= o
Fice Stlere
UW) SSEC Pubskcation
Nop.as. 0. ¥

McIDAS
Developer/Operator
Training Manual

Issued October 1995

Space Science and Engineering Center
University of Wisconsin-Madison
1225 West Dayton Street

Madison, WI 53706

Telephone (608) 262-2455

TWX (608) 263-6738

Copyright® 1995 Space Science and Engineering Center (SSEC)
University of Wisconsin - Madison.
All Rights Reserved

Permission is granted to make and distribute verbatim copies of this manual,
provided the copyright notice and this permission are preserved on all
copies. SSEC makes no warranty of any kind with regard to the software or
accompanying documentation, including but not limited to the implied
warranties of merchantability and fitness for a particular purpose. SSEC does
not indemnify any infringement of copyright, patent, or trademark through
use or modification of this software. Mention of any commercial company
or product in this document does not constitute an endorsement by SSEC.
Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this manual, and SSEC was aware of the trademark claim, the designations
are printed in caps or initial caps. The information in this manual is subject
to change without notice. Considerable effort has been expended to make
this document accurate and complete, but SSEC cannot assume
responsibility for inaccuracies, omissions, manufacturers' claims or their
representations.

Table of Contents

Welcome to McIDAS Developer/Operating Training il
Session 1. The McIDAS Programming Environment. 1-1
Session 2. Applications Development inthe ADDE 2-1
Session 3. Development Environment for McIDAS-X and -OS2 ... 3-1
Session 4. Writing GUIs for McIDAS using Tel/Tk 4-1
Session 5. MCcIDAS Navigation and Calibration Subsystems 5-1
Session 6. Designing and Implementing Calibration Modules. 6-1
Session 7. Designing and Implementing Navigation Modules. 7-1
Session 8. Developing Local Decoders in McIDAS-XCD......... 8-1
Session 9. Moving to a Distributed System 9-1
Session 10. McIDAS-XSD Operations.coouuun... 10-1
Session 11. McIDAS-XCD Operationsc.cu... 11-1
Session 12. MCcIDAS Operations on a Distributed System. 12-1

McIDAS Developer/Operator Training

October 23-25, 1995

Table of Contents

|

Table of Contents McIDAS Developer/Operator Training
ii October 23-25, 1995

Welcome to McIDAS Operator/Developer
Training

Welcome to the 1995 McIDAS Developer/Operator Training sessions.
SSEC is providing this training to give you the information you need to
develop and support locally-created software in your McIDAS
environment.

In the next 2'% days, the McIDAS training staff will do the following:

« teach you how to write applications using the new Applications
Program Interfaces (APIs) for argument and data fetching

» explain the new McIDAS paradigm of the client/server
relationship

* demonstrate how to write client applications and data servers
» give you instructions for setting up a McIDAS development arena

+ tell you how to interface McIDAS applications with a Graphical
User Interface (GUT)

» show you on how to write calibration and navigation modules for
local data sources and geographic projections

« introduce you to the processes and subsystems included in the
McIDAS-XCD package

» explain some of the processes and procedures associated with the
administration of a distributed operational environment

» give you hands-on experience

McIDAS Developer/Operator Training Welcome
October 23-25, 1995 iii

About this training manual

This training manual provides detailed information about the content of
each talk. You shouldn’t need to take notes.

To follow along in the manual as the trainers present their talks, look for
the small number printed in the lower-left corner of their slides. This
number references a page or group of pages in the manual.

Throughout this manual, references are occasionally made to lines of
source code included with a training session. These line number references
are shown as bold characters surrounded by brackets; for example:
[A101-A110].

Welcome McIDAS Developer/Operator Training
iv October 23-25, 1995

Hands-on exercises

The hands-on exercises are designed to give you practical experience with
the information discussed during the talks. You will work in pairs on these
exercises. Each xterminal in the training room has an account with the
password mug95trn!. Each account is set up with a typical McIDAS
configuration, as shown below. '

Environment variables:
PATH=~mcidas/bin:~/mcidas/bin, plus necessary compiler directories
MCPATH=$HOME/mcidas/data:~trainer/mcidas/data:
~/mcidas/data:~mcidas/data:~mcidas/help

Directories:
$HOME/mcidas
$HOME/mcidas/bin
$HOME/mcidas/data
$HOME/mcidas/help
$HOME/mcidas/lib
$HOME/mcidas/src

You will write sections of code necessary for:
* an ADDE data server
* an ADDE client application

* agraphical user interface for the ADDE client application

The ADDE data server

Your first task will be to write a section of code for an ADDE data server
to deliver MRF gridded fields to a client application as image data. The
data set provided contains gridded temperature data at 1000 mb from the
Medium Range Forecast Model (MRF) in ASCII format. The data is in the
directory ~trainer/mcidas/data in the files MRF1000Tnn where nn is the
forecast hour of the grids. The first line contains geographic information
about the data. The second line contains the valid forecast day and time of
the data. The third line contains the filing format used for the data and the
units. The remainder of the file contains the actual data oriented in a row-
major format, so the first data point occurs at the North Pole and the
dateline, and moves eastward around the globe. Subsequent lines move
southward, ending at the South Pole. Your task will be to write a portion
of the data server that delivers a line of data to the client.

McIDAS Developer/Operator Training Welcome
October 23-25, 1995 v

The source code for the server exercise is in §(HOME)/mcidas/src in the

files below.

File name

subserv.c
mugadir.c
mugaget.c
mcmugutil.c
mcservutil.c

Description

main to all servers

directory server

data server

specific functions for training
generic functions for training

Due to time constraints, you will only write the function ReadMugLine.
This function reads a line of data from the file. The interface for this
function is shown below.

int

ReadMugLine (char *src_file, READPARM *read, int band, short *buf, char *err)

input:
src_file
read
band
output:
buf
err

ascii file containing source data
READPARM struct containing read specifications
band number to read

buffer containing image data
error string returned when a failure occurs

The READPARM structure contains specifications that may be needed in

the function.

typedef struct READPARM_

char

*/
*/

char
char

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
} READPARM;

Welcome

Vi

src_type([4];/* source data type: GVAR, MSAT, etc..

des_unit[4];/* destination units: RAW, BRIT, etc...

src_unit[4];/* source units: RAW, BRIT, etc... */
begele; /* beginning element */
beglin;/* beginning line x/
bufsiz;/* size of the buffer to read x/
des_len;/* destination byte length of one data point */
elem res/* resolution in element direction */
line res/* resolution in line direction */
maxele;/* last element in image */
maxlin;/* last line in image */
minele;/* first element in image */
minlin;/* first line in image x/
numband; /* number of bands in the image * /
numele;/* number of elements to read */
numlin;/* number of lines to- read */

src_len;/* source byte length of one data point */
ul_elem;/* element in upper left corner of image*/
ul_line;/* line in upper left corner of image */

McIDAS Developer/Operator Training
October 23-25, 1995

The ADDE client application

Your second task will be to write portions of a client application,
MUGAREA, that takes data from two forecast time periods, performs
simple math operations on the data, and files the resulting values in a
MCcIDAS Area file. You can then display the created destination file with
the McIDAS ADDE command IMGDISP.

You will add the necessary code to perform the following tasks in
mugarea.pgm:

* read from the command line:
- the destination dataset name and position location and
separate the two values
- the number of lines and elements to request from the server

+ append the values for the number of lines and elements to the sort
strings

* insert mcaget calls to get the data from the two source files

+ get the nav and cal blocks for the source data

» start the server transaction to write the data

+ read in the lines of data and write the results to the destination data

. write out comment cards

The user interface for MUGAREA will look like this when complete:

MUGAREA source posl operation pos2 destination <Keywords>

Parameters:
source source dataset name containing MRF grids
posl position of the first grid to use (default=most recent)
operation mathematical operations: ADD, SUB, AVG
pos2 position of 2nd grid to use (default=second most recent)
destination destination dataset and position (no default)

Keywords:
SIZE=nlines neles size of area to get from server

This completes the exercises scheduled for the first day.

McIDAS Developer/Operator Training Welcome
October 23-25, 1995 vii

The Graphical User Interface (

On the second day, you will add the following sections to the GUI code:
+ the message text to the beginning of the application

* option widgets for preparing the call to the client application
MUGAREA

+ the call to the client application MUGAREA
+ the online help to the GUI
We hope you find these sessions rewarding and educational. If there is

anything we can do for you during your participation in these training
sessions, please let us know.

Welcome McIDAS Developer/Operator Training '
viii October 23-25, 1995

The McIDAS
Programming
Environment

Presented by
Tom Whittaker
McIDAS Development Team Manager

Session 1
McIDAS Developer/Operator Training
October 23-25, 1995

Table of Contents

ORI v ihsc s vuwonnsabuebehs wuumsadogh 8% cdiadin sie e s 1-1
Bl . .o o vanevssannansrnnisses g ienEl s Hak o ws 1-1
ERRRORIE. & o s i v 05 b p 0 6 8 5 5 BT e polis s e s 1-2

The McIDAS library.coiiiiiii i 1-4
Conventions0covienmeceanncsssnssnses 1-4
Genericdatafetchers 1-8

Command parameter/argument fetching 1-10

SAHIPIG COMB <. ..o vinnnnninsrminnnarigsosngnesen s 1-12

PCERAR IR . . . - & coicdtns v 0 2 b e 0w b G e BRI 1-14
General argument fetching utilities. 1-14
CHARERr BEEREE . « « . v bvsvssovvssonnnsnsas e rndh e 1-16
D I s tiorotu s b It a8 S) i g 9 B e 1-17
AR bt) e s o PR s 5B s e e o 1-18
I~ L el B S A PV B s s 1-19
Latitude/longitude (or otherangles) 1-20

TOOHDE DOBERRIIIN « < o o« vui ik vl d T U S i a e a e s 1-21
Jntemnal e TRHCHONE « ..o« cvviceriviineeiiranannns 1-22
Useful utilities that replace older functions 1-24

Argument fetching status 1-26

Overview

History

This section discusses the software components of McIDAS-X and
MCcIDAS-0S2. First, it introduces you to the historical perspective by
describing the evolution of the software development. Then it describes
our goals for developing applications in McIDAS. Finally, it provides the
information you need for developing applications, including McIDAS
library conventions and command parameter/argument fetching.

McIDAS Developer/Operator Training
October 23, 1995

MCcIDAS was originally developed on a Raytheon-440 computer using
punch cards, paper tape and magnetic tape. The second phase moved the
code to Harris minicomputers in a distributed network, with two data
servers and several applications boxes. The system was then centralized
onto an IBM mainframe, which became the McIDAS-MVS system.

Shortly thereafter, the first smart workstation was developed on DOS-
based personal computers. These machines front-ended display hardware,
like the Tower. There were very few local applications, since the
multitasking required had to be simulated in the McIDAS software.

The first large-scale port of applications software came when the OS/2
operating system was embraced for PCs. Our efforts to create an
environment similar to the mainframe resulted in a relatively easy port of
many applications. Soon, however, we learned that modifications were
necessary because of special hardware; for example, VGA displays had
only 16 color/gray levels. In addition, we needed to write drivers for each
display head (VGA, Tower, WIDE WORD, SDA) and make them appear
to the applications as the same kind of raster-oriented devices, with some
varying characteristics (frame size, number of colors, etc.). At the same
time, we needed communications drivers for the common modes
(asynchronous, ProNET, TCP/IP) that satisfied all our applications.

The success of McIDAS-OS2 led us to consider migrating to the Unix
environment. Sites were requesting support for the applications on these
faster, larger hardware platforms. Our first attempt to accomplish this was
to take the OS/2 code and write specialized routines for keyboard/mouse,
text display, and image/graphics display, plus the system-level interfaces
required for communications and disk I/0. McIDAS-X was born. The
implementation was done completely using the X Windows system, except
for the ASK command and the Graphical User Interface. Early plans to
support the WIDE WORD display head from the micro-channel in RS/
6000 machines has been dropped.

The McIDAS Programming Environment
1-1

Moving to support McIDAS-X on more platforms made us increasingly
sensitive to industry standards. We have significantly changed the base
code to make it more portable and less platform- and vendor-dependent.

Our goals

Last year, we embarked on a project to reconnect McIDAS to Unix. Work
on this project began early in 1995 and will be completed by the end of the
year. Here are some its goals:

Move the low level code to C

This move will help eliminate infinities, such as command line length, in
the code for such things as array dimensions. C is also generally easier to
interface with essential operating system functions.

Create more code that is common between OS/2 and Unix

Changes in 1/O, for example, let us use the same Ibi/lbo routines in Unix
and OS/2 versions of McIDAS, producing more efficient maintenance.

Moadify the implementation of User Common

User Common will remain available only as long as needed; in some cases,
only for the duration of a single command execution.

Rework the image/graphic window

At present, all McIDAS-X routines link with the X Windows library; those
that write images and graphics do so by direct calls to the X Windows
system. The rework includes the following changes.

* The applications can write display output to a shared memory
frame object.

* The display routine reads from the frame object and displays as
needed.

* The colorizing algorithms are more flexible.
* Frame objects can have multiple windows.
* Windows can be zoomed, roamed and resized.

* The number of color levels can go beyond the current limit of 128.

The McIDAS Programming Environment McIDAS Developer/Operator Training
1-2 October 23, 1995

Rework the status and command windows

Our survey showed that having these separate windows caused more
problems for users than any other single user interface issue. To correct
this and also reduce clutter on the desktop, the command and text windows
will be combined, much like McIDAS-0S2.

Allow applications to run from the Unix shell

This change will enable automated processing. For example, programs
may be started from the Unix crontab; McIDAS commands will no longer
require a McIDAS X Windows environment in order to run. These two
modes will be available:

* run a single command, making a User Common and McIDAS
environment as needed

» create a McIDAS environment, with or without the image/
graphics and text/command windows, and allow several
commands to run

McIDAS Developer/Operator Training The MclIDAS Programming Environment
October 23, 1995 1-3

The McIDAS library

To develop applications in McIDAS, you must understand its library
conventions. This section explains those conventions, and provides
information about the generic data and argument fetchers.

Conventions

The McIDAS Programming Environment

1-4

Functions

Although the interface to old functions did not change, some functions
were rewritten and some functionality was replaced. For example, reading
and writing data is now done with the ADDE functions; command line
parameter fetching is done with new argument fetchers.

New functions have a unique prefix:

Prefix

Mc
mc
MO
m0

Description

C-callable, API level
Fortran-callable, API level
C-callable, non-API
Fortran-callable, non-API

Additional functions for reading and writing data using the ADDE model
are being written. Image and grids are currently supported; point source
and text are in development. All new functions employ the new argument

fetchers.

Argument fetchers

The new argument fetchers, released in the June 1995 upgrade, are
functional equivalents to all current functions, except mclex, which has no
analogy. These argument fetchers do the following:

* remove the 12-character limit on command line arguments

* provide convenient range checking on parameter values

* consolidate functions

* provide more systematic error messages

McIDAS Developer/Operator Training
October 23, 1995

McIDAS Developer/Operator Training

October 23, 1995

Data fetching APIs

New functions were created for image and grid point data using new APIs
to implement the ADDE (Abstract Data Distribution Environment) client/
server approach to reading and writing datasets. We are currently creating
new applications to functionally replace existing ones in these areas, and
are developing APIs for point source and textual data.

The new APIs treat the data in a more abstract manner. For example,
requests to read data use a descriptive list to define the appropriate subset
of the dataset that the server will return to the client. The data returned to
the client is in a defined, internal format, irrespective of the actual file
format of the data. For example, a server written to read grid point data
may return the data in the form of an image.

Coding in C

Most new library functions are coded in C, with Fortran interfaces
provided as needed. There are two considerations here:

* The ordering of elements in multi-dimensional arrays in Fortran
and C are different.

» The strings of characters between Fortran and C are different.

Using C provides the opportunity to eliminate the hard-dimensioned arrays
that Fortran requires. Below is an example of cross-language interfacing.

From Fortran, calling a Fortran interface:

CALL SDEST('THIS IS A TEST',99)

From C, calling a C-coded interface looks much the same:

(void) sdest("this is a test",99);

From C, calling a Fortran-coded interface looks different. First, the name
of the function must end with an underscore character, for example:
sdest_. Second, the Fortran convention is to pass arguments by address; C
passes by value. Finally, Fortran appends an extra hidden argument for
each character string passed to a function containing the length of the
string.

char message[] = "THIS IS A TEST";
int value = 99;

(void) sdest_(message, &value, strlen(message));

The McIDAS Programming Environment

1-5

New utilities

New library utilities are continually being added to the McIDAS library.
With the June 1995 upgrade, functions were added for converting strings
to time, date, and angle. A new units conversion function was also
released. We plan to expand upon this set with each upgrade.

Interface documentation block

All new software contains a standard, formatted Interface Documentation
Block that provides complete interface information with the code. The
components of this block include the following:

Field Description

Name name and short description

Interface details of the interface/call sequence

Input input variables

Input/Output variables used for both input and output

Output output variables

Return values values and a description of what they mean
Remarks useful information, algorithms, etc.

Categories a list of words from which to choose, for example:

grid, image, pt_src, text, system, event, file, etc.

This information is currently in Chapter 5 of the preliminary version of the
McIDAS Programmer’s Manual. In the future, cross-reference searching
tools, using the Categories values, will be provided to help identify
functions of particular classes.

Below is a sample template that SSEC uses for Fortran API functions and
subroutines.
C THIS IS SSEC PROPRIETARY SOFTWARE - ITS USE IS RESTRICTED.

C *** McIDAS Revision History **x*
C *** McIDAS Revision History ***

*$S Name:

*3 mcname - short description of purpose/use/etc
*S
*$ Interface:
*$ subroutine
*S integer function
*$ double precision function
$ mcname (integer paraml, character (*) param2, integer param3 (64))
*$
*$ Input:
*S none
*$ paraml - description of it
*3
*$ Input and Output:
*$ none
*$ param2 - description of it
*$
The McIDAS Programming Environment McIDAS Developer/Operator Training

1-6 October 23, 1995

*$ Output:

*S none

*$ param3 - description of it

*$

*$ Return values:

*$ 0 - success

*$

*$ Remarks:

*$ Important use info, algorithm, etc.

*$

*$ Categories:

*$ grid

*$ image

*S pt_src

*$ text

*$ system

*S event

*$ file

*$ sys_config

*$ display

S graphic

xS utility

*$ converter

*$ day/time

*$ calibration

*$ navigation

*$ ingest/decode

*$ met/science

- user_interface
SUBROUTINE MCNAME (.....)
IMPLICIT NONE

C --- symbolic constants & shared data

C --- external functions

C --- local variables

C --- initialized variables

McIDAS Developer/Operator Training
October 23, 1995 1.7

Compatibility library

During the transition from old functions to new, SSEC will support the old
interfaces. Once a function is no longer called by any McIDAS
application, it will move to the compatibility library. No further testing of
that function will occur. Each site is responsible for maintaining any code
that uses these functions. After a period of one year, SSEC will cease
issuing the function with McIDAS software upgrades.

The McIDAS Programming Environment

Generic data fetchers

McIDAS is moving toward a client/server paradigm, where the
applications do not have direct knowledge of the data’s location or format.
To accomplish this, both communications and an abstract model of the
data formats must be created; the job of the server is then to map the actual
file format into this abstraction and deliver it to the client. Client software
can then be written to the definition of the abstraction to work with
particular data formats, such as: image, grid, point source and text.

The image and grid data formats are defined and included in the suite of
applications in core McIDAS. Work continues on point source and text.

Note that some of the terminology has changed.

image refers to data that may be viewed as a picture, but may
also contain information about geo-referencing and
calibration; this is to distinguish the McIDAS Area
file format from the form in which data arrive at the
client, namely image format.

grid hasn't changed meaning; however, the abstraction of
the grid point data is somewhat different than the
MCcIDAS grid file format.

point source refers to single point data; for example, the McIDAS
MD file format.

text refers to plain text information that is undecoded,

line-oriented, and intended to be read

In all cases, the client makes a request of the server using an abstract
description that includes a dataset name and other selection criteria. In
many cases, choices of returned units may also be specified. After the
request is made, the client then asks for records to be returned. The format
of each record follows:

Data type Record format

image one-dimensional array of values of a single quantity
grid two-dimensional array of values of a single quantity
point source array of values at a single point of several quantities
text lines of text
The McIDAS Programming Environment McIDAS Developer/Operator Training

1-8

October 23, 1995

McIDAS Developer/Operator Training

October 23, 1995

Image data functions

Functions are available to initiate transactions for reading and writing
image data, as well as the prefix, comment card, calibration, navigation,
directory and image data.

These are described in Chapter 5 of the preliminary version of the McIDAS
Programmer’s Manual (10/95).

Grid point data functions

Functions are available for requesting one or more grids from a server,
reading and writing grids, etc. These also are described in Chapter 5 of the
preliminary version of the McIDAS Programmer’s Manual (10/95).

The McIDAS Programming Environment

1-9

Command parameter/argument fetching

The McIDAS environment provides interfaces for applications programs
to pick up values of command-line arguments. Interfacing functions also
provide a mechanism for parsing arbitrary strings from a source other than
the command line.

All applications-level interfaces are prefixed with mecmd (Fortran) or
Mcemd (C). The cmd means that diagnostic messages are displayed by the
argument fetching subsystem for any syntax or format errors that occur. If
an error does occur, the functions return a status of less than zero.

Note these significant changes:

+ The string limit is no longer limited to 12-characters; it can be
whatever the calling program declares.

+ The syntax for keywords is now aaa.bbb, where aaa is required,
and any of bbb may be used.

« The keyword “ ” (blank) signifies the command line for getting
positional parameters; thus the previous functions ikwp and ipp
are combined into one routine, mccmdint.

The functions for command line parameter fetching are listed below.

Name Description

Mcemd fetches the current McIDAS command line

Mcemdkey validates the defined and command line keywords

Mccmdnam fetches all keyword names occurring in the
command line

Mcemdnum returns the number of values associated with a
command line keyword

Mcemdquo fetches the quote field string command line argument

Mcemdstr fetches a program command line argument in
character format

Mccemdint fetches a program command line argument in
integer format

Mccemddbl fetches a program command line argument in
double format

Mcemdiyd fetches a program argument in integer date format,
yyyyddd

Mccmdihr fetches a program argument in integer time format,
hhmmss

Mccemddhr fetches a program argument in fractional hours,

The McIDAS Programming Environment

hh.fffff

McIDAS Developer/Operator Training
October 23, 1995

Name Description

Mccemdill fetches a program argument in integer
latitude/longitude format, ddmmss

Mcemddl fetches a program argument in latitude/longitude
format, dd.fffff

The functions below are general-purpose utilities.

Name Description

mcstrtoint converts the numeric token to integer type format
mcstrtodbl converts the numeric token to double type format
mcstrtohex ~ converts the hexadecimal token to integer type format
mcstrtoiyd converts the date token to integer date format,

yyyyddd

mestrtodhr converts the time token to double fractional hours,
hh.ffff

mcstrtoill converts the latitude/longitude token to integer type
format, dddmmss

mcstrtodll converts the token to double fractional latitude/
longitude, ddd.fffff

mcucvtr converts physical units; real values

mcucvtd converts physical units; double precision values

Example

INTEGER MCCMDINT
INTEGER FRAME
INTERGER VALUE

c
c Replacement for IPP and IKWP
c
c MCCMDINT (keyword, position, message, def, min, max, value)
c
c Get first parameter on keyword "FRAME"; use LUC(51) as the
c default, and limit the range from 1 to LUC(13)
c
if (MCCMDINT('FRA.ME’, 1, ’'Frame number’, LUC(51),
& 1, LUC(13), FRAME)) .lt. 0) return
c
c Get first positional parameter on command; use -1 as the default
¢ and do NOT check the range (allow any integer value)
e
if (MCCMDINT(’’, 1, ‘The first value’, -1,
& 1, 0, VALUE)) .lt. 0) return
McIDAS Developer/Operator Training The McIDAS Programming Environment

October 23, 1995 1-11

Sample code

c

nnnnNnnNnnonNn nn

(@]

The McIDAS Programming Environment

1-12

THIS IS SSEC PROPRIETARY SOFTWARE - ITS USE IS RESTRICTED.

*** McIDAS Revision History ***
**%* McIDAS Revision History **x*

? EXAM -- Describe the purpose of this command

? EXAM color <keywordss> "quote

? Parameters:

? color | the color level to write the text in (def=1)
? Keywords:

? GRAPHIC= graphics frame number (def=current)

? WIDTH= line width (def=1)

Ver

Get

Get

&

Get

&

Fin

subroutine main0

implicit none

symbolic constants & shared data
external functions

integer mccmdkey

integer mccmdint

integer mccmdstr

integer mccmdquo

local variables
character*80 quote
character*10 option
character *255 quotestring
integer colorlevel

integer graphicframe
integer width

initialized variables

character*10 keynames (2)
data keynames/'GRA.PHIC', 'W.IDTH'/

ify the keywords...

if (mccmdkey (2,keynames).lt.0) goto 999

the color level

if (mecemdint(' ',1,'Text colorxr',1,

itrmch ('MIN_COLOR_LEV',-1), itrmch ('MAX COLOR_LEV',-1),
colorlevel) .lt. 0) goto 999

the graphic frame number

if (mcemdint ('GRA.PHIC',1, 'Graphics frame',b luc(56),1,
luc(14), graphicframe) .lt. 0) goto 999

the line width

if (mcemdint('W.IDTH'),1, 'Line width',1,1,10,width)
.1t. 0) goto 999

ally, get the quote string

if (mcemdquo (quotestring).lt.0) goto 999

McIDAS Developer/Operator Training
October 23, 1995

C Start the graphics with the desired frame and width
call initpl (graphicframe,width)
C Write the line of text

call wrtext (luc(63),luc(64),10,quotestring,
& len_trim(quotestring),colorlevel)

call endplt

999 return
end

EXAM 1 GRA=10 "TEST

EXAM:

EXAM: Invalid Graphics frame.

EXAM: first GRA= argument is too big --> 10

EXAM: Must be valid 'Graphics frame' integer value within range 1 thru 4.
EXAM:

EXAM 10 GRA=1 "TEST

EXAM:

EXAM: Invalid Text color.

EXAM: first positional argument is too big --> 10

EXAM: Must be valid 'Text color' integer value within range 1 thru 8.

EXAM:
EXAM 1 GRX=1 "TEST
EXAM:
EXAM: Invalid command keywords: GRX,
EXAM:
McIDAS Developer/Operator Training The McIDAS Programming Environment

October 23, 1995 1-13

mccmd functions

The sections below give detailed information and examples of the most
commonly used functions.

General argument fetching utilities

The utilities mcemdkey, mccmdnam, meccmdnum and meemd are
further defined below.

mccmdkey

mccmdkey - Validate command line keywords, printing errors to edest.
Replaces function: keychk

integer function
mccmdkey (integer numkey, character* (*) valid_keywords (numkey))

Example:
INTEGER NUMKWS
INTEGER MCCMDKEY
PARAMETER (NUMKWS=3)
CHARACTER*10 KEYWORDS (NUMKWS)

DATA KEYWORDS/'FRA.ME', 'COL.OR', 'LIN.ES'/
C--- this means that for the keyword FRAME, at
C--- least 'FRA' must be specified; however the
C--- values 'FRA', 'FRAM' or 'FRAME' may be used.

IF (MCCMDKEY (NUMKWS, KEYWORDS) .LT.0) RETURN

mccmdnam

mccmdnam - Get all keyword names occurring in the command line.
Replaces function: kwnams

integer function
mccmdnam (integer maxkey, character* (*) keywords (maxkey))

Example:
INTEGER MAXKEY
INTEGER MCCMDNAM
INTEGER NUMKEYS
PARAMETER (MAXKEY=25)
CHARACTER*255 KEYWORDS (MAXKEY)

NUMKEYS = MCCMDNAM (MAXKEY, KEYWORDS)
IF (NUMKEYS.LT.0) RETURN

McIDAS Developer/Operator Training

The McIDAS Programming Environment
October 23, 1995

1-14

mccmdnum

mcemdnum - Return # values associated with given command line keyword.
Replaces function: nkwp

integer function
mccmdnum (character* (*) keyword)

Example:
INTEGER MCCMDNUM
INTEGER NUMKEYS

NUMKEYS = MCCDNUM ('FRA.ME')

mccmd
mccmd - Build and return the current McIDAS command line.

character* (*) function
mcemd ()

Example:
CHARACTER*255, MCCMD, COMMAND

COMMAND = MCCMD ()

McIDAS Developer/Operator Training The McIDAS Programming Environment
October 23, 1995 1-15

Character strings

The character string functions mecmdquo and meemdstr are defined
below.

mccmdquo

mccmdquo - Get the quote field string command line argument.
Replaces function: cgfld
Note: there is NO leading " character on the string
returned by this function

integer function
mcemdquo (character* (*) value)

Example:
INTEGER MCCMDQUO
INTEGER STATUS
CHARACTER*255 QUOTESTRING

STATUS = MCCMDQUO (QUOTESTRING)

C--- if the status is < 0 then an error happened
IF (STATUS.LT.0) RETURN

IF (LEN_TRIM(QUOTESTRING) .EQ.0) THEN
C--- there is no quote string

mccmdstr

mccmdstr - Get a program command line argument in character form.
Replaces functions: ckwp, cpp

‘integer function
mccmdstr (character* (*) keyword, integer position,
character* (*) default, character* (*) value)

Example:
INTEGER MCCMDSTR
CHARACTER*255 VALUE

C--- get the 2nd positional parameter as a string
IF (MCCMDSTR(' ', 2, 'NONE', VALUE).LT.0) RETURN
C--- now get the first keyword parameter for TYPE=

IF (MCCMDSTR('TYP.E', 1, 'NONE', VALUE).LT.0) RETURN
IF (VALUE.EQ.'NONE') THEN
-- default returned or user typed "NONE" --

The McIDAS Programming Environment McIDAS Developer/Operator Training
1-16 October 23, 1995

Numeric

The numeric functions mecmdint and meemddbl are described below.

mccmdint

mccmdint - Get a program command line argument in integer type format.
Replaces functions: ikwp, ipp

integer function

mcemdint (character* (*) keyword, integer position,
character* (*) printmsg, integer def, integer min,
integer max, integer value)

Example:
INTEGER MCCMDINT
INTEGER FRAME

C--- if the first parameter of the keyword FRAME has
C--- a syntax error, let the system print out an
C--- appropriate message and just return

IF (MCCMDINT('FRA.ME', 1, 'Frame number', LUC(51),
& 1, LUC(13), FRAME)) .LT.0) RETURN

mccmddbl

mcemddbl - Get a program command line argument in double type format.
Replaces functions: dkwp, dpp

integer function

mcemddbl (character* (*) keyword, integer position,
character* (*) printmsg, double precision def,
double precision min, double precision max,
double precision value)

Example:
INTEGER MCCMDDBL
DOUBLE PRECISION TEMP

C--- Note Ehét the range and default values must be
C--- DOUBLE PRECISION values

IF (MCCMDDBL(' ', 1, 'Temperature', 27316.D-2,
& -300.D0O, 400.D0, TEMP).LT.0) RETURN

McIDAS Developer/Operator Training The McIDAS Programming Environment
October 23, 1995 1-17

Time

The time functions meemdihr and meemddhr are described below.

mccemdihr

mccmdihr - Get a program argument in integer type time format hhmmss.
Replaces functions: ikwphr, ipphr, mkwp, mpp

integer function
mccemdihr (character* (*) keyword, integer position,
character* (*) printmsg, integer def, integer min,
integer max, integer value)

Example:
INTEGER MCCMDIHR
INTEGER BEGTIME
INTEGER ENDTIME

C--- Note £hat for the INTEGER functions, the form
C--- of the returned value is HHMMSS; also, the
C--- range and default values must be specified the same way

IF (MCCMDIHR('TIM.E', 1, 'Starting time', 0, O,
& 235959, BEGTIME).LT.0) RETURN

IF (MCCMDIHR('TIM.E', 2,'Ending time', BEGTIME, O,
& 235959, ENDTIME) .LT.0) RETURN

mccmddhr

mccmddhr - Get a program argument in fractional hours format hh.fffff.
Replaces functions: dkwphr, dpphr

integer function

mcemddhr (character* (*) keyword, integer position,
character* (*) printmsg, double precision def,
double precision min, double precision max,
double precision value)

Example:
INTEGER MCCMDDHR
DOUBLE PRECISION BEGTIME
DOUBLE PRECISION ENDTIME

C--- Note that the returned value is DOUBLE PRECISION
C--- in the form: hh.nnnnn; the range and default values
C--- must be specified in the same way

IF (MCCMDDHR('TIM.E', 1, 'Starting time', 0.DO,
& 0.DO, 24.D0, BEGTIME).LT.O0) RETURN

IF (MCCMDDHR ('TIM.E', 2, 'Ending time', BEGTIME,
& 0.DO, 24D0, ENDTIME).LT.O0) RETURN

The McIDAS Programming Environment McIDAS Developer/Operator Training
1-18 October 23, 1995

(Date

The date routine mcemdiyd is described below.

mccmdiyd

mccmdiyd - Get a program argument in integer type date format yyyyddd.

Replaces functions: ikwpyd, ippyd

integer function '

mcemdiyd (character* (*) keyword, integer position,
character* (*) printmsg, integer def, integer min,

| integer max, integer value)

Example:
INTEGER MCCMDIYD

C--- Note that the value returned is in the form: YYYYDDD
C--- and that the range and default values must be
C--- specified in the same manner i

IF (MCCMDIYD('DAT.E', 1, 'Date', 0, 1970001,
& 2035001) .LT.0) RETURN

McIDAS Developer/Operator Training The McIDAS Programming Environment

October 23, 1995

1-19

Latitude/longitude (or other angles)

The lat/lon functions mcemdill and meemddll are déscribed below.

mcemdill

mccmdill - Get a program argument in integer type lat/lon form ddmmss.
Replaces functions: ikwpll, ippll

integer function

mccmdill (character* (*) keyword, integer position,
character* (*) printmsg, integer def, integer min,
integer max, integer value

Example:
INTEGER MCCMDILL
INTEGER LATNW
INTEGER LATSE

C--- Note that the value returned is in the form: DDDMMSS
C--- and that the range and default values must be
C--- specified in the same way

IF (MCCMDILL('LAT.ITUDE', 1, 'Upper left latitude'’,
& 0, -900000, 900000, LATNW).LT.0) RETURN

IF (MCCMDILL ('LAT.ITUDE', 2, 'Lower right latitude',
& LATNW, -900000,900000, LATSE).LT.0) RETURN

mccemddll

mcemddll - Get a program argument in fractional lat/lon form dd.fffff.
Replaces functions: dkwpll, dppll

integer function

mcemddll (character* (*) keyword, integer position,
character* (*) printmsg, double precision def,
double precision min, double precision max,
double precision value)

Example:
INTEGER MCCMDDLL
DOUBLE PRECISION LATNW
DOUBLE PRECITION LATSE

C--- Note that the value returned is a DOUBLE PRECISION value
C--- and is in the form: ddd.nnnn; the range and default
C--- values must be specified in the same way

IF (MCCMDDLL ('LAT.ITUDE', 1, 'Upper left latitude',
& 0.D0, -90.DO, 90.DO, LATNW).LT.0) RETURN

IF (MCCMDDLL('LAT.ITUDE', 2, 'Lower right latitude',
& LATNW, -90.D0,90.D0, LATSE).LT.0) RETURN

The McIDAS Programming Environment McIDAS Developer/Operator Training
1-20 October 23, 1995

e |

mcarg functions

The mcemd functions call another series of functions whose names begin
with mearg. While the mcemd functions provide for error message output
and operate only on the command line, while the mcarg functions use a
handle to identify the string being parsed and translated, and you can
configure the parsing of tokens.

To use these functions, first call mcargparse to place the string of
characters in the internal structure. The return from mcargparse is a
unique handle used in subsequent calls to fetch values. At the end, call
mcargfree to free the handle and the internal space.

For example:

ihand = mcargparse('PGM first second 1 2 3',0,length)
istat = mcargstr(ihand, ' ',1,' ',string)

istat = mcargint(ihand,' ',3,0,1,0,ival,global)

istat = mcargfree (ihand)

Note that support layer functions (those below the API) are used by the
argument fetchers; you should avoid using them in applications programs
since their interfaces or function may change. One possible exception
during this transition phase is if your applications call mclex, which has no
direct, API-level replacement. If you need an arbitrary string to be treated
as the command line, you must make these calls:

istat = mcargfree(0)
istat = mOcmdput (mOcmdparse (cline, lenlin))

The mcarg functions are listed below.

McIDAS Developer/Operator Training The McIDAS Programming Environment
October 23, 1995 1-21

Internal use functions

General

mcargparse - Parse the given text into arg-fetching structure.
(return the handle)

integer function
mcargparse (character* (*) txtstr, character*(*) given_syntax(10),
integer parsed_len)
mcargfree - Free parsed arg-fetching structure for the given handle.
integer function
mcargfree (integer arg handle)

mcargdump - Display parsed arg-fetching to McIDAS debug destinatibn.

subroutine
mcargdump (integer arg_handle)

mcargcmd - Build and return a McIDAS command line for the given handle.
character* (*) function
mcargcemd (integer arg_handle)
mcargkey - Validate arg-fetching keywords, optionally printing errors.
integer function
mcargkey (integer arg_handle, integer numkey,
character*(*) valid_keywords (numkey), integer printflag)
mcargnam - Fetch all keyword names within parsed arg-fetching text.
integer function
mcargnam(integer arg_handle, integer maxkey;
character* (*) keywords (maxkey))

mcargnum - Return # args for given keyword in parsed arg-fetching text.

integer function
mcargnum(integer arg_handle, character* (*) keyword)

Character strings
mcargquo - Fetch the quote field string argument.
integer function
mcargquo (integer arg_handle, character* (*) value)
mcargstr - Fetch an argument in character form.
integer function

mcargstr (integer arg_handle, character* (*) keyword,
integer position, character*(*) def, character* (*) value)

The McIDAS Programming Environment McIDAS Developer/Operator Training
1-22 October 23, 1995

Numeric
mcargint - Fetch an argument in integer type format.

integer function
mcargint (integer arg_handle, character* (*) keyword,
integer position, integer def, integer min,
integer max, integer value, character*(*) arg)

mcargdbl - Fetch an argument in double type format.

integer function

mcargdbl (integer arg_handle, characer* (*) keyword,
integer position,
double precision def, double precision min,
double precision max, double precision value,
character* (*) arg)

Time
mcargihr - Fetch an argument in integer type time format hhmmss.

integer function
mcargihr (integer arg_handle, character* (*) keyword,
integer position, integer def, integer min,
integer max, integer value, character*(*) arg)

mcargdhr - Fetch an argument in double fractional hours format hh.fffff.

integer function

mcargdhr (integer arg_handle, character* (*) keyword,
integer position,
double precision def, double precision min,
double precision max, double precision value,
character* (*) arg)

Date
mcargiyd - Fetch an argument in integer type date format yyyyddd.

integer function
mcargiyd (integer arg_handle, character* (*) keyword,
integer position, integer def, integer min,
integer max, integer value, character* (*) arg)

McIDAS Developer/Operator Training The McIDAS Programming Environment
October 23, 1995 1-23

Latitude/longitude (or other angles)
mcargill - Fetch an argument in integer type lat/lon format dddmmss.

integer function
mcargill (integer arg_handle, character* (*) keyword,
integer position, integer def, integer min,
integer max, integer value, character* (*) arg)

mcargdll - Fetch argument in double fractional lat/lon format ddd.fffff.

integer function

mcargdll (integer arg_handle, character* (*) keyword,
integer position,
double precision def, double precision min,
double precision max, double precision value,
character* (*) arg)

Useful utilities that replace older functions

Numeric

mcstrtoint - Convert given numeric token to integer type format.
Replaces function: iftok

integer function
mcstrtoint (character* (¥) token, integer value)
mcstrtodbl - Convert given numeric token to double type format.
Replaces function: dftok
integer function
mcstrtodbl (character* (*) token, double precision value)
mcstrtohex - Convert given hexadecimal token to integer type format.

Replaces function: iftok

integer function
mcstrtohex (character* (*) token, integer value)

The McIDAS Programming Environment McIDAS Developer/Operator Training
1-24 October 23, 1995

Time

mcstrtohms - Convert given time to integer hours, minutes and seconds.

integer function
mcstrtohms (character* (*) token,
integer min, integer sec)

mcstrtoihr - Convert given time token

Replaces function: itokhr,
integer function
mcstrtoihr (character* (*) token,

mcstrtodhr - Convert given time token
Replaces function: dtokhr,

integer function

mcstrtodhr (character* (*) token,

Date

mcstrtoiyd - Convert given date token

Replaces function: itokyd,
integer function
mcstrtoiyd (character* (*) token,

integer hour,

to integer time format hhmmss.
iftok

integer ihr)

to double fractional hours hh.ffff
dftok i

double precision dhr)

to integer date format yyyyddd.
iftok

integer iyd)

Latitude/longitude (or other angles)

mcstrtoill - Convert given lat/lon token to integer type format dddmmss.

Replaces function:

integer function
mcstrtoill (character* (*)

itokll,

token,

ifto

integer ill)

mcstrtodll - Convert given token to double fractional lat/lon ddd.fffff.

Replaces function: dtokll,

integer function
mcstrtodll (character* (*)

token,

dftok

double precision dll)

mcucvtr - Convert an array of real values from one unit to another.

integer function

mcucvtr (integer num, character*(*) unitin, real bufin(*),

character* (*) unitout,

real bufout (*),

integer idif)

mcucvtd - Convert an array of double precision values from one unit

to another.

integer function
mcucvtd (integer num,

character* (*) unitin,

double precision bufin(*),

character* (*) unitout, double precision bufout(*), integer idif

McIDAS Developer/Operator Training
October 23, 1995

The McIDAS Programming Environment
1-25

Argument fetching status

The argument fetching status codes and their descriptions are listed below.

Status code Definition

[-] Onnn argument comes from the default
[-] Innn argument comes from the command line
[-] 2nnn argument comes from the system string table
[-] n0OOn character string argument
[-]nOln quote field string argument
[-]n10n integer argument
[[1nlln integer hexadecimal argument
[-] n20n decimal argument (double)
[-] n21n double hexadecimal argument
[-] n30n date argument
[-]n31n current date argument
- n32n year within date argument is invalid
- n33n mon month within date argument is invalid
- n34n mm month within date argument is invalid
- n35n day of month (dd) within date argument is invalid
- n36n day of year (ddd) within date argument is invalid
[-] n40n integer time argument
[-] nd41n current integer time argument
- n42n hours within integer time argument are invalid
- n43n minutes within integer time argument are invalid
- n44n seconds within integer time argument are invalid
[-] n45n double time argument
[-] nd46n current double time argument
- n47n hours within double time argument are invalid
- n48n minutes within double time argument are invalid
- n4%9n seconds within double time argument are invalid
[-] n50n integer lat/lon argument
- n52n degrees within integer lat/lon argument are invalid
- n53n minutes within integer lat/lon argument are invalid
- n54n seconds within integer lat/lon argument are invalid
[-] n55n double lat/lon argument
- n57n degrees within double lat/lon argument are invalid
- n58n minutes within double lat/lon argument are invalid
- n5%n seconds within double lat/lon argument are invalid
[-] 90n keyword status
nnn0 argument is ok
- nnnl argument is invalidly formatted (invalid char)
- nnn2 integer argument can't contain a fraction
- nnn3 argument exceeds system limits for desired format
- nnn4 out-of-range argument < given min
- nnn5 out-of-range argument > given max
The McIDAS Programming Environment McIDAS Developer/Operator Training

1-26 October 23, 1995

Applications

Development in the
ADDE

Presented by
Dave Santek
McIDAS Applications Project Leader

Session 2
McIDAS Developer/Operator Training
October 23-25, 1995

Table of Contents

IREEVIRI, « b 00 bl e w0 8 e TR von's G R o 2-1
General terminologyc.ovvvviiiniiii i 2-2
Client/server COnaPLS. . . . cc v vvnvcerecnrnsnnassiony 2-3
ADDE name constructsc.couvuinniininnnnn 2-4

IR AR . . e s i e e sk g e es s BEY 2-5
TONERRBEY . o oo rvivassnnsnans s osovebsnonvonsss 2-5
TRRe AR AP o5 v oovvrsnnamnsnnin e v iaanunisn il 2-7
Reading the image directory block.................... 2-8
Readingthedatablockcocovninnreicasanenss 2-11
Reading the navigationblock 2-15
Reading the calibrationblock....................... 2-16
Reading the commentblock........................ 2-17
WHADG MEEO @8I« cvessvvinsvsonssssssrvanns 2-18

Griddeddatacciiiiiiniiiiiii i, 2-22
Griddeddata APIciviiiiiiiinnnnnnennn 2-23
PAEEOEL . .« i oo i bai et et 2-24
Readinggridscoiviiiiiiiiiniiiinnne, 2-25

AR BN, < - e bbb s s s E R TR § b s 2-27
L T R U IR AR U 2-27
POREHREOIEE .« s o s voxsdnnanivsinaananssss sasssssos 2-27
BOOPIeDOrtng« v« viomsasonsevisnmnnsosssnens 2-28
EISERRRR, . .« o ovsihs o schinma somn s s W5 66w uvs 6o vris 2-30
B T il R 2-30

507w T P uy e PRSPPI of (o S 2-32

SRS GR35 554 5 samsa sssrsamirmnasssssdadonsis v 2-35
DEARIOIED. v v oo sb s s o munsmmsmnwaioaed Bissas o 2-35
SRR 1. s 5 % prgerr #5735 gl i 1 9 & o D hebssieme i 4 8 2-46
o R 2-50
WIREIE - o5 v i s domnins b5 o o ws o0 o w o @Akl w v % ¢ & @ 2-72
BRI o e 5 6k g bR R e W NS 3 2-75
SR ONINLTRS e ooi v ke 478 ¥ % e 100 e 0 o P 6 o S e 3 2-77

BEORATORBERI - « « «« o i o5 piravs www s SRR S EREsnE s 14 2-79

Overview

The ADDE (Abstract Data Distribution Environment) provides the
following enhancements to McIDAS.

Easier access to data on remote machines

As satellite and weather data are acquired on a distribution of workstations
rather than just the mainframe, our current mechanism for identifying data
sets (using numbers for Area, Grids, and MDs) becomes very limiting. A
use of NFS (Network File System) with the McIDAS File Redirection
would be very difficult to manage. ADDE uses names to denote datasets;
file numbers are irrelevant from the users’ perspective, but are still used on
the workstation serving the McIDAS data. For example, RT may point to
a machine that has Real-time data on it.

Improved performance

The servers on MVS are always running and the data is not spooled up
before sending it. The user’s application will make use of the data as soon
as it starts being sent. For Unix data servers, the performance is much
better than NFS.

Better data management capabilities

The use of names, instead of numbers, is a more intuitive way to manage
data. Rather than remembering that the GOES-7 full resolution visible data
is stored in Area files 101 to 104, in ADDE they may be stored in
WEST/VIS-CONUS. And if the operational west satellite is switched to
GOES-9, the ADDE name remains the same, though the file numbers may
be different. The user doesn’t need to know, only the administrator of
the server.

More flexibility in data handling

We’ve identified three basic data types for use in ADDE: Image, Grid and
Point. These data types have one thing in common: the ability to earth
locate an individual data element. Also, Image and Grid data are both 2-D
arrays of data elements. These similarities make it possible to serve data to
applications in a format other than its native format. In this training
session, the data source is 2-D grids but the server will serve it to the
application as Image data.

McIDAS Developer/Operator Training Applications Development in the ADDE
October 23, 1995 2-1

Transparent incorporation of non-McIDAS data formats

You can write servers that allow McIDAS ADDE applications to read and
write in non-McIDAS data formats. We have prototyped this capability
with SSM/I Pathfinder HDF files and GI (Global Imaging) satellite image
data format. In today’s exercise, we will work with grids stored in text

files.

This training session will provide the infomation you need to write your
own image data and gridded data applications and servers in the ADDE. If
you have not used ADDE, you should read the section titled Introduction
to the ADDE, in either the McIDAS-X or McIDAS-OS2 Users Guide.

General terminology

The terms below are used throughout this section.

connection

inetd

position

sort clause

transaction

Applications Development in the ADDE
2-2

the initialization that occurs when a client
determines the location of the dataset server and
then issues a request for a data exchange. The
server examines the request and determines its
validity; if the request is valid, the connection is
opened and the client is authorized to begin its
transaction.

Unix system daemon that listens to various
network ports. '

absolute position number; corresponds to an Area
or Grid file in a range of files.

a text string that specifies the spacial, temporal
and spectral limits of a transaction. The server
defines the number and format of the sort clauses
for defining a request.

any ADDE exchange; it implies a transfer
between an ADDE client and server.

McIDAS Developer/Operator Training
October 23, 1995

Client/server concepts

The following is an analogy to ADDE: The server is the cook in a
restaurant. The patron (ADDE application) examines the menu (named
datasets), places an order (request) with the waiter (client) who walks
through the door (pipe) into the kitchen (server machine) and gives the
order to the cook (server application). The cook prepares the food (data)
and makes it available for pickup (in the pipe). The waiter brings it to your
table (workstation). You, as the application, get only one chance to order
and cannot make any changes. Also, you promise to eat everything on your
plate (read all the data); no more, no less.

ADDE distributes data using networked servers and clients. Servers store
the data and send it to a client. Clients request and receive data, and run
applications on the data such as displaying imagery or contouring. When
you run McIDAS commands that manipulate data, such as IMGDISP,
these are client applications. When you run the DSSERVE command to
manage local datasets, that is an example of running a server application.

Each McIDAS session acts as both a client and a local server. The client
can request data from either its local server or from a remote server. The
remote server can either be a McIDAS-MVS mainframe or McIDAS-X
workstation configured as a server of data.

Clients and servers communicate via a TCP/IP communications protocol.

Views of the world

We’ve identified two distinct domains: the client and server. Because of
the intentional separation, their view of the other’s domain is abstract.

The applications that run on the client are instructed by the user to operate
on a dataset along with some selection criteria (sort clauses). The
application makes a request to have the data returned in a particular format;
Image, for example. By virtue of this abstraction, the application is assured
of having the data available as requested or is notified that this is not
possible.

On the other hand, the server promises to send back the data as requested
or notify the application if there is a problem. Each server operates on a
specific data format; there ate individual servers for each of the McIDAS
data formats. Additionally, the way the server sends the data back will
necessitate more servers. For instance, we have a text file containing grid
point data. We may want to serve it up as an image, to display it as a
grayscale picture (IMGDISP), or as a grid to contour it (GRDDISP).

McIDAS Developer/Operator Training Applications Development in the ADDE
October 23, 1995 2-3

ADDE name constructs

In non-ADDE commands, all image, grid and point source files are
referenced by file numbers. If you don’t know the file numbers, finding
data can be difficult. The ADDE commands use dataset names composed
of three parts: type, group and descriptor. Type indicates the type of data:
image, grid or point. McIDAS Area files are of type image; McIDAS Grid
files are of type grid; McIDAS MD files are of type point.

To incorporate a non-McIDAS file format, the #ype of data must be
identified; it is related to the organization of the data and how it will be
used. For example, 2-D arrays of data can be thought of as image or grid
data in our model. To classify the data as image or grid, you should
consider the size, source of data, and display format (grayscale picture vs.
contour). With ADDE, it can be both. .

