM/ to go active, which calls IMRES. Also, before the GPCI sends

data to the channel, it raises Request In. The channel responds to the raised
Request In by raising Select Out and Hold Out. Thus, regardless of who
initiates a request for communications, Select Out and Hold Out rise, calling
IMRES. The hardware that generates RESPIM/ also monitors the channel
control lines for Selective Resets (resets the connected device), System Resets
(resets all devices), and Interface Disconnect (channel terminates an ongoing
transaction) sequences. Each of these sequences causes RESPIM/ to go low,
thus envoking IMRES. Thus, IMRES must perform several tests to determine
the exact cause of RESPIM/.

Upon entry to IMRES, a test for resets is made. All resets are handled by
SELRES (Selective Reset) which does additional testing and passes system
resets to SYSRES for processing. After testing for resets, IMRES tests for
Interface Disconnects. If the test passes, INTDIS is called. INTDIS freezes
the status and informs the microprocessor of the event with an interrupt.

Then, IMRES checks Request In. If this line is high, the channel is responding
to a GPCI request for communications. This response is processed by CUIS
(Control Unit Initiated Sequence). Next, IMRES tests for a channel request
for communications. For this request to be valid, the base address must be
valid and the device cannot be in a Busy state. If the base address is invalid,
IMRES passes Select Out to the next control unit on the channel and returns.
If the base address is valid, but the device is Busy, processing is passed to
BUSY. BUSY checks the actual command and the device’s device state to
determine what action should be taken.

Knowledge of device states and device state codes is crucial to understanding
the Bit-Slice Processor’s microcode. These codes are listed in Table 23 below
and defined in the following paragraphs.

Code (Binary)
BIT 3210 Definition Set By
0000 Device Available B-S (Bit-Slice)
0010 Going Ready U-P (Microprocessor)
0011 Going Not Ready U-P
0100 Pending Status U-P
0101 Pending Status Request U-P
0110 Stacked Status B-S
0111 Stacked Status Request B-S
1000 Device Busy B-S
1010 Device Not Ready U-P
1011 Not Present (power up) B-S

Table 23. The Device State Table

87

GPCI Bit-Slice Microcode Description

Device Available
(code 0000B)

Going Ready
(code 0010B)

Going Not Ready
(code 0011B)

Pending Status
(code 0100B)

8-8

This is the quiescent (not busy) state for an I/O device. A device must be in
this state to accept a new command. This state is set at the completion of a
command after the ending status is sent to the channel.

When a device receives a Selective Reset, that device goes to a Busy state
(code 1000B) until the reset process is complete. Upon completion, the
microprocessor sets the Going Ready state or Going Not Ready (0011B)
state. Unless the device was in a Device Not Ready state before the reset
sequence was received, the Going Ready state is set.

A device can receive a new command during reset. If this happens, BUSY
sends a status of Busy to the channel, and sets the Busy Reported flag. The
channel suspends all communications to that device until it receives another
status of Device End. The Device End status reactivates the communications
path for that device.

The polling loop (STPOL) uses the device state of Going Ready or Going Not
Ready to direct processing into a special branch of STPOL that tests the Busy
Reported flag. If the Busy Reported flag is set, it means the Busy status was
transmitted during the reset. If a Busy status was sent, STPOL sets a Pending
Status device state if the device state was Going Ready, or a Pending Status
Request if the device state was Going Not Ready. The Pending Status or
Pending Status Request causes STPOL to raise Request In during the next
cycle through STPOL. This results in the initiation of a CUIS sequence which
sends the Device End status to the channel.

This state is generated by the microprocessor at the completion of a Selective
Reset to a device in the Device Not Ready state. Refer to the Going Ready
description above.

All commands require a Channel End and a Device End status to complete

the command. In the GPCI, the I/O Interface Controller controls the interface
to the channel, and the microprocessor controls the interface to the devices.
The I/O Interface Controller has no way of knowing when a device actually
finishes a command, except by checking the device state. However, the I/O
Interface Controller determines when use of the channel is no longer required
for execution of the command. Therefore, the I/O Interface Controller supplies
the Channel End status.

When the channel receives the Channel End status, it disconnects from the
device. The channel does not attempt to communicate with any device which
has not reported a Device End status. In other words, as far as the channel
is concerned, the device is busy. However, the channel is available for
communication with other devices.

Issued 11/89

GPCI Bit-Slice Microcode Functional Description

When the microprocessor determines that a command (data transfer, etc.) is
complete, it informs the I/O Interface Controller that a Device End must be
sent. To do this, the microprocessor sets the device state in the Register File
to Pending Status, and sets the status in the Register File to Device End.
When STPOL discovers a device with a Pending Status, it raises Request In
and sets the Pending Status flag. This initiates a CUIS cycle which results

in transmission of a Device End status to the channel or a Stacked Status
device state.

The Stacked Status device state is set if the channel indicates Busy when the
CUIS cycle attempts to send the status. If this happens, STPOL waits until
the channel is not busy and tries to send the Device End again. When the
Device End status transmission is successful, CMDDNE changes the device
state to Device Available.

Pending Status Request Refer to the Going Not Ready description above.
(code 0101B)

Stacked Status Refer to the Pending Status description above.
(code 0110B)

Stacked Status Request This state is set by CMDDNE when attempting to send a status of Device End

(code 0111B) to a channel while it is busy.
Device Busy With the exception of the Test I/O command, all commands result in a device
(code 1000B) state of Device Busy. This state is set by ISS. The microprocessor changes the

state to Pending Status as described in the Pending Status description above.

Device Not Ready This state is set by the microprocessor when a device is present but is not yet

(code 1010B) ready to process commands. It can provide status to the channel upon request
(via a Test I/O command), and it can be selectively reset. Refer to the Going
Not Ready description above.

Device Not Present The device state of all devices is initially set to Device Not Present during

(code 1011B) power-up. The microprocessor examines the Non-Volatile RAM (NVRAM)
to determine which devices are present. The device state of those devices
which are present is then changed to Device Not Ready.

Issued 11/89 8-9

GPCI Bit-Slice Microcode Description

Detailed Bit-Slice Microcode Description

The Detailed Bit-Slice Microcode Description is based on Figures 15 and 16
(sheets 1-3). Figure 15 consists of microcode initialization and STPOL. Figure
16 consists of IMRES.

Routine HSTART (Hard Start)

Refer to Figure 15 on the adjacent page. First, HSTART sets the following
ALU registers to zero:

o Register 4 (Channel Control-low)
o Register 5 (Channel Control-high)
e Register 6 (Status-low)

o Register 7 (Status-high)

e Register 8 (Extra Status)

e Register A (Device Address)

o Register B (Base Address)

e Register D (Polling Address)

e Register E (State Flags)

o Register F (State Flags)

Next, the Bus In and Tag In lines are lowered by writing the contents of the
Status and Control registers to the Bus In and Tag In latches respectively.
Then, HSTART loads a value of BH into each device state nibble (upper
nibble of 6800H-680EH) of the Register File. A device state of BH is defined
as Not Present.

The microprocessor determines what devices are available by examining its
Non-Volatile RAM (NVRAM - refer to the Microprocessor Section Detailed
Circuit Description). The microprocessor resets each available I/0 device, and,
after a successful reset, modifies the device states of those devices to Pending
Status. The microprocessor sets the status to Attention. The Attention Status
is passed to the channel by STPOL, informing the channel of available devices
(refer to STPOL description below). HSTART unconditionally jumps to the
routine WATCON (Wait for Connect to Channel).

8-10 Issued 11/89

HSTART
(hard start)

INITIALIZE
BIT SUCE
REGISTERS

(RESPIM MONITORS FOR
INACTIVE SHOUT/)

ENTRY FROM

(RESPIM MONITORS FOR
ACTIVE SHOUT/)

(=

STATUS TYPE

DEVICE STATES 4,5.80 & 7

8 R

(RESPIM MONITORS FOR
INACTIVE SHOUT/)

STATES 8,A & B

1

3¢ SEE NOTE

¥

DEVICE NOT AVAILASLE-

INCREMENT
POLLING ADDRESS

SET DEVICE
STATE TO
“NOT READY"

¥ NOTE 1 RESPIM IS FREQUENTLY SAMPLED
IN THIS ROUTINE

INTDIS
CALL IMPRES

STATE 2,3) 3 = GOING NOT READY
2 = GOING READY

3 SEE NOTE

RESET BIT 1 OF
THE DEVICE STATE

STATUS IN TO
DEVICE STATE

N DEVICE STATE = 8,4 OR 5

SET DEVICE STATE
TO "NOT READY"
IN REGISTER FILE

il
s SEE NOTE

"

Issued 11/89

Figure 15. Initialization and Idle Loop Flow Diagram g.17and 8 12

Detailed Bit-Slice Microcode Description

Routine WATCON (Wait for Connect to Channel)

WATCON is entered from HSTART or DISCON (disconnect). WATCON
monitors the status of the Multisourcerer’s front panel DISCONNECT switch.
This switch and the routine WATCON direct the Multisourcerer to make an
orderly connection to or disconnection from the IBM channel.

WATCON implements the connect/disconnect sequences described by IBM
and explained in pages 2-21 through 2-23 of the I/O Reference Manual.

WATCON waits for the DISCONNECT switch to be placed in the "connect”
position. It monitors the status of this switch via an input (DISCNTY) to the
Condition Code Multiplexer.

Once the DISCONNECT switch is placed in the "connect" position, WATCON
tells the microprocessor to generate a time delay. The time delay request is
initiated by writing a "timeout" code (F6H) to address 680FH in the Register
File. The MSD (FH) signifies a GPCI request, while the six is a modifier which
is interpreted by the microprocessor as a "timeout." The Bit-Slice Processor
interrupts the microprocessor by calling TUPRO (see subroutine description).

When the microprocessor is interrupted, it reads Register File address

680FH and determines it must begin a timeout. After generating the interrupt,
WATCON energizes relays SL2 and SL3, located on the Drivers and Receivers
card. At this point, WATCON enters a wait loop where it waits for an indication
from the microprocessor that the timeout is completed. The purpose of this
timeout is to allow the relays to settle (debounce) before proceeding. At this
time, the Select Out signal is still coupled directly from the incoming Select

Out pin to the outgoing Select Out pin via the normally closed contacts of SL1.
However, because SL2 and SL3 are energized, the operational path is now
functional. Thus, at this time, both paths operate in parallel.

Now, Select Out is propagated by raising PSOUT. Another timeout is
initiated by writing F6H to 680FH, and relay SL1 is energized. This opens
the Select Out bypass route. At this point, the GPCI is physically connected
to the channel. The microprocessor is told of the connection by writing an
FOH to address 680FH, followed by an interrupt. Finally, WATCON waits
for the channel to go to a quiescent state before calling subroutine IMRES4.
IMRES$4 sets the programmable channel control signal monitor (RESPIM/)
before exiting to STPOL.

Issued 11/89 8-13

GPCI Bit-Slice Microcode Description

Disconnect Monitoring

8-14

Routine STPOL (Polling Loop)

STPOL is the Bit-Slice Processor’s idle loop. There are several entry points
into STPOL, though once entry is made, the only exit from the loop is by
conditionally calling IMRES. IMRES is called when a test of the signal
RESPIM/ passes. This test is performed every few lines of code throughout
STPOL.