The group and descriptor point to a particular dataset. On the client, a
routing table determines which server to route the request to based on the
group. On the server, the group and descriptor resolve to a dataset, such as
a range of McIDAS Area files.

Applications Development in the ADDE McIDAS Developer/Operator Training
2-4 October 23, 1995

Image data

Although accessing image data in ADDE is different than the traditional

methods, there is enough similarity to make the porting of applications a

surmountable task. This phase in the implementation of ADDE provides a
transition to the new data access procedures without extensive changes to
existing code.

You must adhere to some new rules in ADDE. The previous method
allowed for random access and more freedom in taking alternative actions
based on the data being read. In ADDE, the data access is sequential, and
once requested, must all be read in. There are now some global keywords
related to image file data. Most of these specifications are related to
sectorizing the data (time and center point, for example) so that each
application does not have to retrieve and validate the keywords
independently. Also, the limitation of three open McIDAS Area files was
lifted; the limiting factor now is resources on the client (memory) and the
server (number of server processes running concurrently).

A general structural difference in the logic is also apparent. Previously,
any kind of searching or sectorizing was done in the application and it was
scattered throughout. Now, search conditions and sector specifications are
defined at request time and are processed by the server. By the time the
application is reading the data, it should be what is precisely needed.

Terminology

The terms below are used throughout this section on image data.

calibration block the block that holds the information to
transform the image element’s sensor units to
common physical units, such as IR temperature
or visible albedo.

comment block a collection of 80-character text fields
documenting any processing that may have
altered the image elements, types of
calibrations available for this image, or the
latitude/longitude of the image’s center
element.

data block a 2-dimensional matrix of image elements; the
dimensions of the data block and size of each
element are in the directory block.

MCcIDAS Developer/Operator Training Applications Development in the ADDE
October 23, 1995 2-5

directory block an image object block contajning a description
of the physical characteristics of the image and
the location of all ancillary blocks in the object.

image element the individual data value produced by a sensor.

image line the row dimension of a data block; image
elements are ordered from left to right in the
image line.

image line prefix the prefix section of an image line that holds
ancillary data defined by some image types

image object arectangular array of elements that collectively
represents an image and its collateral
information.

image object blocks a collection of image objects; each block
contains either image elements or collateral
information.

navigation block the block that holds the information for
determining the location of image elements in
physical space; it normally includes the precise
timing and attitude information of the sensor
platform used to determine the earth latitude/
longitude of an image element.

Applications Development in the ADDE McIDAS Developer/Operator Training
2:6 October 23, 1995

Image data API

The ADDE image data API routines are listed below by function, along
with equivalent routines for the old API.

A cursory look at this list gives the appearance of a one-to-one
correspondence. There are similarities which make the transition of
existing code to ADDE plausible; but logic restructuring is also part of this
process, as the new routines will not just drop in. The next few sections
will contrast the previous method for accessing McIDAS Area files with
the ADDE method for accessing image data.

The complete description of each routine can be found in Chapter 5 of the
preliminary version of the McIDAS Programmer’s Manual (10/95).

Routine

mcaget
mcaput

mcadir

mcadrd
mcalin
mcapfx
mcanav
mcacal

mcacrd

mcaout

mcacou

mcadel

McIDAS Developer/Operator Training

October 23, 1995

Function

opens a connection to read the
data block from an image file
opens a connection to write image
data to an image file

opens a connection to read the
directory block from an image file

reads the directory block from an
image file

reads the data portion of the
current image line

reads the prefix portion of the
current image line

reads the navigation block from
an image file

reads the calibration block from
an image file

reads the comment block from
an image file

writes the prefix and data portions
of an image line

writes the comment block to an
image file

deletes an image file

Old API

opnara

makara

readd

redara
redpfx
araget
araget

icget

icput

Applications Development in the ADDE

2-7

Reading the image directory block

Traditionally, McIDAS applications that access image objects (Areas)
read the directory block before accessing the image elements. readd takes
an Area number as input and returns the directory block associated with
that number. If the application is searching for files that meet certain
criteria, the application will do that selection.

The following code segment is an old Area directory read example.

Code segment showing the area directory read loop.

c --- I want an Area with the following
SS = 32 ! GOES-7 Visible
DAY = 95001 ! Jan 1 1995
TIME = 100000 ' 10 2
¢ --- search the following range of Areas
beg_area = 100
end_area = 199
¢ --- read Area directory for Area range beg_area to end_area

do 100 area=beg area,end_area
call readd(area,directory)

c --- validate area existence
if (directory(1l).eq.0) then

c --- check area parameters
if (directory(3).ne.SS) goto 100
if (directory(4).ne.DAY) goto 100
if (directory(5).ne.TIME) goto 100

¢ --- do something using the values in the area directory

endif
100 continue

Applications Development in the ADDE McIDAS Developer/Operator Training
2.8 October 23, 1995

mcadir and mcadrd

The ADDE interface to the image directory is through mecadir and
mcadrd. mcadir opens a connection based on a set of sort clauses for a
given dataset name; mcadrd returns the directories and comments blocks.

Sort clauses restrict the search based on the image day, in the format
YYDDD; the image start time, in the format HHMMSS; and the SSEC
sensor source number, 1 to 99. You must specify these sort clauses as a
range of values. Below is a list of the valid sort clauses that you can use
with mcadir.

Sort clause format Description

AUX YES or AUX NO appends the center lat/lon, resolution and
calibration types to the comment block

(default=YES)
DAY bday eday image Julian day range
SS ss1 ss2 SSEC sensor source number range

SUBSET bpos epos ADDE position range, or SUBSET ALL to
retrieve all directories
TIME btime etime image time range

The sort clause AUX (Auxiliary) provides an enhanced comment block.

When the sort clause AUX YES is in the sort condition list, the image
object directory server will append comment entries describing the latitude
and longitude of the center element of the image, the earth area (in
kilometers) covered by the center element of the image, and the valid
calibration types for the image, as shown below.

Center latitude = latitude

Center longitude = longitude

Latitude resolution (km) = resolution
Longitude resolution (km) = resolution
Valid calibration for band band = unit

Once the connection is opened with mcadir, the application makes
repeated calls to the meadrd function. As long as the function status
returns zero, mcadrd has returned an image object directory block and the
associated comment block. A function status of one means all directory
blocks in the specified dataset matching the sort conditions were returned.
Note that a mcadir call must precede a call to mcadrd as shown in the
code segment below.

McIDAS Developer/Operator Training Applications Development in the ADDE
October 23, 1995 2-9

Code segment showing the ADDE image object directory read loop.

c --- set sort conditions
sorts(l) = 'SS 32 32!
sorts(2) = 'DAY 95001 95001'
sorts(3) = 'TIME 100000 100000'
sorts(4) = 'SUBSET ALL'
nsort = 4

¢ --- dataset name

dataset = 'RT/GOES-7'

C --- turn error reporting on
error_flag =1

¢ --- open a connection for the specified dataset
if (mcadir (dataset,nsort, sorts,error_flag).lt.0) return

100 continue
c --- read an image directory block meeting the search conditions
status = mcadrd(directory, comment_cards)

c --- read failed
if (status.lt.0) then
call edest('Failed during directory read of '/dataset,0)
return

else if(status.eq.0) then

¢ --- found one, do something using the values in the area directory
éééo 100
endif
Applications Development in the ADDE McIDAS Developer/Operator Training

2-10 October 23, 1995

Reading the data block

The example code segment below is typical of the code required to read an
Area. The application opens the Area (opnara), reads the data lines
(redara) and then closes the Area (clsara). The application performs all
image sectorization and resolution manipulation.

Code segment showing the area data read loop.

c --- set line bounds
beg_line =1
end_line = area_directory(9)

c --- set element bounds
beg_elem = 1
end_elem = area_directory(10)
nelems = end_elem - beg elem + 1

¢ --- band number
band = ikwp('BAND',1,8)

c --- open the Area
call opnara(area)

c --- declare output units (IR temperature)
call araopt{area, 1, 'UNIT', lit('TEMP'))

¢ --- declare output precision (4 bytes/element)
call araopt(area, 1, 'SPAC', 4)

c --- read area lines
do 100 line = beg_line,end line
call redara(area, line-1, beg_elem, nelems, band, data_buffer)

c --- scan the data elements
do 200 element = beg _elem, end_elem

200 continue

100 continue
c --- close the area

call clsara(area)

mcaget, mcalin and mcafree

The ADDE version of the image object data block read is based on
defining a request for an image sector, which may be a fragment of an
image object contained in a dataset. The process is initiated by specifying
a set of conditions describing the desired data segment. These sort
conditions form the basis of the client’s request to the server. If an image
in the dataset satisfies the sort conditions, a connection is opened and the
transaction proceeds. The transaction is done on a line-by-line basis until
the entire request segment is transferred.

mcafree frees the memory allocated by mcaget. It should be called after
mcalin exhausts the transaction.

McIDAS Developer/Operator Training Applications Development in the ADDE
October 23, 1995 2-11

mcaget passes the request from the client to the server. The return status
shows if the connection is opened. If it is, mealin is called repeatedly to
retrieve an image line. As long as the return status is zero, an array of
image data is present. A return status of one means the entire sector was
transferred, the transaction is complete and the connection is closed.

Applications use sort clauses to communicate with the data block server.
The number and format of sort clauses are strictly regulated. These clauses
allow the application to specify spacial, temporal and spectral limits of the
transaction, eliminating the need for the application to scan the dataset for
a particular image object. Below is a list of valid sort clauses for the

mcaget interface.

Sort clause format
AUX YES or AUX NO

BAND band

CAL QTIR

DAY day

LOCATE cor ycor xcor

MAG Imag emag

SIZE lines elems
SU name

POS pos

TIME btime etime

Description

appends the unit and scale to the directory
block

spectral band, if the image has multiple bands
quick calibration switch for POES images
image Julian day

sets the coordinate type and the coordinate
positions relative to the coordinate type
line and element magnification factor;
positive values for blowup, negative values
for blowdown

number of image lines and data elements
stretching table name (default=no stretch)
absolute position in the dataset

image time range

Below is a code segment illustrating the necessary steps for reading the
data block of an ADDE dataset image.

Applications Development in the ADDE

McIDAS Developer/Operator Training
October 23, 1995

Code segment showing the ADDE data block read loop.

¢ --- get the "standard" sort conditions
if (mcasort (nsorts, sorts,parm_pos) .1t.0) then
call edest ('Failed to return standard sort parms',O0)
return
endif

c --- get remaining (non-standard) sort conditions
sorts (nsort+1l) = "SIZE 100 100"
nsort = nsort+l

c --- set the format of the returned data buffer
format = 'I4'
c --- set the units of the returned data
unit = 'TEMP'
c --- open a connection
status = mcaget (dataset, nsort, sorts, unit, format,
& max_byte, msg_flag, directory, handle)

if (status.lt.0) return

100 continue
¢ --- read the data block
status = mcalin(handle, data_buffer)
if (status.lt.0) then
call edest ('Read failed',0)
return

¢ --- got a line of data
else if(status.eq.0) then

éééo 100
endif
c --- free the handle

status = mcafree(handle)

mcaget allows the application to specify the units and format of the data
elements. Since these parameters are necessary to any data transaction,
they are specified as separate parameters to mcaget. Units may be any
physical quantity valid for the image object type; for example, TEMP or
RAD. A list of valid unit identifiers is available to an application through
mcadir by specifying the AUX YES sort clause. Use the format parameter
to specify the bytes per data element in the return array. Valid formats are
I1 (1 byte/element), 12 (2 bytes/element), and 14 (4 bytes/element).

McIDAS Developer/Operator Training Applications Development in the ADDE
October 23, 1995 2-13

mcasort

The call to measort in the above code segment provides general
translation of command line keyword parameters into equivalent mcaget
sort clauses. Any image application level program may call mcasort to
retrieve the command line keywords and return them as mcaget sort
clauses. Because the command line keywords that mecasort translates were
identified as applicable to the majority of image applications, they can be
thought of as global keywords. Users can be assured that using the same
keyword in different applications will give the same result.

Below is a list of the ADDE image object access keywords and their
equivalent sort clauses.

Command line
keyword

BAND=band

DAY=day

LATLON-= lat lon

LINELE= line ele

MAG=Imag emag

PLACE=loc

RTIME= bmin emin

STATION= stn

TIME=>btime etime

Applications Development in the ADDE

- 2-14

MCASORT translated
sort clause

AUX YES

BAND band

DAY day

LOCATE Eloc lat lon

LOCATE lioc line ele

MAG Imag emag

none

TIME btime etime

LOCATE Eloc lat lon

TIME btime etime

Remarks
always set by MCASORT

only one spectral band in
the clause

if keyword PLACE is not,
specified, loc defaults to
center (EC)

if keyword PLACE is not
specified, /oc defaults to
center (IC)

sets Joc for the LATLON,
LINELE and STATION
keywords

RTIME overrides TIME

if keyword PLACE is not
specified, loc defaults to
center (EC)

McIDAS Developer/Operator Training
October 23, 1995

Reading the navigation block

Applications rarely access the navigation block directly, except when
copying it to another file. In most cases, navigational operations are
performed through a dedicated API. For those instances where the
navigation block is read by the application, the access interface is the
araget subroutine. araget is a generalized input routine that reads
application-defined blocks from an area. Applications must define the
location and length of the desired information in the area. The example
below uses araget to read the navigation block from an area.

Code segment showing the area navigation block read.

¢ --- get the position of the Nav block from the area directory
pos = aradir (35)
if(aradir(63).eq.0) then
length = pos - aradir(34)

else
length = pos - aradir(63)
endif
¢ --- read the Nav block

if (length.gt.0) call araget (area,pos,length,nav_buffer)

mcanayv

The ADDE interface to the navigation block is through mcanav. At any
point after the connection is opened by mcaget, the application may
retrieve the navigation block using the handle returned by the preceding
mcaget call. The code segment below illustrates the use of mcanav.

Code segment showing the ADDE image navigation block read.

c --- open a connection .
status = mcaget (dataset, nsort, sorts, unit, format,
& max_byte, msg_flag, directory, HANDLE)

if (status.lt.0) return

¢ --- read the navigation block
status = mcanav (HANDLE, nav_buffer)
if(status.lt.0) then
call edest ('Navigation Block Read failed',0)

McIDAS Developer/Operator Training Applications Development in the ADDE
October 23, 1995 2-15

Reading the calibration block

Applications use araget to read the calibration block from an area. araget
takes the position and length of the calibration block as arguments and
returns the block in an array. Below is a sample code segment of a typical
calibration block read.

Code segment showing the area calibration block read.

c --- get the position of the Cal block from the area directory
pos = aradir(63)
if(pos.ne.0) then
length = aradir(34) - pos

c --- read the Cal block
call araget (area,pos,length,cal_buffer)

endif

mcacal

mcacal reads the calibration block of an ADDE image dataset. mecacal can
be called any time after the connection is opened by mcaget. The handle
returned by mecaget is passed to meacal, which returns the associated
calibration block.

Code segment showing the ADDE image calibration block read.

c --- open a connection
status = mcaget (dataset, nsort, sorts, unit, format,
& max_byte, msg_flag, directory, HANDLE)

if(status.lt.0) return

¢ --- read the calibration block
status = mcacal (HANDLE, cal_buffer)
if(status.lt.0) then
call edest ('Calibration Block Read failed',0)
return
endif

Applications Development in the ADDE McIDAS Developer/Operator Training
2-16 October 23, 1995

Reading the comment block

icget reads the comment block entries from an area. It requires no prior
function calls to set up its environment. The application repeatedly calls
icget until the return status indicates all entries are accessed. Entries are
returned in an 80-byte integer array, which can be moved to a character
array for output.

Code segment showing the area comment block read.

¢ --- read and print the comment block entries
100 continue
if (icget (area, comment_card).eq.0) then

call movwc (comment_card, line_out)
call spout(line_out)

goto 100
endif

mcadrd and mcacrd

The ADDE image API has two interfaces for reading the comment block.
The first is available through the mcadir/mcadrd interface. When a
connection is opened with mcadir, all mcadrd transactions return the
comment block for an image object The second interface is available
through connections opened by mcaget. After all the data is read, meacrd
is used to read the comment block. Unlike icget, mcacrd returns all
80-character per record entries with a single call.

Code segment showing the ADDE image comment block read.

c --- open a connection
status = mcaget (dataset, nsort, sorts, unit, format,
& max_byte, msg_flag, directory, HANDLE)

if(status.lt.0) return

100 continue
c --- read the data block
status = mcalin(handle, data_buffer)
if(status.lt.0) then
call edest ('Read failed',0)
return

c --- get a line of data
else if(status.eq.0) then

goto 100

endif
c --- read the comment block

if (mcacrd(handle, comment_ buffer).ne.0) then
call edest ('Read of Comment Block failed',0)
return

endif

McIDAS Developer/Operator Training Applications Development in the ADDE
October 23, 1995 2-17

Writing image data

The code segment below illustrates the traditional sequence for writing a
MCcIDAS Area. The initial step is to define the essential entries of the
directory block and write the block to the Area with makara. The location
of the navigation, calibration and data blocks are defined in the directory
block in entries 35, 63 and 34 respectively. Once the directory block is
written, the navigation and calibration blocks are filled and written to the
Area with araput. Next, the Area is opened with opnara and the data is
written to the Area on a line-by-line basis with wrtara. When the data
block is completed, the buffers are flushed with clsara and the comment
block is created and filed with icput.

Code segment showing the write.

c --- initialize the directory block
call zeros(directory block, 64)

c --- fill the essential directory block entries
directory_block (2) 4 ! area version
directory block(3) sss ! satellite number
directory_block (4) jday ! Julian day of image
directory | ~block (5) time ! nominal start time of image

start line

= ! starting image line number
start_elem

! starting image element number

! number of lines of image data

! number of data elements per line
directory block (11)= num bytes ! number of bytes per data element
directory block(12)= line_res ! line resolution

1
!
!
!
directory block (6) !
!

!

]

1

!

directory block (13)= elem_res ! element resolution

1

1

1

!

!

!

!

1

1

!

dlrectory block (7)
directory block (9) num_lines
directory block(10)= num_elems

{1 I I []

directory block (14) = num_bands ! number of bands

directory block (19)= 2**(band-1) ! band map

call movcw(memo, directory block(25))! memo field

directory block(34)= data_offset ! byte offset to the data block
directory block(35)= nav_offset ! byte offset to the nav block
directory_block (49)= doc_length ! length of prefix doc section
directory block (50)= cal_length ! length of prefix cal section
dlrectory block (51)= lev_length ! length of prefix lev section
directory block(52)= 1lit{ stype) ! sensor source type
directory block(53)= lit(ctype) ! calibration type

c --- write the directory block
call makara(area, directory_ block)

c --- initialize the navigation block
call zeros(nav_block, nav_size)

c --- fill the navigation block entries
(o NOTE: "navigation_params" is an array of nav1gatlon parameters
c which describes the geo-location of the elements of the area.
do 10 i = 1,nav_size
nav_block (i) = navigation_params (i)
10 continue
c --- write the navigation block to the area
call araput (area, nav_offset, nav_size*4, nav_array)
¢ --- initialize the calibration block
call zeros(cal_block, cal_size)
c --- f£fill the calibration block entries
c NOTE: "calibration_ parms" is an array of calibration
c parameters which transform the data elements to physical units.
do 20 i = 1,cal_size
cal_block (i) = calibration_params (i)
Applications Development in the ADDE McIDAS Developer/Operator Training

2-18 October 23, 1995

20 continue

c --- write the calibration block to the area
call araput (area, cal_offset, cal_size*4, cal_array)

c --- open the area
call opnara(area)

c --- loop to write image lines to the area
do 100 line = 1,num_lines

c --- pack the data array
NOTE: This assumes a 4 byte to 1 byte compression of the data
call pack(num_elems, data_array, data_array)

[¢]

--- write a line of data to the area
"data_array" is a (num_lines) by (num elems) array of data
elements each of which is (num_bytes) long. The elements
represent data for (band) from the sensor numbered (sss) on
(jday) at (time).
call wrtara(area, line-1, data_array(line))

nn0ooaoaon

100 continue

c --- close the area
call clsara(area)

c --- write the comment block
call getday(day)
call gettim(time)
cday = cfu(day)
ctime = cfu(time)
comment = cday(1:5)//' '//ctime(1:6)//' This is a comment '
call icput(area, comment)

mcaput and mcaout

The process of writing an ADDE image object follows the same format as
reading an ADDE image object. The application identifies a dataset,
defines the sort condition list, and opens a connection with the server. The
connection defines the transactions to perform before the transfer is
successfully completed.

The request to open a connection is performed by mcaput, which requires
a valid dataset name, image object position, directory block navigation
block and calibration block. mcaput does not return an object handle;
therefore, only one ADDE image object can be written at a time.

The only valid sort clause defined for the ADDE image write interface is
POS, which defines the location of the image object in the dataset. You
must specify this clause or the request to open a connection will fail.

Once the connection is open, the server expects a specific number of bytes
to be transferred. The number of bytes is defined by the entries in the
directory block. Transferring too few or too many bytes results in an error.
All data block write transactions are performed by the mcaout function.
mcaout has only one argument, which is an array of image elements to
write to the data block. mcaout is called as many times as necessary to
transfer the desired number of bytes. mcaput must be called prior to
mcaout.

MCcIDAS Developer/Operator Training Applications Development in the ADDE
October 23, 1995 2-19

mcacou

The comment block can only be written after the last byte of the data block
is transferred. The number of comment entries is defined during the
connection phase of the transaction. Word 64 of the directory block holds
the number of comment block entries for the image object. If this entry is
nonzero, the number of 80-byte entries is transferred. The mcacou
function transfers the comment block. It has only one argument, which is
an array holding the entire comment block. The code segment below is a
copy of the previous example re-coded to use the ADDE image obiject
write APL

Code segment showing the image object write.

¢ --- initialize the directory block
call zeros(directory block, 64)

C --- create a comment card
call getday(day)
call gettim(time)
cday = cfu(day)
ctime = cfu(time)
comment = cday(1:5)//' '//ctime(1:6)//' This is a comment °
ncard = (len_trim(comment) / 80) + 1

c --- fill the essential directory block entries
directory_ block(2) 4 version
directory block(3) sss satellite number
directory block (4) jday Julian day of image
directory block(5) time nominal start time of image

starting image line number
starting image element number
number of lines of image data
number of data elements per line
number of bytes per data element
line resolution

directory block(6)
directory block(7)
directory block(9)
directory_block(10)= num_elems
directory block(11)= num_bytes
directory block(12)= line_res
directory block(13)= elem_res element resolution
directory block(14)= num_bands riumber of bands

!
!
!
!
start_line !
!
!
!
!
!
1
1
directory block (19)= 2**(band-1) ! band map
1
1
]
!
1
!
!
!
!
!

start_elem
num_lines

O I T T I

call movew (memo, directory block(25))! memo field
directory_block(34)= data_offset byte offset to the data block
directory_block(35)= nav_offset byte offset to the nav block
directory block(49)= doc_length length of prefix doc section
directory_block (50)= cal_length length of prefix cal section
directory block(51)= lev_length length of prefix lev section
directory block(52)= 1lit{ stype) sensor source type
directory_block (53)= lit(ctype) calibration type

directory block(63)= cal_offset byte offset to the cal block
directory block(64)= ncard number of comment cards

¢ --- initialize the navigation block
call zeros(nav_block, nav_size)

¢ --- fill the navigation block entries
c NOTE: "navigation_params" is an array of navigation parameters
c which describes the geo-location of the elements of the
c image object.
do 10 i = 1,nav_size
nav_block (i) = navigation_params (i)
10 continue
¢ --- initialize the calibration block
call zeros(cal_block, cal_size)
c --- fill the calibration block entries
c NOTE: "calibration parms" is an array of calibration
c parameters which transform the data elements to physical
e units.
Applications Development in the ADDE McIDAS Developer/Operator Training

2-20 October 23, 1995

do 20 i = 1,cal_size

cal_block(i) = calibration_ params (i)
20 continue
¢ --- fill the sorts array
nsorts = 1
sorts (nsorts) = 'POS '//cfu(position)
¢ --- open a connection to write the image object

if (mcaput (image, nsorts, sorts, directory block, nav_block,
& cal_block) .ne.0) then
call edest ('Unable to initialize image ='//image,0)

return
endif
c --- loop to write image lines to the image object
do 100 line = 1,num lines
¢ --- pack the data array
c NOTE: This assumes a 4 byte to 1 byte compression of the data
¢ call pack(num_elems, data_array, data_array)

¢ --- write a line of data to the image object
c "data_array" is a (num_lines) by (num_elems) array of data
c elements each of which is (num_bytes) long. The elements
e represent data for (band) from the sensor numbered (sss)
c on (jday) at (time).
if (mcaout(data_array).ne.0) then
call edest('Failed to write image line=', line)
return
endif

100 continue

c --- write the comment block
if (mcacou(comment).ne.0) then
call edest('Failed to write comment block',0)
return)
endif

McIDAS Developer/Operator Training Applications Development in the ADDE
October 23, 1995 2-21

Cridded data

The access to gridded data in ADDE is different from the traditional
method. There is an option that minimizes the differences to allow using
the new procedures without extensive changes to existing code, but this is
not a recommended long-term solution.

Software written in the past that used information within grids was
required to know the following:

* the grid file number, which contained the grid

* the grid number, which contained the grid of data

The ADDE grid software allows a user to access grids by the data
contained within them. This data is described, for example, by the
parameter (T, Z, etc.), level (SFC, 850, 500, etc.), and day and time.
Knowledge of the actual number of the grid and/or grid file where the data
resides is not necessary. However, accessing data using the number of the
grid or grid file is, of course, still possible.

MCcIDAS grid data is still stored in grid files; however, the applications are
not cognizant of these data structures. It is sufficient to know there is a grid
in a dataset that can be retrieved. Datasets can have many positions, or just
one position. The former is the case if a dataset spans many grid files; the
latter if the dataset consists of just one grid file. The position number of the
dataset defines which grid file in that dataset is being accessed.

Applications Development in the ADDE McIDAS Developer/Operator Training
2-22 October 23, 1995

Cridded data API

McIDAS Developer/Operator Training

October 23, 1995

The grid data API routines are listed below by function, along with the
equivalent routines for the old API. The complete description of each
routine can be found in Chapter 4 of the preliminary version of the
McIDAS Programmer’s Manual (10/95).

Routine

megdir

mcgget
mcgput

mcgfdrd
mcgdrd

megridc
mcgridf

mcgoutc
mcgoutf

Function Old API

opens a connection to read grid
headers and grid file headers
opens a connection to read grids
opens a connection to write grids

reads the grid file headers
reads grid headers igget

receives grids (C 2-D array ordered)
receives grids (Fortran 2-D array igget
ordered)

writes grids (C 2-D array ordered)
writes grids (Fortran 2-D array igput
ordered)

Both mcgget and mcgdir search local or remote machines for grids that
match given search conditions. These conditions are called sorts and they
are passed to the server in a sort clause. As parameters are added to the sort
clause, the search is refined and, presumably, fewer grids are matched.

If the sort clause is passed to megget, then the grids matching the sort
conditions and the corresponding grid headers are sent to the application.
If the sort clause is passed to megdir, the grid file header and the grid
headers of the grids, but not the grids themselves, are sent back. For both
mcgget and megdir, entries are provided to read the data sent (mcgridf
and mcgridc for megget; megfdrd and megdrd for megdir).

The table below enumerates the valid sort clauses. The megsort function
translates most of the user-entered keywords into sort clauses.

Applications Development in the ADDE
2-23

mcgsort

Sort clause format Description

LEV levl .. levn limits the search to particular levels

PARM parml .. parmn limits the search to particular parameters

DAY dayl .. dayn limits the search to specified days,
YYYYDDD or YYDDD

TIME timel .. timen limits the search to specific times, HHMMSS

DRANGE bday eday inc specifies a range of days (with increment)
to search

TRANGE btim etim inc specifies a range of times (with increment)
to search

SRC srcl .. sren specifies the source of the data: MRF,
NGM, etc.

FHOUR hourl .. hourn specifies the valid forecast hours for a model
run, HHMMSS

FDAY dayl .. dayn specifies the days on which a forecast is valid

FTIME timel .. timen specifies the times at which a forecast is valid

FRANGE bhour ehour inc specifies a range of forecast hours, with
increment

GRID bgrid egrid range of grid numbers; supersedes all the sort
conditions above

POS pos position number in the dataset

NUM num retrieves num grids, or ALL (default=first
match)

Applications Development in the ADDE

2-24

The utility subroutine, mcgsort, retrieves sort conditions from the
command line related to information in the grid header. All but the POS
and NUM sort clauses are processed by megsort. When megsort picks up
the keyword GRID, the grid number itself, all other sort conditions are
bypassed.

For some applications, you may want to limit the number of grids returned
from a search to one. Therefore, the function megsort contains a flag to
denote when multiple finds of a search condition are allowed. If rep_flag
is greater than zero, more than one LEV, PARM, DAY, TIME, SRC,
FDAY, FTIME, GRID may be specified. In the case of GRID, though, a
range is specified instead of a list. The rep_flag must be greater than zero
to use TRANGE and DRANGE. Note that FHOUR and FRANGE can
always retrieve more than one grid.

Any application level program may call megsort to retrieve the command
line keywords and return them as mcgget sort clauses. Note that the syntax
is similar to what the user enters on the command line. For example, the
user might enter the keyword TIME=12, mcgsort changes that to TIME
120000.

MCcIDAS Developer/Operator Training
October 23, 1995

Reading grids

Suppose an application was written to compute a parameter based on the
temperature at 850 mb and 500 mb from a 12-hour forecast for the MRF
model 00 Z run. The application would have to read the grid headers and
determine which grids matched the specification, analogous to the image
directory example presented earlier.

The old API for reading grids is a call to igget with the grid file and grid
number as input. This is used by the majority of McIDAS grid applications
and is shown in the code segment below.

Code segment for searching for particular grids.

c---- Determine grid file to search: gridfife
c---- Determine maximum number of grids in gridfile: maxgrid

do 100 gridnum = 1, maxgrid

status = igget(gridfile, gridnum, maxsize, grid, nrows, ncols, header)
if (header (parm_index) .ne. lit (‘T ‘)) go to 100
if (header(src_index) .ne. 1lit(‘MRF ‘)) go to 100
if (header (vt_index) .ne. 120000) go to 100
if (header (time_index) .ne. 0) go to 100
if (header(lev_index) .ne. 850 .or.
& header (lev_index) .ne. 500) go to 100
o v
c---- Found a match, do something with the grid

100 continue

On McIDAS-MVS there is a function fndgrd, also used by the grid
software in the DDE Demo package, which uses selection criteria similar
to the sort clause for retrieving grids. This was used as the basis for
retrieving grids in ADDE. A sample code segment is shown below.

McIDAS Developer/Operator Training Applications Development in the ADDE
October 23, 1995 2-25

Applications Development in the ADDE

2-26

C===-

c-=--

C-==
c---

c---
o=
Cmimim
P

Q===

C==-

100

Code segment for searching for particular grids in ADDE

Determine the name of the dataset where MRF grids are stored
name = ‘RT/MRF’

Set up sorts array for grids wanted.

sorts(l) = ‘PARM T’
sorts(2) = ‘LEV 850 500°
sorts(3) = ‘FHOUR 120000
sorts(4) = ‘SRC MRF’

The default is to send only the first grid that matches unless
NUM ALL is specified

sorts(5) = ‘NUM ALL’
nsorts = 5
status=mcgget (name,nsorts, sorts, ' ‘', ‘'I4’,maxsiz,msgflg,numgrids,numbytes)

A status is set to indicate success or failure
The number of grids that match (numgrids) is returned
If numgrids is more or less than expected, change the sort clause or
dispose of unneeded grids when they are returned
Now read the grids
do 100 I = 1, numgrids
status = mcgridf (grid, header)

Do something with the grid

continue

McIDAS Developer/Operator Training
October 23, 1995

ADDE servers

This section contains information specific to the ADDE servers.

Sending data

It is the server’s responsibility to send only valid data back through the
pipe to the client. Calls to mOsxsend send the data. The server must never
write to stdout since the data is passed between processes via stdin and
stdout. For image data, the code provided for the exercise includes a
template that can be used when writing any new image data server. The
data server is mugaget.c [A1-A731]and the directory server is mugadir.c
[B1-B238]. The additional code and include files support these modules.
As you will see in the exercise, these templates provide a framework for
the applications programmer to add the data specific code. A template for
grids is not available at this time.

Performance

The client can request that data be sent back as 1, 2, or 4 bytes/data value
through the form parameter in the mcaget call. The server picks up this
value from the SPAC keyword [A138]. Because the server has knowledge
of the data, it should recognize that a smaller size can be used and adjust
the directory entry, word 12, accordingly. By optimally packing the data,
the amount of bytes transferred across the network is reduced. For
example, the unit BRIT (screen brightness) is requested when an
application wants the grayscale value for image data. This is always a

1 byte quantity. If the value from SPAC is not 1, the server should set
directory word 12 to a value of 1 before sending the directory, and pack the
data to 1 byte. The client interface (mcaget, mcalin) will recognize that
what was requested was not returned, and will unpack the data to the
application’s specification.

MCcIDAS Developer/Operator Training Applications Development in the ADDE
October 23, 1995 2-27

Error reporting

To report an error back to the application, the server sets an error flag in
the request block, fills an error string, and calls mOsxdone. In Fortran, set
word 43 in the request block to the error code, and words 44 through 63 to
an error message. In C, fill in the refurncode and errormsg fields in the
servacct structure (in servacct.h).

The following are the currently defined error codes:

Code Source Condition

0 various Successful return

] various End-of-data condition; no data was returned

-1 serviceman Accounting data not acceptable to this host

) server_main Transaction type not supported by this host

-5 Iwpr Can’t find requested data

-10 gget Client MAXWDS is too large for server

-11 gget fndgrd could not find the grid file

-12 gget fndgrd could not find the grid -

-13 . gget igget call failed

-17 gget A unit conversion requested couldn’t be done

-18 gget Unknown sort condition was specified

-19 gget GRID and PARM can’t both be specified on
sort

-20 mdks Can't open MD file

-21 mdks One or more requested return keys is not
available

-22 mdks There was an error while calling mdsin

-23 mdks An invalid unit was on a sort specification

-24 mdks An invalid key was specified on a sort
condition

-25 mdks A unit conversion was requested that could
not be done

-26 mdks Error specifying a LIST as a sort condition

-27 mdks An invalid format specifier was given: not I,
F,orC

-28 mdks Too many sort clauses were specified; the
current max is 20 .

-29 mdks The SIZE parameter is smaller than the return
vector

-30 aget No area found to fit search criteria

-31 aget Navigation error

-32 aget Requested data not in area

-33 aget Bad size requested

-34 aget Band not present

-35 aget Bad descriptor in a SORT clause

-36 aget MAXBYT too small for returned line

-37 aget Illegal format requested, not 11, 12, 14

Applications Development in the ADDE McIDAS Developer/Operator Training

2-28 October 23, 1995

Code Source Condition

-38 aget An entry point of mcaget was called with a
bad handle

-39 aget Too many Areas open at a time

-40 aget Cal not present

-41 aget SU= name not found

-42 aget More than 200 Areas and time-ordered search
were requested

-50 adir Can't resolve Area names

-51 adir No Areas found fitting selection criteria

-52 adir Can't search this many Area directory entries

-53 adir Bad TIME clause

-80 atok Area WQP protection violation

-81 atok Area number out of valid range

-82 atok Name of area object was not recognized

-95 writ Write to server failed

-96 read Communications with the server timed out

-97 read Communications with the server are
terminated

-98 cxout cxcomm could not find program module -
install err

-99 clserv soc_init() failed, TCPIP not installed or not
active

-100 mceserv Cannot connect to foreign host

-101 mcserv socket() call failed; this should not happen

-102 mcserv Initial transmit to server failed; host or
network died

-103 cxout cxaddr found a bad SERVER.RTE file

-104 mceserv Bad command arguments to clserv

-105 mcserv Cannot open null device (should not happen)

-106 mcserv dup() returned an error (should not happen)

-107 mcserv server running as root: etc/inetd/conf in error

-108 mceserv Cannot find password entry

-109 mcserv malloc() failed (should not happen)

-110 mcserv putenv() failed (should not happen)

-111 mcserv error in prefixing MCPATH

-112 mcserv error prefixing PATH

-113 mcserv error trying to chdir

-114 meserv server requested was not found

-115 mceserv server requested cannot execute

-116 mceserv wrong protocol version found

McIDAS Developer/Operator Training Applications Development in the ADDE

October 23, 1995 2-29

Debugging

Since the servers are started indirectly through inetd and mcserv,
debugging can be problematic. A call to mOsxtrce from within the server
will write messages to the trce file if the trace flag is set. In Fortran, the
trace flag is a single integer variable in COMMON/TRACE/. In C, declare
extern int trace_. In both cases, setting the variable to one turns on the
trace; setting it to zero suppresses the messaging.

When developing server and client applications, invariably the wanted..did
error message will be emitted by the client application. This means the
server did not send as much data as the client expected. The usual cause of
this is on the server side, since the server must calculate and notify the
client how many bytes will be sent, and then send the data.

‘Under the Hood"’

The following describes what occurs under the hood on Unix workstations
when a request is made to another Unix workstation. You don’t have to
understand this to be able to write ADDE applications or servers.

When a client requests a connection to a server, the request causes the
creation of a pipe, a fork, and the exec of the ADDE communications
module, meserv. The client transmits over the pipe, and then receives on
it. The first utterance on the pipe from the client is a 16-byte preamble,
organized as four quantities of four bytes each. They are:

Field Contents

version number of the protocol 0x0001

IP address of the server machine

port number 500

service name; for example, aget four ASCII characters

mcserv examines the server address. If it indicates the request will be
handled locally, it execs a server, based on the service name. This server
inherits the pipe, and does all further communication with the client.

Applications Development in the ADDE McIDAS Developer/Operator Training
2-30 October 23, 1995

McIDAS Developer/Operator Training

October 23, 1995

If the IP address signifies a remote server, meserv continues, and acts as a
pipe extender, using TCP/IP to the remote system. It next reads the 160-
byte request block, whose fields are as follows:

Field Length, in bytes

server IP address 4

server port 4

client IP address 4

user initials 4 ascii

project number 4

password 12 ascii (now ignored)
service name 4 ascii

input data length 4

request text 120 ascii

mcserv attempts to connect to the port and IP address of the server. If it
fails, it reads the number of bytes equal to the input data length from the
pipe to empty it, and sends a 92-byte trailer record back to the client
indicating that the connect failed. i

If meserv succeeds in connecting to the port, it first sends a resynthesized
16-byte preamble and then the 160-byte request block to the server.
mcserv then reads and sends the number of bytes stored in the input data
length field. At this point, all the information has been sent to the server.
mcserv continues as an intermediary between the client application and
the server by copying the bytes sent by the server to the pipe being read by
the application.

On the server machine, a meserv is started by inetd. It goes through the
same steps, except this time the service is found to be local. meserv execs
the server based on the service name, which reads the request and sends the
response. When the server is finished sending its response, it sends the
92-byte trailer block, and exits.

The size of data sent to or from the server may be many megabytes. The
design is explicitly stream oriented, so both the client and the server can be
working simultaneously. The server locates the data and transmits it to the
client via a pipe and/or TCP/IP. The client reads out of the pipe and
operates on the data. Intermediate storage of the data is not needed on
either end for the whole amount of data being sent. Since the pipe is a finite
size, the server will wait to write if the pipe is full or the client will wait to
read if the pipe is empty. If two minutes elapse with no activity on the pipe,
the process stops. The process on the other end of the pipe also stops at this
time.

Applications Development in the ADDE

2-31

Exercise

The image server consists of five main parts:
* main to all servers: subserv.c [E1-E102]
* directory server: mugadir.c [B1-B238]
* data server: mugaget.c [A1-A731]
* MUG-specific functions: memugutil.c [C1-C1515]
* generic functions: mcservutil.c

These modules have three include files: mug.h [D1-D210], servacct.h and
servutil.h [F1-F136]. The only one unique to your server development is
mug.h, which contains error messages/codes, default values and struct
declarations.

The only piece from the above list that you will be concerned with is the
fourth one: MUG-specific functions. This source file is based on seven
basic functions that you must write whenever a new format of image data
will be served:

Function Description
IsMugFormat validates the file format [C412-C448)
ReadMugDir reads a directory [C449-C600]

MugNavimgToEarth converts line/elem to lat/lon [C601-C691]
MugNavEarthTolmg converts lat/lon to line/elem [C692-C782]

ReadMugLine reads a line of data [C1047-C1209]
ReadMugCalCod reads a calibration codicil [C1210-C1246]
ReadMugNavCod reads a navigation codicil [C1247-C1369]

The other functions in the file are based on one or more of the above
functions. They will also need to be written in future server development,
but the existing ones in mcmugutil.c can be used as templates.

In the interest of time, you will only write the function to read a line of data
(ReadMugLine). In addition, you will receive the basic skeleton including
the interface and data calibration. Keep these three things in mind when
completing the function:

* All lines are the same size.
* The function must handle skipped lines.

* Each file has three lines of header at the top.

Applications Development in the ADDE McIDAS Developer/Operator Training
2-32 October 23, 1995

Below is an example of the ReadMugLine interface.

int

ReadMugLine (char *name,

/

name
read
band
buf
err

* ok K A N N Ok H H W

~

read a

filename to read

line of a MUG Training Course image

- READPARM struct containing read specs

1

band number of elements to read
buffer containing image data
error string to return on failure

The READPARM struct contains specifications that may be needed in the
function. It is also a way to add parameters that may be needed in the future
without changing the interface of the function. A sample READPARM

struct is shown below. You will not use everything contained in the struct.

typedef struct READPARM_

char
char
char

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

} READPARM;

src_type [4] ;
des_unit [4];
src_unit [4];

begele;
beglin;
bufsiz;
des_len;
elem_res;
line_res;
maxele;
maxlin;
minele;
minlin;
numband ;
numele;
numlin;
src_len;
ul_elem;
ul_line;

/* source type (GVAR, MSAT, ...)
/* destination units (RAW, BRIT, ...)
/* source type (RAW, BRIT, ...)

/* beginning element
/* beginning line
/* size of buffer to read

READPARM *read, int band, short *buf, char *err)

/* destination byte length of one pixel */

/* resolution in element direction

/* resolution in line direction

/* last element in image

/* last line in image

/* first element in image

/* first line in image

/* number of bands in image

/* number of elements to read

/* number of lines to read

/* source byte length of one pixel

/* elem in upper left corner of image
/* line in upper left corner of image

After you've written ReadMugLine, you may compile it with the Makefile
provided. Below are the options available for this Makefile:

Makefile options

make mugadir
make mugaget
make

make clean

Description

make directory server

make data server

make both servers (default)

clean the environment of relevant .o files

The Makefile has an option to set a DEBUG flag, which you'll want to set
for development. It causes a file named trce to be written in the first

writable directory in your MCPATH. You may add lines to this trace file
with a call to the function, mOsxtrce_(char *, FsLen *) in your source code.

McIDAS Developer/Operator Training

October 23, 1995

Applications Development in the ADDE

2-33

To turn off the trace (debugging) from the servers, you only need to unset
the DEBUG flag in the Makefile, make clean and make. You do not need
to remove or comment any calls to mOsxtrce_ in your source code.

You may also notice that main to your servers (in this case mugadir.c and
mugaget.c) is always the code contained in subserv.c. The Makefile
automatically compiles subserv.c as the main to your server. You must be
careful to adhere to the Makefile compilation sequence in any future server
development.

See [C1047-C1209] for a possible solution to ReadMugLine.

Applications Development in the ADDE McIDAS Developer/Operator Training
2-34 October 23, 1995

Sample code

mugaget.c

A 1: #include <stdio.h>

A 2: #include <stdlib.h>

A 3: #include <strings.h>
A 4: #include "mug.h"

A 5

A 6% int

A 7: mugaget (servacct *control)
A 8:

A 9

A 10: const char *dir;

A 11: const char *dum;

A 12: const char *img_place;
A 13:2

A 14: char dbg [MAX_ERR_LEN] ;
A 15: char err [MAX ERR_LEN] ;
A 16:

A 17: double p_lat;

A 18: double p_lon;

A 19

A 20: float p_elem;

A 21: float p_line;

A 228

A 23: int cards [MAX NUM_CARDS*4]
A 24:

A 25: int a_elem;

A 26: int a_line;

A 2% dint aradir [IMG_DIR_LEN];
A 28: int band;

A 29: int base_res;

A 30: int begele;

A 31: int bday, eday;

A 32¢ dint bpos, epos;

A 33: int bss, ess;

A 34: int btim, etim;

A 35: int bytes_per_line=0;
A 36: int bytes_per pix=0;
A 37: int bytes_to_send=0;
A 38: int bytes_to_zero=0;
A 39: int calcod [MAX_ CAL_LEN];
A 40: int curline;

A 41: int data_bytes;

A 42: int elem_res;

A 43: int elem_to_send;

A 44: int four=4;

A 45: int i;

A 46: int istat;

A 47: int len_calcod=0;

A 48: int len_navcod=0;

A 49: int line_res;

A 50% int navcod [MAX_NAV_LEN] ;
A 51: int nelems;

A 52: int nlines;

A 53: int one=1;

A 54: int orig_nelems;

A 55: int orig_nlines;

A 56: int p_elem off;

A 57 int p_line off;

A 58: int pt_elem;

McIDAS Developer/Operator Training

October 23, 1995

/*
/i
/-k
/*
/*
/*

VA

name of directory to search
dummy for arg fetchers
image placement key (EC..EU)

textual debug message
err string from SelectImages

center
center

lat of returned image
lon of returned image

i

*
*/
Lt A
*/

*/.
&/

center elem of returned image*/
center line of returned image*/
mcidas comment cards */
requested area element */
requested area line */
mcidas area directory */
band number to read */
base resolution */
beg element of ret image */
beginning/ending day */
beginning/ending position */
beginning/ending ss */
beginning/ending time */
number of bytes/image line */
number of bytes/pixel */
number of data bytes to send */
number of bytes to zero */
mcidas calibration codicil */
loop variable for lines */
number of bytes in read */
element resolution *x/
number of elem after resred */
size of total_bytes to send */
loop variable x/
function return status */
length of mcidas cal codicil */
length of mcidas nav codicil */
line resolution */
mcidas navigation codicil */
number of elements to send */
number of lines to send */
the number one */
unalterd # of lines to send */
unalterd # of lines to send */
center elem offset */
center line offset *x/
elem number to navigate */

Applications Development in the ADDE
2-35

L S b s st A g bR R ok AR R R R R R R TR TR TR R R TR TR R TR TR T R T T T T T R R S S T SRR S
0
ul

130

Applications Development in the ADDE

2-36

int pt_line; /* line number to navigate

int spac; /* byte size of one pixel

int total_bytes=0; /* number of bytes to send

int ul_elem; /* upper left elem of ret image
int ul_line; /* upper left line of ret image
int zeros_on_left; /* number of zero bytes on left
short *data=NULL; /* line of image data

CRITERIA *request=NULL;
FILELIST *satisfy=NULL;
READPARM *read=NULL;

strcpy (dbg, "starting mugaget") ;
: mOsxtrce_(dbg, strlen(dbg));

/*

* directory to be searched

*/

istat = Mcargquo (0, &dir);
/*

* beginning position

*J

istat = Mcargint (0, " " 999, -999, &bpos, &dum) ;
/t

* set the ending position equal to the beginning

* position. the underlying function, SelectImages, allows
* a range to be specified, but the current ADDE protocol
* does not support this.

*/
epos = bpos;
/*
* image placement key (EC, EU, ...)
¥/
istat = Mcargstr(o, " ", 3, " ", &img_place);
/*
* base resolution
*/
istat = Mcargint(0, " ", 6, 1, 999, -999, &base_res, &dum);
/*
* number of lines and elements to read
*
istat = Mcargint(0, " ", 7, DEF_NUM LINES, 999, -999, &nlines, &dum);
istat = Mcargint(o, " ", 8, DEF_NUM_ELEMS, 999, -999, &nelems, &dum);
orig_nlines = nlines;
orig _nelems = nelems;
/*
* band number to read
*/
istat = Mcargint (0, "BAN.D", 1, 1, 999, -999, &band, &dum);
/t
* line and element resolution
*/
istat Mcargint (0, "LMA.G", 1, base_res, 999, -999, &line_res, &dum);

istat = Mcargint (0, "EMA.G", 1, base_res, 999, -999, &elem_res, &dum);

MCcIDAS Developer/Operator Training

October 23, 1995

190:
191:
192:
193
194:
195
196
3Ll
198:
199:
200:
201:
202:

S E S s S S asidadd st i sda i b R R TR R R R R R R R T R R R R R R R R R Y SR R Y
[
A
o0

McIDAS Developer/Operator Training

October 23, 1995

: mOsxtrce_(dbg, strlen(dbg));

line_res = abs(line_res);

elem_res = abs(elem_res);
/*
* size of one pixel (spac)
x/

istat = Mcargint(0, "SpPA.C", 1, 0, -1, 0, &spac, &dum);

/t
* this server will only serve one byte data
L/

if (spac > 1)

&btim, &dum) ;
&etim, &dum);

spac = 1;

/*

* beginning and ending time

2/

istat = Mcargihr(0, "TIM.E", 1, -1, -1, 240000,
istat = Mcargihr(0, "TIM.E", 2, btim, -1, 240000,

/*

* beginning and ending day

L4

istat = Mcargint (0, "DAY", 1, -1, 999, -999, &bday, &dum);
istat = Mcargint (0, "DAY", 2, bday, 999, -999, &eday, &dum);
/*

* beginning and ending mcidas ss number
*/

Mcargint (0, "ss", 1, -1, 999, -999, &bss,
Mcargint (0, "SS", 2, bss, 999, -999, &ess,

istat
istat

sprintf (dbg, "dir = [%s]", dir);

: m0sxtrce_(dbg, strlen(dbg));

sprintf (dbg, "bpos = %d epos = %d", bpos, epos);

; mOsxtrce_(dbg, strlen(dbg)) ;

sprintf (dbg, "btim = %d etim = %d", btim, etim);
mOsxtrce_(dbg, strlen(dbg));

sprintf (dbg, "bday = %d eday ¥d", bday, eday);

sprintf (dbg, "bss = %d ess = %d", bss, ess);

: mOsxtrce_(dbg, strlen(dbg)) ;

/*
* malloc space to fill a struct
* containing search criteria

iy
request = (CRITERIA *)malloc(sizeof (CRITERIA)) ;
if (request == NULL)

(void) strcpy (err, ERR_MSG_MALLOC) ;
return ERR_STAT MALLOC;

}

request->begday = bday;
request->endday = eday;
request->begtim = btim;
request->endtim = etim;
request->begss = bss;
request->endss = ess;

&dum) ;
&dum) ;

Applications Development in the ADDE

2-37

203:
204:
205:
206:
207:
208:
209:
2103
211:
212:
213
214:
215:
216:
217:
218:
219:
220:
221:
222;
223:
224:
225:
226:
227:
228:
229:

>E'?3’>?HPb:’b)‘b3’b>’>3*>1’>3’>3’$3’Pk’b3’P#’bk’bi’??’>#’PD’>B’b3’»3’?3’>3’$3’b>’$3’b3’b3’»3’@3’?3’»3’w3’>
)
w
@

/*
* malloc space to return a linked
* list of files meeting CRITERIA

X/
satisfy = (FILELIST *)malloc(sizeof (FILELIST)) ;
if (satisfy == NULL)
(void) strcpy (err, ERR_MSG_MALLOC) ;
return ERR_STAT MALLOC;

*

* malloc space for the read parameters

*/ .
read = (READPARM *)malloc (sizeof (READPARM)) ;
if (read == NULL)

(void) strcpy (exrr, ERR_MSG_MALLOC) ;
return ERR_STAT MALLOC;

/*
* get a list of qualified files
*

istat = SelectMugImages((char *)dir, bpos, epos, request, &satisfy, err);
if (istat == FAILURE)

(void) strcpy (control-s>errormsg, err);
control->returncode = ERR_STAT_ SELECT;
return (control->returncode) ;

}
/*

* no images were found
*/ »

%f (satisfy == NULL)

(void) strcpy (control->errormsg, ERR_MSG_NOIMG) ;
control->returncode = ERR_STAT_NOIMG;
return (control-sreturncode);

/*
* loop through the MUG files
*f

: while (satisfy != NULL)

*
* read the directories
*/

sprintf (dbg, "reading file %s", satisfy->name);
mOsxtrce_(dbg, strlen(dbg)) ;

istat = ReadMugDir (satisfy->name, aradir, err);
if (istat == FAILURE)

sprintf (dbg, "failure reading file %s", satisfy->name);
mOsxtrce_(dbg, strlen(dbg));

sprintf (dbg, "ERR: %s", err);
mOsxtrce_(dbg, strlen(dbg));

Applications Development in the ADDE McIDAS Developer/Operator Training

2-38

October 23, 1995

w
N
[

341:
342:
343:

344 ¢

345:
346:

LRSS S S s a RS RR R R R R R R R R R R R R R TR R R R T T T T S Y
w
-
=

McIDAS Developer/Operator Training

October 23, 1995

continue;

fill read specifications with

the size of the read buffer,

the min and max number of lines/elements,
the size of a source pixel and

the number of bands in the image

/

read-s>bufsiz

* O * o ¥ A ¥

READ_BUFFER_SIZE;

read->elem res = elem_res;
read->line_res line res;
read->minlin Q% 0
read->minele 0;

read->maxlin
read->maxele
read->src_len
read->numband

/i
* readjust the number of lines
* and elements if needed. a number
* of 99999 from the client means that
* the entire image was requested

L4

if (nlines == 99999)

aradir (8] ;
aradir([9];
sizeof (short) ;
aradir[13];

o owomonwonnn

nlines = aradir([8];
orig_nlines = nlines;

if (nelems == 99999)

nelems = aradir([9];
orig_nelems = nelems;

/*
* calculate center line and element

* of requested image object
*/

/*
* pick up coordinate parameters
*
switch (img_place[0])
case 'E': /* earth coordinates *x/

(void) strcpy (dbg, "earth coord \n");
mOsxtrce_(dbg, strlen(dbg));

istat = Mcargdll(o, " ", 4, (double)O,
(double) 999, (double)-999,

istat = Mcargdll(o, " ", 5, (double)O,
(double) 999, (double)-999,

/*
* convert lat/lon to line/elem
2/

istat = MugNavEarthToImg (satisfy->name,
(float)p_lat, (float)p_lon,
&p_line, &p_elem,
err) ;

if (istat == FAILURE)

&p_lat,

&p_lon,

Applications Development in the ADDE

&dum) ;

&dum) ;

—~

2-39

359:
360:
361:
362:
363:
364:
365:
366:
367:
368:
369:
370:
371:

E’bk’>3‘>3’w3*>3’>3’>3’>>’>¢'»=’>31b3’v3’>3’>3’>3’?3’vi’?E‘yiivk’bﬁ’bkﬂbﬁ’?tiwk'bﬁ’wi*wﬁ’v3’?3’?3’@3’&3’?3’>
w
®
N

{
(void) strcpy (control-s>errormsg, err);
control->returncode = ERR_STAT_NONAV;
| return (control->returncode);
break;
case 'A': /* file coordinates */
case 'I':
default:
istat = Mcargint(o, " ", 4, 0,
999, -999, &a_line, &dum);
istat = Mcargint(0, " ", 5, 0,
999, -999, &a_elem, &dum);
p_line = (float)a_line;
p_elem = (float)a_elem;
break;

}

(void) sprintf (dbg, "place coord = $f 3f \n", p_line, p_elem);
mOsxtrce_(dbg, strlen(dbg));

*/

*/
L 2);
/I 2);

2/

line_res) + 1;

/*
* calculate line/elem of upper left corner line/elem
*/
switch (img_place[1])
case 'D': /* lower right
p_line_off = orig_nlines;
p_elem off = orig_nelems;
break;
case 'C': /* centered
p_line_off = (orig nlines
p_elem off = (orig nelems
break;
default: /* upper left
p_line off = 1/line_res;
p_elem off = 1/elem_res;
break;
}
ul_line = (int)p_line - (p_line_off *
ul_elem = (int)p_elem - (p_elem_off *

(void) sprintf (dbg, "start coord = %d %d \n", ul_line, ul_elem);

mOsxtrce_(dbg, strlen(dbg));

/*

* initialize read struct with
* starting line and element

a
read->ul_line = ul_line;
read->ul_elem = ul:elem;

/*

elem_res) + 1;

* check the bounds of the returned image
* to make sure it will contain data
* if not, return an error

*/

istat = CheckImgBounds(read, orig_nlines, orig_nelems) ;

Applications Development in the ADDE

2-40

McIDAS Developer/Operator Training

October 23, 1995

r

>3’v3’w3’53’w3’V3’>3’>3’P?’yﬁ’wﬁ’VJ’W?’PU’VD’?D’P3’?3’?3’?3’?3’?3’?3’»3’53’53’?3’>3’53’73’VJ’VD’?J’P3’>JUV3’
»
wu
'S

McIDAS Developer/Operator Training

October 23, 1995

if (istat == FAILURE)

(void) strcpy (control->errormsg, ERR_MSG_BLANK IMG) ;
control->returncode = ERR_STAT BLANK IMG;
return (control-s>returncode) ;

/*
* adjust output area directory
*/
aradir[8] = nlines;
aradir[9] = 4 * ((nelems + 3) / 4);

nelems = aradir([9];

if (spac == 0)
spac = aradir[10];

]

aradir(10] spac;
aradir(11]
aradir([12]

/*
* fill read specifications with
* the size of a destination pixel

aradir[11] * elem res;
aradir[12] * line_res;

L7

read->des_len = aradir[10];

/* ¥
* read mcidas navigation codicil
*/

pt_line = 2 - ul_line;

pt_elem = 2 - ul_elem;

istat = ReadMugNavCod (satisfy->name, navcod,
pt_line, pt_elem, &len_navcod) ;

if (istat == FAILURE)

(void) strcpy (control->errormsg, ERR_MSG_NONAV) ;
control->returncode = ERR_STAT_ NONAV;
return (control-s>returncode);

}
/*
* read mcidas calibration codicil
*/
istat = ReadMugCalCod (satisfy->name, calcod, &len_calccd) ;
if (istat == FAILURE)
(void) strcpy (control->errormsg, ERR_MSG_NOCAL) ;

control->returncode = ERR_STAT NOCAL;
return (control-s>returncode) ;

/*
* compute total byte transfer to client
L
bytes_per_line = aradir([9] x
spac
aradir[13] +

aradir[14];

total_bytes MAX CARD_LEN L

Applications Development in the ADDE
2-41

491 : aradir([63] +
492: aradir [33] +
493: aradir[8] *
494: bytes_per_ line;

496: /*

497: * send total bytes

498: */

500: control->reply length += total_bytes;
502: swbyt4_ (&total_bytes, &one);

504; sprintf (dbg, "sending %d bytes", total_bytes);
505: mOsxtrce_(dbg, strlen(dbg));

507: mOsxsend_ (&four, &total_bytes);

509: /*
510: * send the directory
511 */

513; aradir([0] = satisfy->pos;
514: (void)SendDir (aradir) ;

516: /*
517 * send the nav
518: */

520: (void) SendCod (navcod, len_navcod) ;
522: /*

523: * send the cal

524 : */

526: (void) SendCod (calcod, len_calcod) ;
528: /*

529: * read and send the image one line at a time
530.: *x/ :
532: data_bytes = orig_nelems *
533: read->src_len *

534: read->numband +

535: aradir[14];

537: data_bytes *= read->bufsiz;

539: data = (short *)malloc(data_bytes);

m
»
o

541; if (data == NULL)

543: (void) strcpy (control->errormsg, ERR_MSG_MALLOC) ;
544: control->returncode = ERR_STAT MALLOC;
545: return (control->returncode) ;

548 /*
549: * total elements needed
550: */

562 curline = ul_line;

563 begele = ul_elem;

554: read->numlin read->bufsiz;

555: bytes_to_send = bytes_per_line;

556: bytes_per pix = read->des_len * read->numband;

wn
9]
©

for (i=1; i<=orig_nlines; i++)

561: /*
562: * if the requested line is less than one

a2 S A S S S sa a2 R R R R R R R R R E R T R R TR T T T S T T S VI VR S O SR VR SN R
ul
N
~

Applications Development in the ADDE McIDAS Developer/Operator Training
2-42 October 23, 1995

e os oo oe @

621:
622:
623:
624:
625:
626:
627:
628:
629:
630:
631:
632:
633:
634:

>3’>2’$3’P3’>3’>3’b$’>>’>>’>3’v3’$3’?3’53’Vﬂ’ya’bt’>2’b3’?3’&3’?3’?3’P?’Pﬁ’?#ﬂﬂba’wﬁ’ri’WJ’F3’>3’>3’53’>3’$
o
0
©

McIDAS Developer/Operator Training

October 23, 1995

* or greater than the max number of lines,
* £fill the buffer with zeros and return

el

if (curline < 0 || curline > read->maxlin)
bytes_to_zero = aradir[9] *
read->des_len x

read->numband;

sprintf (dbg, "zero line %d", curline);
mOsxtrce_(dbg, strlen(dbg));

(void) SendZeros (data, bytes_to_zero) ;

/*
* increment the line pointer
%/

curline += line_res;
bytes_to_zero = 0;

continue;

if the image requested does not
contain data on the left side,
send the appropriate number of
zeros and adjust the starting
element

* % o kA ¥
~

zeros_on_left = 0;
if (ul_elem < 0)
bytes_to_zero = abs(ul_elem/elem_res)
read->des_len *
read->numband;

zeros_on_left = bytes_to_zero;

sprintf (dbg, "z left %d %d bytes", curline,bytes_to_zero) ;

mOsxtrce_ (dbg, strlen(dbg));
(void) sendZeros (data, bytes_to_zero) ;

0-

begele 2
read->maxele;

nelems

bytes_to_send
bytes_to_zero

’

if the image requested does not
contain data on the right side,
adjust the number of elements.

the appropriate number of zero filler
will be send later (after the read)

/

* Ok ok A ¥ *

/* if (ul_elem/elem_res + aradir[9] > read->maxele/elem_res) */

*

bytes_per_line - bytes_to_zero;

if (ul_elem + (aradir[9] * elem_res) > read-s>maxele)

bytes_to_zero = (ul_elem/elem_res + aradir[9)
(read->maxele/elem_res))
read->des_len

Applications Development in the ADDE

2-43

687:
688:
689:
690:
691:
692:
693:
694 :
695:
696:
697:
698:
699:
700:

701

702:
703:
704 :
705:
706:

>:V3’>:D3’>:PJ’b:P3’>ZVJ’>:PQ’DIH3’>:v3’ytv3’$:v3’V:D=’>:>3’>*?:B3’E'>ib3’> PERPPPED PO YP PP PP IR NN DD
o
~
-

Applications Development in the ADDE

2-44

read->numband;
nelems = read->maxele - ul_elem/elem_res;

if (ul_elem < 0)
nelems = read->maxele;

sprintf (dbg, "zero left %d bytes", zeros_on_left);

mOsxtrce_(dbg, strlen(dbg));

bytes_to_send = bytes_per line =
bytes_to_zero -
zeros_on_left;

sprintf (dbg, "send %d bytes", bytes_to_send) ;

mOsxtrce_(dbg, strlen(dbg));

sprintf (dbg, "zero %d bytes", bytes_to_zero) ;

mO0sxtrce_(dbg, strlen(dbg));

/*

* fill read specifications with

* beginning line/element and

* the number of lines and elements
* to read

*

read->beglin = curline;
read->begele = begele;
read->numele = nelems;
J¥ .
* read a line of data
A

istat = ReadMuglLine (satisfy->name, read, band,
if (istat == FAILURE)
(void)strcpykcontrol»>errormsg, err) ;

control->returncode = ERR_STAT BADLINE;
return (control-s>returncode) ;

/*
* reduce the resolution
s

elem_to_send = nelems / elem_res;

(void)mOresred_((char *)data, &elem_ res,
&elem_to_send, &bytes_per_ pix);

/*
* send line of image data
74
(void) SendLine (data, bytes_to_send) ;
/*
* if we still have bytes_to_zero (set
* because the image is padded on the right,
* then we send those
*
if (bytes_to_zero != 0)

(void) SendZeros (data, bytes_to_zero);

bytes_to_zero = 0;

data,

err) ;

McIDAS Developer/Operator Training

October 23, 1995

(

707:

708: /*

709: * increment the line pointer
7103 */

711:

712 curline += line_res;

713

714: %

715: /*

716: * send the comment cards A
717: */

718 ¢

719 if (aradir([63] != 0)

720: (void) SendCards (aradir, cards);
721:

q22: /*

723: * increment the pointer in the list of files
724 */

725:

726: satisfy = satisfy->next;

7273

728:

729: return SUCCESS;

730:

731: }

PRPPPPPPPPPRPPPEDPEDDDY DYDY

McIDAS Developer/Operator Training Applications Development in the ADDE
October 23, 1995 2-45

mugadir.c ‘ . (

62: */

64: istat
65: istat

Mcargihr (0, "TIM.E", 1, -1, -1, 240000, &btim, &dum) ;
Mcargihr (0, "TIM.E", 2, btim, -1, 240000, &etim, &dum);

B 1: #include <stdio.h>

B 2: #include <stdlib.h>

B 3: #include «strings.h>

B 4: #include "mug.h"

B 5:

B 6: int

B 7: mugadir (servacct *control)

B 8:

B 9z

B 10: const char *dir; /* name of directory to search */
B 11: const char *dum; /* dummy for arg fetchers */
B 12:

B 13: char dbg [MAX_ERR_LEN] ; /* textual debug message */
B 14: char err [MAX ERR_LEN] ; /* err string from SelectImages*/
B 15:

B 16: int cards [MAX_NUM_CARDS*4] ; /* mcidas comment cards */
B 17, ¢

B 18: int aradir [IMG_DIR_LEN] ; /* mcidas area directory */
B 19: int bday, eday; /* beginning/ending day */
B 20: int bpos, epos; /* beginning/ending position */
B 21: int bss, ess; /* beginning/ending ss */
B 22: int btim, etim; /* beginning/ending time */
B 23: int dummy=9999; /* dummy pos number to send */
B 24: int four=4; /* size of nbytes to send */
B 25: int istat; /* function return status */
B 26: int nbytes=0; /* number of bytes to send */
B 27: int one=1; /* the number one (1) */
B 28:

B 29: CRITERIA *request=NULL;

B 30: FILELIST *satisfy=NULL; '
B 3%

B 32: strcpy(dbg, "starting mugadir"); : (
B 33: mOsxtrce_(dbg, strlen(dbg));

B 34:

B 35: /*

B 36: * directory to be searched

B 37: *x/

B 38:

B 39: istat = Mcargquo (0, &dir);

B 40:

B 41: /*

B 42: * beginning and ending position

B 43: */

B 44:

B 45: istat = Mcargint (0, " ", 2, 0, 999, -999, &bpos, &dum);

B 46: istat = Mcargint (0, " ", 3, bpos, 999, -999, &epos, &dum);

B 47:

B 48: /*

B 49: * if the bpos is negative, reoranize the positions

B 50: * since the ADDE convention for time ordered requests

B 51: * is to always have zero as the epos

B 52: */

B 53t

B S4: if (bpos < 0)

B 55: {

B 56: epos = bpos;

B 5% bpos = 0;

B 58:

B 59:

B 60: /*

B 61: * beginning and ending time

B

B

B

B

B

Applications Development in the ADDE McIDAS Developer/Operator Training =
2-46 October 23, 1995 ’

mmwwwwmmmmmmwmwwwwwtnmwtnwwwwwwmmwmmtnmtnwwmwwwwmwwwwmmmmwwmwwwmwmwwmmmwwmmw
=
o
N

McIDAS Developer/Operator Training

October 23, 1995

/*

* beginning and ending day

ey
istat = Mcargint (0, "DAY", 1, -1, 999, -999, &bday, &dum);
istat = Mcargint (0, "DAY", 2, bday, 999, -999, &eday, &dum);
/*

*/beginning and ending mcidas ss number
*

istat = Mcargint (0, "ss", 1, -1, 999, -999, &bss,
istat = Mcargint (0, "SS", 2, bss, 999, -999, &ess,

sprintf (dbg, "dir = [%s]", dir);
mOsxtrce_(dbg, strlen(dbg));

sprintf (dbg, "bpos = %d epos = %d", bpos, epos);
mOsxtrce_(dbg, strlen(dbg));

sprintf (dbg, "btim = %d etim = %d", btim, etim);
mOsxtrce_(dbg, strlen(dbg));

sprintf (dbg, "bday = %d eday %d", bday, eday);

mOsxtrce_(dbg, strlen(dbg)) ;

sprintf (dbg, "bss = %d ess = %d", bss, ess);
mOsxtrce_(dbg, strlen(dbg));

/*
* malloc space to fill a struct
* containing search criteria

*/
request = (CRITERIA *)malloc(sizeof (CRITERIA)) ;
if (request == NULL)

(void) strcpy (err, ERR_MSG_MALLOC) ;
return ERR_STAT MALLOC;

request->begday = bday;
request->endday = eday;
request->begtim = btim;
request->endtim = etim;
request->begss = bss;
request->endss = ess;

/*

* malloc space to return a linked

* list of files meeting CRITERIA

7/
satisfy = (FILELIST *)malloc(sizeof (FILELIST)) ;
if (satisfy == NULL)

(void) strcpy (err, ERR_MSG_MALLOC) ;
return ERR_STAT_MALLOC;

}

istat = SelectMugImages((char *)dir, bpos, epos, request,
if (istat == FAILURE)
(void) strcpy (control->errormsg, err);

control->returncode = ERR_STAT SELECT;
return (control->returncode) ;

/*

&dum) ;
&dum) ;

&satisfy,

err) ;

Applications Development in the ADDE

2-47

mmwmmmwmwmmmmmmwwmmmmmwmmwmmmwmmwwwmmwwwwwwwwwmmmwwwmwwmwwmwmwmwmwwmwwmw

139;
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
150
1:57. .
152:;
153
1564:
155:
156:
15%:
158:
159:
160:
161:
162:
163
164:
165:
166:
167:
168:
169:
17Q:
171:
172:
173
174:
175:
176:
177:
178:
179:
180:
181 :
182:
183:
184:
185:
186:
187:
188:
189:
190:
191
192:
193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:

* no images were found
£/

%f (satisfy == NULL)
(void) strcpy (control-s>errormsg, ERR_MSG_NOIMG) ;

control->returncode = ERR_STAT NOIMG;
return (control-s>returncode);

/*
* loop through the MUG files
*/

while (satisfy != NULL)

{ i
* read the directories
*/

sprintf (dbg, "reading file %s", satisfy-sname);
mOsxtrce_(dbg, strlen(dbg));

istat = ReadMugDir (satisfy-s>name, aradir, err) ;
if (istat != FAILURE)
*

* build the comment cards
*/

sprintf (dbg, "success reading file %s", satisfy->name) ;

mOsxtrce_(dbg, strlen(dbg));

istat = ReadMugCards (satisfy-sname, aradir, cards, err) ;

if (istat == FAILURE)

sprintf (dbg, "CARD ERR: %s", err);
m0sxtrce_(dbg, strlen(dbg)) ;

else

sprintf (dbg, "failure reading file %s", satisfy->name) ;

mosxtrce_(dbg, strlen(dbg));

sprintf (dbg, "ERR: %s", err);
mO0sxtrce_(dbg, strlen(dbg));

continue;

}
/*

* transform to comm protocol

£
nbytes = (IMG_DIR LEN * 4) + 4 + (aradir[63] *
control->reply length += nbytes;
swbyt4_(&nbytes, &one);

sprintf (dbg, "sending %d bytes", nbytes);
mOsxtrce_ (dbg, strlen(dbg)) ;

mOsxsend_ (&four, &nbytes);
/*

* send four bytes of dummy
x/

MAX_CARD_LEN) ;

Applications Development in the ADDE McIDAS Developer/Operator Training

2-48

October 23, 1995

o to b to o G0 o b Y b0 o o o WO bo b0 bYW b0 b0 bo b oY B0 o 0 W o
N
[\8]
>

}

mO0sxsend_ (&four, &dummy) ;

aradir[0] = satisfy->pos;
/*
* send the directory
i/ '
(void) SendDir (aradir) ;
/*

* send the comment cards
*/

if (aradir([63] != 0)
(void) SendCards (aradir,

/*

cards) ;

* increment the pointer in the list of files

*y

satisfy = satisfy->next;

return SUCCESS;

}

McIDAS Developer/Operator Training

October 23, 1995

Applications Development in the ADDE
2-49

mcmugutil.c

1: #include <dirent.h>

2: #include <stdio.h>

3: #include <stdlib.h>

4: #include <strings.h>

S: #include "mug.h"

6:

7: char dbg [MAX_ERR_LEN] ; /* debug message %

8:

9:

**************************i****'k******i*****************************/

10:

11: int

12: SelectMugImages (char *dir, int bpos, int epos,

13: { CRITERIA *request, FILELIST **satisfy, char *err)

14:

15¢

16: char fullname[MAX NAME LEN];/* fully specified name of a file */
17: char name[MAX_NAME_LEN]; /* name of a file */
18: :

19: int ALL; /* tag to select all images in dir */
20: int aradir[IMG_DIR_LEN];/* mcidas area directory */
21: int curpos=0; /* initial position number */
22: int istat; /* function return status 7
23: int one=1; /* the number one (1) */
24: int pos=0; /* stored position number */
25: int strmatch; /* string comparison variable */
26: int valid_type; /* flag for defining a valid format */
274

28: DIR *dirlist=NULL; /* directory listing of files to test */
29: struct dirent *dirfile; /* struct containing file from readdir*/
30 ;

31: FILELIST *head=NULL; /* top of list of files in directory */

: FILELIST *cur=NULL; /* top of list of files in directory */

33

34: FILELIST *rawlist=NULL; /* top of list of files in directory */
354

36: FILELIST *test=NULL; /* top of list of files to test */
37: FILELIST *timlist=NULL; /* top of list of time ordered files */

39: /+

40: * the integer representation of 'ALL ' means
41: * get all the images in dir

42: x/

44: ALL = 1lit_("ALL ");
45: swbyt4_(&ALL, &one) ;

47: /*

48: * read contents of the directory

49: x/

51: dirlist = opendir(dir);

53: if (dirlist == NULL)

55: (void) strcpy (err, ERR_MSG_DIR) ;

56: return ERR_STAT_DIR;

57: }

59: while ((dirfile = readdir(dirlist)) != NULL)
61: /*

62: * ignore special cases of filenames "." and ".."
63: */

OOOOQ()O()OOOOOOOOOOO()OOOOOOOQ()()OOQOOOOOQOOOOOQOOOOOOOOOOO *OoOnNnonNnnnonann
w
N

65: strmatch = strcmp(dirfile->d_name, ".");

Applications Development in the ADDE McIDAS Developer/Operator Training
2-50 October 23, 1995

nnonNnaNNONNNNNNNNNNNNNNNANANANNNNNANANANNNNNNNANNNNANANANANNNANNANNANANNANNANANQAAN
[
o
[

McIDAS Developer/Operator Training

October 23, 1995

e oer e

if (strmatch == 0) continue;

strmatch = strcemp(dirfile->d name, "..");
if (strmatch == 0) continue;

/*

* make a fully specified name

*/

(void) strcpy (fullname, dir);
(void) strecat (fullname, "/");

(void) strcat (fullname, dirfile->d_name) ;
(void) strcat (fullname, "\0");

/*
* determine the validity of the format

7
valid type = IsMugFormat (fullname) ;

if (valid_type == FAILURE)
continue;

/*
* increment the position

L4
CUrpos++;

/*
* push the file onto the stack
*

istat = PushFileByName (fullname, curpos,
if (istat == FAILURE)

(void) strcpy (exr, ERR_MSG_MALLOC) ;
return ERR_STAT MALLOC;

}

#ifdef STDOUT_ DEBUG
cur = rawlist;
(void)printf ("------cecooonnn \n");
while (cur != NULL)

(void)printf ("pos: ¥d file: %s \n",
cur = cur-snext;

#endif

}

(void) closedir (dirlist);

/*
* renumber the positions in the list
* to reflect the alphabetical sorting

>/

curpos = 0;
cur = rawlist;
while (cur != NULL)

CUrpos++;
/*

* test the file against the CRITERIA
74

&rawlist) ;

cur->pos,

cur->name) ;

Applications Development in the ADDE

2-51

138: istat = TestMuglImage (cur->name, request, aradir, err) ;
140: if (istat == FAILURE)

142: cur = cur-s>next;
143: continue;
144: }

146: /*
147: * push this file onto the stack
*

150: istat = PushFileByName (cur-s>name, curpos, &head) ;
152: if (istat == FAILURE)

154: (void) strcpy (err, ERR_MSG_MALLOC) ;
155: return ERR_STAT MALLOC;

158: cur = cur-snext;
159: }

161: #ifdef STDOUT_DEBUG

162: cur = head;

163: (void)printf ("----SORTED----- \n") ;
164 : while (cur != NULL)

166: (void)printf ("pos: %d file: %¥s \n", cur->pos, cur-sname) ;
167: cur = cur-s>next;

169; (void)printf ("------ END-=~--- \n") ;
170: #endif

172: free(cur);
free (rawlist) ;

175: /*

176: * begin pulling the need files off and putting them
177: * in a new list that will be returned

178: */

180: /+

181: * ALL files requested

182: */

184: %f (bpos == ALL)

186: *satisfy = head;

189: /*

190: * absolute file positions requested
191: *x/

193: else if (bpos > 0)

196: while (head != NULL)

198: /*

1989 * get name and pos off of stack
200: By

202: istat = PopFile (name, &pos, &head);
204: /*

205: * only use files that fit the

206: * requested positions
207: */)

OOOOOOOOOOOOOOOOOOOOOOD()OOOOQOOQOOOOOOO(')OOOOOO()ODODOOOOOOOODOOOOOOOOOOOO
[
~
w

209: if (pos < bpos || pos > epos) continue;

Applications Development in the ADDE McIDAS Developer/Operator Training
2-52 October 23, 1995

a0 NONNONNONCOaOONNNNNNNNNNNNNANNNANNNNANNANNANNNANNNANNNNANNNNNNNNNNNNANANNQN
N
'S
v

/*

* put a file on the list to be returned

%/

istat = PushFileByName (name, pos, &test);

if (istat == FAILURE)

(void) strcpy (err, ERR_MSG_MALLOC) ;
return ERR_STAT_MALLOC;

}

*satisfy = test;

}
/i

* time relative file positions requested

74
else if (bpos <= 0)

cur = head;
while (cur != NULL)

/*

* push the file onto stack ordered by

* time

*/

istat = PushMugFileByTime (cur->name, cur->pos, &test);

cur = cur->next;

}

curpos = 1;
while (test != NULL)

/*

* decrement time dependent position

*/
curpos--;

/«

* get name and pos off of stack

X/
istat = PopFile (name,

/*

&pos, &test);

* only use files that fit the

* requested positions
*/

if (curpos > bpos || curpos < epos) continue;

/*

* put a file on the list to be returned

i

istat = PushMugFileByTime (name, pos, &timlist);

if (istat == FAILURE)

(void) strcpy (err, ERR_MSG_MALLOC) ;
return ERR_STAT_MALLOC;

McIDAS Developer/Operator Training

October 23, 1995

Applications Development in the ADDE
2-53

C 282: *satisfy = timlist;

C 283: }

C 284:

C 285: return SUCCESS;

C 286:

c 287: }

C 288:

C 289: /**************i***t**t***t*******‘k***********************/
C 290:

C 291: int

C 292: PushMugFileByTime (char *name, int pos, FILELIST **list)
Cc 293:

C 294: /*

C 295: * add a name and pos to a linked list sorted
C 296: * in a chronological sense on time with the
C 297: * most recent image at the head of the list
c 298: *

C 299: * name - filename to add to list

C 300: * pos - position number of name

C 301: * list - list to which to add item

€ 302;: *

c 303 * success 1

C 304 * failure 0

C 305: *

C 306 */

Cc 307:

c 308: {

C 309:

C 310: char err [MAX ERR_LEN] ; /* error message */
c BAl:

€ 312: int aradir [IMG_DIR_LEN]; /* mcidas area directory */
C 3Qdswant istat; /* funtion return status */
C 314: int time; /* image time */
c 3153

C 316: FILELIST *after;

C 317: FILELIST *insert;

CcC 318:

C 319: FILELIST *new=NULL;

c 320:

C 321: /*

C 322: * malloc a new node

C 323: */

c 324:

C 325: new = (FILELIST *)malloc(sizeof (FILELIST)) ;

€ 326:

C 327: if (new == NULL)

c 328:

€ 3292 return FAILURE;

C 330: }

c 331:

C 332: /*

C 333: * fill the new struct with values

C 334: */

€ 338

C 336: (void)strcpy(new->name, name) ;

C 337: new->pos = poOSs;

e 338:

C B39: /%)

C 340: * compute an image time in seconds since 1/1/72
C 341: */

C 342:

C 343: istat = ReadMugDir (name, aradir, err);

C 344: time = sksecs_(&aradir (3], &aradir(4]);

C 345

C 346: new->time = time;

C 347:

C 348: /*

C 349: * this is the first element in the list

C 350: */

C 251

C 352: if ((*list) == NULL)

€ 353

Applications Development in the ADDE McIDAS Developer/Operator Training
2-54 October 23, 1995

354: new->next = NULL;

355: *list = new;

356: return SUCCESS;

357: }

3583

359: /%

360: * insert the new element at the head

361: * if the time since 1/1/72 is greater than the

362: * current time, meaning this image is newer,
363: * we insert here
364: */
365:
366: if ((*list)->time < time)
367:
368: new->next = *list;
369: *list = new;
370 return SUCCESS;
371: }
372
373: /*
374: * insert the new element at
375: * the appropriate place in the list
376 *
377
378: insert = *list;
379:
380: while (1)
381:
382: after = insert->next;
383:
384: /*
385: * end of list?
386: */
38%:
388: if (after == NULL)
g break;
390:
381 /* :
392: * if the time since 1/1/72 is greater than the
393: * current time, meaning this image is newer,
394: * we insert here
395:; */
396
397: if (after->time < time)
398: break;
399
400: insert = after;

404: insert->next = new;
405: new-»>next = after;

407: return SUCCESS;
409: }

411:
****i**i***&*t****i*i***i*t****ﬁ***i**********i****i****i************/

412:

413: int

414: IsMugFormat (char *name)

415: /*

416: * determine if a file is the MUG training course format

417:

418:

419:

420:

421:

422:

423:

424:

name - filename to test

success 1
failure 0

/

* % Ak % * *

noananNnaNNANNO*NNNNNANNaNNQANANaNANNAQNNQCAANNNNNNQAQNOQNNNNNNNNQNQNONNAQAOQNNNONNN
w
@
0

McIDAS Developer/Operator Training Applications Development in the ADDE
October 23, 1995 2-55

nnnNnn

NNNONNONNNNNNNNNNNNNNNNNANNNNANNNNNNNNNNNNNNANNANAN*NNNANNNNNANANANAO0NANAA

438:
439:
440:
441:
442:
443:
444:
445:
446:
447:
448:

valid; /* flag for a valid file format */

/*
* the format test is based
* on the name of the file.

only
this makes

* the name of the file extrememly important

*/

valid = strcmp (name, BASE_FILENAME) ;

if (valid == 0)
return FAILURE;
else

return SUCCESS;

*****t********************************i*********i*******************/

449:
450:
451:
452:
453
454 :
455:
456:
457:
458:
459:
460:
461:
462:
463:
464:
465:
466:
467:
468:
469:
470:
471:
472:
473:
474 :
475:
476:
477:
478:
479:
480:
481:
482:
483:
484 :
485:
486:
487:
488:
489:
490:
491:
492:
493:
494:
495:

int

ReadMugDir (char *name, int *aradir, char *err)
*

* read a MUG training course file and create a

* corresponding mcidas area directory

*

* NOTE: The indices for aradir in this function

* are zero-based.

*

* name - filename to read

* aradir - mcidas area directory for "name"

*

* success 1

* failure 0

*

*/

{
FILE *fd; /* file descriptor for image */
const char *argdum; /* dummy for arg fetchers x/
char line [MAX_LINE_LEN]; /* max byte length of data line */
int argh=0; /* handle for arg fetchers */
int callen=512; /* byte length of cal block */
int i; /* loop variable */
int imgtime; /* nominal image time, hhmmss x/
int istat; /* function return status */
int julday; /* julian date of image, yyddd */
int navlen=512; /* byte length of nav block *x/
int nelems; /* number of elems in image */
int nlines; /* number of lines in image */
int parsed_len; /* byte length of arg block */
/*

*
L

initialize array

for (i=0; i<=IMG_DIR_LEN-1; i++)

/*

aradir[i] = 0;

Applications Development in the ADDE

2-56

MCcIDAS Developer/Operator Training
October 23, 1995

OOOOOOOOOOOOOOOOOOOOOOOOOOOOO(]OOOOOOOOOOOOQOOOOQOOOOOOOOOOOOOOOOOOOOOOOO
wu
w
i

McIDAS Developer/Operator Training

October 23, 1995

* fixed value mcwords

%/

aradir (0] = 0; /* always 0 */
aradir[1] = 4; /* always 4 */
aradir[2] = 0; /* mcidas ss number */
aradir(5] = 1; /* upper left line */
aradir(6] = 1; /* upper left element */
aradir[10] = 1; /* bytes per pixel */
aradir[11] = 1; /* line resolution *x/ -
aradir[12] = 1; /* element resolution */
aradir[13] = 1; /* number of bands */
aradir([18] = 1; /* bandmap 74
/*

* byte offsets
%/

aradir [34] IMG_DIR_LEN * 4;

/* byte offset to nav */

aradir([62] = aradir[34] + navlen; /* byte offset to cal */
aradir[33] = aradir([62] + callen; /* byte offset to dat */
/*

* source and cal type

¥/
aradir[51] = lit_("VISR"); /* source type */
aradir[52] = lit_("BRIT"); /* cal type %)
/i

* open the file and get a file descriptor

+/
fd = fopen(name, "r");

/*

* did we get a valid file desriptor?

*7

if (fd == FAILURE)

return FAILURE;

}

/*

* get first line of file and make it

* available to the arg fetching routines

*/

(void) fgets(line, sizeof(line), f£4);
argh = Mcargparse(line, NULL, &parsed_len);
/*

* number of lines (mcword 9)

%/
istat = Mcargint (argh, "NR", 1, 0, 999, -999, &nlines, &argdum);
aradir([8] = nlines;
/*

* number of elements (mcword 10)

x

istat = Mcargint (argh, "NC", 1, 0, 999, -999, &nelems, &argdum);
aradir[9] = nelems;

/*

* get first line of file and make it
* available to the arg fetching routines

Applications Development in the ADDE

2-57

598:
599:
600:

601:
602:
603:
604:
605:
606:
607:
608:
609:
610:
611:
612:
613:
614:
615:
616:
617:

naonNnononNnNNOonNNNNNOoNaNONNNANNNNANNNNNANNNN *rnanNnonNnNaoNNONNONNOANANNANNNNNNNNANANNN

Applications Development in the ADDE

2-58

i),

(void) fgets(line, sizeof(line), £d);

istat = Mcargfree (argh) ;

argh = Mcargparse(line, NULL, &parsed len);

/*
* julian date, yyddd (mcword 4)
*/

istat = Mcargint (axgh, "VD.AY", 1, 0, 999, -999, &julday, &argdum);

aradir[3] = julday:
/*
* image time,
*/

hhmmss (mcword 5)

istat = Mcargint (argh, "VT.IME", 1, 0, 999, -999, &imgtime, &argdum);

aradir[4] = imgtime;
(void) close ((int) £d) ;
istat = Mcargfree (argh) ;
return SUCCESS;

}
/

**********i***/

int
MugNavImgToEarth (char *name, float line, float elem,

float *lat, float *lon, char *err)

e
*

convert MUG image line/elem into lat/lon

filename to read

input image line

input image element

output latitude of line/elem
output longitude of line/elem
error string returned

name -
line -
elem -
lat -
lon -
err -

success 1
failure 0

* % ¥ ok ok Ok ¥ ¥ O F * #* *

static char lastname [MAX_NAME LEN]; /* filename last time in func.*/

/* dummy variable

float dum;

function status
byte len of navcod
variable for nvilini
mcidas nav codicil
the number one (1)
the number two (2)

istat;

len;

11flag;
navcod [MAX NAV_LEN] ;
one=1;

two=2;

int
int
int
int
int
int
if (strcmp(lastname, name) != 0)
/*

* get a mcidas nav codicil
*/

McIDAS Developer/Operator Training
October 23, 1995

e er ee o

P

691:
e vk gk v g de vk ok de g ok g de g ok de ke ke ke ke ok s ek e e ke sk v e e ok ok o ok o ke ke ok ok e ke ok o ok b ok ok ok ok vk ok ok ke e ok e e e ok ok ke e ok /
692:
693:
694:
695
696:
697:

oo nNn :0()0()0(ﬁ0(10(10()0()O()O()ﬂ()O(10()0(10(10(10()0(70(70(10(30(10()0(30()0()0()0
o
~
N

McIDAS Developer/Operator Training
October 23, 1995

istat = ReadMugNavCod (name, navcod, 1, 1, &len);
if (istat == FAILURE)

(void) strcpy (exr, ERR_MSG_NONAV) ;

return FAILURE;

/*
* initialize mcidas nav transforms
*/
istat = nvprep_(&one, navcod);
if (istat != 0)
(void) strcpy (exrr, ERR_MSG_MCIDAS NAV) ;
return FAILURE;
11flag = lit_("LL ");
istat = nvlini_ (&two, &llflag);
if (istat != 0)
(void) strcpy (exrr, ERR_MSG_MCIDAS_NAV) ;
return FAILURE;

(void) strcpy (lastname, name) ;

}
istat = nvlsae_(&line, &elem, &dum, lat, lon, &dum);
if (istat != 0)
(void) strcpy (err, ERR_MSG_IMG_TO_EARTH) ;
return FAILURE;
}
/*

* convert longitude to the mcidas west positive convention

*/

#ifndef WEST_POSITIVE

#endif

(*1lon) = (*lon) *= -1;

return SUCCESS;

}

int

MugNavEarthToImg (char *name, float lat, float lon,

N
*

® % % % ok % % ok o * % *

con

nam
lat
lon
lin
ele
err

suc
fai

float *line, float *elem, char *err)
vert MUG image lat/lon into line/elem

e - filename to read
- input latitude
- input longitude

e - output image line of lat/lon

m - output image element of lat/lon
- error string returned

cess 1
lure 0

Applications Development in the ADDE
2-59

713: static char lastname [MAX NAME LEN] ; /* filename last time in func.*/
715: float dum; /* dummy variable */

717: int istat; /* function status */
718: int len; /* byte len of navcod */
719: int llflag; /* variable for nvlini */
720: int navcod [MAX_NAV_LEN] ; /* mcidas nav codicil */
721: int one=1; /* the number one (1) */
722: int two=2; /* the number two (2) */

724: if (strcmp(lastname, name) != 0)

726: /*

727: * get a mcidas nav codicil

728: */

730: istat = ReadMugNavCod (name, navcod, 1, 1, &len);
732: %f (istat == FAILURE)

734: (void) strcpy (err, ERR_MSG_NONAV) ;

735: return FAILURE;

736:)

738: /*

739: * initialize mcidas nav transforms
740: */

742: istat = nvprep_(&one, navcod) ;
744: if (istat != 0) 1
746: (void) strcpy (err, ERR_MSG_MCIDAS_NAV) ;
747: return FAILURE;

750 11flag = lit_("LL ");

7545 istat = nvlini_ (&two, &llflag);

if (istat != 0)

~
wn
w

758 (void) strcpy (err, ERR_MSG_MCIDAS_NAV) ;
756: return FAILURE;
757: }

7591 | (void) strcpy (lastname, name) ;
760:

762: /*
763: * convert longitude to the mcidas west positive convention
764: */

766: #ifndef WEST_POSITIVE

767: lon = lon *= -1;

768: #endif

770: istat = nvleas_(&lat, &lon, &dum, line, elem, &dum);

772: if (istat != 0)

774: (void) strcpy (exrr, ERR_MSG_EARTH TO_IMG) ;
T775: return FAILURE;

778: return SUCCESS;

780: } v '

OOOODOOOOOOOOOOOOOOl’)OO()()(')0O()OO0()()OQOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
~
'S
w
—_—

Applications Development in the ADDE McIDAS Developer/Operator Training
2-60 October 23, 1995 }

Cc 782:

/

ii*i*******i****i**i*******i**i**i***i*********************i***/

783:
784 :
785:
786 :
787:
788:
789:
790:
791:
792:
793:
794 :
795:

®
N
S

[eEeRolcNoRo o oo NoNoRoRoNoRoRoRoRo NoNo Ro RoRe RoNoNe NeRo e Re Ne Ro RoRo R o Ro R RoRo RoRoRoReRoRoRoRo o RoRo N o) (pEoNoNoNoNoRoNo oo No e Re Ko Ro Ro No No Ne!
@ @
N =
wn ~

McIDAS Developer/Operator Training

October 23, 1995

int

ReadMugRes (char *name, float line, float elem, float *resx, float *resy,char *err)

/*

* calculate MUG image resolution at center point

*

* name - filename to read

* line - input image line

* elem - input image element

* resx - output x-resolution at center of image (km)

* resy - output y-resolution at center of image (km)

* err - error string returned

*

* success 1

* failure 0

*

*/
static char lastname [MAX NAME LEN]; /* filename last time in func. */
int istat; /* function status */
double azimuth; /* directional azimuth (unused)*/
double rangel; /* range from center down */
double range2; /* range from down 1 line to

over 1 element */
float dum; /* dummy variable *x/
float elem_pl; /* element plus one */
float lat; /* lat to measure distance */
float lat2; /* lat to measure distance */
float line_pil; /* line plus one */
float lon; /* lon to measure distance */
float lon2; /* lon to measure distance */
int len; /* byte len of navcod */
int l1flag; /* variable for nvlini */
int navcod [MAX_NAV_LEN] ; /* mcidas nav codicil */
int one=1; /* the number one (1) */
int two=2; /* the number two (2) */
if (strcmp(lastname, name) != 0)
/*
* get a mcidas nav codicil
*/

istat = ReadMugNavCod (name, navcod, 1, 1, &len);
if (istat == FAILURE)

(void) strcpy (err, ERR_MSG_NONAV) ;

return FAILURE;

/i

* initialize mcidas nav transforms
*/

istat = nvprep_(&one, navcod) ;

if (istat != 0)

(void) strcpy (err, ERR_MSG_MCIDAS_NAV) ;
return FAILURE;

Applications Development in the ADDE

2-61

nnnonnr)nnononnonnnnonnoononnnonnnnnnnonnnnnnno00000000nnononnnonnoonnnno

903:
904:
905:
906:
907:
908:
909:
910:
911:
91.2::
913

915:
916:
9177
918:
919:
920:
921:
922:
923:
924:

}

1lflag = 1lit_("LL

oy

istat = nvlini_(&two, &llflag);

if (istat != 0)

(void) strcpy (err, ERR_MSG_MCIDAS_NAV) ;
return FAILURE;

}

(void) strcpy (lastname, name) ;

* convert longitude to the mcidas west'positive convention

= nvlsae_(&line, &elem, &dum, &lat, &lon, &dum);

(void) strcpy (err, ERR_MSG_IMG_TO_EARTH) ;

/*
*if

#ifndef WEST_POSITIVE
lon = lon *= -1;

#endif

istat

if (istat != 0)

{
return FAILURE;

}

/*

* move down one line and find the lat/lon

*/

line pl = line + 1.0;

&elem, &dum, &lat2, &lon2, &dum) ;

(void) strcpy (err, ERR_MSG_IMG_TO_EARTH) ;

* find range from center to down one line

= lltora_(&lat, &lon, &lat2, &lon2, &rangel, &azimuth);

(void) strcpy (err, ERR_MSG_MCIDAS_NAV) ;

* move over one element and find the lat/lon

istat = nvlsae_(&line_p1,
if (istat !=-0)
return FAILURE;
/*
* [
istat
if (istat != 0)
return FAILURE;
}
/*
*/
lat = lat2;
lon = lon2;

elem pl = elem + 1.0;

&elem_pl, &dum, &lat2, &lon2, &dum);

(void) strcpy (err, ERR_MSG_IMG_TO_EARTH) ;

istat = nvilsae_(&line_p1l,
if (istat != 0)

return FAILURE;
/*

Applications Development in the ADDE

2-62

McIDAS Developer/Operator Training
October 23, 1995

925:
926:
927:
928:
929;
930:
831
932
933:
934:
935
936:
937:
938:
939:
940:
941:
942:
943:
944 :
945:

991:
992:
993:
994 :
995:
996 :

anoaooaonnaonNnaNNCOONOONNONNNNNANNNNNNNNNNNANNNANNNANNNNNNNNNANNNANNANNANANNNAQQNNNANAN
\¥e)
()
o

* find range from center to down one line

*f

istat = lltora_(&lat, &lon, &lat2, &lon2, &range2, &azimuth);

if (istat != 0)

(void) strcpy (err, ERR_MSG_MCIDAS_NAV) ;

return FAILURE;

}

/ 2.0;

/*

* res is average of the 2 ranges (resx = resy)
x4

*resy = (float) (rangel + range2)

*resx = *resy;

#ifdef DEBUG
(void) sprintf (dbg, "res: %f
mOsxtrce_(dbg, strlen(dbg))
#endif

return SUCCESS;

}

"
]

’

*resy) ;

/************************ﬁ**i*******t**ii*****************/

int

TestMugImage (char *name, CRITERIA *request, int *aradir, char *err)

~
*

success 1
failure 0

ook ok A ok % kA ¥ O % F

~

{

int imgday;
int imgss;
int imgtim;
int istat;

/*

name - filename to add to list
request - CRITERIA to test name
aradir - mcidas area directory returned for name
err - error string from ReadImgDir

test an image against the specification
criteria detailed in struct request

NOTE: No tests will be performed for CRITERIA values of -1

/* day of image */

/*
/*
/*

satellite id for image *x/
time of image */
function status */

* get a mcidas area directory for this image

*/
istat = ReadMugDir (name, aradir,
if (istat == FAILURE)
return FAILURE;
/*

* test beginning and ending time
*/

if (request->begtim >= 0)

McIDAS Developer/Operator Training

October 23, 1995

err) ;

Applications Development in the ADDE
2-63

999: imgtim = aradir[4];
1001: if (imgtim < request->begtim || imgtim > request->endtim)

1003: (void) strcpy(err, "Image time does not meet search criteria \n");
1004: return FAILURE;

1009: /*
1010: * test beginning and ending day
1011: */

if (request->begday >= 0)

1016; imgday = aradir([3};
1018; if (imgday < request->begday || imgday > request-sendday)

1020: (void) strcpy (err, "Image day does not meet search criteria \n");
1021: return FAILURE;

1024: }
1026: /*

1027: * test beginning and ending mcidas ss number
1028: */

NNNNONONONNNANNNNNNNANONNNNNNNNNN
=
o
furt
w

1030: if (request->begss >= 0)

1033: imgss = aradir[2];
1034:

1035
1036:

1037% (void) strcpy (err, "Image satellite id does not meet search criteria \n");
1038: return FAILURE;

1039: }

1040: }

1041:

1042: return SUCCESS;

1043:

1044: }

1045:

1046:
*****'k***i*********f***********'k*******i-****************************/

1047:

1048: int

1049: ReadMugLine (char *name, READPARM *read, int band, short *buf, char *err)
1050: /+*

1051: * read a line of a MUG Training Course image

1052:
1053 ¢
1054:
1055:;
1056:

if (imgss < request->begss || imgss > request->endss)

.

*

name - filename to read

read - READPARM struct containing read specs
band - band number of elements to read

buf - buffer containing image data

err - error string to return

success 1
failure 0

[
o
(Y}
~

* ok % Ok Ok Ok X * X ¥

1064:

1066: const char *argdum; /* dummy foi- arg fetchers */

NN NNNNNNNNNNNNANNNANN *0NNNNNANNNNNNNNNANN

Applications Development in the ADDE McIDAS Developer/Operator Training
2-64 October 23, 1995

char line [MAX LINE_ LEN] ; /* max byte length of data line */
static char lastname [MAX_NAME_LEN] ; /* filename last time in func. */
static int lastline=0; /* last line of file read */

: static FILE *fd; /* file descriptor */
int argh; /* handle for arg fetchers */
int begele; /* fisrt element to read */
int beglin; /* fisrt line to read */
int bufsiz; /* max # of lines to buffer */
int des_len; /* byte size of dest pixel */
int i; /* loop variable */
int index; /* index into data array */
int istat; /* function return status */
int maxele; /* max number of elem in image */
int maxlin; /* max number of lines in image*/
int numband; /* number of bands in image */
int numele; /* number of elements to read */
int numlin; /* number of lines to read */
int parsed_len; /* byte length of arg block *x/
int src_len; /* byte size of source pixel */
double *val; /* data values on a line */
if (strcmp(lastname, name) != 0)

o e o

13127 ;
11223
1123
1124:
1125
1126:
1127:
1128:
1129;
1130:
11371 :
13323

1133

1134:

1135

1136:
1137:
12138:
1139

OOOOOOOOOOOOOQOOOOOOOOOOOOOO()OOOOOOOOOOOOOOOQOOOOQOOOOOQOQOOQQQOOQOOOQOQ
=
=
o
w

: }
¢

* o * * %

/*

* get a file descriptor
2/

fd = fopen(name, "r");

/*

* did we get a valid file desriptor?