RESPIM/ is generated by hardware that monitors the following channel
originated control signals:

e LOPT/ (Latched Operational Out)

e LSUTY/ (Latched Suppress Out)

e LADT/ (Latched Address Out)

e LSHT/ (Latched SHOUT-Select Out ORed with Hold Out)

The Bit-Slice Processor can mask the RESPIM/ generator to respond to a
single input only or a combination of inputs. Prior to entry into STPOL from
WATCON, WATCON calls subroutine IMRES4 (part of IMRES) which
programs the RESPIM/ generator to monitor SHOUT and Operational Out.
Operational Out is always monitored and is non-maskable. RESPIM/ can
be programmed to go low on the rising or falling edge of LSHT/(Latched
SHOUT), the rising edge of LOPT/ (Latched Operational Out), or the falling
edge of LSUT/ (Latched Suppress Out) or LADT/ (Latched Address Out).
The last four of these signals are maskable. IMRES4 programs RESPIM/

to go low on the rising edge of SHOUT. Additional information on IMRES
is available in the subroutine descriptions discussed later in this section.

The first test performed by STPOL is a test of the DISCONNECT switch
status. This switch has to be in the "connect" position to exit WATCON (see
WATCON above). If you need to take the Multisourcerer off line, place the
DISCONNECT switch in the "disconnect" position prior to removing power.
The reason for this is that any devices which are currently active must have a
status of Device End transmitted to the channel. Failure to adhere to this
requirement may "hang" the channel.

When the switch is placed in the disconnect position, the Bit-Slice Processor
informs the microprocessor of the condition by interrupting it. The
microprocessor writes a status of Device End for each active device. Then,
STPOL transmits the Device End status via the normal polling process. When
all active channels have had a Device End status transmitted, the
microprocessor informs the Bit-Slice Processor that all devices are logically
disconnected. Then, STPOL exits by jumping to DISCON. DISCON enables
the Select Out bypass path by de-energizing all relays, physically disconnecting
the GPCI from the channel. Then, DISCON exits to WATCON where the
Bit-Slice Processor waits for the DISCONNECT switch to be placed back into
the connect position.

Issued 11/89

Detailed Bit-Slice Microcode Description

Command Chaining

Device State Groups

Device Not Available
Group

Issued 11/89

If the DISCONNECT switch is in the connect position, STPOL tests RESPIM/
and conditionally calls IMRES as described above. Next, STPOL tests for
command chaining. For information on command chaining refer to page 2-10
of the I/O Reference Manual. Command chaining is indicated during the
completion of the present command. It informs the control unit of a pending
new command immediately following the completion of the present command.
When command chaining occurs, polling is bypassed since immediate
reservicing of the present device is indicated.

Refer to Figure 15 on page 8-11. The polling loop is bypassed if either the
Pending Status flag or the Stacked Status flag is set. For the present, assume
that neither flag is set. Now, STPOL retrieves the device state of the I/O
device whose address is stored in the Polling Address register (Register A).
Table 23 on page 8-7 is a list of the possible device states. Device states are
analyzed and separated into four groups. These groups are:

e Device Not Available (Device Busy, Device Not Ready and Not
Present)

o Status (Pending Status, Pending Status Request, Stacked Status
and Stacked Status Request)

e Device Available (Available)

o Going Not Ready, Going Ready (Microprocessor had control
during a Selective Reset)

The Device Not Available group consists of Device Busy (1000B), Device Not
Ready (1010B) and Not Present (1011B). Refer to the Device Not Available
path in Figure 14 on page 8-6. If examination of the device state reveals a
Device Not Available type, STPOL simply increments the polling address in
preparation for testing the next device. Then STPOL tests RESPIM/ and
loops back to the top of STPOL. In effect, STPOL skips any devices which
fall into the Device Not Available group.

8-15

GPCI Bit-Slice Microcode Description

Status Group

8-16

The Status group consists of Pending Status (0100B), Stacked Status (0110B),
Pending Status Request (0101) and Stacked Status Request (0111B). When
the microprocessor completes a command (i.e., data transfer), it writes a status
into the appropriate Register File address. Then it changes the device state
from Busy to Pending Status. Assume the device, whose address is in the
Polling Address register, has a Pending Status device state. The first test
performed by the Status group path checks to see if the status is stacked or
pending. Since we have a Pending Status, we enter the "Pending Status" branch.
Here, the Pending Status flag (bit 0 of Register F) is set and the Request In
control line to the channel is raised. This control line informs the channel that
the GPCI has information to pass to the channel (status in this case). Once the
Request In line is raised, STPOL checks for channel activity and returns to the
top of STPOL. Now, notice that the Pending Status flag prevents access to the
lower portion of STPOL. Thus, at this time, STPOL can only test for:

e DISCONNECT switch status
e channel activity
e command chaining

Stacked Status

Pending Status

The Stacked Status flag test will fail at this time since the Pending Status flag
is set. Also, since command chaining is indicated only when both status flags
(Pending and Stacked) are set, the Command Chaining flag test will also fail.
Therefore, during a Pending Status condition, STPOL tests only for channel
activity and a disconnect indication.

The channel responds to the raised Request In control signal by raising Select
Out and Hold Out SHOUT goes high and (LSHT/ goes low). LSHT/ causes
RESPIM/ to go low, resulting in a call of subroutine IMRES. IMRES
attempts to send the device status to the channel. If the channel is currently
not busy, it will accept the status. However, if it is busy, it tells the GPCI to
stack the status. If this happens, IMRES clears the Pending Status flag and
sets the Stacked Status flag.

If the channel accepts the status, IMRES clears the Pending Status flag unless

the channel indicates command chaining. If command chaining is indicated,
IMRES sets the Stacked Status flag and the Pending Status flag remains set.

Issued 11/89

Detailed Bit-Slice Microcode Description

Device Available

Issued 11/89

Assume that the status is stacked (Stacked Status flag is set). Now, when
control is returned to STPOL, processing continues down through STPOL
until the Stacked Status flag is tested. This test passes and STPOL directs
processing to the Stacked Status branch of the Status group of device states
(See Figure 15 on page 8-11). Here, STPOL tests for channel activity and
then tests SUT/. SUT/ (inverted Suppress Out) went low to tell the GPCI to
stack its status, and remains low until the channel is able to accept the Stacked
Status. Therefore, if Suppress Out is still low, you simply loop to the top of
STPOL to repeat the cycle. Eventually, Suppress Out goes high, allowing
STPOL to raise Request In. CUIS is initiated as described above when
Request In goes high. Command chaining is always broken when status is
stacked. Both flags (Stacked Status and Pending Status), are reset when the
channel accepts the Stacked Status.

In STPOL, a Pending Status Request is handled exactly like a Pending Status,
resulting in a transfer to CUIS. CUIS will either transmit a Device End if
status is accepted or stack the status if it is unaccepted. In the latter case, the
device state is changed to Stacked Status Request.

Refer to Figure 15. The Device Available path in STPOL increments the
Polling Address and returns to the top of STPOL. A device enters the Device
Available state when it is available for service. Under this condition, the device
requires no action on the part of the Bit-Slice Processor. Therefore, except
during a disconnect, STPOL simply sets up the polling address to check the
next device.

The Disconnect flag is tested within the Device Available path in STPOL.

This flag is set near the beginning of STPOL if the DISCONNECT switch is in
the disconnect position. When the switch is in this position, the microprocessor
loads a Device End status into each busy device’s status register, sets the device
state to Pending Status, and monitors the device state.

During its polling cycles, STPOL detects the Pending Status, transmits the
status to the channel, and resets the Pending Status flag as described above.
At this time, the device’s state is Device Available. During a Disconnect
process, the test of the Disconnect Flag passes, resulting in a device state
change from Device Available to Not Ready. When the microprocessor
determines that all active devices are in a state of Not Ready, it activates

the control signal CTL2. STPOL tests CTL2 immediately after testing the
DISCONNECT switch. When both tests pass, it transfers control to DISCON
which de-energizes all relays on the Channel Drivers and Receivers board,
completing the interface disconnect process.

Once a device goes Not Ready, the microprocessor reactivates it by sending
an Attention status to the channel.

8-17

GPCI Bit-Slice Microcode Description

Going Not Ready The last two device states, Going Not Ready and Going Ready, occur as a

Going Ready Group result of a Selective Reset. The channel (not the host) performs a Selective
Reset when it does not receive expected results from a device within a
predetermined period of time. A Selective Reset is indicated when the
channel drops Operational Out (OPT/ rises) while Suppress Out is high
(SUT/ is low). When OPT/ rises, IMRES is called as a result of the next test
of RESPIM/. IMRES does additional testing to separate Selective Resets
from System Resets. During a Selective Reset, IMRES transfers control to
SELRES. SELRES sets the device state to Busy and tells the microprocessor
of the reset.

After the microprocessor performs the Selective Reset, the device can go to

a Ready (Device Available) or Not Ready (Device Not Available) state. The
Ready/Not Ready status will normally be the same after the reset as it was
before the reset. The one exception is if you changed the Ready/Not Ready
state via the keyboard prior to the reset, but the microprocessor was unable

to change the state prior to the reset. In this case, the microprocessor changes
the state after the reset.

SELRES initially sets the device state to Busy. After completion of the reset,
the microprocessor clears the device’s status registers and sets the device

state to Going Ready or Going Not Ready. Since there is no status response
to a Selective Reset, the channel has no way of knowing when the reset is
complete. Thus, it/is possible for the channel to send a command to the device
while it is still being reset. Should this happen (at this time, the device state is
Busy), the GPCI would respond with a status of Busy and set the Extra Status
register (Register 8) to Busy Reported.

The Going Ready Going Not Ready branch of STPOL has two purposes.

It changes the Going Ready or Going Not Ready device state to Device
Available or Device Not Available respectively, and it clears the Busy report
to the channel if one was sent. If Busy was sent, a Device End status must be
sent to clear the Busy condition.

First, the device state codes for Going Ready (code 0010B) and Going Not
Ready (code 0011B) are changed to device state codes 0000B and 0001B
respectively, by resetting the second LSB. Then, Extra status is ORed with
the device state code. At this time, Extra Status will be 0000B unless a status

of Busy was sent to the channel. In that case Extra Status will be 0100B. By
combining the Device State code and Extra Status, a Pending Status or Pending
Status Request is formed only if a Busy Reported condition exists. If a Busy
Reported condition doesn’t exist, the 0001B (Going Not Ready) code is
changed to 1010B, and the 0000B remains unchanged. The Pending Status and
Pending Status Request (codes 0100B and 0101B respectively) cause STPOL to
process these pending status codes as described above for the Status group of
device states.

8-18 Issued 11/89

STACK

EXIT

STACK

EXIT

(PART OF CONNCT)
SELECTIVE RESET FOR
ANOTHER CONTROL UNIT.

NOTE 1:IMRES IS CALLED BY STPOL IF THE FLAG RESPIM GOES

Issued 11/89

ACTIVE LOW. THIS FLAG IS GENERATED BY PAL $21 (BX13
ON SHEET 2). FOUR EVENTS CAN CAUSE RESPIM TO GO

ACTIVE: OPERATIONAL OUT GOES INACTIVE, OR SUPPRESS

OUT GOES ACTIVE AND MONITORING OF SUPPRESS OUT IS

ENABLED, OR SHOUT GOES ACTIVE AND THE MONITORING OF
SHOUT IS ENABLED, OR SHOUT GOES INACTIVE AND THE

MONITORING OF SHOUT IS DISABLED. ADDRESS OUT COULD
GENERATE A RESPIM FLAG BUT IS NOT ENASBLED IN THE

PRESENT PROGRAM.