./
if (fd == NULL)

return FAILURE;

/*
* malloc space for the intermediate read
*/
val = (double *)malloc(read->numele * sizeof (double)) ;

if (val == NULL)

(void) strcpy (err, ERR_MSG_MALLOC) ;
return ERR_STAT MALLOC;

/*

* read the first 3 lines of header
*f

(void) fgets(line, sizeof (line), £d);
(void) fgets(line, sizeof (line), £d);
(void) fgets(line, sizeof (1ine), £d);

(void) strcpy (lastname, name);

extract needed parameters
from the struct (this makes
the function easier to read)

McIDAS Developer/Operator Training

October 23, 1995

Applications Development in the ADDE
2-65

Applications Development in the ADDE

2-66

1140:
1141:
1142:
1143:
1144:
1145:
1146:
1147:
1148:
1149:
1150:
11521
1152:
1153:
1154
1155;
1156:
115%7:
1158:
1159:
1160:
1161
1162:
1163:
1164:
1165:
1166:
1167:
1168:
1169:
1170:
1171
1172:
1173:
1174 :
1175:
1176
1177
1178:
1179:
1180:
1181:
1182 :
1183:
1184:
1185:
1186:
1187:
1188:
1189:
1190:
1191 :
1192
1193:
1194
1195:
1196:
1197:
1198:
1199:
1200:
1201:
1202:
1203:
1204:
1205:
1206:
1207:

[eNeNeNoNoNoNoNe No o Ro No e

nNnNNONNNNNNNNNANNNNNANANNNANNNANANAQ nanNanNONONNNNNNNANNANNNANN
[
N
o
@

1209:

begele = read->begele;

beglin = read->beglin;

bufsiz = read->bufsiz;

des_len = read->des_len;
maxele = read->maxele;

maxlin = read->maxlin;

numband = read->numband;
numele = read->numele;

numlin = read->numlin;

src_len = read->src_len;
/*

* read any unwanted lines. this will
* only happen when a blowdown is requested
&/

for(i=1; i<beglin-lastline; i++)

(void) fgets (line, sizeof (line), £d);

}

lastline = beglin;

/*
* get next line of file and make it
* available to the arg fetching routines

«/
(void) fgets(line, sizeof(line), £d);
argh = Mcargparse (line, NULL, &parsed_len);
#ifdef DEBUG
(void) sprintf (dbg, "begele=%d numele=%d, argh=%d", begele, numele, argh);
mOsxtrce_(dbg, strlen(dbg));
#endif

index = 0;
for (i=begele; i<=begele+numele-1; i++)

istat = Mcargdbl (argh, "", i, (double)oO,
(double) 999, (double)-999, &val [index], &argdum);

index++;
/*
* "calibrate" the line
wf

for (i=0; i<=index-1; i++)
buf [i] = 255 - (val[i] - 75);

#ifdef DEBUG
(void) sprintf (dbg, "buf([%d] = %d", i, buf[i]);
mOsxtrce_(dbg, strlen(dbg));

#endif

}

(void)mpixel_ (&index, &src_len, &des_len, (void *)buf);

istat = Mcargfree (argh) ;

return SUCCESS;

}

t*ii****i***ﬁ********/

C 1210:

McIDAS Developer/Operator Training
October 23, 1995

12311:
12123
1213
1214:
1215:
1216:
1217
1218:
1219:
1220:
1221:
1222:
1223
1224:

naoaonnooonNnoNnNNNNNQn

=
N
w
N

1236:
1237:
1238:
1239:
1240:
1241:
1242:
1243:
1244:;
1245:
1246:

int
ReadMugCalCod (char *name, int *cod, int *len)

/*
* read a mcidas calibration codicil
*
* name - filename of image
* cod - output mcidas cal codicil
* len - byte length of output mcidas cal codicil
*
* success 1
* failure 0
*
L
{
int re; /* return code x/
int i;
/*
* get cal codicil
*/

*len=MAX CAL_ LEN;

for (i=0; i<=(*len)-1; i++)
cod[i] = 0;

rc = SUCCESS;

return (rc);

}

l'*************i******i*'ki*ii***********i*************i**************/

1247:
1248:
1249:
1250:
1251 ;
1252:
1253

anNnaoaaNnaooOOONNONANNNNOAONNNANANNNNNN *aonaoooaoaoanNnnoaNnaaNONNNn
=
IN)
n
'S

McIDAS Developer/Operator Training

October 23, 1995

int
ReadMugNavCod (char *name, int *cod, int pt_line, int pt_elem, int *len)

/*

* read a mcidas navigation codicil

*

* name - filename of image

* cod - output mcidas nav codicil

* pt_line - line number of upper left latitude

* pt_elem - elem number of upper left longitude

* len - byte length of output mcidas nav codicil

*

* success 1

* failure 0

*

*/

{
const char *argdum; /* dummy for arg fetchers */
char line [MAX LINE_LEN]; /* max byte length of data line */
static FILE *£d; /* file descriptor */
int argh=0; /* handle for arg fetchers */
int i /* loop variable x/
int istat; /* function return status */
int parsed_len; /* byte length of arg block */
int rc; /* return code */
double latinc; /* degree spacing of latitude */
double loninc; /* degree spacing of longitude x/
double ullat; /* upper left latitude */

Applications Development in the ADDE
2-67

ODOOOOOQOODQOOOO()OOOOOOOOOOOOOOOOOOOOOOODOOOOOOO(]ODOOOOOOOOOGOOO()OOOOOOO

Applications Development in the ADDE

2-68

1282:
1283:
1284:
1285:
1286:
1287:
1288:
1289:
1290:
1291+
1292:
1293:
1294:
1295:
1296:
1297:
1298:
1299:
1300:
1301:
1302:
1303:
1304:
1305:
1306:
1307:
1308:
1309:
1310
1311
1312:
1313:
1314:
1315:
1316:
1317
1318
1319:
1320:
1321
1322:
1323:
1324:
1325:
1326:
1327:
1328:
1329:
1330:
1331:
1332
1333
1334
1335
1336:
1337:
1338:
1339:
1340:
1341:
1342:
1343:
1344:
1345:
1346:
1347:
1348:
1349:
1350:
183511"
1352:
1353

double ullon;

/*
* open the file and get a file descriptor
o

fd = fopen(name, "r");

/*
* did we get a valid file desriptor?
x5

if (fd == FAILURE)

return FAILURE;

/*
* get first line of file and make it

* available to the arg fetching routines
+/

(void) fgets(line,

sizeof (line), £4d);

/* upper left longitude */

argh = Mcargparse(line, NULL, &parsed_len);
/t
* number of lines (mcword 9)
*y
istat = Mcargdbl (argh, "LAT", 2, (double)0, (double)999, (double)-999,
&ullat, &argdum) ;
istat = Mcargdbl (argh, "LON", 2, (double)0, (double)999, (double)-999,
&ullon, &argdum);
istat = Mcargdbl (argh, "LAI.NC", 1, (double)0, (double)999, (double)-999,
&latinc, &argdum) ;
istat = Mcargdbl (argh, "LOI.NC", 1, (double)0, (double)999, (double)-999,
&loninc, &argdum) ;

*

* build a rectilinear nav codicil

L

*len=MAX NAV_LEN;

/*

* initialize to zero

*/

for(i=0; i<=(*len)-1; i++)

cod[i] = 0;

coed[0] =-1lit_("RECT");

cod[1l] = pt_line;

cod (2] = (int) (ullat * 10000.0);
cod[3] = pt_elem;

cod[4] = (int) (ullon * 10000.0);
cod (5] = (int) (latinc * 10000.0);
cod[6] = (int) (loninc * 10000.0);
cod[7] = EARTH_RAD METERS;

cod [8] = EARTH_ECCENTRICITY;
cod[9] = 0;

#ifdef WEST_POSITIVE
cod[10] = 1;
#else
cod[10] =
#endif

-1 :

McIDAS Developer/Operator Training

October 23, 1995

[
w
~
o

1407;
1408:

[
w»
[
[e]

1414:
1415:
1416:
1417:
1418:
1419:
1420:
1421:
1422:
1423:
1424:
1425:

OOOOQOOO(']('7OOQOOQOOOOOOOOQQQO'OOOOOOOOOOOOOOQQOOOQOOOOOO000000000000000000
[
w
o]
()

McIDAS Developer/Operator Training

October 23, 1995

#ifdef DEBUG
for(i=0; i<=10; i++)

(void) sprintf (dbg, "cod[%d] = %d", i+1l, codl[il);
mOsxtrce_(dbg, strlen(dbg));

#endif
rc = SUCCESS;
istat = Mcargfree(argh);

return (rc);

}

/******************i*t**t*********************************/

int
ReadMugCards (char *name, int *aradir, int *cards, char *err)

N
*

* build the required ADDE comment cards

* containing the center point and res information

*

* name - filename to inspect

* aradir - mcidas area directory for name

* cards - mcidas comment cards returned as integers

* err - error string from ReadImgDir

*

* success 1

* failure 0

*

*/

{

char one_card[MAX CARD_LEN-1]; /* a single comment card */
float elem; /* center element of image *x/
float lat; /* center latitude of image */
float line; /* center line of image */
float lon; /* center longitude of image */
float resx; /* elem res (km) at center */
float resy; /* line res (km) at center */
int add; /* function return for AddCard*/
int istat; /* function return status */
int num_cards=0; /* number of cards built */
/*

* get center line/element of image

*/
elem = aradir(9] / 2.0;

line = aradir(8] / 2.0;

/*

* get center lat/lon of image

*f

istat = MugNavImgToEarth (name, line, elem, &lat, &lon, err);

if (istat != FAILURE)

/*
* build cards for center point
LY

(void) sprintf (one_card, CEN_LAT CARD, lat);
num_cards++;

Applications Development in the ADDE

2-69

OQOOOOOQOOnOOO()00()000000000(')OOOOOOOOOOOOOOOOOOOOOOOOOOOOOODOOOOOOOOOOOQO

1426:
1427:
1428:
1429:
1430:
1431:
1432:
1433:
1434:
14353
1436:
1437:
1438:
1439:
1440:
1441:
1442:
1443:
1444:
1445:
1446:
1447:
1448:
1449:
1450:
1451:
1452:
14583
1454:
1455:
1456:
1457:
1458:
1459:
1460:
1461:
1462:
1463:
1464:
1465:
1466:
1467:
1468:
1469:
1470:
1471:
1472:
1473:
1474:
1475:
1476:
1477:
1478:
1479:
1480:
1481:
1482:
1483:
1484:
1485:
1486:
1487:
1488:
1489:
1490:
1491:
1492:
1493:
1494:
1495:
1496:
1497:

add = AddCard(one_card, MAX CARD LEN, cards, num_cards);
if (add == FAILURE)
(void) strcpy (err, ERR_MSG_MALLOC) ;
return FAILURE;
(void) sprintf (one_card, CEN_LON_CARD, 1lon);
num_cards++; !
add = AddCard(one_card, MAX CARD LEN, cards, num_cards);
if (add == FAILURE)
(void) strcpy (exrr, ERR_MSG_MALLOC) ;
return FAILURE;
else
/*
* center point failure
X
return FAILURE;
/*
* get the resolution at the center point of the image
*/ :
istat = ReadMugRes (name, line, elem, &resx, &resy, err);
if (istat != FAILURE)
*
* build cards for the resolution
x/

(void) sprintf (one_card, RES_X_ CARD, (int) (resx+0.5));
num_cards++;

add = AddCard(one_card, MAX CARD LEN, cards, num_cards);
if (add == FAILURE)

(void) strcpy (err, ERR_MSG_MALLOC) ;

return FAILURE;
(void) sprintf (one_card, RES_Y CARD, (int) (resy+0.5));
num_cards++;
add = AddCard(one_card, MAX CARD LEN, cards, num_cards) ;
lf (add == FAILURE)

(void) strcpy (err, ERR_MSG_MALLOC) ;
return FAILURE;

else

/*
* resolution failure
*/

return FAILURE;

Applications Development in the ADDE McIDAS Developer/Operator Training

2-70

October 23, 1995

(sEoeloRoNoNoNo oo No oo No o N oo N

McIDAS Developer/Operator Training

October 23, 1995

1498:
1499:
1500:
1501:
1502:
1503:
1504:
1505:
1506:
1507:
1508:
1509:
1510:
15912
1512
1513
1514:
1515:

/* .
* get the valid unit type for this image
*

istat = ReadUnits(aradir, cards, &num_cards, err);

/*
* change mcword 64 in the area
* directory to relect the number

* of comment cards
*/

aradir([63] = aradir[63] + num_cards;
return SUCCESS;

}

Applications Development in the ADDE

2-71

mug.h

1: /* mug.h

2: *

3: *

4: *

B *

6: *

iR the image serve
8: */

9:

10: /*
11: #* include files
12: */

133

14: #include <unistd.h
15: #include "mcidas.h

"servacct

16: #include

18: /*
18: =
20: */

return status

22: #define FAILURE 0
23: #define SUCCESS 1

25: /*
26: *
27: */

error handling
29: #define ERR_STAT DIR
30: #define ERR_MSG_DIR

32: #define ERR_STAT MALLOC
#define ERR_MSG_MALLOC

rs.

>
n

.hll

35: #define ERR_STAT BADLINE

36: #define ERR_MSG_BADLINE

41: #define ERR_STAT NOCAL
42: #define ERR_MSG_NOCAL

44: #define ERR_STAT_ NOIMG
45: #define ERR_MSG_NOIMG

47: #define ERR_STAT_NONAV
48: #define ERR_MSG_NONAV

50: #define ERR_STAT_ SELECT

53: #define ERR MSG_FORMAT

38: #define ERR_STAT BLANK_
39: #define ERR_MSG_BLANK IMG

IMG

This is the main include file for the 1995 MUG
Training Course ADDE server.

It contains data structures that are used by

/* McIDAS include file */
/* ADDE include file */

-2
"Unable to read contents of directory \n"

-1
"Unable to allocate memory \n"

-41
"Unable to read image line %d \n"

-47
"There's nothing to see here. \n"

-40
"Unable to initialize calibration \n"

-51
"There are no images out here. \n"

-31
"Unable to initialize navigation \n"

-850

52: #define ERR_MSG_EARTH_TO_IMG "Unable to transform lat/lon to line/element \n"

"Unable to read this data format \n"

54: #define ERR _MSG_IMG TO EARTH r"Unable to transform line/element to lat/lon \n"

58: /*
59: *
60: */

max lengths

62: #define IMG_DIR_LEN
63: #define MAX_CAL_LEN
64: #define MAX CARD LEN
65: #define MAX DIR_LEN
66: #define MAX_ERRMSG_LEN

UKJUCJUtjUKJUtjUtjUEJUtJUljU(JU(JU!JUljUt?UtJU(JUtJU(jUtJUijUtJUtJU(JUlleJUtJUtJU(JUtJU(JUtJUKJEJU
w
w

Applications Development in the ADDE
2-72

55: #define ERR_MSG_MCIDAS_NAV
56: #define ERR_MSG_UNKNOWN_SAT

64
512
80
1024
72

"Error in McIDAS navigation \n"
"Calibration units unknown for this satellite \n"

/* len of image directory */
/* byte len of calibration codicil */
/* len of a single comment card */

/* len of directory where data lives */
/* byte len of err msg back to client*/

McIDAS Developer/Operator Training
October 23, 1995

67: #define MAX_ERR LEN 256

68: #define MAX LINE_LEN
69: #define MAX NAME_LEN 1024

70: #define MAX NAV_LEN 512
71: #define MAX NUM_BAND 32

74: /*

72: #define MAX_NUM_CARDS 250

75: * default values

76: */

78: #define DEF_NUM_ELEMS
79: #define DEF_NUM_LINES

80: #define READ BUFFER SIZE 1

85: /%

83: #define BASE_FILENAME

81: #define RES_AT_ CENTER 1

86: * nav parameters

87: */

92: /*

93: * longitude convention
comment this line out if a west negative
convention is desired

94:. *
95: *
96: */

100: /*
*
&/

104: #define CEN_LAT_CARD
105: #define CEN_LON_CARD
106: #define RES_X CARD

107: #define RES_Y_ CARD

108: #define VALID_UNIT_CARD

89; #define EARTH_RAD_METERS

98; #define WEST_POSITIVE

comment card strings

10000

640
480

/*
/&
/*
/*
/*
/*

/*
/*
/*
/*

"MRF" /*

len of error string */
max. len of a line in the image file */
max. len of a image path and name */
byte len of calibration codicil */
max. number of bands in an image */

max. number of mcidas comment cards*/

default num of elements to send */
default num of lines to send */
of image lines to buffer on read */
resolution in km at center of image */

MUG format files name convention ¥/

 RAD_| 6378388 /* earth radius in meters */
90: #define EARTH_ECCENTRICITY 81992.0 /* earth eccentricity * leé6 */

"Center latitude = %f"

"Center longitude = %£"

"Longitude resolution (km) = %4"

"Latitude resolution (km) = %d"

"Valid calibration unit for band %d = %s \"gs\""

¥09:

110: /*

g3 ¥ CRITERIA holds the search parameters for
112; * image selection

113: */

114:

115: typedef struct CRITERIA_

116: {

117: int begday;

118: int endday;

119: int begtim;

120: int endtim;

121x% int begss;

122: int endss;

123: } CRITERIA;

124

125: /*

126: * FILELIST holds the a list of files

1275 ok to be compared to the parameters in CRITERIA

128: */

132 char
133: int
134: int
135: struct
136: } FILELIST;

[sielieleleiviviciciviviciviciciviviviolclciviclelvicicicivivivivivcivivivicivcivivivicicivcivcicicAcivivicivivicicicivicivivcAcEvEvivvAcEvAvEcAv v o}
[
o
[

138; /*

McIDAS Developer/Operator Training
October 23, 1995

130: %ypedef struct FILELIST_

name [MAX NAME_LEN] ;

pos;
time;
FILELIST_

*next ;

Applications Development in the ADDE
2-73

141: */

READPARM holds the specifications
needed to read a line of image data

143: typedef struct READPARM

char src_type[4];
char des_unit[4];
char src_unit [4] ;
int begele;

int beglin;

int bufsiz;

int des_len;

int elem_res;

int line_res;

int maxele;

int maxlin;

int minele;

int minlin;

int numband;

int numele;

int numlin;

int src_len;

int ul_elem;

int ul_line;

168: } READPARM;

167: /*
168: *
169: */

mcidas prototypes

171: char *clit_(int *);

: int
174: int
175: int
176: int
177: int
178: int
179: int
180: int
181: int
182: int

184: /*
: *
186: */

188: int
189: int
190: int
191: int
192: int
193: int
194: int
195: int
196: int
197: int
198: int
199: int
200: int
201: int
202: int
5 dnk
204: int
205: int
206: int
207: int
208: int
209: int
210: int

UtJUtJU‘JUI?U(UU(JU(JU!JU(DU(JUtJUljU(JUtJU(DUljtJU!JU!JU!JUtjUtjUtJU!jUtJUtJUljUtJUtJUtUUtJUtJUtJU‘jUtJUljU
N |
b o

lit_(char *);

lltora_(float *, float *, float *, float *, double *, double *);
mO0resred_(char *, int *, int *, int *);

mOsxsend (int *, int *);

mOsxtrce_(char *, int);

nvleas_(float *, float *, float *, float *, float *, float *);
nvilini_ (int *;idint *); .

nvprep_(int *, int *);

nvlsae_(float *, float *, float *, float *, float *, float *);
sksecs_ (int *, int *);

MUG interface prototypes

AddCard(char *, int, int *, int);

CheckImgBounds (READPARM *, int, int);

IsMugFormat (char *);

MugNavEarthToImg (char *, float, float, float *, float *, char *);
MugNavImgToEarth(char *, float, float, float *, float *, char *);
PopFile (char *, int *, FILELIST **);

PushFile(char *, int, FILELIST **);

PushFileByName (char *, int, FILELIST **);
PushMugFileByTime (char *, int, FILELIST **);

ReadMugCards (char *, int *, int *, char *);

ReadMugCalCod (char *, int *, int *);

ReadMugRes (char *, float, float, float *, float *, char *);
ReadMugDir (char *, int *, char *);

ReadMugLine (char *, READPARM *, int, short *, char *);
ReadMugNavCod (char *, int *, int, int, int *);

ReadUnits (int *, int *, int *, char *);
SelectMugImages(char *, int, int, CRITERIA *, FILELIST **, char *);
SendCards (int *, int *);

SendCod (int *, int);

SendDir (int *);

SendLine (short *, int);

SendZeros (short *, int);

TestMuglImage (char *, CRITERIA *, int *, char *);

Applications Development in the ADDE McIDAS Developer/Operator Training

2-74

October 23, 1995

subserv.c

mm
w
w

WOIAUTIE WN -

/*
subserv.c j .benson 10/94
This is called by exec from subserv_.c
It reconstructs the server environment, and continues the service
Note: the varible Sname is not defined in this file
it should be defined in the -DSname=value field on the
compile. value will be interpreted as the name of the
application function that will perform the work. Eg aget_
x 7
#include <memory.h>
#include <string.h>
#include <stdlib.h>
#include "mcidas.h"
#include "servacct.h"
/* turn off trace */
extern int trace_;
#ifdef _ EMX /* f2c compatibility for os/2 */
int xargc;
char **xargv;
#endif /* __EMX__ x/
void main(int argc, char *argv(])
servacct request_block; /* control block for transaction */
char dbg [180] ;
int istat;
int parsed_len;
#ifdef _ EMX = /* f2c compatibility for os/2 */
xargc=argc;
xXargv=argv;
#endif /* _ EMX__ */
/t
We do not validate the transaction user and project.
That should have been done by the main server previously
trace_ = 0;
#ifdef DEBUG
trace_ = 1;
#endif

(void) strcpy (dbg, "starting subserv");
mOsxtrce_(dbg, strlen(dbg));

/*

initialize McIDAS environment */

McIDAS Developer/Operator Training

October 23, 1995

Applications Development in the ADDE
2-75

*/

: int i;

69: initblok_(&i);

70: if (1 1= 0) return;
71: }

73: /* construct request block */
74: memset (&request_block, 0, sizeof (request_block));

atoi(argv(1l]
atoi(argv (2]

76: * (int *) &request_block.server_address)i
)i
atoi(argv(3]);
)i
)I
)I

77 request_block.server_port
78: * (int *) request_block.user

79% request_block.project atoi(argv([4]

o wnnu

80: * (int *) request_block.transaction atoi(argv(5]
81: request_block.input_length atoi(argv (6]
82:
83: /* put at least part of the request into the rb */

: strncpy (request_block.text, argv([7],
85: strlen(argv(7]) < sizeof (request_block.text) ?
86: strlen(argv[7]) : sizeof (request_block.text));
87:
88: /* initialize log fields */
89: mOsxlogi_(&request_block) ;
90:
91: /* parse the command */

93: istat
94: istat

Mcargfree (0) ;
MOcmdput (MOcmdparse (argv (7], &parsed_len));

96; /* do the guts */
97: Sname (&request_block) ;

99: /* termination */
100: mOsxdone_ (&request_block);

HEEEENEEEEIIE N DN DD EE
(oo
w

Applications Development in the ADDE McIDAS Developer/Operator Training .
2-76 October 23, 1995 }

servutil.h

e e e e e B B B B B B B B B e e B B B B B B B B B B B B B B B B I B B B B R I I R R L R R]
w
w

McIDAS Developer/Operator Training

October 23, 1995

WU W N

/* servutil.h
*
* This is the main include file for the McIDAS
* ADDE server utilities.
*
*/
/*
* include files
*/
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include "mcidas.h"
/*
* return status
*/
#define FAILURE 0
#define SUCCESS 1
/*
* error handling
*/
#define ERR_STAT DIR -2

#define ERR_MSG_DIR

#define ERR_STAT_MALLOC -1

#define ERR_MSG_MALLOC

#define ERR_MSG_UNKNOWN_SAT

/*
*/

max lengths

#define IMG_DIR_LEN 64 /*
#define MAX CARD LEN 80 /*
#define MAX DIR_LEN 1024 /*
#define MAX ERRMSG_LEN 72 /*
#define MAX_ERR_LEN 256 /*
#define MAX_NAME_LEN 1024 /*
#define MAX NUM BAND 32 /*
#define MAX_NUM_CARDS 250 /*

"Unable to read contents of directory \n"

"Unable to allocate memory \n"

"Calibration units unknown for this satellite \n"

len of image directory */
len of a single comment card */
len of directory where data lives */
byte len of err msg back to client */
len of error string */
max. len of a image path and name */
max. number of bands in an image */
max. number of mcidas comment cards*/

/*

* comment card strings

*of
#define VALID UNIT_CARD "Valid calibration unit for band %d = %s \"%s\""
/*

* CRITERIA holds the search parameters for

* image selection

*/

typedef struct CRITERIA

int
int
int
int

begband;
endband;
begday;
endday;

Applications Development in the ADDE
2-77

72: /*
73: *
74 : *
75 */

int begtim;
int endtim;
int begss;
int endss;

70: } CRITERIA;

FILELIST holds the a list of files
to be compared to the parameters in CRITERIA

77: typedef struct FILELIST

char name [MAX NAME_LEN] ;

int pos;

int time;

struct FILELIST_ *next;

83: } FILELIST;

85: /%
86: *
87: *
8g8: */

READPARM holds the specifications
needed to read a line of image data

90: typedef struct READPARM

[y
H O
ow

114: /*
115: *
116: */

118: int
119: int
120
121: /*
122: *
123 2 */
124:
125: int
126: int

127 ine
128: int
129: int
130: int
131: int
132: int
133: ARt
134: int
135: Ant
136: int

"]’11'11"1"1"'1"‘]"!"1'11"'1"1"]’!1'11'T!"’!'TJ"".I"‘J"ﬂ'ﬂ'ﬂ"l"d'fl”l”.!’!1'11"11"‘1'!1"!!"1"!"!’*]’!J’TJ"‘!"1‘]"‘1"‘1"]"J"!"!"J"J"J"‘J")"J"j'ﬁ"]’*l'ﬂ"l’ﬁ’ﬁ"]”l"l"]’11"1’11'1‘]"'1
=
o
[

Applications Development in the ADDE

2-78

char src_type([4];
char des_unit [4];
char src_unit [4];
int begele;

int beglin;

int bufsiz;

int des_len;

int elem res;

int line_res;

int maxele;

int maxlin;

int minele;

int minlin;

int numband;

int numele;

int numlin;

int src_len;

int ul_elem;

int ul_line;

112: } READPARM;

mcidas routines

mOsxsend_ (int *, int *);
mOsxtrce_(char *, int);

server utility interface prototypes

AddCard(char *, int, int *, int);
CheckImgBounds (READPARM *, int, int);
PopFile (char *, int *, FILELIST *¥*);
PushFile (char *, int, FILELIST *¥*);
PushFileByName (char *, int, FILELIST **);
ReadCodLengths (char *, int *, int *);
ReadUnits (int *, int *, int *, char *);
SendCards (int *, int *);

SendCod (int *, int);

SendDir (int *);

SendLine (int *, int);

SendZeros (int *, int);

MCcIDAS Developer/Operator Training
October 23, 1995

=

mugarea.pgm

G 1: C ? MUGAREA -- Manipulate area data recevied by server for MUG demo
G 2: C? MUGAREA source posl oper pos2 destination

G 3: C ? Parameters:

G 4: C ? source source dataset name, contains areas

G 5 QrR posl position of 1lst area to use (default, most recent)
G 6 QR oper mathematical operation ADD, SUB, AVG are valid entries
G 7s @2 pos2 position of 2nd area to use (default, next most recent)
G 8: g2 destination.pos | destination dataset and position

G 9: C ? Keywords:

G 10:' ¢ @ SIZE = nlines neles ! Size of area to get from server

G 11: C ? =-=c-ceee-a

G 12:

G 133 SUBROUTINE MAINO

G 14: IMPLICIT NONE

G 18 C

G 16:; C

G 17: C-==-=--- external functions

G 18%

G 19 character*12 cfr ! left-justified integer->string

G 20: integer iftok ! make a character string an integer

G 21: integer isdgch ! is the character string digits characters?
G 22: integer mcacal ! get the calibration

G 23: integer mcacou ! write the comment cards

G 24: integer mcacrd ! read the comment cards

G 25; integer mcaget ! start server for lines of data

G 26: integer mcalin ! get a line of data from pipe

G 27 integer mcanav ! get the navigation

G 28: integer mcaout ! output the area using ADDE

G 29: integer mcapfx ! get the prefix

G 30: integer mcaput ! put the area

G BT integer mcasort ! get sort conditions to pass to server
G 32 integer mccmdint ! get integer from command line

G 33% integer mccmdkey ! validate command line entries

G 34 integer mccmdnum ! number of entries with keyword

G 35% integer mccmdstr ! get string from command line

G 36§ integer mcdsnum ! get number of positions in dataset

G 374 G

G 38: C-==o-u-e-- parameter

G 30

G 40: integer MAXCARD

G 41: parameter (MAXCARD = 500) ! max number of comment cards

G 42: integer NLINMAX

G 43: parameter (NLINMAX=1000) ! max number of lines

G 44: integer NELEMAX

G 45: parameter (NELEMAX=1000) ! max number of elements

G 46: C

G 47: C------- local variables

G 48: C

G 49: character*12 cbday ! begin day

G 50: character*12 ceday ! end day

G Bl character*12 cposd ! position of destination dataset

G 52: character*12 oper_ str ! operation to perform on areaslé&2
G 53: character*40 sortsl(20)! sort strings to pass to server, 1st position
G 54: character*40 sorts2(20)! sort strings to pass to server, 2nd position
G 55z character*40 psorts(20)! sort string for putting

G 56: character*40 dname ! destination dataset name

G 57: character*40 sname ! store source name in here

G 58: character*40 name ! source dataset name, destination storage

G 59:

G 60: integer bufferl (nelemax) ! buffer for ADDE read/write

G 61: integer buffer2(nelemax) ! buffer for ADDE read/write

G 62: integer buffer3 (nelemax) ! buffer for ADDE read/write

G 63: integer cardsl (MAXCARD) ! areal comment cards

G 64: integer cards2 (MAXCARD) ! area2 comment cards

G 65: integer cards3 (MAXCARD) ! area3d comment cards

G 66: integer dirl (64) ! area directory for 1lst area

McIDAS Developer/Operator Training

October 23, 1995

Applications Development in the ADDE
2-79

Applications Development in the ADDE

2-80

G 67: integer dir2(64) ! area directory for 2nd area

G 68: integer dir3 (64) ! area directory for 3rd area

G 69: integer dpos ! destination dataset position
G 70: integer hl ! handle for mcaget

G qd3 integer h2 ! handle for mcaget

G 722 integer h3 ! handle for mcaput

G 73 integer i ! loop index

G 74: integer icall (10000) ! cal block, area 1

G 75: integer ical2(10000) ! cal block, area 2

G 76: integer ical3 (10000) ! cal block, area 3

G VA integer iele ! number of elements to fetch

G 78: integer ilin ! number of lines to fetch

G 79z integer inavl (1024) ! nav block, area 1

G 80: integer inav2(1024) ! nav block, area 2

G 81: integer inav3 (1024) ! nav block, area 3

G 82: integer iread ! number of directories read

G 83: integer iret ! return code

G 84: integer iretl ! return code

G 85: integer iret2 ! return code

G 86: integer ix ! loop bound

G 87: integer j ! loop bound

G 88: integer jy ! loop bound

G 89: integer npos ! number of positions in dataset
G 90: integer posl ! 1st dataset position

G 81 integer pos2 ! 2nd dataset position

G 92: integer prefixl (250) ! prefix for area 1

G 93: integer prefix2 (250) ! prefix for area 2

G 94: integer prefix3 (250) ! prefix for area 3

G 95 integer neles ! number of elements

G 96: integer nlines ! number of lines

G 97: integer nsortsl ! number of sorts conditions, 1lst posn
G 98: integer nsorts2 ! number of sorts conditions, 2nd posn
G 99: integer nsortsp ! number of put sort strings

G 100: integer xdirl (65) ! expanded area directory for 1lst area
G 101 integer xdir2(65) ! expanded area directory for 2nd area
G 102 integer xdir3 (65) ! expanded area directory for 3rxd area
G 103

G 104 integer numkeys - ! number of valid keyword entries
G.. 105 parameter (NUMKEYS=10)

G 106 character*12 key words (NUMKEYS) ! valid keywords

G 107 data key_words/'AUX', 'BAN.D','CAL', 'DAY', 'LOC.ATE', 'MAG.NIFY',
G 108 & *$1Z.E', 'SU', 'TIM.E', 'DPO.SITION!/

G 109

¢ 110 nsortsl = 0

G 111 nsorts2 = 0

g . 112 nsortsp = 0

G 113

G 114: C------- check to see if keywords on command line are valid

G 115

G 116 if (mccmdkey (numkeys,key words) .lt. 0) then

G 117

G 118 call edest ('Ambiguous, illegal, or invalid keywords',0)
G 119 goto 2000 :

G 120 endif

G 121

G 122: C--=------ read in the source dataset name

G 123

G 124 if (mcecmdstr(' ',1,'0',sname) .lt. 0) goto 2000

G 125

G 126 if (sname .eq. '0') then

G 127 call edest ('Source dataset must be entered',0)

G 128 goto 2000

G 129 endif

G 130

G 131 if (isdgch(sname) .eq. 1) then

G 132 call edest ('Invalid source dataset name: '//sname,0)

G 133 goto 2000

G 134 endif

G 135

G 136: C------- read in the destination dataset name

G 137

G 138 if (mccmdstr(' ',5,'0',name) .lt. 0) goto 2000

McIDAS Developer/Operator Training
October 23, 1995

G 139:

G 140: if (name .eqg. '0') then

G 141: call edest('Destination dataset must be entered',0)

G 142: goto 2000

G 143: endif

G 144: i

G 145: if (isdgch(name) .eq. 1) then

G 146: call edest('Invalid destination dataset name: '//name,0)

G 147: goto 2000

G 148: endif

G 149:

G 150: C

G 151: C------- Separate the dataset name from the position

G 152: C

G 153: dname = name (1:index(name,'.')-1)

G 154: cposd = name (index (name, '.')+1:)

G 155: €

G 156: C------ cposd must be positive integer, do not allow anything else..

G 187: C

G 158: if (cposd(®:%) . 1lt. '1''woxriicposd(l:l) .gt. '9') then

G 159:

G 160: call edest ('Invalid position specified in destination '//

G 161: & 'dataset parameter.',0)

G 162: call edest ('Must be a positive integer',0)

G 163: goto 2000

G 164:

G 165: endif

G 166: C

G 167: C------- make sure that cposd is a number

G 168: C

G 169: if (isdgch(cposd) .ne. 1) then

G 170:

G 171: call edest('Invalid position specified in destination '//

G 172: & 'dataset parameter.',0)

G 173: call edest('Must be a positive integer',0)

G 174 goto 2000

G 175:

G 176: endif

G I77:

G 178: dpos = iftok (cposd)

G 179: €

G 180: C------ read in the bounds of the destination dataset name

G+ 18l C :

G 182: npos = mcdsnum(dname, 'AREA')

G 183: if (npos .lt. 0) then

G 184: if (npos .eq. -1) then

G 185: call edest ('Unable to resolve dataset dname= '//dname,0)

G 186: goto 2000

G 187: elseif (npos .eqg. -2) then

G 188: call edest ('Unable to resolve dataset dname= '//dname,0)

G 189: goto 2000

G 190: endif

G 191: call edest ('Bad mcdsnum return code: '//cfr (npos),O0)

G 192: goto 2000

G 193: endif

G 194

G 195:

G 196: if (dpos .gt. npos) then

G 197:

G 198: call edest('Destination dataset position ('//cposd//')'//

G 199: & ' exceeds dataset limits ('//cfr(npos)//')',0)

G 200: goto 2000

G 201:

G 202: endif

G 2032 ©

G 204: C------ read in the bounds for the source dataset sname

G 205: C

G 206:

G 207: npos = 8

G 208: if (npos .lt. 0) then

G 209: if (npos .eq. -1) then

G 210: call edest ('Unable to resolve dataset sname= '//sname,0)
McIDAS Developer/Operator Training Applications Development in the ADDE

October 23, 1995 2-81

G 211: goto 2000 (
G 212: elseif (npos .eq. -2) then

G 213: call edest ('Unable to resolve dataset sname= '//sname,0)
G 214: goto 2000

G 215: endif

G 216: call edest ('Bad mcdsnum return code: '//cfr(npos),0)

G 217: goto 2000

G 218: endif

G 218: C

G 220: C------- Read in the first position

G 221: C

G 222: if (mcemdint (' ',2,'First Dataset Position',O,

G 223: & -npos,npos,posl) .lt. 0) goto 2000

G 224: C

G 225: C-=-==--- Read in the second position

G 226: C

G 227: if (mcemdint (' ',4, 'Second dataset position', -1,

G 228: & -npos,npos,pos2) .lt. 0) goto 2000

G 229: C

G 230: C------ read in the operation to perform

@ 231: €

G 232: if (mcemdstr(' ',3,'ADD',oper_str) .lt. 0) then

G 233: call edest ('Invalid operator read in from command line:'
G 234: & //oper_str,0)

G 235: call edest ('Use ADD, SUB, or AVG',O0)

G 236: goto 2000

G 237: endif

G 238: C

G 239: C--=----- make sure operation entered is valid

G 240: C

G 241: if (oper_str(1:3) .ne. 'ADD' .and. oper_str(1:3) .ne. 'SUB"
G 242: & .and. oper_str(l:3) .ne. 'AVG') then

G 243: 3

G 244: call edest('Invalid operator:'//oper_str,0)

G 245: call edest ('Use ADD, SUB, or AVG',0) i
G 246: goto 2000

G 247: endif (
G 248: C

G 249: C----- read in the DAY requested

G 250: C

G 251: if (mccmdnum('DAY') .gt. 0) then

G 252:

G 253: if (mcemdstr('DAY',1,'X',cbday) .lt. 0) goto 2000

G 254: if (mccmdstr ('DAY',2,cbday,ceday) .lt. 0) goto 2000
G 255

G 256: nsortsl = nsortsl + 1

G 257: sortsl (nsortsl) = 'DAY '//cbday//ceday

G 258: nsorts2 = nsorts2 + 1

G 259: sorts2 (nsorts2) = 'DAY '//cbday//ceday

G 260: endif

G 261:

G 262: nsortsl = 0

G 263: nsorts2 = 0

G 264

G 265: if (mcasort (nsortsl,sortsl,1l) .lt. 0) then

G 266: call edest ('Failed to return standard sort parms',0)

G 267: call edest('for first position',0)

G 268: goto 2000

G 269: endif

G 270:

G 271: if (mcasort (nsorts2,sorts2,1) .lt. 0) then

G 272: call edest ('Failed to return standard sort parms',0)

G 273: call edest ('for second position',0)

G 274: goto 2000

G 275: endif

G 276::C

G 277: C------ add position to the sort strings

G 278: C

G 279: nsortsl = nsortsl + 1

G 280: sortsl (nsortsl) = 'POS '//cfr(posl)

G 281: nsorts2 = nsorts2 + 1 ’
G 282: sorts2 (nsorts2) = 'POS '//cfr(pos2) ‘

Applications Development in the ADDE McIDAS Developer/Operator Training
2-82 October 23, 1995 ‘

283:
284:
285:

286:
287:
288:
289:
290:
291
292:
293
294:

295

296

297:

298:

G)QG)OG)QG)QG)OG)OG)OG)OG)OG)QG)QG]OG]QC)QC)OC)OG)QG)OC]OC)OG)OG)QC)QG}QC)QG)OG)OG)OG)QC)QG)QG)OG)OC)QC)OG)O
w
P
]

354:

McIDAS Developer/Operator Training
October 23, 1995

Cc
Comemme- get the Size
c
if (mccmdint ('SIZ.E',1, 'Number of lines',145,1,1000,ilin)
& .1lt. 0) goto 2000
if (mccmdint ('SIZ.E',2, 'Number of eles',288,1,1000,iele)
& .1t. 0) goto 2000
nsortsl = nsortsl + 1
sortsl (nsortsl) = 'SIZE '//cfr(ilin)//cfr(iele)
nsorts2 = nsorts2 + 1
sorts2 (nsorts2) = 'SIZE '//cfr(ilin)//cfr(iele)
Cc
: C----make the call to mcaget to start the serving of position 1
c
name = sname
iret = mcaget (name,nsortsl,sortsl, 'TEMP', 'I4"',
: & NELEMAX*4,1,dirl,hl)
3 if (iret .1t. 0) then
call edest('Fail in mcaget for position 1',0)
goto 2000
endif
C
C----make the call to mcaget to start the serving of position 2
Cc
name = sname
iret = mcaget (name,nsorts2,sorts2, 'TEMP', 'I4"',
& NELEMAX*4,1,dir2,6h2)
if (iret .lt. 0) then
call edest('Fail in mcaget',0)
goto 2000
endif
Cc
C-mmmmem- Make sure the two areas are of identical size and shape
s €
g do 600+ ix =.7,18
if (diril(ix) .ne. dir2(ix)) then
call edest ('Area mismatch at position '//cfr(ix),0)
call edest('Area 1 value: '//cfr(dirl(ix)),O0)
call edest ('Area 2 value: '//cfr(dir2(ix)),0)
goto 2000
endif
600 continue
3 dirl(1l) = 1
3 Ie
C----get the nav and cal blocks
C
if (mcanav(hl,inavl) .ne. 0) goto 2000
if (mcacal (hl,icall) .ne. 0) goto 2000
if (mcanav(h2,inav2) .ne. 0) goto 2000
if (mcacal (h2,ical2) .ne. 0) goto 2000
iread = 1
C
C------ start the server transaction to put
C
psorts(l) = 'POS '//cposd
iret = mcaput (dname, 1,psorts,dirl,inavl,icall)
if (iret .ne. 0) then
call edest ('Error in setting up put',0)
goto 2000
endif
€

Applications Development in the ADDE
2-83

Applications Development in the ADDE

2-84

G)OQOG)G)GJOG)G)QQG)OQG)QC)OQG)QOOQQQCJQQQQG)QOOOOOQOQQQQOQQOQOQOQOOOOOOQOOOQQOG)QQC)G)

426:

------ read in the lines of imagery from the two areas
1000 continue
iretl = mcalin(hl,bufferl)

if (iretl .lt. 0) then
call edest('Fail in mcalin for areal at line '//
& cfr(iread),0)
goto 2000
endif

if (mcapfx(hl, prefixl) .1lt. 0) then

call edest ('Prefix Read in area 1 has failed',0)
goto 2000
endif

iret2 = mcalin(h2,buffer2)

if (iret2 .1lt. 0) then
call edest('Fail in mcalin for area2 at line '//
& cfr(iread),0)
goto 2000
endif

if (mcapfx(h2, prefix2) .lt. 0) then
call edest ('Prefix Read in area 2 has failed',0)
goto 2000

endif

if (iretl .eq. 0 .and. iret2 .eq. 0) then
------ got something from pipe that is area data, perform operation
do 1200 ix = 1, diri(10)
if (oper_str(1:3) .eq. 'ADD') then
buffer3 (ix) = mino0 (bufferl (ix) + buffer2(ix),255)
elseif (oper_str(1:3) .eq. 'SUB!') then

buffer3 (ix) = max0 (bufferl (ix) - buffer2(ix),0)
elseif (oper_str(1:3) .eqg. 'AVG') then

buffer3 (ix) = (bufferl(ix) + buffer2(ix))/2.
else
call edest ('Bad operator specified!',0)
goto 2000
endif
1200 continue

------- put the buffer
call pack(dirl(10),buffer3,buffer3)
if (mcaout (buffer3) .1lt. 0) then
call edest ('Write failed ',0)
goto 2000
endif

iread = iread + 1

goto 1000
elseif ((iretl .eq. 0 .and. iret2 .eq. 1) .or.
& (iretl .eqg. 1 .and. iret2 .eq. 0)) then
call edest('Pipes 1 and 2 did not empty at the same time',0)
else
if (mcacrd(hl,cardsl) .ne. 0) then
call edest ('Read of comment cards from area 1 failed',0)
goto 2000
endif

if (mcacrd(h2,cards2) .ne. 0) then
call edest('Read of comment cards from area 2 failed',0)

McIDAS Developer/Operator Training
October 23, 1995

444: 900 format (1x,1i3,1x,2(112,1x))
445: 2000 return

G 427: goto 2000

G 428: endif

G 429: C

G 430: C------ now write the comment cards

G 431: C

G 432: if (dir1(64) .gt. 0) then

G 433

G 434: if (mcacou (cardsl) .ne. 0) then
G 435: call edest('Failed to write comment cards',0)
G 436: goto 2000

G 437: endif

G 438

G 439: endif

G 440: endif

G 441:

G 442: call sdest ('MUGAREA: Done',0)

G

G

G

G

446: end

McIDAS Developer/Operator Training
October 23, 1995

Applications Development in the ADDE
2-85

Applications Development in the ADDE McIDAS Developer/Operator Training
2-86 October 23, 1995 !

Development
Environment for

MclIDAS-X and -OS2

Presented by
Tom Whittaker
McIDAS Development Team Manager

Session 3
McIDAS Developer/Operator Training
October 23-25, 1995

Table of Contents

Setting up the environment for McIDAS-X 3-1
Setting up your user environment. 3-2
The MellPAR-X Hbeary. cccovvnvvrovamoinennsney 3-3
Testingyourcodecovviiniriiennnennennn. 3-6
B DI . ..o chonesormanncsnnebovanomeanssd 3-7

Setting up the environment for McIDAS-OS2.............. 3-8
Managing the software for locally developed code 3-8
Required software for local development............... 3-9
Considerations for functions and subroutines. 3-9
Compiling and linkingc.vinsvaisnsnsssnpanis 3-10
Boilding FIELP RIEB o5 chnhennnass b svenssn 3-11

Dynamic Link Libravies (DLES).c00vivaioiilen 3-12

Setting up the environment for McIDAS-X

To create a development environment for McIDAS-X, you must first

set up a proper user environment. Verify that you or your system
administrator has properly installed the McIDAS software in the user
account named mcidas.The instructions are in Chapter 1 of the McIDAS-X
Users Guide. Once McIDAS is installed, the mcidas account will have two
sets of directories:

¢ package directories

« installation directories

Package directories

Each version of McIDAS-X and other McIDAS packages, such as
MCcIDAS-XCD, builds its own set of directories. The names of the
directories depend on the package name and version number. For example,
the McIDAS-X 2.1 package directories and their contents are listed below.

Directory Contents

~mcidas/mcidas2.1/src McIDAS-X 2.1 source files, help files
and binaries

~mcidas/mcidas2.1/data McIDAS-X 2.1 data files

Installation directories

The installation directories and their contents are listed below.

Directory Contents
~mcidas/admin administrative files
~mcidas/bin program executables
~mcidas/data data files
~mcidas/help help files
~mcidas/inc include files
~mcidas/lib libraries
McIDAS Developer/Operator Training Development Environment for McIDAS-X and -OS2

October 23, 1995 3-1

Setting up your user environment

Your user account

Verify that your account is set up as a normal McIDAS user, following the
steps below. See Chapter 2 of the McIDAS-X Users Guide for additional

information.

1. Login to your account.

2. Modify the environment variable PATH in your .profile (ksh) or
.cshre (csh) files. Insert SHOME/mcidas/bin, the directory with
your site’s locally developed code (for example, ~mclocal/mcidas/
bin), and ~mcidas/bin in your PATH, in that order.

3. You may also need to modify your PATH if it does not contain all
of the required directories or have them in the correct order, as

listed below.

Operating system
AIX 3.2.5 and 3.2.5p

HP-UX 9.0.3 and 9.0.5

IRIX 5.2 and 5.3
SunOS 4.1.3
Solaris 2.3 and 2.4

Modifications

none
add /usr/bin/X11

none

add /usr/lang and /usr/openwin/bin
add /opt/SUNWspro/bin, /usr/ccs/bin,
and /usr/openwin/bin; if your PATH
contains /usr/ucb, it must follow
/opt/SUNWspro/bin, /ust/ccs/bin, and
/usr/bin

4. Logout and login again for the changes to take effect.

Your development environment

Before doing local development, you must create the following directories.

$HOME/mcidas
$HOME/mcidas/bin
$HOME/mcidas/data
$HOME/mcidas/src
$HOME/mcidas/help
$HOME/mcidas/lib

Development Environment for McIDAS-X and -OS2
32

McIDAS Developer/Operator Training
October 23, 1995

The McIDAS-X library

McIDAS Developer/Operator Training

October 23, 1995

Every McIDAS-X upgrade provides a new library of functions, which is
placed in the file ~mcidas/lib/libmcidas.a. As a developer, you can link to
this library if you are only developing commands. If you are developing
functions and subroutines, you can either copy this library to your
$HOME/mcidas/lib directory, or create and use your own development
(usually temporary) library for your function and subroutine object code.

There are two ways to compile your code: using the fx script, which
invokes the mecomp and mecar scripts to do the compiles and linking, or
using the latter routines directly. mecomp and mear are provided to keep
system-dependent compiler and library options transparent to the
developer.

If you develop subroutines or functions, as opposed to just commands, it is
better to use mecomp and mear directly because you can put your object
code into a separate library and link from there. The fx script, on the other
hand, puts all object code into the McIDAS library, which forces you to
copy libmcidas.a into your SHOME/mcidas/lib each time you start a
different project.

If you use the fx script for compiling, follow these steps:
1. Make a fresh link to the main.o file in the mcidas account.

cd $home/mcidas/src
rm main.o
ln -s ~mcidas/lib/main.o .

2. Make a fresh link to the libmcidas.a file in the mcidas account. If
you have library routines to put in libmcidas.a, use cp instead of
1n -s below.

cd $HOME/mcidas/lib
rm libmcidas.a
ln -s ~mcidas/lib/libmcidas.a .

3. Make fresh links from $HOME/mcidas/src to the include files in
~mcidas/inc.

4. The fx script uses the scripts mecomp and mcar to do the
compiles and library updates. They are located in ~mcidas/bin. If
you need to modify the compiler options, make a private version
of mecomp in your SHOME/mcidas/bin directory. Before
modifying the archive options, make a private version of mcar in
your SHOME/mcidas/bin directory.

Development Environment for McIDAS-X and -OS2

3-3

5. OnIRIX, there is a system-supplied command called fx in (
/usr/bin. To use the McIDAS-X fx command, you must have
the mcidas bin directories (such as ~mcidas/bin and
$HOME/mcidas/bin) before /bin and /usr/bin in your PATH.

6. Recompile your locally developed software using the new fx
script and mcidas library. You may encounter problems when
compiling. For example, using Fortran direct I/O with RECL= is
not supported since it is not portable. On some platforms,
RECL=7 means the record length is 7 bytes; on other platforms, it
means 7 words. Use the McIDAS LW I/O or LB I/O instead.

We recommend using a makefile for compiling. For example:

Sample makefile for local McIDAS development...September, 1995

The list of .pgm’s to compile; comment out if not used.

MCFPSRC = run.pgm \
tvanot .pgm

The list of .for’s to compile; comment out if not used.

MCFFSRC = runaix.for

The list of .c’s to compile; comment out if not used.

MCCFSRC = (
The list of .dlm’s for compile: comment out if not used.

MCDLMSRC =

Derive the object file names; comment out any not used...

MCFPBIN = $ (MCFPSRC: .pgm=.mx)

MCFFOBJ $ (MCFFSRC: . for=.0)

MCCFOBJ = $(MCCFSRC:.c=.0)
MCDLMOBJ = $(MCCDLMSRC:.dlm=.0)

The name of the development library; if not using development
library (that is, there is no MCFFSRC or MCCFSRC), be sure
to set MYMCLIBL =

MYMCLIB = dev

MYMCLIBA = 1ib$ (MYMCLIB) .a

MYMCLIBL = -1$(MYMCLIB)

MYMCLIBL =

Wi s mpm o o i i s i S P S i
Now define the McIDAS environment and the developer’s home

directory.

Bomaon armad e mnwma e Bon oras & mre s St o SR D s e e s e s o o

McIDAS root directory and associated subdirectories

MCROOTDIR = /home/mcidas
MCINCDIR = $ (MCROOTDIR) /inc
MCLIBDIR = $ (MCROOTDIR) /1ib
MCBINDIR = $ (MCROOTDIR) /bin
) |
the suffix of the name of the McIDAS library ‘
Development Environment for McIDAS-X and -OS2 McIDAS Developer/Operator Training

3.4 October 23, 1995

MCLIB = mcidas

developer’s root directory and associated subdirectories

MYROOTDIR = $(HOME)
MYMCBINDIR =

$ (MYROOTDIR) /mcidas/bin

the location of the core version of main.o

MAIN_O = $(MCLIBDIR) /main.o

L_OBJ can force certain
link instead of getting

also be modified on

object files to be used during the
it from a library; This macro can

the command line of the make call

Now define the location

scripts.

of includes, libraries, and compile

the list of include file arguments

INCARGS = -I. -I$(MCINCDIR)

the list of library file arguments

LIBARGS = -L. -L$(MCLIBDIR) $(MYMCLIBL) -1$(MCLIB) -1X11

the compile

COMPCMD

&
(=)
2
’
o
wonouon

link and library archive commands for McIDAS

$ (MCBINDIR) /mccomp
$ (MCBINDIR) /mccomp
$ (MCBINDIR) /mcar

$ (MCBINDIR) /convdlm

Create the suffix rules for compiles, etc.
(the “$*” refers to the root name of the prerequisite file)

.SUFFIXES: .o .mx .for

compile the .c’'s

+C.0:
$ (COMPCMD) $ (INCARGS)
$ (LIBARC) $ (MYMCLIBA)

compile the .for’s

+£0¥ .04
$ (COMPCMD) $ (INCARGS)
$ (LIBARC) $ (MYMCLIBA)

compile the .dlm’s

.dlm.o:

$ (CONVDLM) $*.dlm

$ (COMPCMD) $ (INCARGS)
$ (COMPCMD) $ (INCARGS)

McIDAS Developer/Operator Training

October 23, 1995

.c .pgm

$ (DEBUG)
$*.0

$ (DEBUG)
$* .0

$ (DEBUG)
$ (DEBUG)

-c S$*.c

-c $*.for

-c $*1.f
e 9*2.E

Development Environment for McIDAS-X and -OS2
3-5

$ (COMPCMD) §$ (INCARGS) $(DEBUG) -c $*3.f ‘f
$ (LIBARC) $(MYMCLIBA) $*l1.0 $*2.0 $*3.0

compile and link the .pgms and copy the resulting .mx to
~/mcidas/bin .

.pgm.mx:
$ (COMPCMD) $ (INCARGS) $(DEBUG) -c $*.pgm

$ (COMPCMD) $(MAIN_O) $(L_OBJ) $*.o $(LIBARGS) -o $*.mx
cp $*.mx $(MYMCBINDIR)

install.all: $(MCFPBIN)

The .o files are dependent on the .for and .c source code.
The .mx’s are dependent on the .pgm source, and the other .o files.

$ (MCFFOBJ) : $ (MCFFSRC)
$(MCCFOBJ) : $ (MCCFSRC)
$ (MCFPBIN) : $(MCFPSRC) $(MCFFOBJ) $ (MCCFOBJ)

clean:
rm $(MCFPBIN) $ (MCFFOBJ) $ (MCCFOBJ) $(MYMCLIBA)

end-of-sample-makefile

Testing your code

Keep your testing environments separate from all user environments. The
primary points to keep in mind are the following:

» getagood data sample; for example, the dataset provided with the
McIDAS-X Learning Guide

 verify that the account is set up like a user account
+ set your MCPATH environment variable appropriately

* use different names for the source and executables if you change
core McIDAS code

¢ be aware that we will never issue a core McIDAS command
beginning with the letter y

If your changes will become part of your routine operations, then you
should be prepared to recompile, link, and retest with each upgrade that
you install. Using makefiles will help this effort.

Development Environment for McIDAS-X and -OS2 McIDAS Developer/Operator Training
3-6 October 23, 1995

Making HELPs

Create McIDAS-style HELPs (lines prefixed by C ? in the source code) for
all locally developed commands using the template below. Note that
macro commands, which have the .mac extension, use the double-quote
(“) instead of C as the comment character.

C ? NAME -- Describe the purpose of this command
e ? NAME FUNCT1 parml parm2 <keywords> “quote
G NAME FUNCT2 parml parm2 <keywordss>
C ? Parameters:
c? FUNCT1 describe the purpose of this function switch/option
e 2 FUNCT2 describe the purpose of this function switch/option
c® parml describe this parameter (def=default value)
€ ? parm2 describe this parameter (def=default value)
c? “quote describe the contents of the gquote string
C ? Keywords:
c? KEYNAME= describe values (def=default)
e P KEY2=YES describe effect (def=default)
€7 KEYS= first second | describe values (def=default)
C ? Remarks:
c 2 Add remarks, from most to least important. Use complete
c? sentences. If there are multiple remarks, separate them
c? with a single blank line, as below.
€ 2
e ? Always end the help section with a line of 10 dashes, as below.
C? —=cmmeeeme
SUBROUTINE MAINO
IMPLICIT NONE
C - symbolic constants & shared data
C - external functions
C - local variables
cC - initialized variables

To produce a McIDAS help file from your source code, do the following:

1. Change to the help directory.
Type: ed SHOME/mcidas/help

2. Make help files from your code in your SHOME/mcidas/src
directory by entering the two command lines below.

Type: memkhelp SHOME/mcidas/src¢/*.pgm
mcmkhelp SHOME/mcidas/src/*.mac

3. Have all users who run locally developed commands add the
appropriate directories to the MCPATH setting. For example,
users who run commands in the mclocal account must add
~mclocal/mcidas/help to their MCPATH. Users who run
commands in their own account, must add SHOME/mcidas/help
to their MCPATH.

McIDAS Developer/Operator Training Development Environment for McIDAS-X and -OS2

October 23, 1995

3-7

Setting up the environment for McIDAS-OS2

The McIDAS-0S2 Users Guide discusses the user environment, while the
old McIDAS Applications Programming Manual provides details of the
developer environment. In both cases, the directory tree and all developer
settings are established during the installation, except as noted below.

The directory tree established after installing both the McIDAS-OS2 and
the Development software is shown below.

Directory Contents

\mcidas\tools libraries, scripts, editor
\mcidas\source core source code: do not change
\mcidas\working local source code

\mcidas\code core executable code: do not change
\mcidas\user\code local executable code

\mcidas\data data of all kinds

\mcidas\help .HLP files

Managing the software for locally developed code

Keep the source code for all locally developed code in the
\mcidas\working subdirectory. The McIDAS upgrade procedures do not
affect the contents of this directory. Also, begin the names of your .PGM
files with the letter y.

Do not change the LIBMC.LIB as delivered with each upgrade; by default,
the f.cmd uses MCUSER.LIB for local subroutines and functions. Delete
this library between projects.

Finally, use make or create compile scripts to deal with projects having
several things to compile and/or link. You will generally need to recompile
and link your local code after installing each upgrade. For example:

REM Rebuild the “YPROG” command
SETLOCAL

CD \MCIDAS\TOOLS

DEL MCUSER.LIB

CALL F MYSUB1 CLI

CALL F MYSUB2 LI

CALL F YPROG L

Development Environment for McIDAS-X and -OS2 McIDAS Developer/Operator Training
3-8 October 23, 1995

Required software for local development

McIDAS-OS2 is built using the emx/gec compilers and the f2¢ Fortran
translator. You may obtain a copy of these from SSEC either on diskette
or via anonymous ftp, following the instructions in the upgrade
information. Once you obtain the .ZIP file and unpack its contents, a
directory tree under \EMX\ is created. You should read the information in
\EMX\DOC\ and \EMX\BOOK\. Use the view command in OS/2 to read
the .INF files.

The \EMX directory contains a script called setemx.cmd. If you run this
script, the environment is set up such that you can compile your code
within that session only. If you do a large amount of local development,
take the set commands from this script and, after substituting the correct
drive value, put them in the \CONFIG.SYS file: Do NOT put any other
statements from the setemx.cmd file into \CONFIG.SYS.

Considerations for functions and subroutines

McIDAS Developer/Operator Training

October 23, 1995

The IBM linker, LINK386, restricts the searching of libraries to a
prescribed order; once a library is completely searched, the next one in
sequence is searched. In the f.cmd compile script, MCUSER.LIB is
always searched before LIBMC.LIB.

If you create a subprogram that is called only by a routine in the
LIBMC.LIB (this would only happen if you intended to replace something
in LIBMC.LIB), your routine will not be linked because the object code is
put into the MCUSER.LIB by f.cmd. In this case, copy the LIBMC.LIB
into MCUSER.LIB before compiling. In the example recompile script
above, change the line:

DEL MCUSER.LIB

to:

COPY LIBMC.LIB MCUSER.LIB

Development Environment for McIDAS-X and -OS2

3-9

Compiling and linking

The f.cmd compile script is provided with McIDAS-OS2 in the
\MCIDAS\TOOLS directory when you install the Development software.
This script, written in REXX, provides all the commands you will need to
compile and link your code. The general form of the command is:

F <name> <option>

where: <name> is the name of the source file without an extension
<option> describes the type of compile to do and the type
of source code

Entering F without <name> <option> produces this help information:

—————— McIDAS compile script -----
F <name> <function: L,LI,NM,MAC,NO,C,CLI>
F <name> DL <defname> <dllname>

Specify <names> with NO extensions!
Extensions supplied are:

L -> .PGM (Fortran McIDAS commands)

LI -> .FOR (Compile and LIB Fortran subprograms)

DL -> .DLM (Dynamic load modules)

NM -> .FP (Non-McIDAS programs; put .EXE into \MCIDAS\TOOLS)
NMC -> .FP (Non-McIDAS programs; put .EXE into \MCIDAS\CODE)
MAC -> .MAC (McIDAS macros)

NO -> .FOR (Compile Fortran code only - no LIB step)

Ciz» L,C (Compile C code only - no LIB .step)

CLIy =~»:36 (Compile C code and insert into library)

CP -> .C (C language non-McIDAS commands)

CL -% € (C language McIDAS commands)

This will search for <name> first in the current directory, then in
\mcidas\working, and finally in \mcidas\source.

The environment variables are shown below:

Variable Function

useworking=NO suppresses the normal search of
\mcidas\working

mcout=c:\directory writes .exe files into \directory

mapout=c:\directory writes MAP files into \directory

Development Environment for McIDAS-X and -OS2 McIDAS Developer/Operator Training
3-10 October 23, 1995

Building HE

LP files

The McIDAS-OS2 HELP command uses the files placed in the
\mcidas\help\ directory. The files are the names of McIDAS-OS2
commands followed by a .HLP extension. For example, IMGDISP.HLP is
the HELP information for the IMGDISP command. If you follow the
standards previously described for McIDAS-X for formatting the help
section of your locally developed commands, you can use the mkhelp
program in \mcidas\tools\ to extract this information and place it in the
proper directory.

The command syntax for mkhelp is shown below. You must run it from
the OS/2 command prompt, not within McIDAS-OS2.

mkhelp <filename> <options> <output_directory>

where <filename> is the name of the source code file for the

McIDAS-0S2 command you want to extract the
HELP information from. You may also specify
a wildcard with an extention (eg., *.PGM) to
do all the files with this extension.

<options> may be LIST if you just want the extracted
HELP information listed to the screen
the name of a ‘template’ file containing
lines of text that are to be included
in the HELP (we recommend that you
include a message like “This code
was developed at NXYZ”)
X if you want neither of the above options
<output_directory> to specify the directory where the
JHLP file(s) will be written. The default
is \mcidas\help\.

If you run this command with no arguments, the following one-line help
message is displayed:

MKHELP <filename> <templatefile | LIST | X> <output directory>

McIDAS Developer/Operator Training

October 23, 1995

Development Environment for McIDAS-X and -OS2

3-11

Dynamic Link Libraries (DLLs)

Navigation and calibration routines are handled in McIDAS-OS?2 as
Dynamic Link Library modules (DLLs). They are not actually linked into
your program when it’s compiled, but rather remain in a special file that
can be loaded into memory and then linked into your program after it
begins to run. OS/2 makes extensive use of this feature; McIDAS-OS2
uses it not only for navigation and calibration, but also for all graphics
displays and part of the MDX command group.

You must make three DLLs for each navigation or calibration module and
one for each graphics driver (platform). You must explicitly perform each
of these, as the f.cmd does not. For example, to compile a navigation
module for type ABCD, you would run these commands:

F NVXABCD DL NAVLIB NV1ABCD
F NVXABCD DL NAVLIB NV2ABCD
F NVXABCD DL NAVLIB NV3ABCD

The NAVLIB parameter defines the definitions file to use for creating
navigation library DLL routines. The final parameter is the name of the
created .DLL file. You must replace the X in the root name (for example,
nvxgvar) with the digits 1-3 (for example, nvlgvar, nv2gvar, nv3gvar)
as illustrated.

A similar process is used for calibration:

F KBXABCD DL CALLIB KB1ABCD
F KBXABCD DL CALLIB KB2ABCD
F KBXABCD DL CALLIB KB3ABCD

CALLIB designates the definitions file for calibration.
Graphics are compiled using just one F.CMD per display type:

F GRADVCn DL GRALIB GRADVCn

where 7 is the number assigned to the particular display type.

Development Environment for McIDAS-X and -OS2 McIDAS Developer/Operator Training
3-12 October 23, 1995

Writing GUIs for
McIDAS using Tcl/Tk

Presented by
Susan Gorski - McIDAS Applications Programmer
David Glowacki - McIDAS Systems Programmer

Session 4
McIDAS Developer/Operator Training
October 23-25, 1995

"able of Contents

| S—

OVBIVAEW . « o o v dvvsa s i snws § 3 0o CFR & & DI s 8 00 086558 4-1
TR & s v s 660555 0 0ss bdnnssoibiomssdomm e sins 4-2
Tel syntax and SEOIIe .« .. oo vvvsvsanmesvussmemansnsss 4-3
NBADIES . o+ 5« o m oo i w6 6 5 e 3 2 e 5 3L 6 o B R 4-5
TR RN | - b b e e o 6 e e e T 4-7
LRI S et i e e 1 4 R e il s e R B 4-7
12005 0 RS pa 115 OO < B Do e o S o 4-8
Brror ppotlig . cox o comin b e LU LY 6L BB 3 e 4-8
PRoling M TR <« ovpvuins caiog dons ab ih o bs ss s ok £ 5 s @ a5 4-9
Using extemBlprons . .. oo bosvaewinns s Fpovnbassonsyns 4-10
poo I LI N [o I TN T SRR P G O 4-11
17l R SRR U o S T T S P 4-16
Find a User Commonvalue 4-16
Gottoday’'sdateo0o0vonersiaiiisrisrcrirnenns 4-16
Getthecarremt timnec..iiviicereansansnns 4-17
Listthe UB. 8816800civivenrinrninnncennnns 4-18
List all availableareas. 4-19
Setstandardoptionsiiiiiiii... 4-21
Run a McIDAS command; send output to listbox 4-21
Run a McIDAS command; send output to text window. . . 4-23
Considerations for buildinga GUI 4-26
Sample GUIcodeciiiiniiiiiiiiiiinennn. 4-27
SORBIOO B o 55 i i sissnnanansonaERRSREEY S RTRR 44§ 5 55 4-38

ReSOUICES . ..ot e 4-44

Overview

MCcIDAS user interfaces in the past have included: a command window, a
soft tablet, a hard tablet and the F Key menu system. When we began
developing a Graphical User Interface for McIDAS, we assessed different
underlying packages and chose Tcl/Tk.

Tcl (Tool command language) and the Tk (Tool kit) are two software
packages developed by John Ousterhout at the UC-Berkeley. Together
they make up a system for developing Graphical User Interface (GUI)
applications. Tcl is an interpretive scripting language with variables and
control structures; it contains the control portion of a GUI. Tk is a tool kit
of graphical widgets that can be accessed from a Tcl script. Tk contains the
visual portion of a GUL.

The ease of programming in Tcl/Tk allows for rapid McIDAS GUI
development. With very little effort, a GUI can be prototyped for a look-
and-feel evaluation before any functionality is added. Because Tcl/Tk
source code is freely available, you can obtain the development package at
no cost, making it more accessible. Tcl/Tk code makes it easy for you to
create your own GUI, and alter the GUIs we create.

The McIDAS GUI is a series of intuitive menus and command GUIs for
running McIDAS commands. It displays defaults, offers easy selection of
options and limits commands to decrease complexity. One such GUI is
Merlin, a freely distributed package that uses McIDAS and Tcl/Tk as its
base. Because Merlin has no command line, all requests for data display
are through the GUI. To use MERLIN as a base for other projects with
more specific applications, we also developed sidecars.

This training session provides the information you need to write your own
GUI using Tcl/Tk.

McIDAS Developer/Operator Training Writing CUIs for McIDAS using Tcl/Tk
October 24, 1995 : 4-1

Terminology

The terms below are used throughout this section.
GUI Graphical User Interface

pack Tk command for arranging slave
widgets inside a master widget

proc submodule of Tcl code that allows the
code to be reused in different scripts

progressive disclosure giving users only as many choices as they
need to make a simple command, but
allowing expanded functionality as
needed

sidecar a set of GUI applications developed for
a project that can be run alongside
MERLIN

Tcl Tool command language; the scripting
language that contains the control portion
of a GUI developed in Tcl/Tk

tclsh Tecl shell application

Tk Tool kit; a.package of graphical widgets
that contain the visual portion of a
Tcl/Tk GUI

unpack the pack forget command in Tk; when a
widget is unpacked, it is not displayed in
the master widget

widget basic building block for a GUI in Tk;
a window with a particular appearance
and behavior

wish a windowing shell application that
includes all of tclsh and the commands
defined by Tk
Writing GUIs for McIDAS using Tcl/Tk McIDAS Developer/Operator Training

4-2 October 24, 1995

Tcl syntax and structure

Tecl is the control portion of the Tcl/Tk package. Below is a brief
description of its syntax and structure.

Variable - can hold numeric, string or list value
set a 1

set a “string”

set a “a {2 3}”

set b $a

Array - variable with a string index

set a(0) “spoon”
set a(fork) “knife”

set b(1) S$a(fork)

Control structures

while <booleans> <body>

if <boolean> [then] <bodyl> [else <body2>]

foreach <variable> <list> <body>

for <loop_init> <boolean> <loop_incr> <body>

switch <flags> <values> <patternls> <bodyl> [<pattern2> <body2s> ...]
break

continue

return <string>

Variable creation/deletion

set <name> <value>
unset <name> [<name> ...]

Variable manipulation

append <name> <value> [<value> ...]
incr <name> [<increments>]

Numeric expression-related commands

expr <expression>

McIDAS Developer/Operator Training Writing GUIs for McIDAS using Tcl/Tk
October 24, 1995 4-3

String-related commands

format, regexp, regsub, scan, string, subst

Array-related commands

array

List-related commands

concat, join, lappend, lindex, linsert, list,
llength, lrange, lreplace, lsearch, lsort, split

File-related commands

cd, close, eof, file, flush, gets, glob, open,
puts, pwd, read, seek, tell

Tcl function-related commands

catch, error, global, proc, rename, return, -uplevel, upvar

Process-related commands

eval, exec, exit, pid, source

Miscellaneous commands

auto_mkindex, history, info, time, trace, unknown

Writing GUIs for McIDAS using Tcl/Tk McIDAS Developer/Operator Training
4-4 October 24, 1995

Variables

In Tcl/Tk, words are grouped together using double quotes or curly
brackets, depending on when the variables inside the groups are
substituted. Variables inside double quotes are substituted; variables inside
curly brackets are not substituted.

For example:

set a “test”
puts “this is a $a”

will print out this is a test.

However,

set a “test”
puts {this is a $a}

will print out this is a $a.

You can use this to your advantage when running Tcl code triggered by an
event. Because Tcl/Tk code is interpretive, the script is run first, all
variables are substituted (except those in brackets), and all widgets are
created. When the GUI is displayed, all code at the lowest level is already
interpreted, and wish now sits and waits for a user event. When a user
performs an action in a window, an event is generated. Some events are
captured and cause some branch of Tcl code to be interpreted at that time.
For example, when a user presses the left mouse button over a button
widget, an event causes the widget’s -command option to run.

The example below sets the color variable to red. When the button .setit is
pressed, the variable is set to blue. The button .colorbutton prints the value
of the color variable. Since the value of $color is substituted when this
script is run (because the command is in quotes, not brackets), the output
is always red, even if the .setit button is pressed before the .colorbutton

button.
set color red
button .setit -command “set color blue”
button .colorbutton -command “puts $color”
McIDAS Developer/Operator Training Writing GUIs for McIDAS using Tcl/Tk

October 24, 1995 4-5

The example below outputs the current value of the color variable. Putting
the event code in brackets reflects the current state of the variables at the
time the button is pressed, instead of the values at startup. So another
widget can change the value of a variable, and that value is always current.
Pressing the .colorbutton outputs red. Pressing the .setit button, followed
by the .colorbutton outputs blue.

set color red
button .setit -command “set color blue”
button .colorbutton -command {set swatch $color}

All widgets have a defined set of actions that trigger events. Additionally,
you can use the bind command to add trigger events to a widget definition,
allowing different actions to cause events.

Writing GUIs for MclIDAS using Tcl/Tk MCcIDAS Developer/Operator Training
4-6 October 24, 1995

Tk syntax

To create a Tk widget, use the command below:

widget_type widget_name -optionl valuel -option2 value2 \

-option3 value3

Terms

Each term in the command is defined below.

widget_type

widget_ name

-option#

value#

McIDAS Developer/Operator Training
October 24, 1995

one of the valid Tk widget types, for example:
label, button, frame

name of the widget; all references to this widget
use this name. The hierarchy of the widget is
contained in its name. For example, .frame.button
is a widget named button inside the frame .frame.
Precede all widget names with a period. Also use
the period to separate fields of widgets in a
hierarchy.

option name; options can be general to all
widgets, for example: -background -foreground
-relief. All widget types have options specific to
that widget; you can find these on the man pages.
Most options have valid synonyms to shorten the
option name; for example, -background shortens
to -bg.

value assigned to the option; relates to the class
of widget. A color option like -foreground has
valid values of #rXgXbX or a color name.

continuation character indicating the command is
continued on the next line. The command is more
readable if the next line is indented from the first.

Writing GUIs for McIDAS using Tcl/Tk

47

Examples

The command below makes a frame named .showme, which appears raised
and has a red background color.

frame .showme -relief raised -bg red

The command below makes a button named .showme.now, implying that
now is a child of the .showme widget. The button’s background is green,
the foreground is yellow, the words Press Me appear on the button, and,
when pressed, the button prints Now what? via the Tcl puts command.

button .showme.now -command {puts “Now what?”} -bg green -fg yellow \
-text “Press Me”

Error reporting

Syntax errors are reported as they are encountered. Because Tcl/Tk is
interpretive, this may occur immediately after the program is run, or as part
of a context that will be interpreted when an event is invoked. If the errors i
occur when the command starts, you will probably see the errors reported (
in the originating window. If an error occurs when running the GUI, you

will get a pop-up window reporting the error, and giving the option to quit

or view the stack.

Writing GUIs for McIDAS using Tcl/Tk McIDAS Developer/Operator Training
4-8 October 24, 1995 l

Packing in Tk

Use the pack command to manage the widget layout. Widgets will not
appear on the screen until they are managed by the geometry manager via
a pack. You can arrange the widgets in a frame vertically or horizontally.
They can appear in any order, fill the frame, or have space padding them
within the frame. If you don’t specify the widget’s size, it can expand to
accommodate the attributes.

Use the steps below to create a frame and then pack it.

8

McIDAS Developer/Operator Training

October 24, 1995

Make a frame called .a.

frame .a -relief raised -borderwidth 4

Make two buttons called a.b and a.c, which are children of .a.

button .a.b -text “buttonl” -command “puts $junk”
button .a.c -text “button2” -command “puts $test”

Pack the two buttons horizontally.

pack .a.b .a.c -side left

Pack the buttons vertically.

pack .a.b .a.c -side top

Pack the buttons with a 2 millimeter pad on all sides.

pack .a.b .a.c -side left -padx 2m -pady 2m

Fill the available space in the frame.

pack .a.b .a.c -side top -fill x -fill y

Writing GUIs for McIDAS using Tcl/Tk
49

Using external procs

If you create a proc that will be used in more than one GUI, add that proc
to your proc library by running a script containing the following lines:

#! /usr/local/bin/wish -f
auto_mkindex . myproc.tcl
exit

Or, run wish and, at the prompt, enter these two lines:

auto_mkindex . myproc.tcl
exit

This adds a reference to your proc to the file Tcllndex in your current
directory. When a GUI is run, it will look in that file for the location of the
external proc.

Writing GUIs for McIDAS using Tcl/Tk McIDAS Developer/Operator Training
4-10 October 24, 1995 l

Widgets

The widgets used in the McIDAS GUI are described below.

Frame
The frame widget is the GUI’s basic building block. Use

Al I_J R it to group other widgets and to build nested layouts. In a
frame, you can arrange widgets vertically or horizontally.

Possible use: arrange a label widget to the left of an entry

widget.
frame .a -width 15m -height 10m -relief raised -borderwidth 1.4m
frame .b -width 1.5c¢ -height 1lc -relief sunken -borderwidth .1l4c
frame .c -width 0.59i -height .39i -relief flat -borderwidth .04i
frame .d -width 42p -height 29p -relief groove -borderwidth 3p
frame .e -width 0.59i -height 10m -relief ridge -borderwidth 4

pack .a .b .c .d .e -side left -padx 2m -pady 2m

Button

@ button The button widget, also called a command button, is a
rectangular box to press to performan action. The label on
the button can be text or a bitmap.

NOTHINGlPRINTlQUIT]

Possible use: bring up a window to query the user when
the button is pressed.

frame .a -borderwidth 4
pack .a -side bottom

button .a.bl -text QUIT -command {destroy .}
button .a.b2 -text PRINT \

-command {puts “Pushed Print button”}
button .a.b3 -text NOTHING
pack .a.bl .a.b2 .a.b3 -side right

McIDAS Developer/Operator Training Writing GUIs for McIDAS using Tcl/Tk
October 24, 1995 4-11

Message

@ message 2 The message widget displays multi-line text strings. Text
e e appears exactly as typed, including spaces and carriage
This returns. Enter text as one long line so it displays
i ot appropriately if the widget is resized.
centere
din the
s Possible use: describe the GUI’s purpose in a line at the
o top of the GUL

set textl “Some left-justified text in the first messagebox”

set text2 “This text will be centered in the second messagebox”
message .a -width 5c -justify left -text $textl

message .b -aspect 50 -justify center -relief groove -text S$text2
pack .a .b -side top

Label

@ label | The label widget displays a label, which can be text or a
1 don't indoretand bitmap. No action is performed.

’ Possible use: display a label opposite an entry widget to
describe what the user can type into it.

label .a -bitmap questhead
label .b -text “I don’t understand”
pack .b .a

Checkbutton

@® checkbutton 2! The checkbutton widget is a toggle switch for a variable.
The variable is set when the button is pressed.
E CHECK1|[‘ CHECKZI Checkbuttons act independently of each other.

Possible use: describe the attributes of a display where the
attributes can be off or on.

frame .a -borderwidth 4
pack .a -side bottom

checkbutton .a.cl -text CHECKl1l -variable chkl \
-command {puts “chkl=$chkl, chk2=$chk2”}
checkbutton .a.c2 -text CHECK2 -variable chk2 \
-command {puts “chkl=$chkl, chk2=$chk2”}
pack .a.cl .a.c2 -side left

puts “chkl=$chkl, chk2=$chk2”

Writing GUIs for McIDAS using Tcl/Tk McIDAS Developer/Operator Training
4-12 October 24, 1995

Listbox

® listbox [-

0
1
2
3
4
5
6
7
8
9

Radiobutton

The listbox widget gives the user a list of options. You can
configure the widget so users choose one or a range of
options, or double-click on a value. Each option in the list
is separated by commas and appears on a separate line. To
view long lists, tie the list to a vertical scrollbar.

Possible use: give user a list of states to choose from.

listbox .a
for {set i 0} {$i < 10} {imer i} {
) .a insert end $i

pack .a

bind .a <Double-Button-2> {
puts [selection get]

@ radiobutton =]
v Ri|\ R2|\ R3|+, R4|

The radiobutton toggle, when toggled on, toggles another
button off. Radiobuttons are grouped and interconnected.
Although they are attached to the same variable, each has
its own value. When a button is pressed, the variable is
assigned the value attached to the button.

Possible use: query the user on a color attribute, where
only one color can be chosen.

frame .a -borderwidth 4
pack .a -side bottom

radiobutton .a.rl -text Rl -variable shared -value rl
-command {puts “shared=$shared”}

radiobutton .a.r2 -text R2 -variable shared -value r2
-command {puts “shared=$shared”}

radiobutton .a.r3 -text R3 -variable shared -value r3
-command {puts “shared=$shared”}

radiobutton

AR S

.a.r4 -text R4 -variable shared -value r4

-command {puts “shared=$shared”}

pack .a.rl

.a.r2 .a.r3 .a.r4 -side left

puts “shared=$shared”

McIDAS Developer/Operator Training Writing GUIs for McIDAS using Tcl/Tk

October 24, 1995

4-13

Menubutton (

The menubutton widget, when pressed, presents the user
with a menu of buttons. This widget supports:
radiobuttons, checkbuttons, command buttons, and
cascade buttons.

Radiobuttons and checkbuttons are defined in this section.
Command buttons run a block of code. When pressed,
cascade buttons will cascade down another set of buttons.
You can place separators between sets of buttons to
logically differentiate subsets. Use a menubutton to
implement progressive disclosure.

Possible use: let a user choose map boundaries from a
predefined set of boundaries or a list of states.

menubutton .a -text Menu -menu .a.b
pack .a

.a.b
add checkbutton -label “Option 1” -variable optionl
add checkbutton -label “Option 2” -variable option2
add separator

3
o
o
[+

add radiobutton -label “Exclusive 1” -variable exclusive -value 1 i
add radiobutton -label “Exclusive 2” -variable exclusive -value 2
add separator (

add command -label “Select” -command {puts “Selected”}
add separator
add cascade -label “Print...” -menu .a.b.c

(U RS VR U U T T)
oCoooUoTUooUoU

menu .a.b.c
.a.b.c add command -label “Print options” \

-command {puts “optionl $optionl, option2 $option2”}
.a.b.c add command -label “Print exclusive” \

-command {puts “exclusive $exclusive”}

Scale

The scale widget, also called a slider, is a button that can
be moved from end to end to choose a value from a

@ scale -2

Decimal i
I"‘.‘._‘—— spectrum of values. This widget works well to select from
0 a small, evenly spaced set of numerical values.

Possible use: set the color level on a scale of 0 255.

scale .a -label Decimal -orient horizontal -from 0 -to 9 -command dumpScale
pack .a
proc dumpScale value {puts “Value is $value”}

Writing GUIs for McIDAS using Tcl/Tk McIDAS Developer/Operator Training
4-14 October 24, 1995 t

Scrollbar

E

WRANDDNLH WN -

Entry

The scrollbar widget is a slider that you can attach to
another widget. When the slider on the scrollbar is moved,
the contents of the other widget are also scrolled.

Possible use: attach to a small text window, so the user
can scroll with the scrollbar to see more information.

listbox .a -yscrollcommand “.b set”
for {set i 0} {$i < 10} {incr i} {
) .a insert end $i

pack .a -side left
bind .a <Double-Button-2>"{

puts [selection get]

scrollbar .b -command “.a yview”
pack .b -side right -fill y

Typemm’Emere_qtlm s

The entry widget lets the user type and edit a one-line text
string. Use the -textvariable option to display a variable in
the entry widget. The variable is updated whenever the
user edits the entry widget.

Possible use: display a field containing the name of a file
to save to disk. The user can edit the file name before
running an operation on the file.

label .a -text “Type something”

entry .b -textvariable text -relief sunken

bind .b “<Return>” {puts “Entered \“$text\””; .b delete 0 end}
pack .a .b -side left

McIDAS Developer/Operator Training

October 24, 1995

Writing GUIs for McIDAS using Tcl/Tk

4-15

r—

Useful procs

The procs below are ones that we found useful when creating GUIs. The
numbers on the left are for reference only and are not part of the code.

Find a User Common value

This proc will find a specific value in User Common.

1. #
2. # UCval index
3. #
4. # get value from User Common at index
5. #
6. # Arguments:
% # index - index of value to obtain
8. # :
9. # return- value at index in UC
10. #
11. proc UCval {index} {
12.
3. global uc [
14. 2
15. # open pipe and run UCU PEEK command (
16 set ucupeek [open “|echo UCU PEEK $index | ucu.mx S$uc” r]
1.7 # read output from th command
18 gets $ucupeek line
19. # close the pipe
20. catch {close $ucupeek}
21 # scan output line for wvalue (get 4th value on line
22 set value [lindex $line 4]
23 # return the value.
24. return $value
25. }

Get today’s date

This proc will give you today’s Julian date.

1. #
2. # Today
3. #
4. # get todays Julian date from McIDAS
5. #
6. # Arguments:
7. #
8. # return- todays Julian Date
9. #
10.
11. proc Today {} {
Writing GUIs for McIDAS using Tcl/Tk McIDAS Developer/Operator Training

4-16 October 24, 1995 [

pick

=
\te]
* ¥ H*E = I

global uc

start up a McIDAS command and set the output pipe to “date”

set date [open “|echo TL Y | tl.mx $uc” r]

get the first line of output from $date and store in “line”

gets $date line

close the pipe

catch {close $date}
the second value off the line and set that to the return value
set value [lindex $line 2]

return $value as the return value

return $value

Get the current time

LWoOoJoOUTd WM
FH IS

To designate the current time, which is the default for the TIME parameter,
use the Now proc.

Now
Get the current time
Arguments:

return- Current time

11. proc Now {} {

=
0
H O H* H = A

McIDAS Developer/Operator Training

October 24, 1995

global uc

Start up McIDAS command and pipe data to “date”

set date [open “|echo TL H | tl.mx $uc” r]

first line of output goes to line

gets $date line

close the pipe

catch {close $date}

value gets set to second value in output string

set value [lindex $line 2]

set val [string range $value 0 1]

return the HH value

return Sval

get the first two digits out of the string (pull the HH out of HHMMSS)

Writing GUIs for McIDAS using Tcl/Tk

4-17

List the U.S. states

To present the user with a list of U.S. states, tie the command portion of a
button to the getstate proc. Getstate sets the variable stateid to the state the
user selects.

proc getstate {} {

If a toplevel window known as states already exists, kill it.
This would happen if the user pushed the button twice, we only
want one widget.

catch {destroy .states}

the toplevel widget is called .states
toplevel .states

LWOINAUTd WM
E: S

10.

n. § define the title and icon title
12

13. wm title .states “Image Listing”
14. wm iconname .states “Images”

18, :
16. # define the minimum size allowed.
7. wm minsize .states 1 1

18.

19. # define User Common pointer as global from calling routine - this allows
20. # us to access McIDAS commands from outside of the command window ;

21. global uc

22.

23. # make a message widget describing this widget.

24. message .states.msg -font -Adobe-times-medium-r-normal--*-180% \
25. -aspect 300 -relief raised\

26. -text “Select Image by double clicking left mouse button.
27

28. Press Dismiss to exit.

29,

30. # Make a frame which will hold the listbox information.

31. frame .states.frame -borderwidth 10

32.

33. # Make a scrollbar so that we can scroll down in the states.

34. scrollbar .states.frame.scroll -relief sunken \

35 -command “.states.frame.list yview”

36.

37. # Make a listbox which will attach the scrollbar to this listbox.
ag. # The listbox will be 25 characters wide and will display 10 states
39. # at a time.

40. listbox .states.frame.list -yscroll “.states.frame.scroll set”\
41. -relief sunken \ .

42. -geometry 25x10 -setgrid 1

43.

44. # pack the scrollbar and the list into the frame

45. pack append .states.frame .states.frame.scroll {right filly} \
46. -states.frame.list {left expand £ill} _

47

48. # insert all of the states into the listbox. Each quoted field will be
49. # on a separate line.

50. -States.frame.list insert 0 “Alabama (AL)” “Alaska (AK)” “Arizona (AZ) "\
51. “Arkansas (AR)” “California (CA)” “Colorado (CO)” “Connecticut (CT)” \
52 “Delaware (DE)” “Florida (FL)” “Georgia (GA)” “Hawaii (HI)” “Idaho (ID)”\
53. “Illinois (IL)” “Indiana (IN)” “Iowa (IA)” “Kansas (KS)” “Kentucky (KY)”\
54, "Louisiana (LA)” “Maine (ME)"” "Maryland (MD)” “Massachusetts (MA) 7\
55. “Michigan (MI)” “Minnesota (MN)"” “Mississippi (MS)” “Missouri (MO)”\
56 “Montana (MT)” “Nebraska (NE)” “Nevada (NV)” “New Hampshire (NH)”\
57. "New Jersey (NJ)” “New Mexico (NM)” “New York (NY)” “North Carolina (NC)”\
58. “North Dakota (ND)” “Ohio (OH)” “Oklahoma (OK) # “Oregon (OR) "\
59. “Pennsylvania (PA)” “Rhode Island (RI)” “South Carolina (sc)» \

Writing GUIs for McIDAS using Tcl/Tk McIDAS Developer/Operator Training

4-18 October 24, 1995

“South Dakota (SD)” “Tennessee (TN)” “Texas (TX)” “Utah (UT)"” \
“Vermont (VT)” “Virginia (VI)” “Washington (WA)” “West Virginia (WV)” \
"Wisconsin (WI)” “Wyoming (WY)”
bind the double key press to an action
bind .states.frame.list <Double-1> \
{set line [selection get]
set ind [string first “(“ $line]
set state [string range $line [expr $ind +1] [expr $ind +2])
stateid {set stid $state; liststa)
destroy .states

Make a button for the users to exit without making a selection
button .states.ok -text Dismiss -command “destroy .states”

pack up the message, frame and button
pack .states.msg -side top -fill x
pack .states.frame -side top

pack .states.ok -side bottom

List all available areas

McIDAS Developer/Operator Training

WO W

To prompt the user with a list of available areas, call listarea from a
command in a button. This proc lists the areas and sets the variable area to
the area the user selects.

proc ListArea {area} {

I3k 3

destroys any widgets called .listarea that are displayed - in case
the user hit the button twice.
catch {destroy .listarea}

we are going to change the bitmap to the hourglass because this can
take a while, and then the user knows that we are working on it.

get the label value, set it to the hourglass, and force to the screen
global blabel

$blabel configure -bitmap @~mcidas/gui0.l1/hourglass.xbm

update

define the toplevel widget as .listarea
toplevel .listarea

define the window title
wm title .listarea “Image Listing”

define the icon title
wm iconname .listarea “Images”

do not allow resizing past a set size
wm minsize .listarea 1 1

allow access to user common
global uc

set the message to some instructions for the user
message .listarea.msg -font -Adobe-times-medium-r-normal--*-180% \
-aspect 300 -relief raised\
-text “Select Image by double clicking left mouse button.

Press Dismiss to exit.

Writing CUIs for McIDAS using Tcl/Tk

October 24, 1995 4-19

36. # define a frame to hold the output ‘r
37. frame .listarea.frame -bérderwidth 10

38.

39. # make a scrollbar which will attach to the listbox

40. scrollbar .listarea.frame.scroll -relief sunken \

41. -command “.listarea.frame.list yview”

42 .

43. # make a listbox to hold the output. The listbox will be 80 characters
44. # wide and 10 lines long.

45. listbox .listarea.frame.list -yscroll “.listarea.frame.scroll set” \
46. -relief sunken \

47. -geometry 80x10 -setgrid 1

48.

49. # pack the scrollbar and listbox into the frame

50. pack append .listarea.frame .listarea.frame.scroll {right filly} \
51. .listarea.frame.list {left expand fill}

52.

53. # initialize localarea

54, set localarea “ ™

55

56. # run the McIDAS command routing output to lalist pipe

57. set lalist [open “|echo LISARA 1 9999 | lisara.mx $uc” r]

58.

59. # define a label for above the listbox as a title bar

60. label .listarea.labell -width 79

61 .

62. # read the first line of output (always a title line),
63. # and set this to label

64. gets $lalist labl

65. .listarea.labell configure -text $labl

66.

67. # get the second line which is all underline characters, and toss it

68. gets $lalist lab2

69.

70. # get all the lines and display them in the listbox ' i

71. while {[gets $lalist line] > -1} { (

72. | .listarea.frame.list insert end $line

3%

74 .

75. # set the label back to the SSEC logo and flush to the screen

76 . S$blabel configure -bitmap @-mcidas/gui0.1/sseclogo.xbm

7% update

78.

T close the pipe

80. catch {close $lalist}

81.

82. # add the action that an item is selected when they double click on

83. # the line, and parse the line for the area number

84. bind .listarea.frame.list <Double-1> \

85. {set areal [selection get]

86. set localarea [string range $areal 2 5]

87. set area $localarea

88. destroy .listarea

89.

90. button .listarea.ok -text Dismiss -command “destroy .listarea”

91. pack .listarea.msg -side top -fill x

92. pack .listarea.labell -side top -anchor w

93. pack .listarea.frame -side top

94. pack .listarea.ok -side bottom

95. }

g

Writing CUIs for McIDAS using Tcl/Tk McIDAS Developer/Operator Training -

4-20 October 24, 1995 l

Set standard options

WOIOUT D WN
B o

(=)
P
I3 I

The setoptions proc sets the default colors for the mandatory entry widgets,
the font used in the message section, and any other standard options to the
values specified in the gui.options file.

proc setoptions { } {

name two special SSEC options
mand is the color level of mandatory entry widgets
messfont is the font of the message widget

global mand

global messfont

All of the other options from the gui.options file are
set in this loop, these will be the defaults for the entire
gui, unless’'a value is set to override them.
set options [open “gui.options” r]
while {[gets $options optline] >1} {
set name [lindex $optline 0]
set value [lindex $optline 1]

if {$name == “*mandatoryfield”} ({
set mand $value

} else {if {$name == “*messageFont”} {
set messfont $value
} else

option add $name $value

Run a McIDAS command; send the output to a listbox

VWoONAUTHS WN R
F I

RouteComm command num_lines_header
Run a McIDAS command , sending output to a listbox

Arguments:
command - command string to enter

10. proc RouteComm {command headsize} {

12. #

McIDAS Developer/Operator Training
October 24, 1995

If there is a .command widget, destroy it.
catch {destroy .command}

access the SSEC Logo and change it to an hourglass, forcing
display change to the screen with and “update”.

global blabel

$blabel configure -bitmap @~mcidas/gui0.1l/hourglass.xbm
update

Define the toplevel widget as .command.
toplevel .command

Find the first blank in the string
set blank [string first “ “ $command]

Writing CUIs for McIDAS using Tcl/Tk
4-21

26. # Parse out the command name

27. set name [string range $command 0 [expr $blank - 1]]
28.
29. # we need a pointer to User common to run McIDAS command
30. global uc
31.
32. # we need the terminal number in order to write to the text window
33. global term
34. #
35. # Make the window title the same as the McIDAS command
36. # this isn’t great because you get windows titled ‘SL’ which
37. # isn’t very informative, but we are keeping the proc general.
38, wm title .command [format “%s Output” $name]
39. wm minsize .command 1 1
40.
41. # make a frame for the listbox and scrollbar
42. name .command.frame
43 .
44. # make a scrollbar for scrolling through the output
45, scrollbar .command.frame.scroll -relief sunken \
46. -command “.command.frame.listbox yview”
47.
48. # make a listbox to recieve output
49. listbox .command.frame.listbox \
50. -yscroll “.command.frame.scroll set” \
51. -relief sunken -geometry 80x1S5
52.
53. # pack the scroll and the list into the frame
54. pack append .command.frame \
55. .command. frame.scroll {right filly} \
56. .command.frame.listbox {left expand fill)}
57.
58. # convert the command name to lowercase
59. set lowname [string tolower S$name]
60.
61. # add a “.mx” to make the executable name
62. set executable [format “%s.mx” $lowname]
63.
64. # start up the McIDAS command, routing output to the execout pipe
65. set execout [open “|echo $command | $executable $uc” r]
66.
67. # run through the header lines, and put them into a label
68. for {set i 0} { $i < $headsize} {incr i}
69. gets $execout lab($i)
70. set length [string length $lab($i)]
74.. label .command.label$i -text $lab($i) -width $length
72.) pack .command.label$i -side top -anchor w
3.
74. #
75. # read through the rest of the pipe and write each line into
76. # the listbox
77. while. { [gets $execout line] > -1} {
78. .command. frame.listbox insert end $line
79. }
80.
81. # return the label bitmap to SSEC logo
82. $blabel configure -bitmap @~mcidas/gui0.1l/sseclogo.xbm
83.
84. # force the screen to display the change
85. update
86.
87. # close the pipe
88. catch {close $execout}
89.
90. button .command.dismiss -text Dismiss -command “destroy .command”
91. pack .command.frame -side top -£fill x
92. pack .command.dismiss -side bottom
Writing GUIs for McIDAS using Tcl/Tk McIDAS Developer/Operator Training

4-22 October 24, 1995

Run a McIDAS command; send the output to the text window

McIDAS Developer/Operator Training
October 24, 1995

WoOoOJOULHd WK

I VI I

I3t

RunCommand command
Run a McIDAS command , sending output to the text window.

Arguments:
command - command string to enter

roc RunCommand {command} {

We need uc to fire off the McIDAS command which needs to point
to user common since we aren’t running from a command line.
global uc

We need the terminal number so that we can route output to the text
window
global term

Blabel is the SSEC logo at the bottom of the GUI. We need it
so that we can change it to an hourglass when we run a command.
global blabel

Set up the pipe to the McIDAS text window
set MCPIPE [format “McText%sW0” $texrm]
set pipeid [open $MCPIPE w]

change the bitmap to an hourglass.
$blabel configure -bitmap @~mcidas/gui0.l1/hourglass.xbm

force the changes to the screen.
update

echo the command to the text window
puts $pipeid $command flush $pipeid

Find the first blank in the command line.
set blank [string first “ “ $command]

set name to the first character up to the first blank
set name [string range $command 0 [expr $blank - 1]]

Change the name to lowercase
set lowname [string tolower $name]

make the executable name (with a .mx on the command)
set executable [format “%s.mx” $lowname]

fork off an exec of the command
catch {exec $executable $uc << $command > $MCPIPE}

close the pipe.
catch {close $pipeid}

Return the label to the SSEC logo 3
$blabel configure -bitmap @~mcidas/gui0.1/sseclogo.xbm

flush display changes to the screen.
update

Writing GUIs for McIDAS using Tcl/Tk
4-23

Skeleton of a McIDAS GUI (

To customize, add widgets inside of .frame and alter the bold text to refect
your application.

62. #!/usr/local/bin/wish -f
64: # THIS IS SSEC PROPRIETARY SOFTWARE - ITS USE IS RESTRICTED.

66. # set path to access library procs
67. set auto_path “~mcidas/gui0.2 $auto_path”

69. # set default font and colors from gui.options file
70. setoptions

72. # set up to access McIDAS session

73. set term [lindex $argv 0]

74. set file [format “UCTERM.00%s” $term]

75. if {$term > 9} ({set file [format “UCTERM.O0%s” $term])
76. set odline [open “|od -d $file +6” r]

77. gets $odline line

78. set uc [lindex $line 1]

79. close $odline

80.

81. #

82. #

83. # Skeleton for GUI for McIDAS commands

84. #

85. #

86. #

87.

88. # set the window title

89. wm title . “NAME OF APPLICATION HERE” i
90.

91. # Make a frame to contain the help button in the upper right corner (

92. frame .top
93. button .top.help -text “Help” -command mkhelp
94. pack .top.help -side right

96. # set the message area at the top of the gui. Give a brief explanation
97. # of the command. The font will be the default font from gui.options. The
98. # width of the 22

99. message .msg -width 500 -relief raised\

100. -font S$messfont -borderwidth 1 -text “ *** Brief explanation of the

101. command***. To execute press OK button. To exit without performing an
102. action, press Dismiss Button.”

104: # Make a frame which will contain the body of the GUI, place all of
105. # the widgets here.

107. frame .frame -borderwidth 10

109. # make a frame which will hold the OK and cancel buttons and the SSEC logo
110. frame .bottom -relief raised

112. # a button to execute the command. All variables will be evaluated as the
113. # value they are when the button is pressed.

114.

115. button .bottom.ok -text OK -width 20 \

116. -command {

117 .

118. # set command to the uppercase McIDAS command

119. # which you will be executing

120. set command “ *****COMMAND****"

121.

122. # runcommand executes the command and routes

123. # the output to the text window

124. RunCommand $command

125.

126 . ('
Writing GUIs for McIDAS using Tcl/Tk McIDAS Developer/Operator Training -

4-24 October 24, 1995 l

127. # a button to cancel the command without executing anything
128. button .bottom.cancel -text Dismiss -command {destroy .} -width 20

130. # a ssec logo between the OK and the cancel buttons
131. label .bottom.label -bitmap @-mcidas/gui0.2/sseclogo.xbm

133. # set a global variable ‘blabel’ to the label widget, so that we can
134. # change the bitmap of the label to an hourglass when the command is
135. # running.

136. set blabel .bottom.label

138. # Pack the OK, & cancel buttons and label into the bottom frame, padding
139. # 10 pixels around the button (x and y direction), order will be in order
140. # specified OK, label, cancel (left to right)

141. pack .bottom.ok -side left -padx 10 -pady 10

142. pack .bottom.label -side left -padx 10 -pady 10

143. pack .bottom.cancel -side left -padx 10 -pady 10

146. #

147. # Pack the message, the command and the OK buttons into the base widget
148. #

149. pack .top -side top -fill x

150. pack .msg -side top -fill x

151. pack .frame -side top -fill x

152. pack .bottom -side bottom -£fill x

154. # set the minimum size for the gui

155. wm minsize . 10 10

158: # Proc for help.
159. proc mkHelp {} {

160.

161. # name the toplevel widget

162. toplevel .help

163

164. #set the title (change ‘command name’ to your gui name)
165. wm title .help “Help - command name”

166.

167. #set the minimum size for the help window

168. wm minsize .help 10 10

169

170: # make a text widget, to hold the help text, note height should be changed
171. # to be the number of lines of help text.

172. text .help.frame -relief raised -height 10
173
174. # set the text widget to contain the actual text
175. .help.frame insert 0.0 {
176.
177 . Put all of the help you want to document between the curly brackets!
178. }
179
180. # make a button to remove the window when pressed
181. button .help.ok -text “ OK WY
182. -relief raised -borderwidth 2 -command {destroy .help}
183.
184. # pack the text widget and the OK button into the window
185. pack .help.frame -side top
186. pack .help.ok -side bottom
187.
188. }
McIDAS Developer/Operator Training Writing GUIs for McIDAS using Tcl/Tk

October 24, 1995 4-25

Considerations for building a GUI

It is a good idea whenever possible to make the procs that you build
reusable. Just like code in other languages, modularization is a good rule.