SHOUT SHOUT ENABLE CONDITION

ACTIVE INACTIVE 1

ACTIVE ACTIVE 2
INACTIVE INACTIVE 3
INACTIVE ACTIVE +

DISABLE SUPPRESS
OUT MONITORING
AND DROP
REQUEST IN

CONDITION 2
(SEE NOTE 1)

PENDING
STATUS

(DASE & DEVICKE)

SELECT OUT

MONITOR FOR
SHOUT/GOING
INACTIVE

(WRONG DEVICE
ADDRESS EXM)

CHAINING

STORE LOW NIBBLE
OF ADDRESS ON
BUS IN REGISTER A

SET B.8. STATUS
REGISTER TO ®

l

USE DEVICE ARRESS
TO FETCH DEVICE
STATE

ZERO STATUS

DEVICE STATE=S
N

Figure 16. Subroutine IMRES Flow Diagram (Sheet 1 of 3)

8-19 and 8-20

TEST FOR INTERFACE

BUSY DEFMINED
DEVICE STATE

N STATUS

STATUS
ST

ATES

INDICATED
2:.3,4.8.8,7

GET COM 3D AND

DISCONNECT AND
SELECTIVE RESET

TEST FOR SELECTIVE
RESET AND INTERFACE
DISCONNECT

TEST FOR INTERFACE

DISCONNECT AND
SELECTIVE RESKT

PARITY ERROR
~. -
Ul T~
SILLEGAL CMD, ePARITY
SENSE =~ 4 AND SENSE = AND
STATUS = PENDING STATUS = PENDING
STATUS STATUS
(o)
SENSE v
COMMAND 7
N
ENTER FROM
IS8 & OETCMD
SET RED 1 = 4
RPRTUC sET
¢ INTERVENTION | sENSE =
REQUIRED)
WRITE REO 1 (SENSK

SET STATUS TO “"BUSY"
AND SET "BUSY
REPORTED" IN EXTRA

STATUS
'§ .
1 ?
-]

SELECT OUT AND
DISABLE SHOUTEN

@0 TO

SPARITY ERROR,SET
Py

AND
STATUS = PENDING

STATUS

1> 2
s>

~

OET STATUS

SET STATUS AND
EXTRA STATUS TO
"BusY"

i)
eILLEGAL CMD,
AND

SENSE = AM
STATUS = PENDING
STATUS

CALL oETCMD

INFO) TO RF SENSE
AND INTERRUPT
MICROPROCESSBOR

i
3
;

«SENSE DEFINITION

BT

3 = COMMAND REJECT

2 = INTERVENTION REQUIRED

1 = BUS OUT CHECK

® = EQUIPMENT CHECK (CHANNEL CAUSED INT. DISC. LAST PASS)

Issued 11/89

> OO)
Ca >T€ <
Y @0 TO
CMDONE sHT 3

(SEND STATUS TO CHANNEL)

SET DEVICE STATE

SEND STATUS TO CHANNEL,
WAIT FOR SERVICE OUT TO
RISE. THEN, DROP STATUS
IN

LOAD DEVICE ADODRESS
INTO @88F AND SET
MODIFIER TO @. THEN,
INTERRUPT MICRO

PUT CHANNEL END IN
STATUS AND EXTRA STATUS

IMMEDIATE

>f\1)mra

Figure 16. Subroutine IMRES Flow Diagram (Sheet 2 of 3)

8-21and 8-22

cuis

FETCH STATUS AND EXTRA STATUS FROM THE REO.
ENTRANCE FROM BUSY FILE AND CONVERT TO CHANNEL FORMAT.
TEST FOR SELECTIVE RESET AND INTERFACE DISCONNECT

Y

Y
. SEND STATUS TO BUS IN e & 7 TO BUS IN

(COMMAND OUT REMAIN LOW ?)

STATUS ACCEPTED STATES
$:1:,2:3,4.85,8,7.8,A, OR B

v
STATUS STACKED
STATES 4.8 &
@0 TO READ CHANNEL AND CHECK PARITY.
CLEAR OF MLAG
CHECK FOR SELECTIVE RESET AND
INTERFACE DISCONNECT
INTDIS N DEVICE v
STATE INDICATE
Y
BOTH MLAGS SET
IS DEFINED AS
CHAINING COMMAND
CHAINING
L
\ OR DEVICE RESET PENDING STATUS SET PENDING STATUS
SET STACKED STATE WITH AND STACKED STATUS AND STACKED STATUS
STATUS REQUEST s11e8 rLAGs mLAce
cLEAR v N (STATE 7)
or MAG sET Y
or FLaoc
»
STATE @ OR 7
DEVICE STATES 4.5.8,7.8.A
l <
WRITE EXTRA STATUS
MODIFY DEVICE STATE.EXTRA
TO REGISTER FLE
) STATUS AND DEVICE MODIMER
v IN ACCORDANCE WITH REPORTED
%o TO STATUS
ROLLING N
ADDRESS = DEVICE
RPRTUC ADDRESS
N
?
(REPORT UNIT CHECK —
See "BUSY") v

RESET PENDING
STATUS FLAO

Figure 16. Subroutine IMRES Flow Diagram (Sheet 3 of 3)

Issued 11/89 8-23 and 8-24

Detailed Bit-Slice Microcode Description

Subroutine IMRES

Issued 11/89

IMRES directs all processing external to STPOL. IMRES is called by STPOL
when RESPIM/ is low. For additional information on RESPIM/, refer to the
Routine STPOL description on page 8-14.

IC BX13 generates RESPIM/ under one or more of these conditions:
e LOPT/ goes high, or
e LSHTY/ goes low and LSHT/ monitoring is enabled, or
o LSHTY/ goes high and LSHT/ monitoring is disabled, or
o LADT/ goes low and LADT/ monitoring is enabled, or
e SUT/ is low and SUT/ monitoring is enabled

Since any of the above conditions can cause RESPIM/ to go low, much of
IMRES consists of tests that determine which of the above conditions actually
caused RESPIM/ to go low.

Figure 16 on pages 8-19 through 8-24, shows the program flow of IMRES.
First, IMRES tests Operational Out (LOPT/). If LOPT/ is high, it indicates
either a System Reset for all control units and devices or a Selective Reset for
another control unit. A System Reset is indicated when Operational Out falls
(LOPT/ goes high) and Suppress Out is down (SUT/ is high), and the GPCI

is on line (physically connected). A Selective Reset is indicated when LOPT/
rises while SUT/ is low (Suppress Out is high), and is valid only if Operational
In is high. Thus, a System Reset can occur at any time, while a Selective Reset
only occurs when a device is logically connected.

Normally, a device is never logically connected when IMRES is called, since
IMRES transfers requests for logical connections to CUIS or ISS. Therefore,
IMRES assumes that a Selective Reset must be intended for a device belonging
to another control unit (i.e., another Multisourcerer). If Suppress Out is inactive
(System Reset), IMRES exits to SELRES. SELRES lowers all tag lines and exits
to SYSRES. If Suppress Out is active, IMRES exits to CONCHS8 (Selective
Reset for a device belonging to another control unit). CONCHS (part of
WATCON) waits for Operational Out to go high again, then exits to STPOL.

If LOPT/ is low (no resets), LSHTY/ is tested. SHT/ is generated on the Channel
Drivers and Receivers board and is formed by ANDing Select Out and Hold
Out. LSHT/ is formed by PAL 2, located at BE1. BEL1 latches SHT/ to form
LSHT/. The RESPIM/ generator (IC BX13) is programmed by writing the
contents of Register E to it (BX13). Register E contains the mask for BX13.
BX13 can generate RESPIM/ either on the rising or falling edge of LSHT/.
The LSB of Register E (SHEN) determines which edge of SHOUT/ will cause
RESPIM/ to go low. If SHEN is high, the falling edge of LSHT/ drives
RESPIM/ low. Conversely, if SHEN is low, RESPIM/ activates on the rising
edge of LSHT/. Therefore, both conditions of SHEN must be tested, as well
as both states of LSHT/.

8-25

GPCI Bit-Slice Microcode Description

Table 24 below shows all possible combinations of LSHT/ and SHEN, and the
processing performed in each of the four paths.

Condition SHOUT/* SHEN Processing

1 low low Test Suppress Out

2 low high Test for valid CUIS or ISS

3 high low Enable SHEN, drop propagation
of Select Out and Return

4 high high Test Suppress Out

*LSHTY/ is active low

Table 24. RESPIM/ Programming

During conditions 1 and 4, RESPIM/ is not caused by SHOUT/. Thus, SUT/
is tested to determine if it caused RESPIM/ to go low. If SUT/ is high, or if it
is low but SUT/ monitoring is not enabled, RESPIM/ is assumed to be caused
by activity between the channel and another control unit on the same channel.
Conditions 2 and 3 result when LSHT/ goes low or high respectively. Both
states of LSHT/ need to be detected. The GPCI is designed to operate in
conjunction with other control units on the same channel. Since all bus, tag,
and control signals (except Select Out) are parallel connected, the GPCI must
be able to identify interface sequences intended for other control units as well
as those sequences intended for itself. The following possibilities exist:

e ISS is intended for this GPCI
o CUIS is initiated by this GPCI
e ISS is intended for another control unit

e CUIS is initiated by another control unit

If either a CUIS or an ISS is intended for another control unit, IMRES must
pass Select Out to the next downstream control unit, set up RESPIM/ to
monitor for LSHT/ going high (condition 3), and return to STPOL. When

the process (CUIS or ISS) between the channel and another control unit ends,
RESPIM/ goes low (LSHT/ goes high), calling IMRES again. This time,
IMRES stops the propagation of Select Out and re-enables monitoring for
LSHTY/ going low (condition 2). Thus, IMRES assumes that LSHT/ is destined
for this GPCI unless additional processing proves otherwise. When control is
relinquished to another control unit, the GPCI monitors the channel control
lines to determine when the other control unit is finished. When the other
control unit finishes, this GPCI assumes the next falling edge of LSHT/ will

be for it.

8-26 Issued 11/89

Detailed Bit-Slice Microcode Description

Refer to Figure 16 (pages 8-19 through 8-24). When the channel attempts an
ISS, IMRES verifies that the base and device address is correct and free of
parity errors. Then the System Reset flag is tested. This flag is set at the
beginning of a System Reset and reset at its completion. If IMRES is called
during a System Reset, this flag will be set. The reason for this procedure is
that no report of reset completion is sent to the channel after a reset is
completed. Therefore, the channel has no way of knowing when it can resume
communications following a reset.

If the GPCl is still busy with the reset when the channel attempts to initiate

an ISS, IMRES detects the set System Reset flag and transfers processing to
RPTBSY (Report Busy). RPTBSY sends a status of Control Unit Busy to

the channel, ending any further channel initiated activity until the GPCI sends

a status of "Control Unit End." RPTBSY also sets a flag indicating that Control
Unit Busy was sent. This flag is tested upon completion of the reset. If the

flag is set, the GPCI sends the Control Unit End status. Refer to the SYSRES
description on page 8-53 for more information.