Build GUIs with the user in mind. Set reasonable defaults so the user will
only have to type or choose minimum information. Don’t include rarely
used options or keywords from McIDAS commands in your GUI. You
may want to make one command into several GUIs if the functionality of
the command is complex. Conversely, you may want to combine the
functionality of several commands into one GUI. For example, you can
include an option to display a map over an image immediately after it is
displayed.

Writing GUIs for McIDAS using Tcl/Tk McIDAS Developer/Operator Training -
4-26 October 24, 1995

Sample GUI code

McIDAS Developer/Operator Training

WVWoOJAUId W

#!/usr/local/bin/wish -f
The above line needs to be the first line in the script to specify which
scripting language we will use, and where it’s located.

#

gu.gui

#

THIS IS SSEC PROPRIETARY SOFTWARE - ITS USE IS RESTRICTED.

#

Set path to point to the ~mcidas/gui0.2 directory as well

as the Tcl/Tk options set on installation of Tcl/Tk.

#

set auto_path “~mcidas/gui0.2 $auto_path”

#

call the proc to set the default options for this widget

#

setoptions

Set up access to User Common. This is needed to call McIDAS
commands outside of the command line. The variable $term is
picked up as the first argument of the call to the GUI.

set term [lindex $argv 0]

#

Based on the term number, we choose the file to read.

set file [format “UCTERM.00%s” $term]
if {$term > 9} {set file [format “UCTERM.O%s” $term])}

Read the file, which will contain the UC block attached to this
terminal number, this is set to $uc variable.

set odline [open “|od -d $file +6" rl]

gets $odline line

set uc [lindex $line 1]

close $odline

GUI for the Graphics utility application

Set the title which appears in the window manager
frame surrounding the GUI.
title . “Edit Graphics Colors”

Set up a button which allows the user to call up the Help window.
The button will be made in the frame “.top”

frame .top

button .top.help -text “Help” -command “Help”

3= 3 5&###2&&#

#

Pack the help button on the right side of the .top frame.

pack .top.help -side right

define a message area, with a width of 500 pixels. The border

of the message area will be raised with a width of 1. The font

was set in the setoptions proc (external).

The -text field specifies the text to appear inside of the widget.

message .msg -width 500 -relief raised)\)
-font $messfont -borderwidth 1 -text “Utility for altering the graphics color table.

Writing GUIs for McIDAS using Tcl/Tk

October 24, 1995 4-27

65. The graphics color table can be modified, saved and restored.

67. To run press OK button. To exit without performing an action, press Dismiss button.”

69. # Create a frame which will hold all the command options.

70. frame .frame -borderwidth 10

21.

72. # Create a frame which will hold the options which the user can select
73. # to be prompted with the widgets specific to that option.

74. frame .frame.option

75.

76. # Make a button, which will prompt the user with a series of

77. # radio buttons when pressed.

78. menubutton .frame.option.menu -text “Option” -relief raised \

79. -menu .frame.option.menu.choices

80.

81. # Define the menu which appears when the menubutton is pressed.
82. menu .frame.option.menu.choices

83.

84. # “add” all of the radio buttons to the menu. Define the label which
85. # will appear with the button, the variable which will be set when
86. # the button is pressed, the value the variable will be set to, and
87. # the command which will be performed when the button is pressed.
88. # Note, in this menu, when an option is changed, the old option
89. # will be removed from the screen with the “pack forget”, and the
90. # new options widgets will be presented with a “pack”.

91

92. # Radio button for “MAKE” option

93. .frame.option.menu.choices add radio -variable option \

94. -label “Edit Color” -value MAKE -command “

95. pack forget .frame.restore

96. pack forget .frame.save

97.

98. # Radio button for “RESTORE” option

99. .frame.option.menu.choices add radio -variable option \

100. -label “Restore Table” -value REST -command “

b R pack forget .frame.save
102. pack forget .frame.make
103. pack .frame.restore -side top -£fill x

104.

105. # Radio button for “SAVE” option
106. .frame.option.menu.choices add radio -variable option \
107. -label “Save Table” -value SAVE -command “

108. pack forget .frame.restore

109. pack forget .frame.make
110, pack .frame.save -side top -fill x
i 5 e

112. # Radio button for “RESET” option
113. .frame.option.menu.choices add radio -variable option \

114. -label “Reset” -value RESET -command “
115. pack forget .frame.restore

116. pack forget .frame.make

I17. pack forget .frame.save”
118
119.

120 # define an entry widget which will hold the value which was

121. # set by the radiobutton chosen above. Note the “textvariable”
122. # is the same as the “variable” in the radiobuttons above.

123. # The current value of the variable will be displayed in the

124 # entry widget, even as the variable changes values by the menu
125 # above. The widget will be sunken and will be 5 characters wide.
126 #
127. entry .frame.option.entry -relief sunken -width 5 -textvariable option
128«

129. # Pack the menubutton and entry button left to right

130. pack .frame.option.menu -side left
131. pack .frame.option.entry -side right

133. # Pack the option frame into s frame” .
134. pack .frame.option -side top -£fill x

Writing GUIs for McIDAS using Tcl/Tk McIDAS Developer/Operator Training
4-28 October 24, 1995

135. # Restore option - consists of a button, and an entry widget.
136. # Note that this frame is not packed at this time. It will not
137. # be packed until the RESTORE option is selected on the radio
138. # buttons above.

139

140 frame .frame.restore

141

142. # Button which when pressed runs the proc “Getgra”. The text
143. # is “Graphics file name”.

144. button .frame.restore.button -text “Graphics File Name” -command Getgra
145

l46. # Entry widget to show the value selected by the user in getgra
147. # proc. The variable associated with this entry is gratab.

148. entry .frame.restore.entry -textvariable gratab -relief sunken -width 12
149

150. # Pack the button on the left and the entry on the right.

151. pack .frame.restore.button -side left

152. pack .frame.restore.entry -side right

153

154. # save option

155 ;

156. frame .frame.save

157 label .frame.save.label -text “Graphics File Name”

158. entry .frame.save.entry -textvariable gratab -relief sunken -width 12
159. pack .frame.save.label -side left

160. pack .frame.save.entry -side right

161

162 # make option

163

l64. # set the variables red, green, blue and clev to zero.

165. set red 0

166 set green 0

167. set blue 0

168 set clev 0

169

170. # Create a frame for the MAKE option.

171. frame .frame.make

172

173. # Create a color frame within the make option.

174 frame .frame.make.color

1785

176. # Create a button which when pressed will run the getcolor proc.
177. button .frame.make.color.button -text “Color Level” -command “getcolor “
178

179. # Create an entry widget which will display the results of the
180. # getcolor proc.

181. entry .frame.make.color.entry -textvariable clev -relief sunken -width 3
182

183. # red, green and blue (which are dereferenced with a $), were
184. # returned from the getcolor proc. The values are put into

185. # a format which can be used to specify a color for the

186. # swatch below.

187. set color [format “#%02x%02x%02x” $red $green S$blue]

188.

189. # Make a frame which is nothing more than a color swatch - a
190. # rectangle of specified color.

191. frame .frame.make.color.swatch -width 200 -height 20 -bg 3color

192.

193. # Pack the button on the left, the swatch to the right of it, and
194 . the entry widget on the right.

195. pack .frame.make.color.button -side left

196. pack .frame.make.color.swatch -side left -padx 20

197. pack .frame.make.color.entry -side right

198.

199. # Pack the color frame into the make frame.

200. pack .frame.make.color -side top -£fill x

201.

202. # Now we make a frame which will contain radio buttons allowing
203. # the user to specify how they will select the new color (by
204. # 'name or by sliders)
McIDAS Developer/Operator Training Writing GUIs for McIDAS using Tcl/Tk

October 24, 1995 4-29

Writing CUIs for McIDAS using Tcl/Tk

4-30

frame .frame.make.how

Make a radiobutton which allows the user to select a named color.
variable is “how”, value will be set to “byname” if chosen, the
label associated with the button is “Select Named Color”, and
when radiobutton is selected the “name” frame will be displayed.
Since the users are specifying a named color, the red, green,

and blue sliders will not be needed, and thus will be “unpacked”.

I eI

radiobutton .frame.make.how.byname -variable how -value byname \
-text “Select Named Color” -command {
pack .frame.make.name -side top -£fill x
pack forget .frame.make.red
pack forget .frame.make.green
fack forget .frame.make.blue

Now, make one to select the color by intensity levels.
Here the the variable will be set to “byval”, and

the “name” frame will be “unpacked”, as the red, blue
and green frames are brought into view. We also set the
the values of the variable associated with the sliders
to the values of the chosen color level to start.

I I

radiobutton .frame.make.how.byval -variable how -value byval \
-text “Select Color Intensities” -command {
pack forget .frame.make.name
pack .frame.make.red -side top -£fill x
pack .frame.make.green -side top -fill x
pack .frame.make.blue -side top -fill x
.frame.make.red set $red
.frame.make.green set $green
. frame.make.blue set $blue

Pack byname and byval side by side.
pack .frame.make.how.byname -side left
pack .frame.make.how.byval -side left

Pack the how frame into the MAKE frame.
pack .frame.make.how -side top -fill x -pady 10

Frame which will contain the color name to change the level to.
frame .frame.make.name

Button which runs GetNamedColor proc

button .frame.make.name.button -text “Color Name” -command GetNamedColor
Entry widget which contains the value set in the GetNamedColor

proc to the colorname variable.

entry .frame.make.name.entry -textvariable colorname -width 12 -relief sunken

Pack the button and entry widgets side by side.
pack .frame.make.name.button -side left
pack .frame.make.name.entry -side right

Make a scale to set the red pigment of the color.

The scale will be horizontally oriented, will contain values
from 0 to 255, and will be 256 pixels long. The value will be
displayed as it changes, and the color of the slider is red.

As the slider is moved, the SetColor proc will be called to
update the color of the swatch with the changing values.

When a command is called from a scale widget, the current value
of the widget is appended to the proc call, so the proc actually
has 2 arguments, although only one is specified in the -command
option. That value is not actually used in the proc, but
because it will appear in the calling sequence, it must be
enumerated in the argument list. This is a subtle trick of

Tk to be aware of!

I3 3R e 3 3 3R 3k 3 3 3

McIDAS Developer/Operator Training
October 24, 1995

336.
337
338.
3389.
340.
341.
342.
343.
344.

McIDAS Developer/Operator Training

scale

scale

scale

3 3

.frame.
.frame.
.frame.

rame

FHIHII I

button

label .

.frame.make.red -from 0 -to 255 -label “Red Intensity” -length 256\

-showvalue YES -orient horizontal -sliderforeground red\
-command {SetColor “num”}

Green scale, which is largely the same as the red scale.

.frame.make.green -from 0 -to 255 -label “Green Intensity”\

-length 256 -showvalue YES -orient horizontal\
-sliderforeground green -command {SetColor “num”}

Blue scale, just like the red and green one - only it’s blue!

.frame.make.blue -from 0 -to 255 -label “Blue Intensity” -length 256\

-showvalue YES -orient horizontal -sliderforeground blue\
-command {SetColor “num”}

Set the values of the sliders to the red, green and blue values
which are associated with the color level, this will cause the
the slider to move to this value.
make.red set Sred
make.green set $green
make.blue set $blue

This frame will be the bottom portion of the gui. It will hold
the OK, and cancel buttons, and a bitmap of the SSEC logo.

.bottom -relief raised

OK button executes commands based on option.

because the command is in {}s it will be evaluated when the
button is pressed instead of when the GUI is started.

The command is built based on the option which was chosen
by the user.

.bottom.ok -text OK -width 20 \
-command {
if {$Soption

“REST” set command “GU REST S$gratab”
if {$option

“SAVE” set command “GU SAVE $gratab”
if {$option “RESET”} {set command “GU REST”
if {$option “MAKE” }
if {$how == “byname”} ({
set col $colorname}
if {$how == “byval”} {
set col [format “%s ¥s ¥s” S$blue $green $red]}
set command “GU MAKE $clev $col”

}

This is a proc we created to execute a McIDAS command.
RunCommand $command

}

cancel button in case user decides to bail out, it will destroy
the window.

.bottom.cancel -text Dismiss -command {destroy .} -width 20
label containing the SSEC logo. It will change to an hourglass
bitmap when RunCommand is executed. RunCommand uses the
variable blabel to change the value of the bitmap.

bottom.label -bitmap @~mcidas/gui0.2/sseclogo.xbm

set blabel .bottom.label

#
#

Pack the ok button, bitmap label, and cancel buttons side by side,
with a 10 pixel padding on all sides.

pack .bottom.ok -side left -padx 10 -pady 10
pack .bottom.label -side left -padx 10 -pady 10
pack .bottom.cancel -side right -padx 10 -pady 10

#
#

October 24, 1995

Pack the top of the frame into the top of the main window.
The frame will be expanded to fit into the window.

Writing GUIs for McIDAS using Tcl/Tk
4-31

345. pack .top -side top -fill x

347. #

Next, pack the message, expanding to fit

348. pack .msg -side top -fill x

350. #

Now pack the frame which contains the command widgets.

351. pack .frame -side top -fill x

353: #

OK, now we can pack the bottom frame of the widget

354. pack .bottom -side bottom -fill x

356. #
357. #

Set the minimum dimensions allowd for the underlying window
during interactive resizing.

358. wm minsize . 10 10

360. # Help proc - display the help associated with this GUI

362. proc Help {} {

w

~

wn
33k 3

382. Option

define the toplevel window
toplevel .help

Set the title bar
wm title .help “Help - Edit Graphics Colors”

set the minimum size
wm minsize .help 10 10

create a text widget. The border is raised, it is 16 lines long,
the body of the widget is inserted in another step.

text .help.text -relief raised -height 16

insert the lines of text
.help.text insert 0.0 {

Select the option to perform on the graphics color table

Edit Color Select the color to be edited, and the color name,
or color intensities to set it to.

Save Table Save the current frames graphics color table to a
named file.

Restore Table Restore a previously stored graphics color table
to the current frame.

Reset Reset the color table to the standard color table.

make a button which will dismiss the window
button .help.ok -text “ OK " 5N
-relief raised -borderwidth 2 -command {destroy .help}

Pack the text and OK frame into the toplevel frame.
pack .help.text -side top
pack .help.ok -side bottom

Getgra lists graphics files which can be selected for restoring
the graphics table

409. proc Getgra {} {

B S

Writing GUIs for McIDAS using Tcl/Tk

4-32

gratab is a global variable, it is also the variable attacted
to an entry widget above. It must be a global variable to be
updated in the entry widget of another frame when it changes
within a proc.

McIDAS Developer/Operator Training
October 24, 1995

global gratab

If there is already a window called .listgra - destroy it.
catch {destroy .listgra}

define the toplevel widget
toplevel .listgra

title, icon name and minimum size of the window created inside
this proc

wm title .listgra “Graphics Files Listing”

wm iconname .listgra “Graphics”

wm minsize .listgra 1 1

uc needs to be global, so we can access it here, we need it
because we’ll be running a McIDAS command.

global uc
message .listgra.msg -font -Adobe-times-medium-r-normal--*-180% \
-aspect 300 -relief raised\

-text “Select Graphics File by double clicking left mouse button.

437. Press Dismiss to exit. “

439. #

»
~
(4]
3t 3t

=Y

(oo}

o
CEEE

McIDAS Developer/Operator Training
October 24, 1995

Make a frame which will contain the listbox and scrollbar
frame .listgra.frame -borderwidth 10

Make a scrollbar. The command is to change the view of
the listbox
scrollbar .listgra.frame.scroll \
-relief sunken -command “.listgra.frame.list yview”

Make a listbox. Attach the scrollbar to it. The listbox will
appear sunken, and will be 80x10 characters.

listbox .listgra.frame.list -yscroll “.listgra.frame.scroll set” \
-relief sunken -geometry 80x10 -setgrid 1

pack .listgra.frame.scroll -side right -£fill y
pack .listgra.frame.list -side left -expand yes -fill y

set a temporary variable to “ “, so Tcl knows it’s a character value
set temp ™ *

Fire off a “GU LIST” command to McIDAS.
set gralist [open “|echo GU LIST | gu.mx $uc” r]

grab the first line off the output to make a title bar
global labil

label .listgra.labell -width 79

gets $gralist labl

Grab the second line off the output and toss it.
.listgra.labell configure -text $labl
gets $gralist lab2

Get each line, of output, and insert it into the listbox.
while {[gets $gralist line) > -1}
} .listgra.frame.list insert end $line

Close the pipe for the McIDAS - failure to do so will leave
defunct processes around.
catch {close $gralist}

Set the action within {} to what occurs when a double click of
the button takes place. Within {}s we set “thisval” to the
line which was selected, we grab characters 4-15 of that line
we set the global variable gratab to this value, and it will
appear in the entry widget. Then we destroy the widget.

Writing GUIs for McIDAS using Tcl/Tk
4-33

485. bind .listgra.frame.list <Double-1> \ (

486. {set thisval [selection get]

487. set temp [string range $thisval 4 15]

488. set gratab S$temp

489. destroy .listgra

490. }

491.

492. # We make a button for the user to exit without making a selection.
493. button .listgra.ok -text Dismiss -command “destroy .listgra”

494

495. # Pack the message, title bar, widget frame, and OK button into
496. # the toplevel window top to bottom.

497. pack .listgra.msg -side top -£fill x

498. pack .listgra.labell -side top -anchor w

499. pack .listgra.frame -side top

500. pack .listgra.ok -side bottom

501

502. }

503

504. # Works exactly as does the getgra proc above, but doesn’t execute
505. # a McIDAS command. Instead it reads in McIDAS MCRGB.TXT file.
506.

507. proc GetNamedColor {} {

508. catch {destroy .colors}

509. toplevel .colors

510. wm title .colors “Image Listing”

511, wm iconname .colors “Images”

512. wm minsize .colors 1 1

513. global uc

514. message .colors.msg -font -Adobe-times-medium-r-normal--*-180* \
515. -aspect 300 -relief raised)\

516. -text “Select Image by double clicking left mouse button.
517 ;

518. Press Dismiss to exit. "

519, frame .colors.frame -borderwidth 10 , [
520. scrollbar .colors.frame.scroll -relief sunken \ (
521, -command “.colors.frame.list yview”

522. listbox .colors.frame.list -yscroll “.colors.frame.scroll set” \
523. -relief sunken -geometry 20x10 -setgrid 1

524. pack .colors.frame.scroll -side right -fill y

528 pack .colors.frame.list -side left -expand yes -fill y

526. set collist [open “MCRGB.TXT” r] '

527

528. # These variables need to be global because we access this info
529. # in the main GUI.

530. global i

531, global reds

532. global greens

533. global names

534. global blues

535. set i 0

536.

537. # Read in the contents of MCRGB.TEXT (collist), and store the

538. # values in the names, reds, greens, and blues array

539. while {[gets $collist line] > -1}

540. .colors.frame.list insert end [lindex $line 3]

541. set names ($i) [lindex $line 3]

542. set reds($i) [lindex $line 0]

543. set greens($i) [lindex $line 1]

544. set blues($i) [lindex $line 2]

545. iner i

546. }

547.

548. # close the pipe

549. catch {close $collist}

550. global colorname

551. global lowname

552

553. # set a double click event to do the following between {}.

554. # Events within {} include getting, the line, getting the

Writing GUIs for McIDAS using Tcl/Tk McIDAS Developer/Operator Training

4-34 October 24, 1995 l

555. # colorname from the line, making it lowercase, and calling
556. # SetColor proc to change the swatch to the selected color.
557. bind .colors.frame.list <Double-1> \

558. {set color [selection get]

589. set cname [lindex $color 0]

560. set colorname [string trim $cname]

561. set lowname [string tolower $colorname]

562. SetColor “name” 0

563. destroy .colors

564. }

565.

566. # Pack all of the widgets into the toplevel window.

567. button .colors.ok -text Dismiss -command “destroy .colors”
568. pack .colors.msg -side top -fill x

569. pack .colors.frame -side top

570. pack .colors.ok -side bottom

571. }

572

573.

574. # The SetColor proc sets the color of the swatch in the MAKE
575. # option to the color chosen by the user

576. proc SetColor {how junk} ({

577.

578. # We need access to all of these variables set in other procs.
579. global lowname

580. global colorname

581. global red

582. global green

583. global blue

584. global i

585.. global reds

586. global greens

587. global blues

588. set j 0

589

590 8 If they chose a named color, figure out which color they picked,
591. # and set red, green, and blue to that value.

592. if {$how == “name”}

593. while { $j < $i} {

594. global names

595. if {$colorname == $names ($j)}{

596. set red $reds($j)

597. set green $greens ($j)

598. set blue $blues($3)

599. }

600. incr: J

601. }

602. ‘

603. # Set color variable to format #RRGGBB where RR GG BB are the
604. # hex representation of the Red Green and Blue color levels.
605.

606. set color [format “#%02x%02x%02x” $red $green S$blue]
607

608. # Set the swatch to chosen color

609. .frame.make.color.swatch config -bg $color

610

611. # If they chose a color by color levels, get those values off of
612. # the scale widgets

613. } else

614. set red [.frame.make.red get]

615. set blue [.frame.make.blue get]

616. set green [.frame.make.green get]

617.

618. # Set color variable to format #RRGGBB where RR GG BB are the
619. # hex representation of the Red Green and Blue color levels.
620. set color [format “#%02x%02x%02x” $red S$green $blue]
621

622. # Set the swatch to chosen color

623. .frame.make.color.swatch config -bg $color

624 . }
McIDAS Developer/Operator Training Writing GUIs for McIDAS using Tcl/Tk

October 24, 1995 4-35

625. }

627. proc getcolor {} {

628 #

629. # getcol - display McIDAS graphics colors, allowing the
630 # the user to choose one for their application.
631 #

632

633. # These are the global variables we set or use inside of this proc.
634. global uc

635. global lev

636. global clev

637. global red i

638. global green

639. global blue

640.

641. # If there is already a colors widget out there - destroy it.
642. catch {destroy .colors}

643. toplevel .colors

644. wm title .colors “Color *

645. wm minsize .colors 1 1

646. message .colors.msg -font -Adobe-times-medium-r-normal--*-180% \
647. -relief sunken \

648. -text “Select Color Level by clicking on the color”
649.

650. # Make a frame which will hold the buttons.

651. frame .colors.frame

652.

653. # Start up a McIDAS command to list out the current RGB levels
654. # of the graphics color levels.

655. set guout [open “|echo GU TAB | gu.mx S$uc” r]

656.

657. # Retrieve the number of Graphics levels of this session from
658. # user common.

659. set maxlev [UCval 500]

660.

661. # Go through all of the output from the GU output.

662. while {[gets $guout guline] > -1}

663.

664. # Determine which color level this is.

665. set level [string range $guline 3 4]

666. if {$level <= 9} { set level [string range $guline 4 4]}
667. ‘

668. # grab the RGB values for this level

669. set ired [string range $guline 35 37]

670. set igreen [string range $guline 30 32]

671. set iblue [string range $guline 24 26]

672.

673. # make sure its a good level

674. if {$level >= 0 && $level <= $maxlev} {

675.

676. # Set rgb variable to #RRGGBB format

{37 set rgb [format “#%02x%02x%02x” $ired $igreen $iblue]
678.

679. # Make a frame for each level - name it levl, lev2, lev3, etc.
680 frame .colors.frame.lev$level

681

682 # Make a button which has a bitmap label which is a box, the color
683 # of the RGB levels we retrieved for this level. The $level, ired,
684 # igreen, and iblue will be dereferenced now. The swatch will
685. # be set to this RGB level when this button is pressed.

686 button .colors.frame.lev$level.button \

687 -bitmap @~mcidas/gui0.2/box.xbm \

688 -foreground $rgb \

689 -command “set lev $level ;set clev $level;
690 set red $ired

691 set green $igreen

692 set blue $iblue

693. .frame.make.color.swatch config -bg $rgb

694 destroy .colors”\

Writing GUIs for MclIDAS using Tcl/Tk
4-36

McIDAS Developer/Operator Training
October 24, 1995

]

695.
696.
697. #
698.
699.
700. #
701.
702.

704 .
705. #

707.
708.
709.
710.
711, &
Tl 2
713 .
714. #
715.
716.
717.
718.
719,
720. }

McIDAS Developer/Operator Training

October 24, 1995

-activebackground gray\
-activeforeground $rgb
Make a label which has the level number as the text
label .colors.frame.lev$level.label -text $level

Pack the button, and label into each levels frame
pack append .colors.frame.lev$level\
.colors.frame.lev$level.label {left}\
.colors.frame.lev$level .button {right}

Pack each levels frame into the large frame
pack append .colors.frame \
.colors.frame.lev$level{top £ill}

}

close the pipe
catch {close $guout}

button to dismiss the GUI without taking action.

button .colors.dismiss -command “destroy .colors” -text “Dismiss”

pack append .colors \
.colors.msg top £ill} \
.colors.frame top £ill} \
.colors.dismiss {top fill

Writing GUIs for McIDAS using Tcl/Tk
4-37

Solution set

Below is a solution set for the in-class assignment.

0: #!/usr/local/bin/wish -f
1:
2: # THIS IS SSEC PROPRIETARY SOFTWARE - ITS USE IS RESTRICTED.
3
4: # set path to access library procs
5: set auto_path * ~/mcidas/data ~mcidas/gui0.2 $auto_path”
6:
7: # set default font and colors from gui.options file
8: setoptions
R
10: # set up to access McIDAS session
11: set term [lindex S$argv 0]
12: set file [format “UCTERM.00%s” $term]
13: if {$term > 9} {set file [format “UCTERM.O0%s” S$term])}
14: set odline [open “|od -d $file +6” r]
15: gets $odline line
16: set uc [lindex $line 1]
17: close Sodline
18:
19: #
20: #
21: # GUI for MUG demo to run MUGAREA command
22: #
23: #
24: #
252
26: # set the window title
27: wm title . “MUG Demo Command”
28:
29: # Make a frame to contain the help button in the upper right corner
30: frame .top
31: button .top.help -text “Help” -command mkHelp
32: pack .top.help -side right
33:
34:
35: # set the message area at the top of the gui. Give a brief
36: # explanation of the command. The font will be the default font
37: # from gui.options. The width of the 2ZZ
38: message .msg -width 500 -relief raised\
39: -font $messfont -borderwidth 1 -text “Retrieve 2 McIDAS GRIDS in an
40: AREA format via ADDE, and combine them with arithmetic function,
41: sending result to a McIDAS AREA formatted file. To execute press OK
42: button. To exit without performing an action, press Dismiss Button.”
43:
44: # Make a frame which will contain the body of the GUI, place all of
45: # the widgets here.
46:
47: frame .frame -borderwidth 10
48:
49:
50: # set the default source dataset name
51: set source_ds “MUG/MRFT”
52
53: # frame to hold the source dataset name widgets
S4: frame .frame.source
55:
56: #label describing the entry widget value to the right
57: label .frame.source.label -text “Source Dataset Name”
58:
59: #entry widget holding the source dataset name
60: entry .frame.source.entry -textvariable source_ds -width 20 -relief sunken
Writing GUIs for MclIDAS using Tcl/Tk McIDAS Developer/Operator Training

4-38

October 24, 1995

62: #pack widgets left and right
63: pack .frame.source.label -side left
64: pack .frame.source.entry -side right

66: #pack the source dataset frame into main frame
67: pack .frame.source -side top -fill x

70: # frame to hold the position widgets
71: frame .frame.posl

73: # button which will run the 1list_adde_image proc
74: button .frame.posl.button -text “Source Position 1”\
75: -command {set which first;list_adde_image}

77: # entry which will hold the results of the position selection
78: entry .frame.posl.entry -textvariable posl -width 5 -relief sunken

80: #pack the widgets left and right
81: pack .frame.posl.button -side left
82: pack .frame.posl.entry -side right

84; #install the position 1 frame in the GUI
85: pack .frame.posl -side top -£fill x

87: frame .frame.pos2

89; # frame to hold the position widgets

92: # button which will run the 1list_adde_image proc
93: button .frame.pos2.button -text “Source Position 27\
94 : -command {set which second;list_adde_image}

96: # entry which will hold the results of the position selection
97: entry .frame.pos2.entry -textvariable pos2 -width 5 -relief sunken

99: #pack the widgets left and right
100: pack .frame.pos2.button -side left
101: pack .frame.pos2.entry -side right

103; #install the position 2 frame in the GUI
104: pack .frame.pos2 -side top -fill x

106: # frame to hold the options
107: frame .frame.option

109; # radiobutton with text of ADD which will set variable option to ADD
110: radiobutton .frame.option.add -text “Add” \
113s -variable option -value ADD -width 15

113: # radiobutton with text of Subtract which will set variable option to SUBTRACT
114: radiobutton .frame.option.subtract -text “Subtract”\
115: -variable option -value SUBTRACT -width 15

117: # radiobutton with text of Average which will set variable option to AVERAGE
118: radiobutton .frame.option.average -text “Average” \
119: -variable option -value AVERAGE -width 15

121: # pack all of the radiobuttons onto a line
122: pack .frame.option.add .frame.option.subtract \
123: .frame.option.average -side left

125: # install the options on the GUI
126: pack .frame.option -side top -£fill x

128: # frame for destination dataset name
129: frame .frame.dest

131: # label describing entry field on the right
132: label .frame.dest.label -text “Destination Dataset Name”

McIDAS Developer/Operator Training Writing GUIs for McIDAS using Tcl/Tk
October 24, 1995 4-39

134: # entry field holding the value of the destination dataset name
135: entry .frame.dest.entry -textvariable dest -width 20 -relief sunken

137: # pack the label and entry, left to right
138: pack .frame.dest.label -side left
139: pack .frame.dest.entry -side right

141: # install the destination name widgets
142: pack .frame.dest -side top -fill x

145: # frame for destination position number
146: frame .frame.dpos

148: # label describing entry
149: label .frame.dpos.label -text “Destination Position”

151: # entry holding value of the destination position
152: entry .frame.dpos.entry -textvariable dpos -width 5 -relief sunken

154 # pack the label & entry left and right
155: pack .frame.dpos.label -side left
156: pack .frame.dpos.entry -side right

158: # install the destination position number widgets
159: pack .frame.dpos -side top -fill x
162: # make a frame which will hold the OK and cancel buttons and the SSEC logo '

163: frame .bottom -relief raised

165: # a button to execute the command. All variables will be evaluated as the
166: #value they are when the button is pressed.

167

168: button .bottom.ok -text OK -width 20 \

169: -command {

170

171: # set command to the uppercase McIDAS command
172: # which you will be executing

173: set dsname [format “%s.%s” $dest $dpos]

174 : set command “MUGAREA $source_ds $posl $option $pos2 $dsname”
175

176: # runcommand executes the command and routes
177: # the output to the text window

178: RunCommand $command

179

180

181: # a button to cancel the command without executing anything
182: button .bottom.cancel -text Dismiss -command {destroy .} -width 20

184: # a ssec logo between the OK and the cancel buttons
185: label .bottom.label -bitmap @~mcidas/gui0.2/sseclogo.xbm

187: # set a global variable ‘blabel’ to the label widget, so that we can
188: # change the bitmap of the label to an hourglass when the command is
189: # running.

190: set blabel .bottom.label

192; # Pack the OK, & cancel buttons and label into the bottom frame,
193: # padding 10 pixels around the button (x and y direction), order
194: # will be in order specified OK, label, cancel (left to right)

196; pack .bottom.ok -side left -padx 10 -pady 10
197: pack .bottom.label -side left -padx 10 -pady 10
198: pack .bottom.cancel -side left -padx 10 -pady 10

199

200:

201: #

202: # Pack the message, command and OK buttons into the base widget
203: #

204: pack .top -side top -fill x

Writing GUIs for McIDAS using Tcl/Tk McIDAS Developer/Operator Training
4-40 October 24, 1995

254
255
256:
257
258:
259:
260:
261
262:
263:
264:
265:
266:
267
268:
269:
270:
271:
272:
273 2
274:
275:
276:

“e e e o

McIDAS Developer/Operator Training
October 24, 1995

pack .msg -side top -fill x
pack .frame -side top -fill x
pack .bottom -side bottom -£fill x

set the minimum size for the gui
wm minsize . 10 10

Proc for help.
proc mkHelp {} {

name the toplevel widget
toplevel .help

#set the title (change ‘command name’ to your gui name)
wm title .help “Help - command name”

#set the minimum size for the help window
wm minsize .help 10 10

make a text widget, to hold the help text, note height should
be changed to be the number of lines of help text.
text .help.frame -relief raised -height 15

set the text widget to contain the actual text
.help.frame insert 0.0 {

Source Dataset Name Name of source dataset which contains grids
served as ADDE images

Source Position 1 position of one of the grids to perform option on’
Source Position 2 position of other grids to perform option on
Option Add, Subtract or Average option

Destination Dataset name Name of dataset to write resultant image to
Destination Position Position of destination image in dataset
make a button to remove the window when pressed
button .help.ok -text “ OK v -relief raised \
-borderwidth 2 -command {destroy .help}
pack the text widget and the OK button into the window

pack .help.frame -side top
pack .help.ok -side bottom

mkListArea w

#

#

Create a top-level window containing a listbox showing a bunch of
McIDAS Images
#
#
#

Arguments:
w -Name to use for new top-level window.

THIS IS SSEC PROPRIETARY SOFTWARE - ITS USE IS RESTRICTED.

I+

proc list_adde_image {} {

destroy a .listarea widget if it exists
catch {destroy .listarea}

label of the main widget, set it to the hourglass while we get
listing

Writing GUIs for McIDAS using Tcl/Tk
4-41

277: global blabel
278: $blabel configure -bitmap @-mcidas/gui0-.1/hourglass.xbm
279: update
280:
281
282: # name the toplevel widget .listarea
283: toplevel .listarea
284 '
285: # set the characteristics of the window
286: wm title .listarea “Image Listing”
287: wm iconname .listarea “Images”
288: wm minsize .listarea 1 1
289
290: # bring in uc and which as global variables - we’ll use them later
291: global uc
292: global which
293
294: # make a message widget to hold the instructions
295: message .listarea.msg -font -Adobe-times-medium-r-normal--*-180* \
296: -aspect 300 -relief raised\
297: -text “Select Image by double clicking left mouse button.
298: Press Dismiss to exit. “
299
300: # make a frame to hold the workings of the widget
301: frame .listarea.frame -borderwidth 10
302
303: # make a scrollbar to allow scrolling of the listing
304: scrollbar .listarea.frame.scroll -relief sunken \
305: -command “.listarea.frame.list yview”
306:
307: # make a listbox to hold the image listings
308: listbox .listarea.frame.list -yscroll “.listarea.frame.scroll set \
309: -relief sunken \
310: -geometry 80x10 -setgrid 1
311 ¢
312: # pack the scrollbar on the right of the listbox
313: pack append .listarea.frame .listarea.frame.scroll {right £illy} \
314: -listarea.frame.list {left expand fill)
315%
396 ; set localarea “ “
317z
318: # set lalist to be the pipe from the IMGLIST command
319: set lalist [open “|echo IMGLIST MUG/MRFT.ALL | imglist.mx $uc” r]
320k
321: # set the label to the first line of output
322 global labl
323z label .listarea.labell -width 79
324: gets $lalist labl
325: .listarea.labell configure -text $labl
326
327: # get the next 3 lines of output and discard them
328: gets $lalist lab2
329: gets $lalist lab2
330: gets $lalist lab2
331
332: # retrieve all of the rest of the lines and display them in the listbox
333: while {[gets $lalist line] > -1}
334: .listarea.frame.list insert end $line
335: }
336:
337: # set the label to the SSEC logo again
338: $blabel configure -bitmap @-mcidas/gui0.1/sseclogo.xbm
339: update
340:
341: # close the pipe
342: catch fclose $lalist}
343:
344: # bind the double left button click
345:;: bind .listarea.frame.list <Double-1> X
346:
347: # get the selected line
348: {set areal [selection get]
Writing GUIs for McIDAS using Tcl/Tk McIDAS Developer/Operator Training

4-42 October 24, 1995

349:
350: #set a variable to position 2 - 5 of the line

351 set localarea [string range $areal 2 5]
352:
353: # set pos 1 if they are to set the first position
354: if { $which == “first”
355: set posl $localarea
356: } else {
357: set pos2 $localarea
358:
359: destroy .listarea
360: }
361:
362: # make a button to get rid of the widget
363: button .listarea.ok -text Dismiss -command “destroy .listarea”
364:
365: # pack the widgets into the window
366: pack .listarea.msg -side top -£fill x
367: pack .listarea.labell -side top -anchor w
368: pack .listarea.frame -side top
369: pack .listarea.ok -side bottom
370: }
McIDAS Developer/Operator Training Writing GUIs for McIDAS using Tcl/Tk

October 24, 1995 443

Resources

Tcl/Tk books

Tcl and the Tk Toolkit
John K. Ousterhout
Addison Wesley
ISBN 0-201-63337-X

Practical Programming in Tcl and Tk
Brent B. Welch

Prentice Hall

ISBN 0-13-182007-9

Internet resources

World Wide Web site
http://www.sunlabs.com/research/tcl

Tcl/Tk distribution sites
Jip://fip.cs.berkeley.edu/ucb/tcl/
Jp://fip.smli.com/pub/tcl/ (i

Tcl/Tk extensions, programs, utilities
Sip://ftp.aud.alcatel.com/
fip://fip.neosoft.com/pub/tcl/

List of Frequestly Asked Questions
Sip://rtfm.mit.edu/pub/usenet-by-group/comp.lang.tcl/

Usenet newsgroup
comp.lang.tcl

MCcIDAS GUI ftp site
fip.ssec.wisc.edu - email gui@ssec.wisc.edu for ftp instructions
and password.

Alternatives to Tcl

Tk for perl
Tkinter for Python

Writing GUIs for McIDAS using Tcl/Tk McIDAS Developer/Operator Training .
4-44 October 24, 1995 l

McIDAS Navigation
and Calibration
Subsystems

Presented by
Dave Santek
McIDAS Applications Project Leader

Session 5
McIDAS Developer/Operator Training
October 23-25, 1995

Table of Contents

OVIVIEW. .« ottt ettt ettt ettt et ene e 5-1
TomaRlBgY « .o o5 o0vosrisonsinmmsansssnsss enpennss 5-1
Source file naming conventions 5-2
Applications INerfBcescccocvvvevivincnvoeans 5-2
Componentsoocoveencnnssiresnsoasennnones 5-3
BT o o IR o s s R e 0 st Ao B AE e B e 5-4
Interpal BCHOD BRDILScooviivvevvnonetanvnscns 5-4

UnderthehoodonOS/2o 5-5

UnderthehoodonUnixXoovviniinninininenenn.. 5-6

Guidelines for writingamodule. 5-8

205 0= 0= 116 = T 5-10

Overview

A redesign of the McIDAS Area file format took place in the mid-1980s
to accommodate the ever increasing types of remotely sensed data. A
generalized method for storing, navigating, and calibrating these data
was developed.

The design allows the addition of new data sets from a variety of platforms
(satellite, aircraft, radar, etc.) with no changes to existing software or file
format. This is done by defining a file format (Areas) that can
accommodate multibanded, multibyte data along with a variety of
ancillary data. In addition, it is recognized that two basic functions for
working with remotely sensed data needs to be handled in software:
navigation and calibration. This is done by defining an API (subroutine
names, calling sequence, and functionality) that all navigation and
calibration modules will adhere to, and a mechanism to access the
appropriate module at application run time.

Terminology

The terms defined below are used in this section.

ancillary data additional information needed to identify,
quantitate and manipulate image data, including
the directory, navigation and calibration blocks

calibration the process of converting data values received
from the satellite to a useful, physical quantity
such as temperature, radiance, or albedo

DLL Dynamic Link Library; the library of routines
used in dynamic linking

dynamic linking subprograms loaded at run time

navigation the process of transforming row/column in the
image file to lat/lon and vice versa

slot number 1, 2 or 3 to allow for simultaneous use of up to
three navigation and calibration modules

static linking subprograms included at compile/link time

McIDAS Developer/Operator Training McIDAS Navigation and Calibration Modules
October 24, 1995 5-1

Source file naming conventions

Use the naming conventions below.

Calibration Navigation
MVS: MUKBXnam MUNVXnam
0S/2 and Unix: KBXname.DLM NVXname DLM

where name represents the name of the data format, such as GVAR, TIRO,
AAA, etc. In MVS, the naming convention only allows three characters;
so in all but one case, the four character names are truncated to three. The
one exception is the GVAR navigation, which is in MUNVXGVR.

Applications interfaces

The McIDAS applications interface to the navigation and calibration
modules is totally independent of the modules themselves. This division
allows new modules to be written without affecting the applications. A few
of these interfaces are described below.

For navigation, a call to nvset will load and initialize the appropriate
navigation module. The API functions (discussed in the API section) can
then be called to perform the navigation transformations. Other
applications will make use of higher level functions (itvll and illtv), hiding
some of the details.

For calibration, a call to araopt (set Area options) will set up a calibration
module only if the physical quantity, which is the UNIT option in araopt,
is different than that stored in the image file, which is word 53 of the Area
directory. Calls to redara (read a line of data) will make use of a
calibration module only if needed. Most applications do not call the API
functions directly; two notable exceptions are IMGPROBE and D.

McIDAS Navigation and Calibration Modules McIDAS Developer/Operator Training
5-2 October 24, 1995

Components

McIDAS Developer/Operator Training

October 24, 1995

Below nvset and araopt are the subroutines that provide the interface to
the dynamic navigation and calibration modules; they are nvprep and
kbprep, respectively. nvprep and kbprep build the name of the module
to load, based on the slot number and type of data.

The slot number (1, 2 or 3) allows for the simultaneous use of up to three
different navigation and calibration modules. The maximum of three was
an arbitrary decision. Up to this point, no applications have made use of
more than two navigation modules. Being able to remap a satellite image
into a different projection illustrates this need. For example, to remap a
GOES satellite image into a Mercator projection, the application would
load the GOES navigation into slot 1 and the Mercator projection into
slot 2. 3

There have been problems, though, with a limit of three calibration
modules on MVS, where up to six Area files can be read at one time. In the
ADDE (Abstract Data Distribution Environment) this is not an issue, since
every file read is provided by a different server.

The data type (GVAR, TIRO, AAA, etc.) is also needed to construct the
DLL to load. For calibration, the data type is stored in word 52 of the Area
directory; for navigation, it is stored in the first word of the navigation
block. For GOES-8, the type is GVAR for both navigation and calibration.
Thus, the name constructed, using slot number 1, for navigation is
NVIGVAR. It will load the module nvlgvar.dll.

McIDAS Navigation and Calibration Modules

5-3

API

The navigation and calibration modules are not accessed through their
internal function names (as seen in the next section), but rather through the
names below, allowing more than one module to be used simultaneously.

The numeric is the slot number. To further describe the remap scenario
presented in components, the application would be able to do navigation
transformations in the Mercator projection by calling NV2EAS and
NV2SAE, and in the GOES projection by calling NVIEAS and NVISAE.

Navigation: nvlini, nvleas, nvlsae, nvlopt
nv2ini, nv2eas, nv2sae, nv2opt
nv3ini, nv3eas, nv3sae, nv3opt

Calibration: kblini, kblcal, kblopt

kb2ini, kb2cal, kb2opt
kb3ini, kb3cal, kb3opt

Internal function names

Each navigation or calibration module has the following internal function
names. The calling sequence and function of these routines are identical
across all data types. This is the key to adding new data types or navigation
algorithms transparent to the applications.

Entry points Description

Navigation: nvxini initialization
nvxeas earth-to-satellite transformation
nvxsae satellite-to-earth transformation
nvxopt additional operations

(satellite sub-point, for example)

Calibration: kbxini initialization
kbxcal calibration for an array of data values
kbxopt additional operations (what type of

calibration is possible, for example)

Now let’s go ‘Under the Hood’ to look at how the routines in the DLLs are
actually accessed for OS/2 and Unix.

McIDAS Navigation and Calibration Modules McIDAS Developer/Operator Training
54 October 24, 1995

Under the hood on OS/2

This section details the processes well below the API that affect the
dynamic linking for the navigation and calibration modules. This
information is not needed to write a navigation or calibration module.

A call to gethdl, in os2glue.c, loads the DLL (nv1gvar.dll, for example)
through the system call DosLoadModule, and returns a file handle. To
access the individual routines in the DLL, the addresses are obtained by
calling getadr (in os2glue.c), with the file handle, which calls
DosQueryProcAddr. In addition to the API routines listed above, the
routine dllsub (in dllsub.for) is included in the DLLs to set up the McIDAS
environment (access to User Common and the LW file subsystem). The list
of entry points in the DLLs is contained in navlib.def and callib.def.
dlisub is called from nvprep and kbprep.

COMMON/NVXCOM/ stores the addresses of the API routines. An
additional layer was imposed to map the API (nvlini, etc.) calls to the
appropriate entry point (nvxini, etc.) in the DLL. The API routines are
stored in .for files of the same name (nv1ini.for, for example). When an
API routine is called, it in turn calls one of the icalln routines (in
os2glue.c), passing the address of the entry point in the DLL along with all
the parameters. The icalln is a mechanism to call a subroutine by address,
rather than by name. The code for nvleas and icall6 is listed below.

Extracted from nvleas.for:

INTEGER FUNCTION NV1EAS (X1, X2,X3,X4,X5,X6)
COMMON/NVXCOM/IHANDL (3) ,NVADDR (3, 4)
NV1EAS=ICALL6 (NVADDR (1, 3),X1,X2,X3,X4,X5,X6)
RETURN

END

Extracted from os2glue.c:

long
icallé_(Fint (**isub) (), void *a, void *b, void *c, void *d, void *e, void *f)

return((**isub)(a, b, ¢, 4, e, £));

McIDAS Developer/Operator Training MCcIDAS Navigation and Calibration Modulés
October 24, 1995 5-5

Under the hood on Unix

This section details how dynamic linking is simulated for McIDAS-X.
This information may be useful when debugging a navigation or
calibration module.

When McIDAS was ported to Unix, a standard dynamic loading feature
was not identified. Even shared libraries were implemented differently;
some requiring relinking when the shared library was updated. It has been
five years since we first did an investigation and we have begun to look
into it again.

As an interim measure, we have decided to simulate dynamic linking. This
is done by compiling the .DLM files as subroutines, storing them in the
library, and then statically linking to the applications. Since the entry point
names are the same in each navigation or calibration module, the names
must be changed to store them in the library. A preprocessor program,
convdlm (in convdlm.fp), automatically modifies the entry point names in
a unique way to avoid duplication of names. Below is a skeleton of a
calibration module (kbxtest.dlm), along with the output from convdlm,

kbxtestl.f.
kbxtest.dim
: g INTEGER FUNCTION KBXINI (CIN,COUT, IOPT)
2.
3 COMMON/MOTEST/JTYPE, I1SOU, IDES, JOPT
4.
5. KBXINI=0
6. RETURN
7. END
8.
9. INTEGER FUNCTION KBXCAL (CALB, IDIR,NVAL, IBAND, IBUF)
10.
11.s COMMON/MOTEST/JTYPE, ISOU, IDES, JOPT
12
13 CALL MAKTAB (ITAB, ISCAL(1),ISCAL(2),ISCAL(3),ISCAL(4))
14. CALL MPIXTB (NVAL, ISOU, IDES, IBUF, ITAB)
15.
16. KBXCAL=0
17 RETURN
18. END
19.
20.
21. INTEGER FUNCTION KBXOPT (CFUNC, IIN, IOUT)
22.
23 COMMON/MOTEST/JTYPE, ISOU, IDES, JOPT
24.
25. RETURN
26. END
27
28. SUBROUTINE MAKTAB (ITAB, INLO, INHI, IBLO, IBHI)
29. RETURN
30, END
MCcIDAS Navigation and Calibration Modules McIDAS Developer/Operator Training

5-6 October 24, 1995

McIDAS Developer/Operator Training

October 24, 1995

kbxtest1.f

WO WN

INTEGER FUNCTION KB1INItest
(CIN, COUT, IOPT)

COMMON/MOTESTtestkbl/
JTYPE, ISOU, IDES, JOPT

KB1INItest
=0

RETURN
END

INTEGER FUNCTION KB1CALtest
CALB, IDIR, NVAL, IBAND, IBUF)

COMMON/MOTESTtestkbl/
JTYPE, ISOU, IDES, JOPT

CALL MAKTABtestkbl
(ITAB, ISCAL(1),ISCAL(2),ISCAL(3),ISCAL(4))
CALL MPIXTB (NVAL, ISOU, IDES, IBUF, ITAB)

KB1CALtest
=0

RETURN
END

INTEGER FUNCTION KB1OPTtest
(CFUNC, IIN, IOUT)

COMMON/MOTESTtestkbl/
JTYPE, ISOU, IDES, JOPT

RETURN
END

SUBROUTINE MAKTABtestkbl
(ITAB, INLO, INHI, IBLO, IBHI)
RETURN

END

All subroutine, function, and common block names are modified.

The function kbxini becomes kblinitest. The common block
common/m0test/ becomes common/mOtesttestkbl/. Note that maktab
is modified because it is inline, but the call to mpixtb is not.

MCcIDAS Navigation and Calibration Mod

ules
5-7

Guidelines for writing a module

Here are some things to keep in mind when writing a navigation or
calibration module. Most of the restrictions are related to preprocessing the
routine with convdlm.

* Write the module in Fortran. At this time, convdlm only runs against
Fortran. To use a C module on Unix, you would have to modify the
names manually. C modules work fine in OS/2.

* Write the module in uppercase. When convdlm was written, all the
modules were in uppercase; navigation and calibration modules
originated from the mainframe and ported to OS/2. The only
recognized comment line begins with a C.

* Do not use the words SUBROUTINE, FUNCTION or COMMON in
comment lines or message lines (such as DDEST). Also, in these lines,
do not enter the name of any subroutine, function, or common block in
uppercase.

* Do not use the Fortran ENTRY statement; convdlm does not
recognize or handle it correctly.

* Do not imbed a function call within another function call if both
functions are in the module. convdlm will not be able to handle the
expansion and will print an error message and then exit. For example,
if SUBROUTINE ASUB(K) and FUNCTION BFUNC(J) are both in
the .DLM, the following is illegal:

CALL ASUB(BFUNC(10))

* Do not allow routines that expect character variables to be passed in
(KBXINI, KBXOPT, for example), to declare the variables as
CHARACTER*(*). The length of the variable is not passed along. So,
in KBXINI and KBXOPT, the lengths are known and are so declared
as CHARACTER*4.

* Do not output text (SDEST, Fortran WRITE, etc.). This causes
problems with ADDE servers that send data through standard output.
You can imbed DDEST calls for debugging, but they will only be
output with non-ADDE commands.

McIDAS Navigation and Calibration Modules McIDAS Developer/Operator Training
5-8 October 24, 1995

McIDAS Developer/Operator Training

October 24, 1995

Run the process convdlm manually if you want to examine .f files, as
they are automatically deleted during compiling. When compiling
.DLMs on Unix, convdlm reads the .DLM file and outputs three .f
files: kbxtest.dIm becomes kbxtest1.f, kbxtest2.f, and kbxtest3.f.
These files are compiled, so any compiler warnings and/or errors refer
to these files, which have different line numbers for the statements
than the .DLMs. To run convdlm, use: convdlm filename

for example: convdlm kbxtest.dlm.