Assuming the System Reset flag is not set, the Command Chaining flag is
tested. If the Command Chaining flag was set, it is now reset. The Command
Chaining flag will be set again prior to completion of the command if command
chaining continues (see routine CMDDNE below).

After testing and clearing the Command Chaining flag, IMRES fetches the
device state from the Register File to determine if the device is busy (any
device state other than Device Available). If the device is busy, processing
transfers to BUSY; if the device state is not busy, processing transfers to ISS.
Refer to the BUSY or ISS descriptions if necessary.

IMRES determines that STPOL initiated a CUIS process by testing Address
Out (ADTY/) and Request In. If ADT/ is high, either the GPCI or another
control unit raised its Request In, thereby initiating a CUIS process.
Therefore, upon finding ADT/ high, IMRES tests Request In. If Request In
is high, the requested CUIS sequence was initiated by this GPCL. If Request
In is low, another control unit initiated the sequence. When another control
unit initiates the sequence, Select Out is propagated and RESPIM/ is
reconfigured to monitor for LSHT/ going high (condition 3). IMRES
transfers control to CUIS when Request In is high, providing the channel is
not indicating a busy condition.

Issued 11/89 8-27

GPCI Bit-Slice Microcode Description

Routine CUIS (Control Unit Initiated Sequence)

When invoking a call routine, the Bit-Slice Processor saves its return address
by pushing it onto an internal stack. The normal exit from a call routine is a
return instruction. A return instruction automatically "pops" the stored return
address from the stack, and loads it into the program counter. If a call routine
is exited by a jump instruction, the return address must be removed from the
stack manually. Otherwise, the stack memory will soon overflow.

CUIS is entered from IMRES using a conditional jump instruction. This
occurs as a result of the channel’s response to the raised Request In control
line. All exits from CUIS consist of jumps (with a stack pop) to the top of
STPOL, thereby reentering the polling cycle at a known point. Therefore,
IMRES (a call routine) requires a stack pop to clear the Bit-Slice Processor’s
stack pointer.

Although CUIS does not actually send status to the channel, it allows the
GPCI to send it via CMDDNE (Command Done). CUIS merely retrieves

the device status from the proper Status and Extra Status locations in the
Register File, converts the status to channel format, and stores the status in
the ALU’s status working registers (Registers 6 and 7). To access the proper
Register File addresses, CUIS fetches the polling address (refer to STPOL)
and uses it as the Register File address. In addition to fetching and formatting
the status, CUIS advances into the Channel I/O sequence by sending the Base
and Device address to the channel (refer to page C-11 of the I/O Reference
Manual).

While waiting for the channel to accept the address, CUIS monitors for
Interface Disconnects, and System or Selective Resets. If a reset is indicated,
CUIS jumps to SELRES which handles System and Selective Resets. The
channel can signal the control unit (GPCI) to terminate ongoing I/O operations
by performing an Interface Disconnect. Refer to the I/O Reference Manual
for information on how the channel indicates an Interface Disconnect. If

CUIS detects an Interface Disconnect, it transfers control to INTDIS.

Assuming no requests for resets or disconnects exist, CUIS jumps to
CMDDNE. CMDDNE sends the status, located in Registers 6 and 7, to the
channel. For more information on CMDDNE, refer to Routine CMDDNE
on page 8-35.

8-28 Issued 11/89

Detailed Bit-Slice Microcode Description

Routine ISS (Initial Selection Sequence)

This routine is accessed by IMRES when LADT/ and LSHT/ go low. Also, a
parity free address on Bus Out must be a valid address for this GPCI. Before
IMRES jumps to ISS, it performs a stack pop. The purpose of this stack pop
is the same as described in the first and second paragraphs of the CUIS
description on the adjacent page.

The channel uses the ISS procedure to issue a command to the GPCI. ISS
begins by calling GETCMD (Get Command), which sequences interlocked
control signals until the command is on Bus Out. In a manner similar to CUIS,
GETCMD also checks for Interface Disconnects and System and Selective
Resets. GETCMD sets up GPCI hardware that maps the 8-bit command into
a 4-bit code, and then stores the code in Register 3. GETCMD accomplishes
the mapping process by using the channel command and the Device Type
(stored in the Register File) as address inputs to a mapping PROM. Table 25
below shows all the possible codes.

4-Bit Code HEX Value Function

0000 0 Immediate

00001 1 Not Assigned

0010 2 Not Assigned

0011 3 Not Assigned

0100 4 Test I/O

0101 5 Not Assigned

0110 6 Not Assigned

0111 7 Illegal

1000 8 Data Transfer Read Micro
(Sense)

1001 9 Data Transfer Read Multibus

1010 A Data Transfer Read DMA
(Memory)

1011 B Data Transfer Read DMA (I/O)

1100 C Data Transfer Write Micro

1101 D Data Transfer Write Multibus

1110 E Data Transfer Write DMA
(Memory)

1111 F Data Transfer Write DMA (I/O)

Table 25. Command Look-Up Table

Issued 11/89 8-29

. GPCI Bit-Slice Microcode Description

Table 26 below lists the Device Types.

4-Bit Code Device
0000 Bisync
0001 Ingestor
0010 ProNET
0011-1111 not used

Table 26. Device Types

GETCMD exits to RPRTUC (Report Unit Check) if the command contains
parity errors or if it is an illegal command. If the command is parity error free
and legal, GETCMD returns to the calling routine (ISS). For additional
information, refer to the GETCMD subroutine information on page 8-41.

The remainder of ISS consists of decoding the command code and directing
processing to the appropriate command handler.

The command is tested to determine if it is a Test I/O command. Test I/O
commands send device status to the channel. Therefore, if the command is
a Test I/O type, ISS simply jumps to CMDDNE. CMDDNE transmits the
status, located in Registers 6 and 7, to the channel. For all other commands,
the Device State register (Register 0) is set to Busy (8H). The appropriate
device state nibble in the Register File is also set to 8H.

Next, the command is tested to determine if it is an Immediate command
type. An Immediate command is any command which causes the I/O device
to signal Channel End as its initial status during an Initial Selection Sequence.
However, Test I/O is not an Immediate command. An Immediate command
must meet the following requirements:

e its execution requires no more information than that contained in
the command itself; that is, no data bytes are transferred

o the Channel End status is presented as initial status; Device End
status may accompany Channel End

For all other command types, an initial status of 00 is loaded into Registers 6
and 7. If the command is Immediate, the 00 status transmission process is
bypassed. Next, the Bit-Slice Processor interrupts the microprocessor to
inform it that a command is pending. Next, a Status of Channel End is written
to the status and Extra Status registers (Registers 6 and 8 respectively). The
command is again tested to determine if it is an Immediate command.
Immediate commands are completed by jumping to CMDDNE which writes
the contents of Register 6 (Channel End) to the channel. The Channel End
status is sent to the channel upon completion of the command (data transfers).

8-30 Issued 11/89

Detailed Bit-Slice Microcode Description

If the command is not an Immediate command, by default, it is a data transfer
command type. The data transfer commands are sorted into read and write
transfers. All read transfers are handled by RDXFER (Read Transfer); all
write data transfers are handled by Write Data Transfer. The actual data
transfer is accomplished by hardware. The read and write data transfer
routines merely monitor the transfer processes, regardless of data sources
and sinks.

There are several data source and sink combinations, and the hardware

must be configured for each combination. The hardware configuration on

the Bit-Slice Processor end is handled directly by hardware that decodes the
command. The microprocessor end is handled primarily by the
microprocessor. In fact, the Bit-Slice Processor interrupts the microprocessor
to allow the microprocessor to decode the command and configure its share
of the hardware so the transfer can proceed.

RDXFER consists of a loop which tests for Selective Resets, Interface
Disconnects, and the end of the transfer. Both the channel and the device
can end data transfers. Therefore, RDXFER must test for both causes of
transfer terminations. If neither the channel nor the device indicates an end
of transmission, the loop is repeated. If the channel terminates the transfer
(Command Out goes high - COT/ goes low), RDXFER activates the EOX
(End of Transfer) control signal. EOX is one of the controlling signals used
to configure hardware during a data transfer. The device indicates the end
of transfer via the microprocessor. That is, when the device has transferred
the last byte of data to the channel, the microprocessor drops RFINTA,
which is monitored by RDXFER. Regardless of who terminates the transfer,
ending status must be presented to the channel. Therefore, RDXFER exits
to CMDDNE.

Write Data Transfer is similar to RDXFER. Like RDXFER, it consists of a
loop that tests for Interface Disconnects, Selective Resets, and an end of data
transfer. Transfers can be terminated by the channel or the device. Channel
termination is indicated when the channel raises Command Out (COT/ falls)
in response to the GPCI’s raised Data In line. The microprocessor indicates
the end of the transfer by dropping RFINTA. Write Data Transfer checks
each data byte for parity. Parity error reporting is an option the operator may
select using the Multisourcerer’s keypad. Upon entry to Write Data Transfer,
the microprocessor control signal, CTL2, is tested. If CTL2 is high (report
parity errors), the GP (General Purpose) flag (Register F, bit 3) is set and
flags error reporting after the transfer.

Issued 11/89 8-31

GPCI Bit-Slice Microcode Description

During the transfer, if one or more bytes have parity errors, Register 1 is set
to a value of 0100B (four). Upon completion of the transfer, the GP flag is
tested. Ifit is set, Register 1 is tested for a value of four. If it contains a four,
Write Data Transfer jumps to RPRTUC (Report Unit Check). RPRTUC
stores the 0100 code in the Register File as a Sense byte that will be requested
by the channel during a subsequent Sense command (Immediate command).
The channel will issue the Sense command because RPRTUC sends a status
of Unit Check to the channel instead of the expected Channel End.

If there are no parity errors, or if parity error reporting is not selected, Write
Data Transfer jumps to CMDDNE. CMDDNE outputs a Channel End status
and completes the Ending Sequence. For more information on CMDDNE,
refer to the CMDDNE routine description which begins on page 8-35. For
more information on the Ending Sequence or data transfers, refer to the I/O
Reference Manual.

8-32 Issued 11/89

Detailed Bit-Slice Microcode Description

Issued 11/89

Routine BUSY

IMRES transfers control to BUSY instead of ISS when all conditions for a
transfer to ISS are met, except when the device has a device state other than
"Device Available" (code 0000B). In other words, any legal command (refer
to Table 5 on page 7-9) directed to any device which has a device state other
than Device Available, will result in a program transfer to BUSY. BUSY is a
failure recovery routine. That is, during normal operations, conditions which
invoke BUSY do not normally occur.

Refer to the device code descriptions on pages 8-8 and 8-9 if necessary.

There are 10 valid command codes (see Table 5) and nine device states,
excluding Device Available. Thus, approximately 90 command/device state
combinations are possible. The combinations are further expanded by the
possibility of a System Reset, Selective Reset, or Interface Disconnect
occurring while a device is busy. These sequences are not only unpredictable
in their occurrence, but their durations are also variable. Each combination
possibility must result in a suitable action if satisfactory operation is to be
attained. Most combinations require a response to the channel (status).
Fortunately, only a few types of responses are needed to handle all
combination possibilities. Therefore, BUSY must sort the combinations
into groups which require the same or similar responses.

BUSY performs much of the sorting process using the device state codes
alone. Refer to Figure 16 on pages 8-19 through 8-23. Analysis of the device
state code results in four major paths. Within some of these paths, additional
decoding is performed by analyzing the command codes and/or testing for
resets and Interface Disconnects.

BUSY begins by testing the MSB of the device state (refer to Figure 16 and
Table 7, the Device State Table). If the MSB is zero, device codes 0010B
through 0111B are processed. Remember, device code 0000B will never be
processed by BUSY. Except for device states 0010B and 00011B, this group
of device codes is status types. At this time, the device may not be busy, but
the channel requires a status report. Normally, the channel will not issue a
new command to a device which still needs to send a Device End. However,
if the channel is reset after issuing a command and before the Device End is
received, a Pending Status or Pending Status Request could occur (codes
0100B and 0101B respectively).

The channel can perform a Selective Reset on a device and issue a new
command after the microprocessor changes the state from BUSY to Going
Ready or Going Not Ready. If this happens, the device state could be 0010B,
0011B, 0100, or 0101B, depending on when the command occurred and whether
the device state was Going Ready or Going Not Ready.

8-33

GPCI Bit-Slice Microcode Description

8-34

If the device state’s MSB is zero, BUSY fetches the new command and tests

for Selective and System Resets, and Interface Disconnects. Then, it retrieves
the device’s status from the Register File and stores it in the ALU’s working
status registers (Registers 6 and 7). Next, it tests the command to see if it is a
Test I/O. The purpose of a Test I/O command is to retrieve device status.

Thus, if the command is a Test I/O command, BUSY simply exits to CMDDNE.
CMDDNE sends the status, located in the status working registers, to the
channel.

If the command is not a Test I/O command, the status and extra status are
tested for "zero." A device which received a Selective Reset will have a status

of zero if it didn’t receive the new command while the device state is still BUSY.
In other words, if the device state is 0010B or 0011B, and a command wasn’t
received during the reset, the test on the status and extra status will pass.

When this happens, BUSY transfers processing to ISS, as the device is able to
act on the new command.

If the MSB of the device state is a "one," the device state will be Busy (code
1000B), Device Not Ready (code 1010B), or Not Present (code 1011B). These
states are separated into three paths by two tests.

If the state is Device Not Present, BUSY propagates Select Out and disables
LSHT/ monitoring. BUSY interprets this situation as a command for another
control unit. Two Multisourcerers can be connected to the same channel and
have the same base address, and still function normally, providing the device
addresses of both units are mutually exclusive.

If the state is busy, BUSY retrieves the command, testing for resets and
Interface Disconnects. Then it sets the status to Busy, sets the Busy Reported
flag, and exits to CMDDNE. CMDDNE transmits the Busy status to the
channel. The Busy Reported flag is converted into a Device End status after
the in-progress command is completed. After the channel receives the Device
End status, it reissues the command that forced the Busy status transmission.

If the device state is Device Not Ready, BUSY fetches the command, as
described above. Then it tests for the Sense command, which is the only
command that can be processed by a device in a Device Not Ready state. This
command retrieves data from the device’s sense indicators. This sense data

is detailed enough for the channel to determine the actual state of the device,
and any unusual conditions associated with the execution of the I/O operation
during which the error was detected.

If any command other than the Sense command is received for a device in

the Device Not Ready state, BUSY writes Sense information (Intervention
Required) to the Register File and interrupts the microprocessor. Prior to the
interrupt, BUSY writes a status of Unit Check to the Register File and to the
ALU’s working status registers. The interrupt informs the microprocessor of the
forthcoming Sense command, giving it time to collect the Sense data. CMDDNE
sends the Unit Check status to the channel. When the channel receives a Unit
Check status, it usually sends a Sense command to determine the problem.

Issued 11/89

Detailed Bit-Slice Microcode Description

Issued 11/89

Routine CMDDNE (Command Done)

All IBM commands require an initial status and an ending status. Also, the
channel normally requires a Channel End status and a Device End status for
each command. Depending on the task (command) to be performed and the
type of control unit used, Device End and Channel End may be simultaneously
sent as the ending status. In the Multisourcerer, the Bit-Slice Processor is
responsible for the Channel End. The microprocessor is responsible for
informing the Bit-Slice Processor when the Device End can be sent. The result
of this division of responsibility is three status byte transmission, an initial status
of "00" (acknowledges the command), a Channel End status (the channel is no
longer required), and a Device End (the device has completed the command).
The Bit-Slice Processor sends all status bytes to the channel.

The initial status is sent by ISS during the Initial Selection Sequence. This
status can never be refused (stacked) by the channel. CMDDNE sends the
Channel End and Device End status to the channel. This status is stackable
meaning the channel can refuse it. The source for this status is Registers

6 and 7. Thus, these registers must be loaded with the proper status before
jumping to CMDDNE.

Besides transmitting status, CMDDNE also updates the device state and sets

or resets the Pending Status, Stacked Status, and Command Chaining flags.
CMDDNE begins by sending the status, stored in Registers 6 and 7, to the
channel. Then it waits for SET/ (Service Out) to fall (the channel’s
acknowledgement of receipt of the status). After SET/ falls, CMDDNE checks
to see if the channel raised Command Out, thereby informing the GPCI to stack
the status.

CMDDNE'’s two major processing paths are Status Accepted and Status
Stacked. Each path modifies the device states, status flags, and device status
in accordance with the present device state, and indicates whether or not the
status was accepted. These device states are discussed on pages 8-37 and 8-38.
The Stacked Status path begins by testing the device state. If a status type
device state is found (device state bit 2 is set), CMDDNE ORs the device state
with 0110B. Thus, a device state of Pending Status or Pending Status Request
is changed to Stacked Status or Stacked Status Request respectively. STPOL
retransmits the status as soon as the channel indicates not busy.

The device states that are not status types are 0000B, 0010B, 0011B, 1000B,
1010B and 1011B. Except for 1011B, these states occur only during presentation
of initial status to the channel. Since initial status is nonstackable, the status

of devices in these device states is processed by the Status Accepted branch of
CMDDNE. Device state 1011B is aborted by BUSY and thus cannot exist at
the entrance to CMDDNE. Therefore, in Figure 16, the non-status branch of
the Stacked Status leg is not used. It does provide a means of recovery if one

of the non-status device states becomes stacked. Finally, the Stacked Status
branch writes the Extra Status to the Register File, resets the Pending Status flag
if this is the polled device, and joins the output of the Status Accepted branch.

8-35

GPCI Bit-Slice Microcode Description

The Status Accepted branch of CMDDNE compares the polling address with
the device address to determine if a command chaining test should be
performed. A Device End status was sent to the channel if the polling address
equals the device address. Command chaining is indicated by the channel
during the presentation of a Device End status. This status transmission results
from the Pending Status device state. The channel indicates command chaining
by raising Suppress Out at the same time it acknowledges the status byte. The
status byte is acknowledged by raising Service Out. Also, for command chaining
to be valid, the status must indicate Device End and no BUSY Reported. If
command chaining is indicated, the Pending Status and Stacked Status flags

are set. Otherwise, both flags are reset.

The last block of the Status Accepted branch of CMDDNE modifies the
device state and Extra Status register, and conditionally clears the Device
Modifier register. Table 27 shows the results of this block under various
device state inputs.

Device State Device State
at Entry at Exit Comments
0 0 Clears Device Modifier & Extra Status
2* 0 Clears Device Modifier & Extra Status
3* A Clears Device Modifier & Extra Status
4 0 Clears Device Modifier & Extra Status
5 A Clears Device Modifier & Extra Status
6 0 Clears Device Modifier & Extra Status
7 A Clears Device Modifier & Extra Status
8 8 Clears Extra Status
A 0 Clears Device Modifier & Extra Status
B** 0 Clears Device Modifier & Extra Status
Device States 0010B

* Test I/O instruction only

**All commands except Sense

Table 27. Modification of Device State and Status by CMDDNE

Now, the Status Accepted branch combines with the Status Stacked branch.
The remainder of CMDDNE consists of testing for Selective and System
Resets while waiting for Service Out to fall. When Service Out falls SET/
rises, and CMDDNE exits to the top of STPOL.

8-36 Issued 11/89

Detailed Bit-Slice Microcode Description

Device State 0000B
(Device Available)

Device States 0011B
and 0011B

Device State 0100B
(Pending Status)

Device State 0101B
(Pending Status Request)

Device State 0110B
(Stacked Status)

Device State 0111B
(Stacked Status Request)

Issued 11/89

Device State Summary

All commands sent to devices in device state 0000B are processed by ISS. For
all commands except Test I/O, ISS sets the device state to 1000B (Device Busy).
A Test I/O command sent to a device in a Device Available state is the only way
a device state of 0000 will exist upon entry to CMDDNE. For these conditions,
the status which CMDDNE sends will be initial status and cannot be stacked
by the channel.

Device States 0010B and 0011B are Ready and Going Not Ready respectively.
These codes exist only in the Register File from the time a Selective Reset ends
until the next time STPOL polls the device. If a new command is received

for a device in either of these states during this time, the processing is turned
over to BUSY. Since the MSB of the device state is "0", the status type path in
BUSY is used. If the new command is a Test I/O command, it transfers control
to CMDDNE. CMDDNE will send any status contained in the Status and Extra
Status registers, located in the Register File. For all other commands, the Status
and Extra Status are tested for zeros.

If the status bytes are zero, processing is transferred to ISS. ISS changes the
0010B or 0011B state code to Device Busy (1000B). Thus, CMDDNE processes
a Test I/O command sent to a device in one of these states (0010B or 0011B).
The status which CMDDNE sends will be initial status and cannot be stacked
by the channel.

The microprocessor sets this state to inform the Bit-Slice Processor that the
device has completed the command. Except for Test I/O, all commands
result in a Pending Status.

STPOL generates a Pending Status Request when a device receives a
command while a Selective Reset is in progress, and when that device was
in a Going Ready state prior to the reset. If the device was in a Going Not
Ready state prior to the reset, STPOL sets the device state to Stacked
Status Request.

If CMDDNE attempts to send status to the channel and the channel is
currently busy, CMDDNE changes the state to Stacked Status.

If the GPCI attempts to send status to a busy channel as a result of a Pending
Status Request, CMDDNE changes the status to Stacked Status Request.

8-37

GPCI Bit-Slice Microcode Description

Device State 1000B All commands, except Test I/O, sent to a device in a ready state, cause a device

(Device Busy) state of Device Busy. Device Busy exists from the time that ISS sets the Device
Busy state until the microprocessor indicates that the device has finished the
command. If, for some reason, a device in a Device Busy state receives a new
command, that command is processed by BUSY. BUSY sets the status register
to Busy and sets the Busy Reported flag. Then BUSY exits to CMDDNE.
CMDDNE sends an initial status which cannot be stacked by the channel.

Device State 1010B BUSY processes commands for devices in this state. If the command is Sense,
(Device Not Ready) it is turned over to ISS for processing. ISS changes the state to Device Busy.
For all other commands, BUSY sets the status to Unit Check and exits to
CMDDNE. CMDDNE sends an initial status which cannot be stacked by
the channel.