McIDAS Navigation and Calibration Modules

59

References

McIDAS Programmer’s Manual
Preliminary issue of Chapters 4, 5 and 6
October 1995

Dengel, Russ and Dave Santek (1986): 4 Generalized Method for Storing
and Processing Digital Satellite Data. Preprints, 2nd International
Conference on Interactive Information and Processing Systems for
Meteorology, Oceanography, and Hydrology.

McIDAS Navigation and Calibration Modules McIDAS Developer/Operator Training

5-10

October 24, 1995

Designing and
Implementing
Calibration Modules

Presented by
Dave Santek
McIDAS Applications Project Leader

Session 6
McIDAS Developer/Operator Training
October 23-25, 1995

Table of Contents

ORI . . e - vn 5oos 00 05 56 6 B e 0 W S 6-1
Terminologycovvietiieinnnninnnsecsecanannns 6-1
Calibration moduledesignc.covuiin... 6-2
Module requirements 6-2
SOrINg PAIBIMBLErSo v evvcrirccrssnsssssssnns 6-3
Performance: computation vs. look-up tables. 6-5
Structure of a calibrationmodule 6-7
Integrating calibration modules into McIDAS 6-9
BRMAORD coiviiiiiiinnnnssrsnnsssis s e 6-9
BACEDIARR . i oo m e sns g s RS RS R 6-9
Sample Programovoeesiiiosisiiiiianes SRS 8 6-10

ReferenCes. . o v oottt e e 6-14

Overview

The McIDAS calibration subsystem is designed to be extensible, so that
new data or calibration techniques for existing data types can be included.
Thus, you can define calibration modules that will allow McIDAS
applications to view the data that you prescribe.

This training session presents the issues that you should resolve when
designing a calibration module. It also provides a sample module. It is
assumed that you have a basic understanding of the McIDAS Area file
format and a conceptual understanding of calibration and how it relates to

remotely sensed data.

Terminology

The terms defined below are used in this section.

band

data value

Physical quantity

sensor source number

sensor type

slot

unit

McIDAS Developer/Operator Training
October 24, 1995

spectral band; band 4 for the GOES-8
Imager is 10.7 microns (infrared); see
Appendix G of the McIDAS-X Users
Guide

1-, 2-, or 4-byte quantity; sometimes
called pixe/

radiance, temperature, albedo, etc.;
sometimes called unit

SS number stored in word 3 of the Area
directory; 70 is the GOES-8 Imager;

see Appendix H of the McIDAS-X Users
Guide

up to four characters indicating the
sensor; it is stored in word 52 of the
Area directory; GVAR is the sensor on
GOES-8

the number 1, 2 or 3 to allow for loading
of up to three dynamic modules

measurement standard, such as Celsius or
meters

Designing and Implementing Calibration Modules

6-1

Calibration module design

All calibration modules are built using the same framework. They must
conform to the McIDAS convention for functionality, names of functions,
and types of arguments. This standardization allows applications to make
use of these modules in a generic, yet powerful way. It is usually not
necessary for applications to have any private knowledge of the data with
which it is working; the calibration interface provides a means to acquire
certain aspects that are common to all.

Although the framework is rigid, you must resolve certain implementation
issues. Two key issues, which are described later, are the storing of
calibration parameters and performance.

Module requirements

Each calibration module has identical function names and interface, and
performs similar operations. The actual algorithm for calibrating the data
is hidden from the application, regardless of the calibration type.

All calibration modules contain the following three functions:

Function Description

kbxini initializes and verifies the requested calibration
kbxcal calibrates the data
kbxopt provides additional operations, which are usually

queries from the application

The structure of these functions is designed so that any required ancillary
data is passed in as arguments or handled by kbxopt. An exception is the
access to the calibration block. The calibration subsystem was created
about 10 years ago, before the use of calibration blocks. Currently,
calibration blocks are handled by reading the disk from within the module.
We are investigating changing this, due to the new ADDE paradigm,
which presents a different view of the data to the applications.

All the functions either return the requested data or a bad status. They
should never terminate, but rather rely on the exception handling of the
application.

Designing and Implementing Calibration Modules McIDAS Developer/Operator Training
6-2 October 24, 1995

Storing parameters

McIDAS Developer/Operator Training

October 24, 1995

Most of the current McIDAS calibration modules store parameters in these
locations:

* Area directory
« calibration block

* line prefix

« LWfile
s none
Area directory

The MSAT (Meteosat) calibration parameters are stored in the Area
directory. Although the entire image only has three constant parameters,
they do change twice per day. The Area directory is not the recommended
storage location for your parameters because of the lack of available words
in the directory. In retrospect, the parameters should have been placed in a
calibration block.

Calibration block

The AAA (GOES-7 Mode AAA), QTIR (Quick AVHRR), PRD (Product),
and GVAR (GOES-8, etc.) calibration parameters are stored in the
calibration block. This block consists of 128 words and is the most used
location for storing calibration parameters. Although the length of this
block will be changed to unrestricted, it will remain at 128 words on the
mainframe. These values are used for the entire image file. Sections are
defined for AAA and GVAR relating to the parameters for the different
bands.

Normally, integers or scaled integers are stored so that moving the data to
different platforms, such as Unix or OS/2, is not a problem. However, there
are potential problems when storing character data. For example, when
accessing files that are not native to the platform, byte flipping may have
to take place on the integers but not the character data. The problem arises
when deciding how to flip the bytes, since a schema for storing calibration
parameters is not defined. Currently, 4-byte words are tested to determine
if all the bytes are printable characters. This does not always work for large
or scaled integers. Be aware of this situation when developing new
calibration modules, if problems seem to be platform-dependent. A
software solution to this problem is in progress.

Designing and Implementing Calibration Modules

6-3

Line prefix

VAS (GOES-5 Sounder), AAA (GOES Mode AAA), and TIRO
(AVHRR) calibration parameters are stored in the prefix part of the data
line. This is the preferred location for image data, where the calibration
parameters can change throughout the image. For AAA data, two different
channels may alternate through the image; TIRO calibration has a different
set of parameters every five lines.

The prefix can be up to 1000 bytes, and is divided into four sections:
. validity. code
* documentation
« calibration
o level

You can define both the documentation and calibration sections for
specific data. However, you should use only the calibration section for
storing calibration parameters; the documentation section is not
guaranteed to move with some of the copy commands.

LW file

The GMS (Japanese satellite) and VAS calibration parameters are stored
in LW files. The use of these files is decreasing as the definition of the
calibration block becomes less restricted. With the previous limit of 128
words in the calibration block, storing large look-up tables in an LW file
was preferable to including it as DATA statements in the code.

For VAS calibration, the line-to-line variability in the calibration
coefficients required that the look-up tables be pre-generated for better
performance. The file VASTBLS, which accounts for all possible look-up
tables, is over 6 megabytes.

GMS data is received from the satellite as 1-byte values. For the IR, each
value corresponds to a temperature; for the visible, an albedo. Because this
table is fixed for GMS-3, and the calibration block is restricted to 128
words, an LW file is the best place to store the calibration information. On
the workstation, changes are underway to allow for calibration blocks of
any size. This is needed for GMS-5, since the table is no longer fixed.

Designing and Implementing Calibration Modules McIDAS Developer/Operator Training
6-4 October 24, 1995

None

Some calibration algorithms, such as VISR (GOES 1-byte data) and WSI
(WSI Radar), do not require additional information, or the amount is fixed
and relatively small.

The VISR calibration was designed for the original GOES satellites, which
transmitted its data as 1-byte values. For the visible (even sensor source
numbers), the RAW value is the same as the BRIT, and no conversion is
necessary. For the IR (odd sensor source numbers), an option for TEMP
(temperature) is available.

WSI radar images need only 16 values to represent the data, base map,
labels, etc. These images are handled in the code without an external data
structure.

Performance: computation vs. look-up tables

McIDAS Developer/Operator Training

October 24, 1995

Most calibration modules in McIDAS generate look-up tables to convert
the stored data to some output physical quantity. This is usually preferred
over performing the computation for every input data value. For example,
a standard McIDAS image frame is about 300,000 pixels. Since most input
data is 8 or 10 bits per value, performing 256 or 1024 computations to
create a look-up table is much more efficient than doing 300,000.

The table below shows the functions used extensively in calibration
modules.

Routine Description

movb moves bytes

movce moves bytes

movw moves 4-byte words

movpix moves bytes with sampling and offsets
movblk moves blocks of bytes with sampling and offsets
mpixel in place data expand/pack

mpixtb in place data expand/pack with lookup table
maaatb AAA specific mpixtb

mavhtb AVHRR specific mpixtb

mvastb VAS specific mpixtb

mgvatb GVAR specific mpixtb

The first three (movb, move, movw) move data from one buffer to
another. movpix includes parameters for sampling bytes and moving into
a buffer in reverse order. movblk has the same functions as movpix, but
also operates on blocks of bytes.

Designing and Implementing Calibration Modules

6-5

mpixel expands and packs the data values in place. If the source of the data
is 1 byte, but the application expects it as 4 bytes, mpixel will do it without
the need of an additional buffer. mpixtb adds the feature of passing the
data through a look-up table.

The last four functions are special implementations of mpixtb. This was
done for performance and memory considerations, such as AAA data sent
by the satellite as 10-bit data, but stored on disk as 15 bits. Rather than
generating a look-up table of 32,768 values (for 15 bits), a table of 1024
values is made for the 10-bit data. maaatb does the bit shifting to take the
raw 15-bit data to 10-bit, and then passes it into the look-up table.

Designing and Implementing Calibration Modules McIDAS Developer/Operator Training
6-6 October 24, 1995

Structure of a calibration module

The sample calibration module, on pages 6-10 through 6-13, illustrates the
structure of a calibration module. This calibration will accept input data,
from 0 to 255, and return values modified by a sine curve. To use this
module with existing 1-byte data, run the following McIDAS command:

CA Area STYPE=SIN CTYPE=RAW

After compiling KBXSIN.DLM and any appropriate applications,
MCcIDAS applications can be run against the data.

The required three functions are present:
e kbxini [1-72]
» kbxcal [74-129]
» kbxopt [132-205]
An additional subroutine, maktab, generates the look-up table.

kbxini takes it input, usually from araopt, and copies it to a local buffer
[53]. It then verifies that the calibration requested is valid [S9-60].

kbxcal is usually not called directly from the application,; it is called when
required by redara. It takes as input the prefix of the line, the Area
directory, the number of values to calibrate, the band (if required), and the
buffer containing the data. The calibrated data is returned through this
same buffer. kbxcal checks to see if the look-up table was generated [118].
If not, a call is made to maktab [119]. mpixtb completes the calibration
[125] by taking the data, passing it through the look-up table, and
expanding or packing the bytes.

kbxopt contains additional operations used by applications to query
information about the calibration. The KEYS option [182-187] passes in a
frame directory block to the calibration module; the number and list of
physical quantities are returned. This option was written for the D and
IMGPROBE programs, which list out the stored data value converted to
appropriate quantities. Because the information returned by the KEY'S
option was incomplete, the option, INFO [191-202], was added to provide
scale factors and units. The input for INFO is: band number, sensor source
number and calibration type.

McIDAS Developer/Operator Training Designing and Implementing Calibration Modules
October 24, 1995 6-7

An important feature to note is that most calibration modules contain code
to handle stretch tables generated by the SU command. By calling kbxopt
with BRKP as the option and the name of the stretch table, the calibration
module computes a modified brightness value based on the table. You can
usually identify the sections of code where this is done by finding the
CALTYP variable, which is held in COMMON/BRKPNT. In ADDE, this
function is done in the client application instead of the calibration module.
This code will be removed from the calibration modules at some future
date.

Designing and Implementing Calibration Modules McIDAS Developer/Operator Training
6-8 October 24, 1995

Integrating calibration modules into McIDAS

When the calibration module is coded, you must incorporate it into
MCcIDAS for testing and use by placing the source code in the proper
directory and running the appropriate McIDAS tools.

McIDAS-OS2

McIDAS-X

Copy the calibration module source code (our example is KBXSIN.DLM)
into the \mcidas\working directory and run the following three commands
from the OS/2 command line.

F KBXSIN DL CALLIB KB1SIN
F KBXSIN DL CALLIB KB2SIN
F KBXSIN DL CALLIB KB3SIN

These commands invoke the F.CMD script and produce KB1SIN.DLL,
KB2SIN.DLL, and KB3SIN.DLL in \mcidas\user\code. The calibration of

type SIN is immediately available; it is not necessary to recompile
applications.

McIDAS Developer/Operator Training

October 24, 1995

Integrating a user-developed calibration module into McIDAS-X is more
complicated because of the lack of dynamic linking. Copy the source
KBXSIN.DLM into the mcidas/working directory and run the following
procedure from the Unix prompt.

fx kbxsin 4l

This procedure generates, compiles, and files in the user library the three
source files kbxsin1.f, kbxsin2.f, and kbxsin3.f, each with unique
generated names for all function calls and common blocks. Then, you must
generate a new kbprep.for with explicit references to the new calibration
type by running the two commands below at the Unix prompt.

cal_init ~mcidas/mcidas2.1/src/kb*.dlm kbx*.dlm > kbprep.for

fx kbprep 1li

You must then recompile all applications that use calibration before they
can access the new type. Note that ~mcidas/mcidas2.1/src is the directory
where the core McIDAS-X source can be found for version 2.1. Adjust this
accordingly for other versions of McIDAS-X.

Designing and Implementing Calibration Modules

6-9

Sample program

The sample calibration module, KBXSIN.DLM is provided below.

INTEGER FUNCTION KBXINI (CIN, COUT, IOPT)

*$ Name:
*$ kbxini - Initialize for sine modified calibration

*$ Interface:

WONAUTIE WN R
*
W

*S integer function
*$ kbxini (character*4 cin, character*4 cout, integer iopt(*))
*S
10: *$ Input:
11 *§ cin - input physical quantity ('TEMP', 'BRIT', 'RAW', etc.)
12: *§ cout - output physical quantity
13: *§ iopt -
14: *§ iopt (1) precision of stored data (1, 2 or 4 bytes)
15: *$§ iopt (2) spacing of output data (1, 2 or 4 bytes)
16: *$ iopt (3-5) filled by araopt but should not be used
17: *$
18: *$ Input and Output:
19% *& none
20: *$
21: *$ Output:
22: *§$ none
23: *§
24: *$ Return values:
25: *§$ 0 - success
26: *§ -1 - unit conversion not possible
27: *§
28: *$§ Remarks:
29: *§ This calibration module will only accept values from 0 to 255
30: *3 and will return values modified by a sine curve. There is no
31: *§ check for input data out of range.
32: *§
33: *§ Categories:
34: *§ calibration
35:
36: CHARACTER*4 CIN
37 CHARACTER*4 COUT
38 INTEGER IOPT (*)
39:
40: INCLUDE 'areaparm.inc'
41:
42: INTEGER JTYPE
43: INTEGER ISOU
44: INTEGER IDES
45: INTEGER JOPT (NUMAREAOPTIONS)
46: C
47: C--- Store information needed in other functions
48: C
49: COMMON/MOSIN/JTYPE, I1SOU, IDES, JOPT
80:. C
51: C--- Copy what araopt sent in
52: C
53: CALL MOVW (NUMAREAOPTIONS, IOPT, JOPT)
54:
58; JTYPE=0
56: ISOU=IOPT (1) ! length in bytes of input data
57 ¢ IDES=IOPT (2) ! length in bytes to ouput data
58:
B9 IF(CIN.EQ. 'RAW' .AND.COUT.EQ.'SIN') JTYPE=1
60: IF(CIN.EQ. 'RAW' .AND.COUT.EQ. 'BRIT') JTYPE=2
6l: C
Designing and Implementing Calibration Modules McIDAS Developer/Operator Training

6-10 October 24, 1995

62: C--- If not one of the 2 cases above are true, error

63: C
64: IF(JTYPE.EQ.0) GO TO %00
65:
66: KBXINI=0
67: RETURN
68:
69: 900 CONTINUE
70: KBXINI = -1
& B RETURN
72: END
733
74: INTEGER FUNCTION KBXCAL (PREFIX, IDIR,NVAL, IBAND, IBUF)
75: *$ Name:
76: *$ kbxcal - Calibrate data
77: *$
78: *$§ Interface:
79: *§ integer function
BO: *$ kbxcal (integer prefix(*), integer idir(*), integer nval,
81: *$ integer iband, integer ibuf (*))
82: *$
83: *$ Input:
84: *$ prefix - prefix part of image line (not needed)
85: *§ idir - Area directory (not needed)
86: *$ nval - number of values to calibrate
87: *$ iband - band number (not needed)
88: *$
89: *$ Input and Output:
90: *$ ibuf - buffer containing data
91: *$
92: *$ Output:
93: *$ none
94: *§
95: *$ Return values:
96: *§ 0 - success
97: *$ -1 - error (not needed)
98: *$§
99: *$ Categories:
100: *$ calibration
101:
102: INTEGER PREFIX(*)
103:
104: INCLUDE 'areaparm.inc'
105:
106: INTEGER JTYPE
107: INTEGER ISOU
108: INTEGER IDES
109: INTEGER JOPT (NUMAREAOPTIONS)
130
111 INTEGER ITAB (256)
112:
1133 COMMON/MOSIN/JTYPE, ISOU, IDES, JOPT
114: DATA IFLAG/0/
115: C
116: C--- If the calibration type changes, remake the lookup table
117 €
118: IF(JTYPE .NE. IFLAG) THEN
119: CALL MAKTAB (JTYPE, ITAB)
120: IFLAG = JTYPE
121: ENDIF
122: C
123: C--- Pass the data IBUF through the lookup table ITAB
124: C
12S: CALL MPIXTB (NVAL, ISOU, IDES, IBUF, ITAB)
126:
127 KBXCAL=0
128: RETURN
129: END
130
131:
132: INTEGER FUNCTION KBXOPT (CFUNC, IIN, IOUT)

133: *$ Name:

MCcIDAS Developer/Operator Training Designing and Implementing Calibration Modules
October 24, 1995 6-11

134:
135:
136:
137:
138:
1329
140:
141:
142:
143:
144:
145:
146:
147:
148:
149:
4503
151
152:
153:
154:
155:
156:
I57:
158:
159
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171 3
172:
173:
174 :
175:
176:
h iy %7
178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:
190:
191
192:
193:
194:
195:
196:
E9%:¢
198:
199:
200:
201:
202:
203:
204:
205:

Designing and Implementing Calibration Modules

6-12

c

kbxopt - Additional operations
Interface:
integer function
kbxopt (character*4 cfunc, integer iin(*), integer iout (*))
Input:
cfunc - function ('INFO', 'KEYS')
iin - for cfunc 'KEYS', iin contains frame directory block
for cfunc 'INFO!'
iin(1) - band number
iin(2) - sensor source number
iin(3) - calibration type ('GVAR', for example)
Input and Output:
none
Output:
iout - for cfunc 'KEYS'
iout (1) - number of physical quantities ('TEMP', etc.)
iout (2-n) - list of physical quantities
iout - for cfunc 'INFO'
iout (1) - number of physical quantities ('TEMP', etc.)
iout (2-n) - list of physical quantities, units,
and scale factors
Return values:

0 - success
-1 - invalid function

Categories:
calibration

CHARACTER*4 CFUNC

INTEGER IIN(*)
INTEGER IOUT (*)

INCLUDE 'areaparm.inc'

INTEGER JTYPE

INTEGER ISOU

INTEGER IDES

INTEGER JOPT (NUMAREAOPTIONS)
COMMON/MOSIN/JTYPE, ISOU, IDES, JOPT

C--- KEYS option

c

o]

IF(CFUNC .EQ. 'KEYS') THEN
IOUT(1) = 3 ! Number of types
IOUT(2) = LIT('RAW ') ! Physical quantities
IOUT(3) = LIT('SIN ')
IOUT(4) = LIT('BRIT')

ENDIF

C--- INFO option

c

IF(CFUNC .EQ. 'INFO') THEN

IOUT(1) = 3 ! Number of types
IOUT(2) = LIT('RAW ') ! Physical quantities
IOUT(3) = LIT('SIN ')
IOUT(4) = LIT('BRIT')
IOUT(5) = LIT(' 1) ! Units
IOUT(6) = LIT('none')
IOUT(7) = LIT(' ")
IOUT(8) =1 ! Scale factors
IOUT(9) = 1000
IOUT(10)=
ENDIF
RETURN
END

McIDAS Developer/Operator Training
October 24, 1995

206:

207:
208: SUBROUTINE MAKTAB (JTYPE, ITAB)
209: *$ Name:
210: *$ maktab - Make lookup table for sine modified calibration
211: *§
212: *$ Interface:
213: *§ subroutine
214: *$ maktab(integer jtype, integer itab(*))
215: *§
216: *$ Input:
217: *$ jtype - calibration type
218: *§ 1 - sine
219: *§$ 2 - grayscale
220: *$
221: *$ Input and Output:
222: *§ none
223: *§
224: *$ Output:
225: *§ itab - lookup table of 256 values
226: *§
227: *$ Remarks:
228: *§$ This routine makes a lookup table by computing the sine
229: *§ for all possible values from 0 to 255 (the range of the
230: *$ input data). Rather than computing the sine directly on
231: *§ the values 0 to 255, it is initially scaled to 0 to 10
232; *§$ which is approximately 3 sine waves (3 * PI = 10)
233: *$
234: *$ Categories:
235: *3 calibration
236
237: INTEGER ITAB(*)
238:
239 REAL SINVAL
240: REAL X
24]1: C
242: C---
243:
244: DO 100 I = 1, 256
245:
246: X=1I-1 ! X goes from 0 to 255
247: X =10. * (X / 255.) ! Normalize and scale to 3 sine waves
248: SINVAL = SIN(X)
249: C
250: C--- Output sine value
251: C
252: IF (JTYPE .EQ. 1) THEN
253: ITAB(I) = NINT(SINVAL * 1000.) ! Scale sine by 1000
254: C
255: C--- Output gray scale value
256: C
257: ELSE IF (JTYPE .EQ. 2) THEN
258: ITAB(I) = NINT(127. + 128 * SINVAL) ! Scale to 0 to 255
259: ENDIF
260:
261: 100 CONTINUE
262:
263:
264: RETURN
265: ENDS$
McIDAS Developer/Operator Training Designing and Implementing Calibration Modules

October 24, 1995 6-13

References

McIDAS Programmer'’s Manual
Preliminary issue of Chapters 4, 5 and 6
October 1995

McIDAS Applications Programming Manual
Issued February 1988; Revised November 1993

Dengel, Russ and Dave Santek (1986): 4 Generalized Method for Storing
and Processing Digital Satellite Data. Preprints, 2nd International
Conference on Interactive Information and Processing Systems for
Meteorology, Oceanography, and Hydrology.

Designing and Implementing Calibration Modules McIDAS Developer/Operator Training
6-14 October 24, 1995

Designing and
Implementing
Navigation Modules

Presented by
Robert Merrill
McIDAS Applications Programmer

» Session 7
McIDAS Developer/Operator Training
October 23-25, 1995 .

Table of Contents

ODVREVIONE. , . o s b s uwa s amias s BmaTaalhuh s snnsnnss ves 7-1
Navigation module requirements 7-2
Navigationmoduledesigncoiiuiin.... 7-3
Navigation algorithm i, 7-4
Coordinate conventionsccoucivnvcinnenns 7-4
Navigation example - the tangent cone projection. 7-5
Algorithm development 7-7
Additional operations il 7-9
Implementing navigationmodules 7-10
Coding conventions in McIDAS-X 7-10
Sample code descriplion ., . .« .. oo viniiiieniraens 7-11
Integrating navigation modules into McIDAS 7-13
75T S P S e S 7-13
IRCRENARER - <L bl Bk, 4 A5 65 % 5 5 b o 50 6 8 b 7-13
Sample navigationmoduleo 7-14

Snple oppleBBoN . . . < conwan s nnmsa s ERses s ny 7-25

Overview

The McIDAS navigation subsystem allows you to extend the list of
available map projections for data remapping and display by writing new
navigation modules. These user-defined navigation modules can provide
exactly the right map projection for your data. You can remap imagery
directly into the new projection using the REMAP command. Then a blank
image with the new navigation type can serve as a background for the grids
and point source data that you want to view in the custom projection.

Navigation modules perform these services:
* convert image coordinates to earth coordinates
* convert earth coordinates to image coordinates

+ provide special services associated with a particular
navigation type

Because all navigation modules provide these services, a ready-made
design framework, including naming and argument conventions, is already
in place. Constructing a new navigation module, especially for a map
projection, is simpler than it may appear. The difficult part is the
navigation algorithms because information about the transform equations
is often incomplete. Implementing most map projections will be
straightforward if you understand the projection in question, recognize the
additional relationships needed, and derive them.

Modules for satellite navigation are more difficult because they involve
prediction of the satellite’s position in time, operations in both celestial and
terrestrial coordinates, three-dimensional vector operations, and possibly
an iterative solver for the inverse (earth to image) transform. The overall
design principles and approach are the same, however.

This training session will describe the design and implementation of
NVXTANC, a navigation module for the tangent cone projection.
Although it is a relatively simple navigation module, it has many features
common to more complex modules, such as those used for satellite
navigation.

McIDAS Developer/Operator Training Designing and Implementing Navigation Modules
October 24, 1995 7-1

Navigation module requirements

All navigation modules must satisfy the following requirements.
» They must validate their inputs.
* They must never crash, regardless of the inputs.

* They must return either a good transformation or an error status.

All navigation modules, including the ones you will write, must conform
exactly to the McIDAS conventions for function naming and arguments,
both in position and type. These conventions are shown in the Sample
navigation module section of this training session.

The system can only select the right navigation type at run time based on
the first word of the navigation block or codicil. The selection is done by
a call to nvprep. In MCIDAS-OS2, nvprep links the correct navigation
module at run time. In MCIDAS-X, nvprep uses an arithmetic IF
statement to run the correct navigation module. Either way, the calling
sequences for all navigation services must be identical.

A navigation module should never crash, regardless of its inputs, or return
an erroneous solution. If the input cannot be transformed, it must return an
error status. The application is then responsible for handling the error
properly. To ensure this is done, write your navigation modules so that if
an error occurs, the module returns outrageous transform results and an
error status. During development, this will help you uncover bugs in the
applications that use the modules.

Designing and Implementing Navigation Modules McIDAS Developer/Operator Training
7-2 October 24, 1995

Navigation module design

The interface requirements determine the navigation module design.
McIDAS navigation modules are polymorphic. This means they have
identical entry points and perform similar operations, regardless of
navigation type. The type of transformation (the algorithm) and the
particular instance of that transformation (parameters) are hidden in the
module. The drawing below shows how a navigation module encapsulates
its algorithm and parameters while presenting a familiar polymorphic face
to the applications.

Navigation module components and interface

Earth
Image (latitude, longitude
(line, element) orX,Y,Z)
l Status
i\ NVXSAE §
Parameters ~E Parameters ' _ Special Service
o (data) i Request, Conditions
} NVXINI NVXOPT:
Algorithms
Status . Status -
. {7 NVXBAS O\
T Status l
Earth Image

All navigation modules contain the four functions below.

Function Description

nvxini initializes the navigation module

nvxsae converts image to earth coordinates; used by the E
command

nvxeas converts earth to image coordinates; used by the
PCE command

nvxopt performs other special services besides image-earth
transforms

The actual navigation algorithms (equations) are coded in the module. The
application initializes the module by passing it parameters, which are
stored in the module between service calls. They may be altered only by
the application via a call to nvxini to reinitialize the module. nvxini and
the three navigation services all return a status.

McIDAS Developer/Operator Training Designing and Implementing Navigation Modules

October 24, 1995

7-3

Navigation algorithm

Published map projections typically contain only equations to transform
latitude and longitude onto a Cartesian system on the projection surface.
Y ou must understand the projection’s properties and often must also derive
an inverse transformation and equations to convert between McIDAS earth
and image coordinates and earth and projection coordinates, respectively,
used by the projection.

Coordinate conventions

The primary navigation algorithms convert image lines and elements (L,E)
to latitudes and longitudes (Lat,Lon) using nvxsae or forward navigation.
They convert (Lat,Lon) to (L,E) using nvxeas or inverse navigation.

Use the McIDAS conventions below for earth and image coordinates.

Latitudes and Longitudes

As shown in the drawing below, latitudes are in degrees positive north of
the equator; the range is -90 to +90, inclusive. Longitudes are in degrees
positive west of the Greenwich (prime) meridian; the range is -180 to
+180. Because the longitude convention differs from standard
cartographic practice, and the treatment of the date line is ambiguous, you
should be careful to handle longitude consistently.

Designing and Implementing Navigation Modules McIDAS Developer/Operator Training
7-4 October 24, 1995

Image coordinates

Image coordinates are in lines and elements, as shown below, and may
contain a fractional component. It is convenient to think of (L,E) as
defining a right-handed coordinate system with its origin in the upper-left
of the image as displayed on the screen.

Image coordinates are the basic coordinate system for data stored in both
AREA files and the TV display. Area and TV coordinates can be
converted to or from image coordinates using information in the area
directory or frame directory, respectively. Navigation modules all operate
directly on image coordinates.

(Origin)

-

Image Coordinates

Navigation example - the tangent cone projection

As an example, we will implement a navigation module for a tangent cone

projection (Saucier 1983). All we are given is the following:

* apair of equations for R and 0, which are the polar coordinates on
the developed projection surface, in terms of y and A

* athird equation for map scale ¢ as a function of y

This is typical. The cartographers who develop map projections speak their
own language and use their own symbols and conventions. As a McIDAS
navigation module developer, you must bridge the gaps. It is generally
easier to work in the variables of the projection and convert to and from
MCcIDAS earth coordinates as a pre- or post-processing step.

As shown in the drawings on the next page, the projection’s earth
coordinates are y and A, or colatitude and longitude. Colatitude is
measured in radians, beginning from 0 at the pole of the projection, which
is the apex of the tangent cone. The longitude is also in radians with 0 at
the prime meridian, but is positive to the east.

I-Saucier, W. J. 1983: Principles of meteorological analysis. Dover Publications, Inc., New York.

438 pp.

McIDAS Developer/Operator Training

October 24, 1995

Designing and Implementing Navigation Modules

7-5

Designing and Implementing Navigation Modules

7-6

The colatitude at which the cone is tangent to the Earth is y,, or the
standard colatitude. At this colatitude, distance on the imaginary tangent
cone exactly matches distance on Earth. Elsewhere, distances on the cone
are larger than on the Earth by a factor o, which is a function of y only.

This is the mathematical price paid for representing the curved earth on a
flat surface. This particular projection is conformal, meaning the scale at
a point is independent of direction. This is not true of all projections.

The projection converts earth coordinates to projection coordinates R and
0 on the developed surface. Think of the projection as being made by
removing the tangent cone from the Earth, cutting it along the longitude
opposite the standard longitude A,, and flattening it. The radius R of a point
on the cone is its distance from the apex. The bearing 6 of the point is the
angle between the meridian of the standard longitude A, and a meridian
through the point, with counterclockwise 0 positive.

Navigation Algorithms

Feeo

Standard
Yo, Lon R,9)
X 6=0

S) ==

Ny =

«‘Iﬁ’b'
" y

Standard
Lat EQ
Cone tangent to sphere Cone-cut and flattened
v oo 7%

McIDAS Developer/Operator Training
October 24, 1995

Algorithm development

Derived tangent cone navigation transforms use the following symbols.

Symbol Meaning

a Earth radius

E image element

E, image element location of the North Pole
L image line

L, image line location of the North Pole

Lat latitude; McIDAS convention

Lon longitude; McIDAS convention

m map scale, in km per pixel at standard latitude

R radius on the projection surface, in km

A longitude; projection convention

Ao standard longitude; projection convention

6 bearing from standard longitude (and element axis) on
the projection surface

\} colatitude

Yo standard colatitude

Note the limiting cases and singularities

The equations for R and 6 are shown below.

COS Y,
R=a mwo[(mﬂz{)/(mﬂ’z_o)} . 1)

Inspection reveals that a divide-by-zero will occur for y, of 0. For y, of
n/2, the leading tany, in the expression for R will tend to infinity, leading
to another singularity. You must recognize and reject these choices of
standard colatitude (North Pole and equator, respectively).

For y,> n/2, which is a standard colatitude in the Southern Hemisphere,
the leading tany, term in the expression for R is negative, leading to
negative radii. It is unclear if this would be consistent for a tangent cone
with its apex over the South Pole. You would also have to reconsider the
sign convention for longitude (A) for the Southern Hemisphere. For a fully
general navigation module, you should resolve these difficulties to support
Southern Hemisphere tangent cones. However, in this training session, we
will exclude y, > n/2,

McIDAS Developer/Operator Training Designing and Implementing Navigation Modules
October 24, 1995 7-7

You should also note that the valid range of 8 is not -n <6 < 7 but -n cosy,
<6 <7 cosy,. This means that points in the pie-wedge region where the
cone was cut and flattened are not navigable and should be rejected as
arguments to inverse navigation. Also note that as y—m, R—c0, meaning
the South Pole is unnavigable in practice and should be excluded. The
limits on inputs are summarized below.

Parameters
0<y,<m/2 standard colatitude is confined to the
Northern Hemisphere
-2 <Xy < T/2 standard longitude must be a legal value
Earth coordinates
O<y<nm all colatitudes are navigable except the
South Pole
-T<AST all longitudes are navigable
Image coordinates
R>0 no valid earth location maps to -R

-2mcos(y,) <0 < 2mcos(y,) area in the split region of the flattened
cone is not navigable; exclude it as
an input

Derive the inverse transform

The next step is to derive the forward transform (R,0) to (y,)A) from the
inverse transform provided by algebraic manipulation of (1) and (2),
yielding the two equations below.

1

-1 cosy,
y = 2tan tan\ﬁ(;R—) (3)
2 tany,
and
W P @)
cosy,
Designing and Implementing Navigation Modules McIDAS Developer/Operator Training

7-8 October 24, 1995

Extend transforms to McIDAS API units

Now write the equations for the conversions between McIDAS and the
projection earth coordinates. They are straightforward, involving a degree-
radian conversion, the definition of colatitude and latitude, and the
differing convention for positive longitude as shown below.

T Y T
T T o L, 5
=g . 180 ")
and
Lat = 90-180y Lon = - 180)
4 1Y

To understand the conversion between (R,0) and screen coordinates,
imagine the flattened cone superimposed on your image coordinate system
with the standard longitude parallel to the left edge of the screen. You will
want to specify the location of the pole on the image (L,,E,) and the map
scale m (distance on the cone in km per pixel). Although the convention
that the standard longitude A, lies along a constant element value could be
relaxed by adding another parameter for rotation, this has not been done.
Simple trigonometry yields these conversions between (R,0) and (L,E).

L. L0+Rcose Bots Eo+Rsin() %)
m m
and
2 2
R = m,J(L-Lo)+ (E-Ep) @)

0 = tan '[(E-Eg)/(L-Ly)]

Additional operations

Optional services can involve the computation of anything about the
projection that an application needs. The example here is the computation
of the scale factor at any point on the Earth. The expression for ¢ gives the
ratio of the map scale at a given y to that at y,, so the actual map scale
M(v) is just mo(y), where m is km per pixel specified at y,.

SINYo\[tany 7%5Yo
M(y) = mo(y) = m (S0 lamy ©)
siny /[tany
McIDAS Developer/Operator Training Designing and Implementing Navigation Modules

October 24, 1995 7-9

Implementing navigation modules

To implement your navigation module, you should know the special
coding conventions for McIDAS-X and the architecture of the module.

Coding conventions in McIDAS-X

Navigation modules must conform to the following coding conventions to
build properly in MCIDAS-X.

* The name declaration for each function must be uppercase:
INTEGER FUNCTION NVXINI(...

* The word COMMON in all common block definitions must be in
uppercase, and no more than one space must occur between it and
the / at the beginning of the common block name. The use of
unnamed (blank) common is generally a risky practice; it is not
allowed here.

* The words FUNCTION, COMMON, and any of the interface
function names NVXINI, NVXSAE, NVXEAS, and NVXOPT
should not occur in comments.

These restrictions are necessary because dynamic linking is not presently
supported in MCIDAS-X. To emulate dynamic linking to allow more than
one navigation module (slot) to be used by an application at a time (as for
REMAP), the scripts that build navigation for MCIDAS-X generate three
distinct source modules, each with unique interface function names.

Common blocks are also renamed to avoid collisions between modules.
The coding conventions above make it possible for the scnpts to recognize
those names that need to be modified.

Designing and Implementing Navigation Modules McIDAS Developer/Operator Training
7-10 October 24, 1995

Sample code description

Two sample source files are provided at the end of this document:
» sample navigation module
» sample application

Each is described below. Numbers in bold type refer to the numbered lines
in the examples.

Sample navigation module

The sample navigation module contains the four routines nvxini, nvxsae,
nvxeas, and nvxopt required for all navigation modules.

When called from an application via nvprep to initialize the module (first
argument option value of 1), nvxini validates the navigation type [150]. It
then converts the parameters to floating point [154-158], checks their
validity, and converts them from McIDAS to projection form [166-212]. If
successful, it stores them and some intermediate quantities needed by the
navigation transform [199-202] in the common block [118-120] and sets
the initialization flag [246]. nvxini is also used by applications to select the
form of the Earth coordinates, latitude-longitude or Cartesian, by
specifying a value of 2 for argument option and a value of LL or XYZ for
the second argument param. Lines 224-235 interpret these inputs and
either set or clear the flag Latlon, also stored in the common block.

Forward navigation (nvxsae) first verifies that the navigation module is
initialized [368-371]. It then converts the incoming image coordinates into
projection R and 6 [376-380]. Range checking is then applied [385-388]
according to the conditions derived earlier (see the Algorithm development
section). The actual navigation transform is very short [393-397]. The
earth coordinates are then made to conform to the McIDAS convention
[403-405] and, if necessary, converted from latitude-longitude to
Cartesian coordinates using McIDAS library routine nlixyz [408].

Inverse navigation (nvxeas) follows a similar pattern. The module state is
checked [539-542], incoming earth coordinates are converted to McIDAS
latitude and longitude, if required by the current navigation option [548-
555], and the range is checked [560-573]. When this is done, the latitude
and longitude are converted from McIDAS to projection convention
[575-590], the transform is applied [598-599], and image coordinates are
computed [609-610].

McIDAS Developer/Operator Training Designing and Implementing Navigation Modules
October 24, 1995 7-11

nvxopt first verifies that the module is initialized [720-723]. It then
examines the name of the special service request [729 and 749]. At
present, only SCAL is supported; other options return an error status
[753-754]. As in nvxsae and nvxeas, the SCAL option in nvxopt involves
an input range check [734-740], conversion from McIDAS to projection
form of Earth coordinates [742], and algorithm evaluation [746].

Sample application

The sample application is the source code for the McIDAS command
MAKTANC, which creates an area with tangent cone navigation. Areas
produced with MAKTANC can be used by the REMAP command. The
tangent cone map shown earlier was prepared using MAKTANC.

The sample application shows how a navigation block is prepared and
inserted into an area. Most of the code fetches user input from the
command line and prepares a consistent set of navigation parameters. Five
parameters (line and element of pole, standard latitude, standard longitude,
and scale) are required. These can either be entered directly using the
POLE, SLAT, SLON, and SSCALE keywords (see the help section of the
code sample), or computed from the latitude, longitude, and scale at the
center of the area being created. Lines 222-247 create the area directory.
Lines 253-258 then fill the block with the navigation type and parameters,
and lines 260-262 insert the block into the area. Note that the order and
scaling of these parameters exactly matches that in the tangent cone
initialization module nvxini. See lines 17-22 of the sample navigation
module.

Designing and Implementing Navigation Modules McIDAS Developer/Operator Training
7-12 October 24, 1995

Integrating navigation modules into McIDAS

When the navigation module is coded, you must incorporate it into
MCcIDAS for testing and use by placing the source code in the proper
directory and running the appropriate McIDAS tools.

McIDAS-OS2

McIDAS-X

Copy the navigation module source code (our example is
NVXTANC.DLM) into the \mcidas\working directory and run the
following three commands from the OS/2 command line.

F NVXTANC DL NAVLIB NV1TANC
F NVXTANC DL NAVLIB NV2TANC
F NVXTANC DL NAVLIB NV3TANC

These commands invoke the F.CMD script and produce NVITANC.DLL,
NV2TANC.DLL, and NV3TANC.DLL in \mcidas\user\code. The

navigation for TANC codicils is immediately available; it is not necessary
to recompile applications.

Integrating a user-developed navigation module into McIDAS-X is more
complicated because of the lack of dynamic linking. Copy the source
NVXTANC.DLM into the mcidas/working directory and run the
following procedure from the Unix prompt.

fx nvxtanc dl

This procedure generates, compiles, and files in the user library the three
source files nvxtancl.f, nvxtanc2.f, and nvxtanc3.f, each with unique
generated names for all function calls and common blocks. Then, you must
generate a new nvprep.for with explicit references to the new navigation
type by running the two commands below at the Unix prompt.

nav_init -mcidas/mcidas2.1/src/nv*.dlm nvx*.dlm > nvprep.for
fx nvprep 1li

You must then recompile all applications that use navigation before they
can access the new type. Note that ~mcidas/mcidas2.1/src is the directory

where the core McIDAS-X source can be found for version 2.1. Adjust this
accordingly for other versions of McIDAS-X.

McIDAS Developer/Operator Training Designing and Implementing Navigation Modules

October 24, 1995

7-13

Sample navigation module

The sample navigation module, NVXTANC.DLM is provided below.

0001: C THIS IS SSEC PROPRIETARY SOFTWARE - ITS USE IS RESTRICTED.
0002:
0003: C *** McIDAS Revision History ***
0004: C *** McIDAS Revision History #***
0005:
0006: *$ Name:
0007: *$ nvxini - Initialize navigation for tangent cone projection
0008: *
0009: *$ Interface:
0010: *$ integer function
0011: *$ nvxini (integer option, integer param(*))
0012: *$
0013: *$ Input:
0014: *$ option - 1 to set or change projection parameters
0015: *$ option - 2 set output option
0016: *$ param - For option 1:
0017: *$ param(1) = 'TANC!'
0018: *$ param(2) = image line of pole*10000
0019: *$ param(3) = image element of pole*10000
0020: *$ param(4) = km per pixel *10000
0021: *$ param(6) = standard latitude *10000
0022: *$ param(7) = standard longitude *10000
0023: *$§ for option 2:
0024: *$ param(1) = 'LL' or 'XYZ'
0025: *$
0026: *$ Input and Output:
0027: *$ none
0028: *$
0029: *$ Output:
0030: *$ none
0031: *$
0032: *$ Return values:
0033: *$ 0 - success
0034: *3 -3 - invalid or inconsistent navigation parameters
0035: *$ -4 - invalid navigation parameter type
0036: *§ -5 - invalid nvxini() option
0037: *$
0038: *$ Remarks:
0039: *$ Latitudes and longitudes are in degrees, West positive.
0040: *$ Projection parameters must be in the following ranges:
0041: *$ 0. < standard latitude < 90.
0042: *$ -180. <= standard longitude < 180.
0043: *3 0. < scale
0044: *$ Accuracy may suffer near the standard latitude limits.
0045: *$
0046: *$ The projection algorithm is adapted from that in
0047: *$ Saucier, W. J. 1989: Principles of meteorological analysis.
0048: *$ Dover Publications, Inc. 433 pp.
0049: *
0050: *$ Categories:
0051: *$ navigation
0052:
0053: C // CODING CONVENTION note: function declarations and common
0054: C // block declarations are all capitalized to be recognizeable
0055: C // to script 'convdlm;' this is necessary for a correct build
0056: C // in MCIDAS-X. For the same reason, one must avoid referring
0057: C // to function or common block names in upper case elsewhere
0058:
0059: INTEGER FUNCTION NVXINI (option, param)
0060:
0061:
Designing and Implementing Navigation Modules McIDAS Developer/Operator Training

7-14

October 24, 1995

0062:
0063:
0064:
0065:
0066:
0067:
0068:
0069:
0070:
0071:
0072:
0073:
0074:
0075:
0076:
0077:
0078:
0079:
0080:
0081:
0082:
0083:
0084:
0085:
0086:
0087:
0088:
0089:
0090:
0091:
0092:
00893:
0094:
0095:
0096:
0097:
0098:
0099:
0100:
0101:
0102:
0103:
0104:
0105:
0106:
0107:
0108:
0109:
0110:
0111:
0112:
0113:
0114:
0115:
0116:
0117:
0118:
0119:
0120:
0121:
0122:
0123:
0124:
0125:
0126:
0127:
0128:
0129:
0130:
01313
0132:
0133:

McIDAS Developer/Operator Training

a o N0 00

nnNnan

October 24, 1995

implicit NONE

// Interface variables (formal arguments)

integer option ! initialization option

integer param(*) ! navigation parameters or
i ! output coordinate type

// Local variable definitions

character*4 navtyp ! codicil type
character*4 outcoord ! output coordinate type
real lato ! standard latitude
character*80 cbuf ! text output buffer

LITILTTIIPTT0T 70077777077 700771707711177777177717707711771777

Common block variables and declaration.

ALL CODE BETWEEN THE '//////' SEPARATORS MUST BE
DUPLICATED EXACTLY IN EACH NAVIGATION ROUTINE

(A more maintenance-safe version would use ENTRY points
rather than separate functions for the navigation API
but entry points cannot be processed by 'convdlm.')

// Common block contents: projection parameters

real Lino ! image line of pole
real Ele0 ! image element of pole
real Scale ! km per unit image

! coordinate (pixel)
real Lon0 ! standard longitude
real ColatO ! standard colatitude

// Common block contents: pre-computed intermediate values

real Coscl ! cosine (Colat0)

real Tancl ! tangent (Colat0)

real Tancl2 ! tangent (Colat0/2)

real Mxtheta ! limit of angle from std.
1

lon on projection surface

// Common block contents: constants

real D2R ! degrees to radians factor
real Pi
real Badreal ! returned when navigation
! cannot be done
real Erad ! Earth radius
logical Init ! initialized flag
!

logical Latlon .TRUE. for lat/lon I/O

COMMON/TANC/ LinO, EleO, Scale, Lon0O, ColatO,
& Coscl, Tancl, Tancl2, Mxtheta,
& D2R, Pi, Badreal, Erad, Init, Latlon

End of common block variables and declaration.

LITITTTTTIE7T 7077771077777 77177777777771717711777177177771717

// Begin initialization process by setting constants.

! This value of Erad is ok
! for "low-precision" nav

! where spherical Earth is
! adequate (Saucier, p. 32)

Erad = 6370.

Designing and Implementing Navigation Modules
7-15

0134:
0135:
0136:
013%:
0138:
0139:
0140:
0141:
0142:
0143:
0144:
0145:
0146:
0147:
0148:
0149:
0150:
03181
0152:
0153:
0154:
0155:
0156:
0157:
0158:
0159:
0160:
0161:
0162:
0163:
0164:
0165:
0166:
0167:
0168:
0169:
0170:
03172
0172:
01733
0174:
0175:
0176:
0177:
0178:
0179:
0180:
0181:
0182:
0183:
0184:
0185:
0186:
0187:
0188:
0189:
0190:
0191:
0192:
0193:
0194:
0195:
0196:
0197:
0198:
0199:
0200:
0201:
0202:
0203:
0204:
0205:

Designing and Implementing Navigation Modules

7-16

naonan N

(o

84
C

Pi = acos(-1.)
D2R = Pi / 180.
Badreal = -1.E10 ! obvious unreasonable value

! for nav transform result
// Process initialization options. Only one, initialize
// navigation parameters, is supported in this demo version,
// but a 'hook' is left for an additional option to set the
// output coordinate to something other than lat/lon
if(option.eq.1l) then
call DDEST('nvxini (tanc) option=1',0)

call movwc (param(1l),navtyp)
if (navtyp.eq.'TANC') then

// Unpack tangent cone projéction parameters

Lin0 = param(2) / 10000.

Ele0 = param(3) / 10000.

Scale = param(4) / 10000.

lato = param(5) / 10000.

Lon0 = param(6) / 10000.

write(cbuf,'('' nvxini: lat0, LonO '',2F12.4)"')
lat0, LonO

call DDEST (cbuf, 0)
// apply range checking

if (Scale.le.0.) then
call DDEST('nvxini (tanc) scale is negative',0)

Init = .FALSE.
NVXINI = -3
return
end if
if(lat0.le.0. .or. lat0.ge.90.) then
call DDEST('nvxini (tanc) std lat out of range',0)
Init = .FALSE.
NVXINI = -3
return
end if

if (Lon0.le.-180. .or. Lon0.gt.180.) then
call DDEST ('nvxini(tanc) std lon out of range',0)

Init = .FALSE.
NVXINI = -3
return

end if

// convert degrees to radians and latitude to colat.
// Bccount for McIDAS longitude convention

-Lon0 * D2R
Pi/2. - D2R*1lat0

Lon0
Colat0

write (cbuf, ' ('' nvxini: Colat0, Lon_0 '',62F12.4)"')
Colat0, Lon0
call DDEST (cbuf,0)

// Compute intermediate quantities

Coscl = cos (Colat0)

Tancl = tan(Colato0)

Tancl2 = tan(Colat0/2.)

Mxtheta = Pi*Coscl

write(cbuf, ' ('' nvxini: Coscl, Tancl'', 2F7.4)"')

Coscl, Tancl

McIDAS Developer/Operator Training
October 24, 1995

MCcIDAS Developer/Operator Training

October 24, 1995

call DDEST (cbuf,0)

write(cbuf,'('' nvxini: Tancl2, Mxtheta '', 2F7.4)"')
* tancl2, Mxtheta
call DDEST (cbuf, 0)

Latlon = .TRUE.

else ! option=1 but type not 'TANC'

call DDEST('nvxini(tanc) parameter type bad',0)

Init = .FALSE.
NVXINI = -4
return
end if
else if (option .eq. 2) then

call movwc (param(l),outcoord)

if (outcoord.eq.'LL') then
Latlon = .TRUE. ;
else if(outcoord.eq.'XYZ') then
Latlon = .FALSE.
else
call DDEST('opt=2 coord '//outcoord//' unknown',0)
Init = .FALSE.
NVXINI = -5
end if

else ! option not 1 or 2

call DDEST('nvxini (tanc) unknown option ', option)

NVXINI = -4
return
end if
NVXINI =0
Init = .TRUE.
return
end

Name:

nvxsae - Compute earth coordinates from image coordinates
Interface:

integer function

nvxsae(real lin, real ele, real dummy,

real el, real e2, real e3)

Input:

lin - image line

ele - image element

dummy - (unused)
Input and Output:

none
Output:

el - latitude or x

e2 - longitude or y

e3 - height or 2
Return values:

0 - success
-1 - input data physically valid but not navigable

Designing and Implementing Navigation Modules
7-17

Designing and Implementing Navigation Modules

7-18

*3 given the specified projection

*$ -6 - module not initialized

*$

*$ Remarks:

*$ The navigation module must first be initialized with
*$ a call to nvxini(). The output form (lat,lon) or (x,y,z)
*$ depends on the last call to nvxini() with option 2.