Device State 1011B This device state is aborted by BUSY.
(Device Not Present)

8-38 Issued 11/89

Subroutine Descriptions

Subroutine Descriptions

There are 21 subroutines in the Bit-Slice Microcode. IMRES is covered in
detail in the previous section and is not addressed again here. Subroutine
documentation consists of set-up requirements, a brief process description,
outputs, called subroutines, and Bit-Slice ALU register modifications. The
following is a complete list of the subroutines used in the GPCI.

Issued 11/89

CHKPAR - Check Parity

FETSTA - Fetch Status

GETCMD - Get Command

IMRES - Immediate Response

IMRES4 - Immediate Response (section 4)
MADBIN - Move Address to Bus In

MCLTIN - Move Control to Tag In

MSTBIN - Move Status to Bus In

RDRFDS - Read Register File Device State
RDRFDT - Read Register File Device Type
RDRFEX - Read Register File Extra Status
RDRFPS - Read Register File Processor Status
TCANSD - Test Command and Service Down
TCORSU - Test Command Out or Service Out Up
TELLUP - Tell Microprocessor (about an operation)

TUPRO - Tell Microprocessor (about a Reset or Interface
Disconnect)

TUPRST - Tell Microprocessor of Reset
WRRFDA - Write Register File Device Address
WRRFDM - Write Register File Device Modifier
WRRFDS - Write Register File Device State
WRRFEX - Write Register File Extra Status

8-39

GPCI Bit-Slice Microcode Description

Set-Up

Called By

Process Description

Subroutines Called

Registers Modified

Set-Up

Called By

Process Description

Subroutines Called

Registers Modified

8-40

Subroutine CHKPAR (Check Parity)

Register 1 must be cleared by the calling routine. Data Out (DAT/) must be low.
Write Data Transfer

CHKPAR tests the channel parity bit. If an error is detected, CHKPAR tests
Data Out (DATY/). If DAT/ is still low, CHKPAR sets Register 1 to a value of 4
(0100B).

None

Register 1 is set to a value of 4 if a parity error is detected.

Subroutine FETSTA (Fetch Status)

None
CUIS, BUSY

FETSTA extracts the Processor Status and Extra Status from the Register
File, reformats this status, and loads it into Bit-Slice ALU registers 6, 7 and 8.
Processor Status is determined by the microprocessor; Extra Status is
determined by the Bit-Slice Processor.

FETSTA has two special purpose paths, a System Reset flag path and a
Disconnect flag path. FETSTA sets the Control Unit End status if the System
Reset flag is set. The System Reset flag is set by SYSRES if the channel
attempts to send a command between the start of a system reset and its
completion. If this happens, branch routine RPTBSY (entered from IMRES)
sends a status of Control Unit Busy to the channel. A status of Control Unit
Busy suspends all channel activity to the GPCI until a Control Unit End status
is sent to the channel. FETSTA sets up this status if the System Reset flag is
set. Then it returns to the calling routine (CUIS, in this case).

When disconnecting, FETSTA sets the Unit Exception status bit and returns.

RDRFPS, RDRFEX

Registers 6, 7 and 8

Issued 11/89

Subroutine Descriptions

Set-Up

Called By

Process Description

Subroutines Called

Registers Modified

Issued 11/89

Subroutine GETCMD (Get Command)

Used only during an Initial Selection Sequence.
BUSY, ISS

GETCMD proceeds through the Initial Selection sequence until the
command (on Bus Out) can be latched into Bit-Slice Processor hardware.
Then, GETCMD fetches the device type from the Register File. The device
types are listed below.

CODE Device Type
00B Bisync

01B Ingestor
10B ProNET

Together, the command and device type address a command look-up table,
whose output is a 4-bit device specific command code. This code is held in
Register 3 upon return to the calling routine. Once the device specific code
is generated, the state of the specified device is tested to see if it is "ready".
If it isn’t in a ready state, GETCMD returns.

If the device is ready but the command contains a parity error, Register 1 is
loaded with AH, the device state is changed to Pending Status, the return
address is popped from the stack, and GETCMD exits to RPRTUC (Report
Unit Check).

If the command contains no parity errors but is not a legal command for that
device, the exit procedure is as described for a parity error except Register 1
contains an 8H. If the command was legal, GETCMD returns. While
GETCMD is executing, it frequently tests for Interface Disconnects and
Selective Resets. If either condition occurs, GETCMD pops the return
address from the stack and jumps to INTDIS (see page 8-49) or SELRES
(see page 8-51).

MCLTIN, MADBIN, RDRFDT

Register 3 contains the device specific command.
Register 1 = AH (if parity error)

Register 1 = 8H (if illegal command)

Register 4 bit 2 set

GPCI Bit-Slice Microcode Description

Set-Up

Called By

Process Description

Subroutines Called

Registers Modified

Set-Up

Called By

Process Description

Subroutines Called

Registers Modified

Subroutine IMRES (Immediate Response)

See page 8-25.

Subroutine IMRES4 (Immediate Response Section 4)

None
CONTCH, used as in-line code by IMRES

IMRES4 is a part of IMRES. It programs PAL 21 to drive RESPIM/ low if
LSHT/ goes low. It also suspends propagation of Select Out by lowering
PSOUT.

MCLTIN

Register E bit 0 set
Register 4 bit 1 reset

Subroutine MADBIN (Move Address to Bus In)

Register AH contains the device address.
Register BH contains the base address.

CUIS, GETCMD

MADBIN latches the base and device address into Bit-Slice hardware,
forming an 8-bit I/O address. It transfers this 8-bit address to Bus In via the
Channel Drivers and Receivers board.

None

None

Issued 11/89

Subroutine Descriptions

Set-Up

Called By

Process Description

Subroutines Called

Registers Modified

Set-Up

Called By

Process Description

Subroutines Called

Registers Modified

Issued 11/89

Subroutine MCLTIN (Move Control to Tag In)

Register 4 contains the low nibble of the channel control word.
Register 5 contains the high nibble of the channel control word.

HSTART, DISCON, CONTCH, STPOL, IMRES, CUIS, CMDDNE,
GETCMD, ISS, INTDIS, SELRES, SYSRES

MCLTIN latches Registers 4 and 5 into Bit-Slice hardware to form an 8-bit
wide control byte. This control byte is transferred to the Tag and Control
Latch on the Channel Drivers and Receivers board.

None

None

Subroutine MSTBIN (Move Status to Bus In)

Register 6 contains the four LSBs of the Status byte.
Register 7 contains the four MSBs of the Status byte.

HSTART, DISCON, CMDDNE, ISS, SYSRES
Same as MCLTIN above, except the byte is transferred to Bus In.
None

None

GPCI Bit-Slice Microcode Description

Subroutines RDRFEX, RDRFDS, RDRFDT, RDRFPS

Set-Up Prior to calling, the device address must be written to the Bit-Slice Processor’s
output data bus (ODATO0-ODATS3).

Process Description RDRFEX, RDRFDS, RDRFDT and RDRFPS fetch Extra Status, Device
State, Device Type, and Processor Status respectively from the Register File.
Table 28 below shows destination registers and calling routines. None of these
subroutines call other subroutines.

Data
Destination
Subroutine Register Calling Routines
RDRFEX 8 STPOL, FETSTA, INTDIS
RDRFDS 0 STPOL, IMRES, CUIS
RDRFDT 9 CONTCH, GETCMD
RDRFPS 6 FETSTA
Table 28. Read Subroutines Summary
Subroutine TCANSD
(Test Command and Service Down)
Set-Up None
Called By CMDDNE, ISS
Process Description TCANSD is a loop that exits to the calling routine only when Command Out

and Service Out are simultaneously low (COT/ and SET/ are simultaneously
high). While waiting, TCANSD tests for Interface Disconnects and Selective

Resets.

Subroutines Called None (conditionally jumps to INTDIS or SELRES after popping the return
address from the stack)

Registers Modified None

8-44 Issued 11/89

Subroutine Descriptions

Set-Up

Called By

Process Description

Subroutines Called

Registers Modified

Set-Up

Process Description

Subroutines Called

Registers Modified

Issued 11/89

Subroutine TCORSU
(Test Command Out or Service Out Up)

None
CUIS, CMDDNE, ISS

TCORSU is a loop which exits to the calling routine if Command Out or
Service Out is high (COT/ or SET/ is low). Like TCANSD, TCORSU also
tests for Interface Disconnects and Selective Resets.

None (conditionally jumps to INTDIS or SELRES after popping the return
address from the stack)

None

Subroutine TELLUP (Tell Microprocessor)

Register 1 is loaded with a device modifier code and Register 9 is loaded with
the address of the device for which the command is intended.

TELLUP informs the microprocessor of a new command by writing the

device modifier and device address to address 680FH in the Register File,

then interrupting it. TELLUP begins by entering the first of two loops. The
first loop waits for the microprocessor to complete any in-progress interrupt.
TELLUP drives RFINT high, interrupting the microprocessor. Then it enters
the second loop, where it waits for acknowledgement of receipt of the interrupt.

Within both loops, TELLUP monitors for Selective Resets and Interface
Disconnects. When the microprocessor is interrupted, it reads address 680FH
to determine which device gets the new command, and uses the device modifier
as an address offset in an interrupt handler look-up table. Only two device
modifiers are currently acceptable, 0000B and 0010B. Respectively, these
modifiers cause vectoring into "normal" and "abnormal" command handlers
within the 8085 firmware.

WRRFDM, WRRFDA (can jump to SELRES or INTDIS)

None

GPCI Bit-Slice Microcode Description

Set-Up

Called By

Process Description

Subroutines Called

Subroutine TUPRO

See subroutine TUPRST below.

Subroutine TUPRST
(Tell Microprocessor about a Reset)

Registers 1 and 9 are set up the same as TELLUP. See Table 29 below.

Called By Device Modifier Device Address
SYSRES 8 F
SELRES 2 0-E
INTDIS * 2 *0-E
DISCON 6 (Time Out) .
CONTCH 6 (Time Out)
*INTDIS also sets the Equipment Check bit (LSB of 680FH) to distinguish
Interface Disconnect from Selective Reset.

Table 29. Subroutine TUPRST Summary

TUPRST: INTDIS, SELRES, SYSRES
TUPRO: DISCON, CONTCH

These subroutines are identical to TELLUP, except there is no testing for
Selective Resets or Interface Disconnects. TUPRO is a second entry point in
TUPRST. The only difference between them is that TUPRO does not pass a
device address to the Register File.

WRRFDA, WRRFDM

Issued 11/89

Subroutine Descriptions

Subroutines WRRFDA, WRRFEX, WRRFDM, WRRFDS

Set-Up Prior to calling, the device address must be written to the Bit-Slice output data
bus (ODATO0-0DAT3). Except for WRRFDA, Register 1 must be loaded with
data to be written. The data source register for WRRFDA is Register 9.

Process Description These subroutines transfer data nibbles to the Register File. Table 30 below
shows which subroutine writes to which nibble of the Register File.

Nibble 6800-680F 6810-681F «

High Nibble WRRFDA* (Microprocessor only)
WRRFDS

Low Nibble WRRFDM WRRFEX

* WRRFDA uses Register 9 as the data source and is used to write to 6800H-
680EH. WRRFDS uses Register 1 as the data source and is used to write to
680FH only.

Table 30. Write Subroutines Data Transfers

Table 31 below shows source registers and calling routines.

Source

Subroutine Register Calling Routines

WRRFDA 9 TELLUP, TUPRST

WRRFEX 1 CMDDNE, BUSY, INTDIS,
SELRES

WRRFDM 1 CMDDNE, TELLUP, TUPRO

WRRFDS 1 HSTART, CONTCH, STPOL,
CMDDNE, ISS, INTDIS,
SELRES

Table 31. Write Subroutines Summary

Issued 11/89 8-47

GPCI Bit-Slice Microcode Description

Branch Routine Descriptions

Except for entries to and exits from these routines, they are very similar to
subroutines. They are entered from other routines via a jump instruction. The
exit from these routines is via a jump to a particular location in the program,
such as the beginning of STPOL.

The branch routines discussed in the Detailed Bit-Slice Microcode description
will not be addressed here. This section describes the following routines:

o INTDIS (Interface Disconnect)

¢ RPRTUC (Report Unit Check)

e SELRES (Selective Reset)
SYSRES (System Reset)

8-48 ' Issued 11/89

Branch Routine Descriptions

Entered From

Set-Up

Process Description

Subroutines Called

Exits To

Registers Modified

Issued 11/89

Branch Routine INTDIS (Interface Disconnect)

GETCMD, Write Data Transfer, RDXFER, TELLUP, TCANSD,
TCORSU

None

The channel can terminate an ongoing I/O operation at any time by sending
an Interface Disconnect sequence to the GPCI. The two ways the channel
can indicate an Interface Disconnect are:

e if Hold Out is down and Address Out rises, or
e if Address Out is high and Hold Out falls

When one of the routines detects one of the INTDIS Interface Disconnect
sequences, it jumps to INTDIS (subroutines must pop return addresses from
the stack first). INTDIS shuts off the autotransfer hardware by raising EOX.
Next, it saves all Extra-Status by ORing the ALU’s Extra Status register
(Register 8) with the device’s extra status in the Register File. The ORed
value is stored in the Register File. Now, all tag lines and Operational In

are lowered, telling the channel that the disconnect has been performed.

Next, the device state is stored (as is) in the Register File, and the Pending
Status and Stacked Status flags are lowered. Finally, INTDIS sets the
Equipment Check bit in the Register File, which informs the microprocessor
of the disconnect by calling TUPRST.

RDRFEX, WRRFEX, WRRFDS, MCLTIN, TUPRST

STPOL, or SELRES if the channel performs a Selective Reset while INTDIS
is waiting for Address Out to fall or Hold Out to rise.

Register 1 = 2H

Register 4 = 0H

Register 5 - LSB is reset (Operational In)
Register F - the 2 LSBs are reset

8-49

GPCI Bit-Slice Microcode Description

Entered From

Set-Up

Process Description

Subroutines Called

Exits To

Registers Modified

8-50

Branch Routine RPRTUC (Report Unit Check)

GETCMD, Write Data Transfer, BUSY
Register 1 is loaded with Sense data before jumping to RPRTUC.

RPRTUC stores the Sense data in the Register File, sets up the "abnormal
command" indicator (Device Modifier = 2) and interrupts the microprocessor
by calling TELLUP.

WRRFEX, TELLUP
CMDDNE

Registers 6 and 8 are ORed with 00100 (masks Unit Check into Status and
Extra Status).

Issued 11/89

Branch Routine Descriptions

Used By

Set-Up

Process Description

Subroutines Called

Exits To

Registers Modified

Issued 11/89

Branch Routine SELRES (Selective Reset)

IMRES, CUIS, GETCMD, Write Data Transfer, RDXFER, INTDIS,
RPTBSY, TELLUP, TCANSD, TCORSU

Operational Out is low (OPT/ is high).

SELRES does additional testing to determine if this is a Selective Reset or

a System Reset. In either case, SELRES drops all tag and control lines, but
does not turn off the relays on the Channel Drivers and Receivers board.
Also, RESPIM/ is reconfigured to monitor the rising edge of LSHT/. The
Stacked Status and Pending Status flags are reset. If the reset is a System
Reset, SELRES exits to SYSRES. If this is a Selective Reset, the device

state is set to Busy and the microprocessor is interrupted by calling TUPRST.

MCLTIN, SYSRES, WRRFEX, WRRFDS, TUPRST
CONCHS (part of WATCON)

Register 1 = 2H

Register 4 = 0H
Register 5 LSB is reset
Register E = 0H

Register F the 2 LSBs are reset

8-51

GPCI Bit-Slice Microcode Description

ENTERED FROM SELRES ONLY

WAIT FOR RFINTA

SETUP DEVICE

ADDRESS AND DEVICE CLEAR DEVICE STATE
MODIFIER TO INDICATE ——
SYSTEM RESET. (USED AS FLAG)

INTERRUPT MICRO.

ENTRY FROM FLAG SYST. RESET

N RESET IS DONE
DEVICE “)
STATE=@
IF DEVICE STATE=@,
THE CHANNEL DID NOT
o PoLY ATTEMPT ISS DURING RESET
: SEE STPOL)
RESET
GP FLAG

Figure 17. System Reset Flow Diagram

8-52 Issued 11/89

Branch Routine Descriptions

Branch Routine SYSRES (System Reset)

Entered From SELRES

Set-Up Operational Out and Suppress Out are down concurrently (OPT/ and SUT/
are high).

Process Description Refer to the SELRES description on page 8-51. SYSRES begins by setting up

the device address (FH) and device modifier (8H) to indicate a System Reset.
Then it sets the device state to 0, and interrupts the microprocessos by calling
TUPRST. SYSRES waits for Operational Out to go high (OPT/ to go low
before reconfiguring the RESPIM/ generator to monitor for LSHT/going low).
Next, SYSRES sets the General Purpose (GP) flag.

Refer to Figure 17 on the adjacent page. The microprocessor acknowledges
the System Reset interrupt by raising RFINTA. RFINTA remains high until
the microprocessor resets all operational devices. While the microprocessor
is performing the resets, the Bit-Slice Processor enters a loop which tests
RESPIM/ and RFINTA.

If RFINTA remains high the processor is still busy, and the loop repeats. If
RESPIM/ goes low (the channel issues a new command for one of the devices),
IMRES is called. IMRES jumps to RPTBSY (part of SYSRES) which sends

a status of Control Unit Busy to the channel and sets the device state register
to 1 (the device state register is used as a flag). RPTBSY resumes looping.

When RFINTA goes low (the microprocessor is finished), SYSRES tests the
device state register. If it is still 0, it means the channel didn’t attempt to send
a command during the reset. In this case, SYSRES resets the GP flag and
exits to STPOL. However, if the device state register is 1, SYSRES exits to
POLA, sets the Pending Status flag, raises Request In, and jumps to the top

of STPOL.

The channel responds to the raised Request In line by raising Select Out and
Hold Out, causing RESPIM/ to go low. When RESPIM/ goes low, STPOL
calls IMRES. IMRES determines that this is a Control Unit Initiated Sequence
and jumps to CUIS. CUIS calls FETSTA which tests the GP flag. The set flag
causes FETSTA to set a status of Control Unit End and exit to CMDDNE.

CMDDNE sends the Control Unit End status and resets the GP flag,
completing the reset process. The Control Unit End status is required to
reopen communications to the channel which were suspended by the Control
Unit Busy reply to the command received during the reset.

Issued 11/89 8-53

GPCI Bit-Slice Microcode Description

Subroutines Called

Registers Modified

8-54

TUPRST, IMRES, POLA4, STPOL, MSTBIN, MCLTIN, SELRES

Register A = FH

Register 1 = 8H

Register 0 = OH or 1H (see description)
Register E = 1H

Register F = 8H or 0OH

Register 6* = 0

Register 7* = §

*These registers are modified only if a command is received during the
reset.

Issued 11/89

[GPCl Supplemental Data |
S

Supplemental Data

Title

Declarations

Equations

Issued 11/89

GPCI Supplemental Data

This Supplemental Data section contains:
e an explanation of the PAL equation listings
o the symbols and abbreviations used in the equations
e twenty-one PAL equations
e Schematic drawings 1 through 7 (6450-0465)
e Assembly drawing 1 (6450-0466)

PAL Equation Listings

The listings for the logic equations used in the Programmable Array Logic
Devices are explained below.

Each device has a printout that begins with the title page. On this page the
device is called out by its location and device name.

Declarations lists the logic conventions and format for the signal names. The
signal names are in uppercase letters and numbers.

The first group of signal names refers to the power and ground rails. The
respective pin numbers that make these connections are given in the line below
the signal names.

The second group of signal names refers to the input signals received by the
device. The respective pin numbers assigned to receive these inputs are given in
the line below the signal names.

The third group of signal names refers to the outputs from the PAL. The

respective pin numbers assigned to each output are given in the line below the
signal names.

The logic equations used to generate each signal are shown in their highest
order form.

9-1

GPCI Supplemental Data

Symbols and Abbreviations

The following is an example of a PAL equation.

!PDOT_ := !DIN & DSEL_ & QBSEL_ & DRQ & DMACLK
PDOT & !DIN & DSEL & QBSEL_ & DRQ
!PDOT_ & DAK _

Below is an explanation of the symbols and abbreviations used in the equation.

Symbol/Abbreviation Explanation

! The one’s complement of, e.g. 'PDOT = (PDOT)

A register latched signal; valid on the rising edge

of the register clock
& Logical AND
Logical OR

Denotes an active low signal

9-2 Issued 11/89

PAL Equations

Title

Identification

Module

Declarations

Issued 11/89

P22V10 Located at BE16

Latch Mux and File Address
SSEC Madison, WI 05/05/86

Device location BE16
Device type P22V10

GPCI1
flag -r0

TRUE, FALSE = 1,0
H,L =10
X,ZCk=X,Z,.C

GND, VCC
pin 12, 24

CLK, A0, A1, B0, B1, B2, B3
pin 1,2,3,4,5,6,7

0D0, OD1, OD2, OD3
pin 8,9, 10, 11

RFLOCK, EOX_, RIM_, PEN_, GO
pin 13, 20, 21, 22, 23

ARF1, ARF2, ARF3, ARF4, EOXL
pin 17, 16, 15, 14, 18

CC_
pin 19

MUX = [B3, B, B1, B0]
DAT = [OD3, OD2, OD1, OD0]

LK = RFLOCK

9-3

GPCI Supplemental Data

Equations enable CC_ = !A0 & !Al

ICC_

= (MUX==0) & ARF1

(MUX = =1) & ARF2

(MUX = =2) & ARF3

(MUX = =3) & ARF4

(MUX = =4) & EOXL

(MUX==5)&RIM_

(MUX = =6) & PEN_

(MUX==7) & GO

(MUX = =8) & |ARF1

(MUX = =9) & !ARF2

(MUX = = ~hA) & !ARF3
(MUX = = ~hB) & |ARF4
(MUX= = ~hC) & IEOXL
(MUX = = ~hD) & 'RIM_
(MUX = = ~hE) & |PEN_
(MUX = = ~hF) & !GO

enable ARF1 = GO

ARF1

:= OD0 & !RFLOCK

ARF1 & RFLOCK

enable ARF2 = GO

ARF2

:= OD1 & !RFLOCK

ARF2 & RFLOCK

enable ARF3 = GO

ARF3

:= OD2 & !RFLOCK

ARF3 & RFLOCK

enable ARF4 = GO

ARF4

EOXL

:= OD3 & !RFLOCK

ARF4 & RFLOCK

= I[EOX_

EOXL & 'PEN_

Issued 11/89

PAL Equations

Title

Identification

Module

Declarations

Issued 11/89

P22V10 Located at BE1 & BG1

Latch and Multiplexer
SSEC MADISON, WI 05/05/86

Device locations BE1 & BG1
Device type P22V10

GPCI2
flag -r0

TRUE, FALSE = 1,0
H,L =10
X,Z,Ck = X,.Z,.C.

GND, VCC
pin 12,24

CLK, AD, ADR, B, B1, B2, B3
pin 1,2,3,4,5,6,7

11, I2, 13, 14, IS, 16, 17
pin 8,9, 10, 11, 13, 14, 23

Q1, Q2, Q3, Q4, Q5, Q6, Q7
pin 15, 16, 17, 18, 20, 21, 22

CC_
pin 19

MUX = [B3, B2, B1, B0]

GPCI Supplemental Data

Equations

9-6

enable CC_ =AD & !ADR

ICC_

Q1
Q2
Q3
Q5

Q7

= MUX==0)&1

MUX==1) & Q1

(MUX==2) & Q2

(MUX==3) & Q3

(MUX==4) & Q4
(MUX==5) & Q5

(MUX==6) & Q6

MUX==7) & Q7

(MUX==8) &0

(MUX==9) &!Q1
(MUX == ~hA) & !Q2
(MUX == ~hB) & !Q3
(MUX = = ~“hC) & Q4
(MUX = = ~hD) & !Q5
(MUX = = ~hE) & !Q6
(MUX = = ~hF) & Q7

Il
12
I3
14
I5
I6
17

" always

" never

Issued 11/89

PAL Equations

Title

Identification

Module

Declarations

Equations

Issued 11/89

P16R8 Located at BC14

Bit-Slice Output Register
SSEC Madison, WI 05/05/86

Device location BC14
Device type P16R8

GPCl4
flag -r0

TRUE, FALSE = 1,0
H,L =10
X,Z,Ck = X,.Z,.C.

GND, VCC
pin 10, 20

CLK, NC, OCS_, AD4, ADS5, OD3, OD2, OD1, OD0, OE _

pin 1,2,3,4,5,6,7,8,9, 11

DC7, DC6, DCS, DC4, DC3, DC2, DC1, DCO
pin 12,13, 14, 15, 16, 17, 18, 19

'DCO := !0D0 & !AD4 & 'ADS & !0CS_

!DC0 & AD4
!DC0 & ADS
!DC0 & OCS_

'DC1 := !|0D1 & !AD4 & 'AD5 & 'OCS_

IDC1 & AD4
IDC1 & AD5
IDC1 & OCS_

'DC2 := !0D2 & !AD4 & !'ADS & !0CS _

\DC2 & AD4
IDC2 & ADS
IDC2 & OCS_

!DC3 := !0D3 & !AD4 & !ADS & !OCS_

IDC3 & AD4
IDC3 & AD5
IDC3 & OCS_

97

GPCI Supplemental Data

9-8

'DC4

'DC5

'DC6

'DC7

:= !0D0 & AD4 & !ADS & !0OCS_

IDC4 & |AD4
IDC4 & ADS
IDC4 & OCS_

:= !0D1 & AD4 & !ADS & '0CS _

IDCS & !AD4
IDCS5 & ADS
IDC5 & OCS_

:= !0D2 & AD4 & !ADS5 & !0CS _

IDC6 & !AD4
IDC6 & ADS
1DC6 & OCS_

:= !0D3 & AD4 & !ADS & '0CS_

IDC7 & |AD4
IDC7 & AD5
IDC7 & OCS_

Issued 11/89

PAL Equations

P16R4 Located at BE43

Title Automatic Control Decoder
SSEC Madison, WI 05/05/86

Identification Device location BE43
Device type P16R4

Module GPCI5
flag -r0

Declarations TRUE, FALSE = 1,0
H,L=10

X,Z,Ck = X,.Z,.C

GND, VCC
pin 10, 20

CLK, CEN_, AUS_, AEN , ID0, ID1, OSL _, ID3, NC, OE_
pin 1,2,3,4,5,6,7,8,9,11

DAEN_, CM3_, CM1_, CM0_
pin 14,15, 16, 17
AUX_, GBS_, AUD_, AUM_
pin 12,13, 18, 19
Equations ICMO_ := IDO&!CEN_
ICMO_ & CEN_
ICM1_ := ID1&!CEN_
ICM1_& CEN_
ICM3_ := ID3&!CEN_
ICM3_& CEN_
IDAEN_ := !AEN_

enable GBS_ = TRUE

IGBS_ = !AEN_& !DAEN_& AUS_& !OSL_
|AEN_& IDAEN_ & !AUS_

enable AUD_ = TRUE

IAUD_ = !AUS_& ICM1_

Issued 11/89 9-9

GPCI Supplemental Data

enable AUX_ = TRUE

IAUX_ = !AUS_& CM1_

enable AUM_ = TRUE

!IAUM_ = !AUS_ & ICM0_ & CM1_

Notes There are two functions performed by this part. The first is to latch bits from
the Command PROM and, when enabled, to provide control lines that indicate
which state machine (DMA or Autotransfer) will provide the data transfer.
The second is to delay AEN (Address Enable) so that there is enough time

for the Multibus address and data lines to settle before the control lines are
enabled by GBS _ (GOTBUS).

9-10 Issued 11/89

PAL Equations

Title

Identification

Module

Declarations

Equations

Issued 11/89

P16R8 Located at BG43

Register File State Machine
SSEC Madison, WI 05/05/86

Device location P16R8
Device type BG43

GPCI6
flag -r0

TRUE, FALSE = 1,0
H,L =10
X,Z,Ck = X, .Z,.C

GND, VCC
pin 10, 20

BSCLK, RFLK, BREN_, RFCS_, WR, AD7, RST , OE_
pin 1,2,3,4,5,6,9, 11

BRWR, BRRD_, RQD_, RQC_, RQB_, RQA_, RFWE_, DCS_
pin 12,13, 14, 15, 16,17, 18, 19

IDCS_ := IRFCS_
IBRRD_ := RQA_& RFLK & !BREN_
IBRWR := AD7
IRFWE_ := RQA_& RFLK & !BREN_& AD7
IRQA_&RQB_&RQC_& !RQD_& WR
IRQA_& 'RQB_& 'RQC_& 'RQD_ & WR
'RQA_ := !RQB_
IRQC_
'RQA_& 'RQD_
IRQA_& IDCS_
RQA_&RQD_& IDCS_ & !RFLK
'RQB_ := IRQC_
'RQC_ := RQB_&'RQC_

IRQA_ & RQB_ & 'RQD_

9-11

GPCI Supplemental Data

'RQD_ := RQA_&RQD_& !DCS_
RQA_ & RFLK
IRQC_& 'RQD_
IRQA_& RQB_& 'RQD_ & WR

Notes DCS_ synchronizes the register file chip select from the microprocessor.

9-12 Issued 11/89

PAL Equations

Title

Identification

Module

Declarations

Equations

Issued 11/89

P16L8 Located at BG16

Register File Output Decode
SSEC Madison, WI 05/05/86

Device location BG16
Device type P16L8

GPCI7
flag -r0

TRUE, FALSE = 1,0
H,L =1,0
X,Z,Ck = X,.Z,.C.

GND, VCC
pin 10, 20

AB4, AD4, AD5, AD6, RD, RQA_, RQB_, RQC_, RQD_

pin 1,2,3,4,5,6,7,8,9

AF6 pin 12

AFS5, AF0, HNEN_, LNEN_, RROE , RFAK _
pin 13,14, 15, 16, 17, 18

enable RFAK_ = TRUE

IRFAK_ = !RQA_&!RQB_& RQC_
IROA_& RQB_& RQC_& RQD_

enable RROE_ = TRUE

'RROE_ = !'RQA_&RD

enable LNEN_ = TRUE

ILNEN_ = !RQA_&RQB_&!RQC_& !RQD_
enable HNEN_ = TRUE

IHNEN_ = !RQA_& 'RQB_&RQC_& 'RQD _

9-13

GPCI Supplemental Data

Notes

9-14

enable AF0 = TRUE

1AF0 = IRQA_& RQB_
RQA_ & !AD4
RQB_ & |1AD4

enable AF5 = TRUE

1AF5 = IRQA_ & !AB4
RQA_ & !ADS
1AB4 & !ADS

enable AF6 = TRUE

IAF6 = IRQA_
1AD6

IF (VCC) AF0 = !RQA_ *RQB_

+ RQA_ * AD4
IF (VCC) AF5 = RQA_ AD5
+ IRQA_ * AB4

IF (VCC) AF6 =RQA_ * AD6

Issued 11/89

PAL Equations

Title

Identification

Module

Declarations

Equations

Issued 11/89

P16R8 Located at BG29

Register File Output Latch
SSEC Madison, WI 05/05/86

Device location BG29
Device type P16R8

GPCI8
flag -r0

TRUE, FALSE = 1,0
H,L =10
X,Z,Ck = X, .Z,.C.

GND, VCC
pin 10,20

CLK_, DR3, DR2, DR1, DR0, RQD_, RQC_, RQB_, RQA , OE

pin 1,2,3,4,5,6,7,8,9, 11

DB7_,DB6_, DB5_, DB4_, DB3_, DB2 , DB1_, DB0_

pin 12, 13, 14, 15, 16, 17, 18, 19

IDB0_ := !RQA_& RQB_& 'RQC_& RQD_& DRO

RQA_ & 'DB0_
IRQB_ & !DB0_
RQC_ & !DB0_
IRQD_ & !DB0_

DB1_ := !'RQA_&RQB_& 'RQC_& RQD_& DRI

RQA_ & !DB1_
IRQB_ & IDB1_
RQC_& DB1_
IRQD_& !DB1_

IDB2_ := !RQA_&RQB_& !RQC_&RQD_& DR2

RQA_& !DB2_
IRQB_& !DB2_
RQC_& !DB2_
IRQD_ & IDB2_

9-15

GPCI Supplemental Data

IDB3_ := !IRQA_&RQB_& !RQC_& RQD_& DR3
RQA_& IDB3_
'RQB_& !DB3_
RQC_& !DB3_
IRQD_ & !DB3_

'DB4_ := !RQA_&!'RQB_& RQC_& RQD_& DRO
RQA_& IDB4_

RQB_& !DB4_
IRQC_& !DB4_
IRQD_ & IDB4_

4
IDBS_ := !'RQA_&'RQB_&RQC_& RQD_& DR1
RQA_& 'DB5_
RQB_ & !DB5_
IRQC_& !DB5_
'IRQD_ & IDBS_

IDB6_ := 'RQA_&!RQB_&RQC_& RQD_& DR2
RQA_ & 'DB6_
RQB_ & !DB6_
IRQC_& !DB6_
'IRQD_ & 'DB6_

'DB7_ := !IRQA_&!'RQB_&RQC_& RQD_& DR3
RQA_& 'DB7_

RQB_& 'DB7_
IRQC_& !DB7_
IRQD_ & !DB7_

9-16

Issued 11/89

PAL Equations

P20R4 Located at BC41

Title Channel Latch Controller
SSEC Madison, WI 02/26/87

Identification Device locatio<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>