*S i

*$ Categories:

*$ navigation

INTEGER FUNCTION NVXSAE(lin, ele, dummy, el, e2, e3)

implicit NONE
C // Interface variables (formal arguments)
real lin ! image line to navigate
real ele ! image element to navigate
real dummy ! (unused argument)
real el ! Earth coordinate 1
real e2 ! Earth coordinate 2
real e3 ! Earth coordinate 3
€ // Local variables
real lat ! latitude (McIDAS convention)
real lon ! longitude (McIDAS convention)
real hgt ! height
real dx ! zonal displacement from pole
C ! on projection surface
real dy ! meridional. displacement from pole
real radius ! distance from pole on projection
real theta ! angle from standard longitude on
& ! projection surface
real colat ! colatitude of navigated point
C [ITTTT71T777777077777117171717777777177117117177711177111717
C Common block variables and declaration.
c ALL CODE BETWEEN THE '//////' SEPARATORS MUST BE
e DUPLICATED EXACTLY IN EACH NAVIGATION ROUTINE
o (A more maintenance-safe version would use ENTRY points
c rather than separate functions for the navigation API
e but entry points cannot be processed by 'convdlm.')
c // Common block contents: projection parameters
real LinO ! image line of pole
real Ele0 ! image element of pole
real Scale ! km per unit image
o ! coordinate (pixel)
real Lon0 ! standard longitude
real ColatO ! standard colatitude
c // Common block contents: pre-computed intermediate values
real Coscl ! cosine (Colat0)
real Tancl ! tangent (Colat0)
real Tancl2 ! tangent (Colat0/2)
real Mxtheta ! 1limit of angle from std.
C ! lon on projection surface
e // Common block contents: constants
real D2R ! degrees to radians factor
real Pi
real Badreal ! returned when navigation
{2 ! cannot be done
real Erad ! Earth radius

McIDAS Developer/Operator Training
October 24, 1995

0350: logical Init ! initialized flag

0351: logical Latlon ! .TRUE. for lat/lon I/0
0352:
0353:
0354: COMMON/TANC/ Lin0O, Ele0, Scale, Lon0, ColatoO,
0355: & Coscl, Tancl, Tancl2, Mxtheta,
0356: & D2R, Pi, Badreal, Erad, Init, Latlon
0357:
0358: C End of common block variables and declaration.
0359: C [I17777717777777777777771771777777777177777777777777777777777
0360:
0361: el = Badreal
0362: e2 = Badreal
0363: e3 = Badreal
0364: '
0365:
0366: C // verify initialized module
0367:
0368: if (.not.Init) then
0369: NVXSAE = -6
0370: return
0371: end if
0372:
0373 ¢
0374: C // Compute radius and bearing from pole
0375:
0376: dx = Scale* (1lin-Lin0)
0377: dy = Scale* (ele-Ele0)
0378:
0379: radius = sqgrt (dx*dx+dy*dy)
0380: theta = atan2 (dy, dx)
0381:
0382:
0383: <C // Range check theta to determine if point is navigable
0384:
0385: if (theta.le.-Mxtheta .or. theta.gt.Mxtheta) then
0386: NVXSAE = -1
0387: return
0388: end if
0389:
0390: C // Forward navigation: compute longitude and colatitude
0391: C // from radius and theta
0392:
0393: lon = Lon0 + theta/Coscl
0394: if (lon.le.-Pi) lon = lon + 2.d0*Pi
0395: if (lon.gt. Pi) lon = lon - 2.dO0*Pi
0396:
0397: colat = 2.*atan(Tancl2 * (radius/(Erad*Tancl))**(1./Coscl))
0398:
0399: C // Rescale to McIDAS convention (degrees, West positive).
0400: C // Bpply conversion to Cartesian coordinates if 'XYZ' set
0401: C // as output form. Set return code for success.
0402:
0403: lon = -lon/D2R
0404: lat = 90. - colat/D2R
0405: hgt = 0.
0406:
0407: if (.not.Latlon) then
0408: call nllxyz(lat,lon,el,e2,e3)
0409: else
0410: el = lat
0411: e2 = lon
0412: e3d = 0.
0413: end if
0414:
0415: NVXSAE =0
0416:
0417: return
0418: end
0419:
0420:
0421:
McIDAS Developer/Operator Training Designing and Implementing Navigation Modules

October 24, 1995 7-19

0423: *$ Name:

0424: *$ nvxeas - Compute image coordinates from earth coordinates
0425: *§

0426: *$ Interface:

0427: *$ integer function

0428: *3 nvxeas(real el, real e2, real e3,

0429: *§ real lin, real ele, real dummy)

0430: *$

0431: *$ Input:

0432: *$ el - latitude or x

0433: *$ e2 - longitude or y

0434: *$ e3 - height or z

0435: *§

0436: *$ Input and Output:

0437: *§ none

0438: *$

0439: *$ Output:

0440: *$ lin - image line

0441: *$ ele - image element

0442: *§ dummy - (unused)

0443: *§

0444: *$ Return values:

0445: *§ 0 - success

0446: *$ -1 - input data physically valid but not navigable
0447: *$ given the specified projection

0448: *$ -2 - input data exceed physical limits

0449: *3 -6 - module not initialized

0450: *$

0451: *$ Remarks:

0452: *§ The navigation module must first be initialized with
0453: *§ a call to nvxini(). The input form (lat,lon) or (x,y,z)
0454: *$ depends on the last call to nvxini() with option 2.
0455: *$ Input longitude may be in the range -360 to +360;
0456: *$ values outside this range will not be denavigated.
0457: *$ Height (hgt) is ignored.

0458: *$

0459: *$ Categories:

0460: *§ navigation

0461:

0462: INTEGER FUNCTION NVXEAS(el, e2, e3, lin, ele, dummy)
0463:

0464: implicit NONE

0465

0466: C // Interface variables (formal arguments)

0467:

0468: real el ! Earth coordinate 1

0469: real e2 ! Earth coordinate 2

0470: real e3 ! Earth coordinate 3

0471: real lin ! image line to navigate

0472: real ele ! image element to navigate
0473: real dummy ! (unused argument)

0474:

0475: C // Local variables

0476:

0477: real lat ! latitude (McIDAS convention)
0478: real lon ! longitude (McIDAS convention)
0479: real hgt ! height

0480: real in_lon ! input longitude (radians,
0481: C ! East positive)

0482: real colat ! colatitude

0483: real radius ! distance from pole on projection
0484: real theta ! angle from standard longitude on
0485: C ! projection surface

0486

0487: C [IT170777177777771171777777177777777777711177777177717717777%7
0488: C Common block variables and declaration.

0489

0490: C ALL CODE BETWEEN THE '//////' SEPARATORS MUST BE

0491: C DUPLICATED EXACTLY IN EACH NAVIGATION ROUTINE

0492

0493: C (A more maintenance-safe version would use ENTRY points

Designing and Implementing Navigation Modules

7-20

MCcIDAS Developer/Operator Training
October 24, 1995

0494:
0495:
0496:
0497:
0498:
0499:
0500:
0501:
0502:
0503:
0504:
0505:
0506:
0507:
0508:
0509:
0510:
0511:
0512:
0513:
0514:
0515:
0516:
0517:
0518:
0519:
0520:
0521:
0522:
0523:
0524:
0525:
0526:
0527:
0528:
0529:
0530:
0531:
0532:
0533:
0534:
0535:
0536:
0537:
0538:
0539:
0540:
0541:
0542:
0543:
0544:
0545:
0546:
0547:
0548:
0549:
0550:
0551:
0552:
0553:
0554:
0555:
0556:
0557:
0558:
0559:
0560:
0561:
0562:
0563:
0564 :
0565:

McIDAS Developer/Operator Training

nnNnN

October 24, 1995

rather than separate functions for the navigation API
but entry points cannot be processed by 'convdlm.')

// Common block contents: projection parameters

real LinO ! image line of pole
real Ele0 ! image element of pole
real Scale ! km per unit image

! coordinate (pixel)
real Lon0 ! standard longitude
real Colato0 ! standard colatitude

// Common block contents: pre-computed intermediate values

real Coscl ! cosine (Colat0)

real Tancl ! tangent (Colat0)

real Tancl2 ! tangent (Colat0/2)

real Mxtheta ! 1limit of angle from std.
!

lon on projection surface

// Common block contents: constants

real D2R ! degrees to radians factor
real Pi .
real Badreal ! returned when navigation
! cannot be done
real Erad ! Earth radius
logical Init ! initialized flag
]

logical Latlon .TRUE. for lat/lon I/O

COMMON/TANC/ LinO, Ele0O, Scale, Lon0, Colato,
& Coscl, Tancl, Tancl2, Mxtheta,
& D2R, Pi, Badreal, Erad, Init, Latlon

End of common block variables and declaration.

HILTLLITITETIIII I EL TP 202020707 00007771771711711171717111117

lin = Badreal
ele = Badreal
dummy = Badreal

// verify that module is initialized

if(.not.init) then
NVXEAS = -6
return

end if

// Preprocess input values. If mode is 'XYZ' first convert
// from Cartesian to lat/lon. If mode is 'LL' just transcribe
// from arguments.

if (Latlon) then

lat = el
lon = e2
hgt = e3
else
call nxyzll(el, e2, e3, lat, lon)
hgt = 0.
end if

// check that input values are physically possible and
// then convert to radians and East positive

if (lat.lt.-90. .or. lat.gt.90.) then
NVXEAS = -2
return

end if

if(lon.le.-360..0r.lon.gt.360.) then

Designing and Implementing Navigation Modules
7-21

0566 NVXEAS = -2
0567 return
0568 end if
0569 :
0570 if(lat.eq.-90. .or. lat.eq.90.) then
0571 NVXEAS = -1
0572 return
0573 end if
0574
0575 colat = Pi/2. - D2R¥lat
0576: in_lon = -D2R*lon
0577
0578: C // map longitude into range -Pi to Pi
0579:
0580 if (in_lon.le.-Pi) in_lon = in_lon + 2.*Pi
0581 if(in_lon.gt. Pi) in_lon = in_lon - 2.*Pi
0582
0583
0584: C // Now trap South Pole. Though a valid latitude,
0585: C // tan(colat/2) -> infinity there so it is not navigable
0586
0587 if (colat.eqg.Pi) then
0588 NVXEAS = -1
0589 return
0590 end if
0591
0592
0593 € // Compute radius and theta of point on projection surface.
0594: C // Theta is tricky; you have to compute offset relative
0595: C // to standard longitude, force that into -pi to +pi range,
0596: C // and THEN scale by cos(Colat0)
0597
0598: radius = Erad * Tancl *(tan(colat/2.)/Tancl2) ** Coscl
0599: theta = in_lon-Lon0
0600
0601 if (theta.le.-Pi) theta = theta + 2.*Pi
0602 if (theta.gt. Pi) theta = theta - 2.*Pi
0603
0604 theta = Coscl * theta
0605:
0606
0607: C // Compute line and element
0608
0609 lin = Lin0 + radius*cos (theta)/Scale
0610 ele = Ele0 + radius*sin(theta)/Scale
0611 dummy = 0.
0612
0613 " NVXEAS =0
0614
0615 return
0616 end
0617
0618
0619:
0620: *$ Name:
0621: *$ nvxopt - Perform supplemental navigation operations
0622: *$
0623: *$ Interface:
0624: *$ integer function
0625: *§ nvxopt (integer option, real xin(*),
0626: *$ real xout (*))
0627: *$ Input:
0628: *$ option - 'SCAL' compute projection scale
0629: *$ xin (1) - latitude
0630: *$§
0631: *$ Input and Output:
0632: *$ none
0633: *§
0634: *$ Output:
0635: *$ xout (1) - km per pixel at given latitude
0636: *$
0637: *$ Return values:
Designing and Implementing Navigation Modules McIDAS Developer/Operator Training

7-22

October 24, 1995

0638:
0639:
0640:
0641:
0642:
0643:
0644:
0645:
0646:
0647:
0648:
0649:
0650:
0651:
0652:
0653:
0654:
0655:
0656:
0657:
0658:
0659:
0660:
0661:
0662:
0663:
0664 :
0665:
0666:
0667:

0668

.

0669:
0670:
0671:
0672:
0673:
0674:
0675:
0676:
0677:
0678:
0679:
0680:
0681:
0682:
0683:
0684:
0685:
0686:
0687:
0688:
0689:
0690:
0691:
0692:
0693:
0694:
0695:
0696:
0697:
0698:
0699:
0700:
0701:
0702:
0703:
0704:
0705:
0706:
0707:
0708:
0709:

McIDAS Developer/Operator Training

0 - success

-1 - input latitude physically valid, but projection
undefined or scale infinite there

-2 - input latitude exceeds physical limits

-5 - unrecognized option

-6 - module not initialized

*$ Remarks:

*$
29
*$
*$

The navigation module must first be initialized by
a call to nvxini(). Latitude is in degrees, north positive,
and must lie between -90. and +90.

*$ Categories:

*$

n NN oo a0

October 24, 1995

navigation
INTEGER FUNCTION NVXOPT(option, xin, xout)
implicit NONE

// Interface variables (formal arguments)

integer option ! special service name (character
! stored as integer)

real xin(*) ! input vector

real xout (*) ! output vector

// Local variables

character*4 copt ! special service (character form)
real colat ! input colatitude

///
Common block variables and declaration.

ALL CODE BETWEEN THE '//////' SEPARATORS MUST BE
DUPLICATED EXACTLY IN EACH NAVIGATION ROUTINE

(A more maintenance-safe version would use ENTRY points
rather than separate functions for the navigation API
but entry points cannot be processed by 'convdlm.')

// Common block contents: projection parameters

real LinO ! image line of pole
real Ele0 ! image element of pole
real Scale ! km per unit image

! coordinate (pixel)
real Lon0 ! standard longitude
real ColatO ! standard colatitude

// Common block contents: pre-computed intermediate values

real Coscl ! cosine(Colat0)

real Tancl ! tangent (Colat0)

real Tancl2 ! tangent (Colat0/2)

real Mxtheta ! limit of angle from std.
1

lon on projection surface

// Common block contents: constants

real D2R ! degrees to radians factor
real Pi
real Badreal returned when navigation

]

! cannot be done
real Erad ! Earth radius
logical Init ! initialized flag
logical Latlon ! .TRUE. for lat/lon I/O

COMMON/TANC/ LinO, Ele0, Scale, Lon0, Colato,
& Coscl, Tancl, Tancl2, Mxtheta,

Designing and Implementing Navigation Modules
7-23

Designing and Implementing Navigation Modules

7-24

0710:
0711:
0712:
0713:
0714:
0715:
0716:
0717:
0718:
0719:
0720:
0721:
0722:
0723:
0724:
0725:
0726:
0727:
0728:
0729:
0730:
0731:
0732:
0733:
0734:
0735:
0736:
0737:
0738:
0739:
0740:
0741:
0742:
0743:
0744:
0745:
0746:
0747:
0748:
0749:
0750:
0751 :
0752:
0753:
0754:
0755:
0756:
0757
0758:
0759
0760:

& D2R, Pi, Badreal, Erad, Init, Latlon
End of common block variables and declaration.
IITTIIIITIIIIIITTIT770077700017771171171771111117117717171717
xout (1) = Badreal
// verify initialized module
if (.not.init) then
NVXOPT = -6
return
end if
// Extract and interpret the option
call movwc (option, copt)
if (copt.eq.'SCAL') then

// Compute colatitude and make sure it is
// physically possible and navigable

if (xin(1).gt.90. .or. xin(1).1t.-90.) then

NVXOPT = -2
return
else if (xin(1).eq.90. .or. xin(1).eq.-90.) then
NVXOPT = -1
return
end if
colat = Pi/2. - D2R*xin(1)

// Now compute actual scale for this colatitude

xout (1) = scale
* * (sin(Colat0) * (tan(colat/2.) /Tancl2) **Coscl) /sin(colat)

else if (copt.eq.'????')
// Add code for additional options here

else
NVXOPT = -5
return

end if

NVXOPT = 0

return
end

McIDAS Developer/Operator Training
October 24, 1995

Sample application

A sample application, MAKTANC.PGM, which creates an area with
attached TANC navigation, is provided below.

0001: C THIS IS SSEC PROPRIETARY SOFTWARE - ITS USE IS RESTRICTED.
0002
0003: C *** McIDAS Revision History **¥*
0004: C *** McIDAS Revision History ***
0005
0006: C ? MAKTANC -- Create test area with tangent cone navigation
0007: C ? MAKTANC area lat lon <keywords>
0008: C ? Parameters:
0009: C ? area area number to create
0010: C ? lat latitude at center (def compute from POLE=)
0011: C ? lon longitude at center (def compute from POLE=)
0012: C ? Keywords:
0013: C ? POLE lin ele Image location of North Pole
0014: C ? (def compute from lat,lon)
0015: C ? SLAT standard latitude (def=lat)
0016: C ? SLON standard longitude (def=1lon)
0017: C ? SSCALE scale (km per pixel) at standard latitude
0018: C ? --or--
0019: C ? LSCALE scale (km per pixel) at center latitude
0020: C ? Remarks:
0021: C ? The standard latitude must be between 0 and 90, exclusive.
0022: C ? ==-eceeeu--
0023
0024 subroutine main0
0025
0026 implicit NONE
0027
0028: C // Parameters
0029
0030 integer NKEYS, MXANUM, NVWDS, DIRSIZ
0031 parameter (NKEYS=5, MXANUM=9999, NVWDS=128)
0032 parameter (DIRSIZ=64)
0033 integer PFXLEN, CALLEN, LEVLEN
0034 parameter (PFXLEN=0, CALLEN=0, LEVLEN=0)
0035 double precision PI, D2R, A
0036 parameter (A=6370.D0)
0037
0038: C // Local variables
0039
0040 character*12 keys (NKEYS) ! keywords
0041 logical cpoint ! center point specified ?
0042 integer slat_type ! standard latitude source
0043 integer slon_type ! standard longitude source
0044 integer aranum ! area number
0045 integer nvblk (NVWDS) ! navigation block
0046 integer adir (DIRSIZ) ! area directory
0047 integer i ! loop index
0048 double precision clat ! center latitude
0049 double precision clon ! center longitude
0050 double precision slat ! standard latitude
0051 double precision slon ! standard longitude
0052 double precision sscale ! scale at std latitude
0053 double precision lscale ! scale at center latitude
0054 double precision ratio ! scale ratio center:std
0055 double precision lin 0 ! image line of pole
0056 double precision ele 0 ! image element of pole
0057 double precision lin ¢ ! line of center
0058 double precision ele ¢ ! element of center
0059
0060
McIDAS Developer/Operator Training Designing and Implementing Navigation Modules

October 24, 1995

7-25

0061:
0062:
0063:
0064:
0065:
0066:
0067:
0068:
0069:
0070:
0071:
0072:
0073:
0074:
0075:
0076:
0077:
0078:
0079:
0080:
0081:
0082:
0083:
0084:
0085:
0086:
0087:
0088:
0089:
0090:
0091:
0092:
0093:
0094:
0095:
0096:
0097:
0098:
0099:
0100:
0101:
0102:
0103:
0104:
0105:
0106:
0107:
0108:
0109:
0110:
0111:
0112:
0113:
0114:
0115:
0116:
0117:
0118:
0119:
0120:
0121:
0122:
0123:
0124:
0125:
0126:
0127:
0128:
0129:
0130:
0131:
0132:

Designing and Implementing Navigation Modules

7-26

nn

wr vrn

double precision psi_0 ! standard colatitude
double precision psi_ ! colatitude

double precision lam 0 ! standard longitude
double precision lam ! standard longitude
double precision radius ! radius on projection
double precision theta ! bearing on projection

// External functions

character*12 cfi ! integer to string
integer luc ! User Common peek

integer B 2 cia ! integer from character*4
integer mccmdkey ! validate keywords
integer mcemdnum ! # values with keyword
integer mcemddll ! fetch latitude/longitude
integer mcemddbl ! fetch double precision
integer mcemdint ! fetche integer

// Initialization -------cmm e oo

data keys/'P.OLE', 'SLA.T', 'SLO.N', 'SS.CALE', 'LS.CALE'/

dacos(-1.40)
PI/180.d0

PI
D2R

non

// Validate key WOrds =----=---memmcmmooo oo
if (mccmdkey (NKEYS, keys) .lt. 0) return

if (mccmdnum (keys (4)) .gt.0.and.mccmdnum(keys(5)) .gt.0) then
call edest('Please use either SSCALE or LSCALE '//
'to set map scale',0)
return
end if

// Fetch command line arguments --=--=-=----cccooooooo_.

// 1f area already exists, shut down now. If not, create
// an area with the specified number

if (mcemdint (' ', 1, 'Number of area to create!',
1, 1, MXANUM, aranum).ne.l100) then
call edest('You must specify area number to create',0)
return
end if

call readd(aranum, adir)

if (adir (1) .eq.0) then
call edest('Area '//cfi(aranum)//' already exists',O0)
call edest('Please delete it or use another number', 0)
return

end if

// Fetch center latitude and longitude, if available

if((mcemddl1l(' ', 2, 'Center latitude',
0.do, -90.d0, 90.d0, clat).gt.1000) .and.
(mcemddll (' ', 3, 'Center longitude',
0.d0, -180.d0, 180.d0, clon).gt.1000)) then

cpoint = .TRUE.
else

cpoint
end if

.FALSE.

McIDAS Developer/Operator Training
October 24, 1995

0133:
0134:
0135:
0136:
0137:
0138:
0139:
0140:
0141:
0142:
0143:
0144:
0145:
0146:
0147:
0148:
0149:
0150:
0151:
0152:
0153:
0154:
0155:
0156:
0157
0158:
0159:
0160:
0161:
0162:
0163:
0164:
0165:
0166:
0167:
0168:
0169:
0170:
0171:
0172:
0173:
0174:
0175:
0176:
0177
0178:
0179:
0180:
0181:
0182:
0183:
0184:
0185:
0186:
0187:
0188:
0189:
0190:
0191:
0192:
0193:
0194:
0195:
0196:
0197:
0198:
0199:
0200:
0201:
0202:
0203:
0204:

McIDAS Developer/Operator Training

nnnonnn

October 24, 1995

Fetch standard latitude and longitude. If center point
was entered, use it as default. Otherwise, require that
a value be entered. Determine this by comparing 'cpoint'
flag and the return codes from mcemddll(). If cpoint is
not set, actual values (not the defaults) must have been
fetched for SLAT and SLON

NSNS
NN

slat_type = mccmddll (keys(2), 1, 'Standard latitude',
clat, 0.d0, 90.040, slat)

slon_type = mccmddll (keys(3), 1, 'Standard longitude',
clon, -180.d0, 180.d0, slon)

if(.not.cpoint .and.
(slat_type.ne.1550 .or. slon_type.ne.1550)) then
call edest('You must specify either a center point'//
' or SLAT= and SLON=',0)
return
end if
if(slat.le.0.d0 .or. slat.ge.90.d0) then
call edest ('SLAT must be BETWEEN 0 and 90',0)
if (cpoint) then
call edest('If you want a center point outside',0)
call edest('this range, you must use SLAT=, too',0)
end if
return
end if

psi_0 = PI/2.d0 - D2R*slat

// Fetch scale. A default is available for the absolute
// (standard latitude) scale. If local scale is specified,

if (mccmddbl (keys(4), 1, 'Scale (km/pixel at std lat)',
1.d0, 0.00140, 1000.d0, sscale) .lt.0) return
if (cpoint .and. mccmddbl (keys(5), 1,
‘Scale at center latitude', 1.d0, 0.001d0, 1000.d0,
lscale) .eq.1200) then

// Compute sscale from lscale, using standard latitude

psi = PI/2.40 - D2R*clat

ratio = (tan(psi/2.d0)/tan(psi_0/2.d0))**cos(psi_0) *
sin(psi_0) / sin(psi)

sscale = lscale*ratio

end if
// 1f a center point was not specified, fetch the location
// of the pole. Otherwise, compute it
if(.not.cpoint) then
if (mccmddbl (keys (1), 1, 'Image line of pole',0.d0,
1.d0, 0.d0, 1lin_0) .1lt.0) return

if (mccmddbl (keys(1), 2, 'Image element of pole',0.do,
1.40, 0.d0, ele_0) .1lt.0) return

else
psi = PI/2.d40 - D2R*clat
lam = - D2R*clon
lam 0 = - D2R*slon

radius = A * tan(psi_0) *
(tan(psi/2.d0) /tan(psi_0/2.d0)) **cos (psi_0)
theta = cos(psi_0)*(lam-lam_0)

lin_c¢ = dble(luc(11)) / 2.d0

Designing and IMplementing Navigation Modules
7-27

0205:
0206:
0207:
0208:
0209:
0210:
0211:
0212:
0213:
0214:
0215:
0216:
0217:
0218:
0219:
0220:
0221:
0222:
0223
0224:
0225:
0226:
0227:
0228:
0229:
0230:
0231:
0232:
0233:
0234:
0235:
0236:
0237:
0238:
0239:
0240:
0241:
0242:
0243:
0244:
0245:
0246:
0247:
0248:
0249:
0250:
0251:
0252:
0253:
0254:
0255:
0256:
0257:
0258:
0259:
0260:
0261:
0262:
0263:
0264:
0265:
0266:
0267:
0268:

Designing and Implementing Navigation Modules

7-28

ele_c = dble(luc(12)) / 2.d0

lin 0 = lin_c - radius*cos(theta)/sscale

ele 0 = ele_c - radius*sin(theta)/sscale
end if

// Now make the area

// Fill in the area directory and

do i=1,DIRSIZ

create the area

adir(i) = 0
end do
adir(1) = 0 existence flag
adir(2) = 4 format (interleaved)
adir(3) = 1 satellite ID (test area)
call getday(adir(4)) today's date
adir(5) = 0 hour 0
adir(6) = 1 image line upper left
adir(7) = 1 image element upper left
adir(9) = 1luc(1l) # lines (TV size)
adir(10) = 1luc(12) # elements (TV size)
adir(11) = 1 bytes per element
adir(12) = 1 line resolution
adir(13) = 1 element resolution
adir(14) = 1 number of bands
adir(15) = 0 y-z prefix (0 for image)
adir(16) = luc(1) project number logged on

call getday(adir(17))

creation date

call gettim(adir(18)) creation time

adir(19) = 1 set band 1 (least bit)
adir(34) = 4*DIRSIZ + 4*NVWDS nav block end (bytes)
adir (35) = 4*DIRSIZ nav block start (bytes)
adir(36) = 0 validity code

adir (49) = PFXLEN prefix length, bytes
adir(50) = CALLEN prefix cal length, bytes
adir(51) = LEVLEN prefix lev length, bytes
adir(52) = lit('VISR') sensor type

adir(53) = 1it('BRIT!') calibration type

call makara

(aranum, adir)

// Create and insert the navigation block

nvblk(1) = 1lit ('TANC') ! Tangent Cone nav type
nvblk(2) = nint (10000*1in_0) ! image line of pole
nvblk(3) = nint (10000*ele_0) ! image element of pole
nvblk(4) = nint (10000*sscale) ! scale km/pixel at slat
nvblk(5) = nint (10000*slat) ! standard latitude
nvblk(6) = nint(10000*slon) ! standard longitude

call araput (aranum,4*DIRSIZ,4*NVWDS, nvblk)
call stamp (aranum)
call clsara(aranum)

call sdest ('MAKTANC done!',0)

return
end

McIDAS Developer/Operator Training
October 24, 1995

Developing Local
Decoders in
MCcIDAS-XCD

Presented by

John Pyeatt
MUG Program Manager

Session 8
McIDAS Developer/Operator Training
October 23-25, 1995

Table of Contents

3 A e L R LT 8-1
AREHIRBIBI - - ;i o5 v06s s+ 6 xsaah Shaem s e wd an s en 8-1
Ingestors currently supported in McIDAS-XCD 8-2
Decoders currently supported in McIDAS-XCD 8-2
Decoders currently under development 8-3

What does a decoder typicallydo?....................... 8-4

Questions to ask before writingadecoder 8-7

Other McIDAS-XCD subsystems. 8-18
Gross error checking system. S ks 8-18
Configuration filesystem 8-19
Decoder status display, 8-20
Station MONItOringuvuiiueennineanaann 8-21
DRI o cevnvirbdnnimnoehossssiseysoonnonens 8-21

Corpptling Sl BRI 5 ;<555 s shvvaws v sssver cmmunsas 8-22

Integrating a local decoder in McIDAS-XCD 8-23
Building the decoder and putting the data in MD files. ... 8-23
Automating the decoder process. 8-27

Developing local decoders for yoursite.................. 8-29

Useful functions in McIDAS-XCD 8-30

Sample deCOder.o v v ettt s 8-33

Overview

This training session will provide McIDAS software developers with
useful information for writing and maintaining locally developed decoders
in conjunction with the McIDAS-XCD software package.

The Nested Grid Model’s trajectory forecast reports are used as examples
for writing data decoders. You will find a sample decoder for this data type

decoder.

Terminology

at the end of this section. Values placed in brackets ‘[]’ throughout this
’ section reference specific lines of source code provided in the sample

The following terms are used throughout this section.

data block

data monitor

| data section
DDS

decoder

HRS
IDS

ingestor

NGM

observation

McIDAS Developer/Operator Training
October 24, 1995

text data containing a WMO header and a data section

McIDAS command that periodically tests to see if
new data has arrived that may be important for a
specific decoder

portion of text containing independent observations
Domestic Data Service

software that parses data from one format into a
common format for use by another process such as a
plotter or lister, or software that further manipulates
data

High Resolution data Service
International Data Service

process that listens to data received by a
communications port and reformats the information
for further processing

National Meteorological Center Nested Grid Model

one complete, independent report about the state of a
given group of fields in a specific time or time range

Developing-Local Decoders in McIDAS-XCD
8-1

-

parsing decomposition of an observation into its most
elementary parts

PPS Public Products Service

STARTXCD mother task to the entire McIDAS-XCD ingestor/
decoder package

status display X Windows application that informs an operator of
the current state of the McIDAS-XCD decoder/
ingestor system

token smallest entity to which an observation may be parsed

WMO header WMO formatted string containing a product code,
product number, originating station and day/time
stamp; for example: FOUS14 KWBC 231200

Ingestors currently supported in McIDAS-XCD

* National Weather Service Family of Services: DDS, IDS, PPS, HRS
* National Weather Service AFOS

+ AFGWC (Tinker AFB)

Decoders currently supported in McIDAS-XCD

» Surface Hourly SAO and METAR

* RAOB (TEMP): TTAA, TTBB, TTDD, PPAA and PPBB
+ Ship and Buoy

« FOUSI14

« SYNOP

+ AIREP/PIREP

« POES Navigation

+ Severe Weather Watch

+ GRIB (for HRS circuit)

Developing Local Decoders in McIDAS-XCD McIDAS Developer/Operator Training
8-2 October 24, 1995

Decoders currently under development

McIDAS Developer/Operator Training

October 24, 1995

* Severe Weather by County Federal Information Processing Standards

(FIPS)

Flood Watch

Severe Thunderstorm Watch
Tornado Watch

Flood Warning

Severe Thunderstorm Warning

Tornado Warning

* New SAO/METAR Format

* New Aerodrome Forecast (TAF) format

» Expanded data support for GRIB format

Developing Local Decoders in McIDAS-XCD

8-3

What does a decoder typically do?

A decoder goes through approximately seven steps when processing a data
type. These steps may include the following:

1. isolating the observation
2. extracting the observation’s location
3. extracting the observation time

4. parsing the observation into small enough components so that the
information can be interpreted by the software

5. decoding the parsed reports

6. passing the decoded information to the appropriate subsystem for
availability to the user

7. writing information to the status display

Each step is described below.

Isolating an observation

When writing decoders that process text data, one of the most difficult
tasks is to isolate an individual observation from the data block. Many data
types contain observations from several locations in one data block.
Determining where one observation ends and the next begins can be a
frustrating task. Ideally, a starting character or termination character
separates observations.

A starting character is usually the record separator (Hex 1E). If you scan
through a data block and encounter a hex 1E, you can be quite certain the
characters that follow are a new observation.

If no record separator exists at the beginning of an observation, look for a
character indicating the end of the observation. This character may vary
depending on the data type. SAO or METAR reports will most likely have
an equals sign (=) at the end. Terminal forecasts may be followed by two
periods (..).

Developing Local Decoders in McIDAS-XCD McIDAS Developer/Operator Training
8-4 October 24, 1995

Be careful. Many overseas reports don’t have separation characters and
you cannot ignore this problem. If some type of contingent plan is not in
the code, you may find erroneous values in your final dataset. For example,
several times during its development for the McIDAS-XCD package, the
SYNOP decoder produced reports of 400 inches of snow in parts of Iraq.
This occurred because the decoder was not prepared for observations
coming in without record separators or termination characters.

Extracting the observation’s location

Once you isolate an observation, you must determine its origin, such as
f station ID for METAR reports or station block number for SYNOP reports.
This is simple if certain flags are present in the report to help you isolate
the section of the data containing the station origin. It may get more
complicated with reports that are more free-format.

When you have the origin, you can scan a list of known stations looking
for latitude, longitude and elevation information. For some data types, you
must determine the latitude and longitude of the observation directly from
the report. This is straightforward for reports such as DRIBUs or AIREPs,
but can be difficult for a PIREP, which contains no definitive reporting

| format (or worse, multiple reporting formats).

Once you find the station ID, the decoder can determine if it should
continue processing. If you don’t have enough meta-data about the station,
(latitude, longitude, state, etc.) there is no need to continue processing. In
this case, you should file this station in the new stations list with the ID
monitoring system [A565] and move on to the next report.

Extracting the observation time

Extracting the observation time is an easy task. The format is rigid, with
simple checks to perform [A434-A464]. The only difficulty is when you
must use the time report to validate the date of the observation. For
example, if a real-time decoder is processing DRIBU reports at 1845 UTC
today and an observation comes in with a reporting time of 2130 UTC,
your decoder must be robust enough to recognize that the report is really
from yesterday. You can use the McIDAS-XCD function mcfiltim to
simplify this logic.

The observation time is often used to determine where in a data structure
an observation should be filed. For example, in MD files, the time
determines the appropriate row number for filing data.

McIDAS Developer/Operator Training Developing Local Decoders in McIDAS-XCD
October 24, 1995 8-5

Parsing the observation

Once the location and time are known, the decoder breaks the report into
individual tokens based on the reporting format. The method of parsing
varies among data types. Typically, the three formats are: tabular,
formatted and plain text. These will be discussed later in this session.

Decoding the parsed reports

Decoding occurs once the raw text is parsed. This is where all the real work
takes place. It is a simple process for tabular data [A1099-A1167]. The
only time tabular reports are problematic is when a signal goes bad.
Problems with formatted or plain text reports are usually due to human
error, such as typos, incorrectly placed data, or meteorologically incorrect
values. A decoder must be smart enough not to abort, and to recover
successfully from reporting errors. The gross error checking system,
described later, is the final place to resolve problems in reports [A705-
A709].

Passing the decoded information to the appropriate subsystem

After the information in an observation is fully interpreted by the decoder,
it is usually stored in some type of disk file format that users can access. In
MCcIDAS, the most common storage format is MD or grid files. After
decoding the report, the software must perform a transformation on the
data to put it in a format that is acceptable for the data file structure being
used. This transformation may include converting units of the report,
changing values from floating point to scaled integers, or converting
character strings into string literals [A671-A716].

Writing information to the status display

The final step performed by a decoder is to update the status display
[A792-A800]. This display provides the mechanism for operations to
monitor the system. Information of interest to the operations staff might
include: the time data was last processed by this decoder; the last MD file,
row and column written to; the last grid file and grid number written to; or
other information unique to this data type.

Developing Local Decoders in McIDAS-XCD McIDAS Developer/Operator Training
8-6 October 24, 1995

Questions to ask before writing a decoder

Before you write your decoders, answer the questions below.

What are the characteristics of the data?

1. Is the format of the data to be decoded binary or text?
2. Iftext, is its format tabular, formatted or plain?

3. Does the information come in continually or sporadically?

What will users do with the data when it is decoded?

4. Will the decoded information be used by one or many users?
5. Will the user want to plot/contour the data? List it? Notify?

6. Do you have enough resources?

Each of these questions is discussed below. Knowing the characteristics
and the intended use of the data will help you determine the portions of the
McIDAS-XCD package you can use to process the raw data.

The flow chart on the next page will point you towards some of the
modules in the McIDAS-XCD library that you will need.

McIDAS Developer/Operator Training Developing Local Decoders in McIDAS-XCD
October 24, 1995 ' 8-7

McIDAS-XCD library modules for acquiring and decoding raw data

What is the format
of the raw data?

Text

Formatted

Text What is the text

s format type?

Plain
Language

mOdcsplt
mOgrbval

Bina
oL mOgrabyt
mcgbytes
mcsbytes
Tabular

cextrin

Will processing be
automatic or
as needed?

mclodbin) As needed
mcgetid

Automatic

Developing Local Decoders in McIDAS-XCD
8-8

McIDAS Developer/Operator Training
October 24, 1995

Is the format of the data to be decoded binary or text?

Binary

Binary data is the easiest format to decode. A binary format has very rigid
standards, so there is little chance for human error. If something is wrong
with the signal, it is usually not subtle. The most important concern when
writing decoders for binary data is to fireproof the decoder from a bad
signal. Fireproofing includes protection against array overwrites and
obvious invalid meteorological values.

If the data is a binary stream received through a communications port, you
must activate the INGEBIN ingestor for the signal so McIDAS-XCD can
decode it. To activate a binary data ingestor in McIDAS-XCD you must
perform the three steps below.

1. Create a configuration file containing the information specific for
the circuit. This information includes the baud rate, the
communications port used, and the destination file in which to
store the data. If you use the configuration file for the HRS circuit
(HRS.CFGQG) as a template, you will modify the values for IBAUD,
OBAUD, PORT and SPOOL.

2. Add the ingestor to the list of ingestors that McIDAS-XCD
monitors. From the McIDAS command window, enter the
command below, replacing name with the circuit name and confil
with the configuration file containing the communications
information.

CIRCUIT ADD name CONFIG=confil INGESTOR=INGEBIN

3. Activate the ingestor. From the McIDAS command window, enter
the command below.

CIRCUIT SET name ACTIVE

Every 30 seconds, STARTXCD checks to see if processes were
activated, inactivated or aborted. Since the new circuit was just
activated, STARTXCD will start up the ingestor for you and the
ingestor will file the data into the spool file designated in the
configuration file.

Once the data is placed in the spool file by INGEBIN, you can access it
with the McIDAS-XCD function mOgrabyt. This is a very useful interface
for processing real-time binary data.

If the signal contains packed data, use the McIDAS-XCD functions
Mcupackbit and mcgbytes to extract packed values.

McIDAS Developer/Operator Training Developing Local Decoders in McIDAS-XCD
October 24, 1995 8-9

Text | (

If the data is an ASCII stream, decoding gets more complicated. The
interfaces for text data in McIDAS-XCD expect the data to begin with a
WMO header followed by lines of text.

The form for the WMO header is: ppcc## orig ddhhmm

where: pp product code
cc country code
numeric code

orig station origin
dad day of the month
hhmm time stamp

For example: FOUS14 KWBC 241725

For this training session, assume the data is already filed in the appropriate
raw format.

Developing Local Decoders in McIDAS-XCD McIDAS Developer/Operator Training '
8-10 October 24, 1995 l

If text, is it tabular, formatted or plain?

Tabular text

If the text is a computer generated table, such as FOUS14, it is relatively
easy to decode. Use the McIDAS-XCD function mcextrln to extract
information [A1103-A1104], as shown below.

column number:
sample string = ‘68

character*12 string

1

double precision fltval
integer intval

2

79

3

SNOW 45.3"

12345678901234567890123456789012345678

ok = mcextrln(line,1,2,string,strsta,intval, intsta,fltval, fltsta)
intval returns 68

fltval returns 68.0

string returns ‘68’
all statuses return success

ok = mcextrln(line,33,36,string,strsta,intval,intsta, fltval,fltsta)
string returns ‘SNOW’

strsta returns success
intsta and fltsta return failure

ok = mcextrln(line,32,35,string,strsta}intval,intsta,fltval,fltsta)

fltval returns 45.3
string returns

*45.

3

intsta returns failure

Below is an example of tabular text.

FOUS51 KWBC 181200
TRAJECTORY FCST

BIL 700
850
SFC
RAP 700
850
SFC
BIS 700
850
SFC

1812002
LATLONPPP
446169672
466129813
466128819
443148572
476112810
478104877
483169547
495141739
490122865

1818002
LATLONPPP
445148642
465108826
465107832
445115609
473083834
475077895
480136575
494109777
492090900

McIDAS Developer/Operator Training

October 24, 1995

1900002
LATLONPPP
446126631
462093842
462092848
447083640
467060846
468057905
480098605
493076795
491065914

1906002
LATLONPPP
449107659
456086841
456085846 854
445054671
455040855 .
456038910 902
477053650
483039823
482034930 944

Developing Local Decoders in McIDAS-XCD

1912002
TEMP DEWPT
2.7 -22.3
10.0 -4.0
8.8 -3.0
6.6 219 .7
LPEZ 8 1
12.3 2
218n=~27.4
EQ.4 .0 5.1
14.9 1.1

95230 1615

K
=9

-10

-14

8-11

Formatted text

If the text is formatted, such as SYNOP or RAOB reports, the McIDAS-
XCD function mOparobs will parse the observation into tokens that can
then be broken down into meteorological data. The source line contains the
following:

172645 11/// AUTO 10244 20222

parameter (maxgrp = 100)

character*8 creprt (maxgrp)

integer report (maxgrp)

ok = mOparobs (msg, 28, maxgrp, report, creprt,ngroup)

ngroup returns 5

Group# creprt report
1 ‘72645’ 72645
2 ‘r 11000
3 ‘AUTO’ -1

4 ‘10244’ 10244
5 20222° 20222

When mOparobs is finished, you can begin extracting parameters. For
example, if you determine that the fourth group is the temperature field in
Celsius, the extracting code will be:

if (creprt(4) (3:5) .ne. ‘///') temp = float (mod(report (4),1000)) / 10.0

Below is an example of formatted text.

SXUS23 KWBC 182200 RRA 95230 2244
CMAN 18224

BLIA2 46/// /2307 10114 40171 92230 333 91207 555 11006 22006=

POTA2 46/// /2308 10123 30150 40164 92230 333 91211 555 11008 22008=

Plain text

Plain text, such as SAO reports, is the most difficult data to decode. Plain
text reports do not have a rigid format or data indication flags. These
decoders are the most complicated due to the nature of the format. The
MCcIDAS-XCD functions m0Odcsplt and mOgrbval can help. mOdcsplt
tokenizes a string into its basic components and mOgrbval gives you the
values in the tokenized string [A408-A447].

Developing Local Decoders in McIDAS-XCD McIDAS Developer/Operator Training

8-12

October 24, 1995

Example:

‘MSN SA 1155 CLR 10 207/75/65'

include ‘xcd.inc’

integer terms(2)

data terms/59,61/ ! termination characters ‘=' and ‘;’

numgrp = 0
ok = mOdcsplt (80, numgrp, 2, terms)

numgrp returns 15

Group# Value Type Numch Point

1 MSN ACHAR 3 1

2 blank ABLANK 1 4

3 SA ACHAR 2 5

4 blank ABLANK 1 7

5 1155 ADIGIT 4 8

6 blank ABLANK 1 12

7 CLR ACHAR 3 13

8 blank ABLANK 1 16

9 10 ADIGIT . 17

10 blank ABLANK 1 19

11 207 ADIGIT 3 20

12 / ASLASH 1 23

13 75 ADIGIT 2 24

14 / ASLASH 1 26

15 65 ADIGIT 2 27
Other Type values include the following.

Type Description

-1 terminator character

APUNC 5 e

PLSMNS + -

ARECSP record separator (0x1e)

AXCLAM !

AAMPER @

ALOGNT "

AOTHER any other character

Below is an example of plain text.

SAUS80 KWBC 182200 95230 2151
ILM SA 2150 50 SCT 250 -SCT 7 112/89/74/1507/986/ MDT CU W

LGA SA 2150 250 SCT 13 132/89/60/0512/992/ CU N

LND SA 2150 300 -BKN 70 147/78/18/3212/015/ CU N-NE

MFE SA 2150 40 SCT E250 BKN 10 85/75/0911/986/TCU N-E

MIA SA 2150 30 SCT M50 BKN 250 OVC 7 120/90/75/2210/988/ CB N MOVG S
MSN SA 2150 28 SCT M36 BKN 7 144/85/73/1208/997

OFK SA 2150 CLR 15 073/96/72/1712/980/ CB DSNT W-NW MOVG NE

MCcIDAS Developer/Operator Training Developing Local Decoders in McIDAS-XCD
October 24, 1995 8-13

Interface for accessing sporadic data

mOnxtidx

-

” aya | 330 |ogmy 0€ | SNOJ [9GECLO PZOLT | O¥S | saa
~ OEMM | 8L | MVOJ [SFTZ90 POOIT | 088 | saa
.mﬂ.wa ogMA 8L | SNOJ |60TZ90 P9ZET | 02€ | sad
0 ogMd | 8L |snoa|eotz90 pszTT | 0ze | sad |
oEMI | T |snod |ro1z90 przot | ovz | saa
< 1/ // // // // // // // // // N
/ﬁ X /ﬁ \ W\ N \ e N \
9T 0T 6 8 | L 9 S 4 € [4 T
vze
Xaroogse0d
Joqunu 3onpoxd OWM - 9
xoqumu Borw3awo wyd - 9T +SNOJ, °XO0 IOpWdY OWM - §
uybrao uorjwls TId/S0d¥Y - OT (ssuuyy) dwezs swry - %
urbya0 UOTIV}S SJIMY/SOJY - 6 ©OTTF QOX°'s U UOF3wWOOT Buyjzavays - ¢
opoo 3onpoad SJIMY/SO4Y - 8 ¥ooTq ®3ep ur so3kq jo lequnu - Z
JOEMY, X0 UTHTIO WOTIVIS OWM - [92IN08 JTNOITO - T
Xapu] Yoo[g vreq

eje(] 1X3], SUIAILIY

pee
80¢
C6T
9LT
091

McIDAS Developer/Operator Training

Developing Local Decoders in McIDAS-XCD

8-14

October 24, 1995

Does the information come in continually or sporadically?

If data is continuous, such as surface hourlies, RAOBs, and MDRs, you
should consider processing it in an automatic mode. This method requires
no user intervention to ensure data is decoded.

To process data automatically, you must create data monitors similar those
distributed in McIDAS-XCD. Using mOnxtidx [C344-C347], these data
monitors scan a predefined set of index files, checking to see if they have
been updated by the ingestors. If they have, the data monitor wakes up,
loads the new index block, and, if it is one the data monitor is interested in,
calls an appropriate decoder[C433-C439]. One data monitor can run many
decoders. If you plan to have numerous local decoders, SSEC recommends
imbedding them in your own data monitors and activating them with the
DECINFO command.

If your data is sporadic, it may be enough to run the decoder on an as-
needed basis. For example, to plot projected hurricane storm tracks, which
are not high volume reports, you can access the raw text directly each time
a plot is requested instead of creating a special filing format just for
hurricane tracks.

The interface for accessing sporadic data is very different from automatic
processing. In the automatic mode, a data monitor, using mOnxtidx, scans
to see if new data has arrived. In the as-needed mode, the application, using
mcgetidx [B39], starts with the most recent data and works backward in
time. Each call to this function grabs the next oldest index block for the
data you request. See the diagram on the adjacent page. Once you retrieve
the new index block, you can load the text and call your decoder.

The structure of the index block returned by mcgetidx and mOnxtidx is as
follows: ;
Position Description
circuit source
number of bytes in the data block
starting location in the .XCD file
time stamp, hhmmss
WMO header, for example FOUS
WMO product number
WMO station origin, for example KWBC
AFOS/AWIPS product code, when available
AFOS/AWIPS station origin, when available
0 AFOS/PIL station origin, when available
6 FAA catalog number, when available

== 0 00 20N WNHWN—

Once you have the appropriate index block, you load the data into a
character array buffer with mclddatb and continue decoding.

Note: Binary data should be processed in the automatic mode.

McIDAS Developer/Operator Training Developing Local Decoders in McIDAS-XCD
October 24, 1995 8-15

Will the decoded information be used by one or many users? (

If only one user will access the data, you may not need to create a data
monitor for specific requests. Processing the data in an as-needed mode
should be sufficient. If multiple users will access the data, consider the
automatic mode to prevent redundant processing and wasting of resources.

What will the user do with the data?

If users want to plot or contour data, the data should be decoded and placed
in McIDAS-supported data formats such as MD [A783] or grid files. Then
users can display or list it with many of the core McIDAS commands.

When you build a decoder, do not tie that decoder to a specific filing
format. The decoder should extract the information from the data stream
into a known memory structure. Then you can write an ancillary routine
that converts the memory structure to the format for the file system. Thus,
if you decide to file a certain type of data in a different file structure, the
only new software you have to write is a routine converting the memory
structure to the new file format. i

If timeliness of text retrieval is important for observational reports, you
may want to decode the observation and file it in the McIDAS-XCD Rapid
Access (RA) text format. This file structure allows the user to formulate
the request for individual stations or groups of stations and retrieve the data
quickly. Putting raw text into this format is a two-step process.

1. Register the filing format with the BILDTEXT command, which
sets up the pointer files for observational data. Enter the type of
data you will store, the length of time to store it, and the format of
the station ID. BILDTEXT initializes the file based on this input.

2. In the decoder, open the RA file using mctxtopn [A367]. Fill in
two data blocks with pertinent information about the observation,
and call mctxtwrt [A740-A773] to write the data to an RA file. An
example is provided in the program at the end of this section.

Once the data is in an RA file, you can use the command OBLIST to access
the data quickly. Typically, you will build a macro on top of OBLIST to
access the data type. The McIDAS-XCD commands SAO, RAOB, FT and
TAF are examples of macros that call OBLIST.

Sometimes, the only thing a user needs to know from a data type is if a

particular event took place. In this case, nothing needs to be filed, although

an alert should be sent to the user. As an example, operations should be

notified when an administrative message is received. (

Developing Local Decoders in McIDAS-XCD McIDAS Developer/Operator Training
8-16 October 24, 1995 l

Do you have enough resources?

A tremendous amount of data passes through a McIDAS-XCD server
workstation. In a typical ingest set up with DDS, PPS and IDS, you can
expect about 100 Mb per day before the data is put in a special format such
as MD or grid files. When you add McIDAS data files to this list, you
quickly expand the need for disk storage for these machines.

To calculate the amount of disk space (in bytes) needed for an MD file, use
this formula:

(NR * NC * NDKEYS + NC * NCKEYS + NR * NRKEYS) * 4

where: NR number of rows in the MD file
NC number of columns in the MD file
NDKEYS number of keys in the MD file’s data section
NCKEYS number of keys in the MD file’s column header
NRKEYS number of keys in the MD file’s row header

To calculate the amount of disk space needed for grids, use this formula:
((NR * NC * 4) + 256) * NG

where: NR number of rows in the grid
NC number of columns in the grid
NG number of grids in the file

The HRS circuit transmits another 70 to 90 Mb per day. Once you decode
and file the HRS signal, the amount of needed disk space grows rapidly,
depending on which grid formats are decoded. Some grids sent by NCEP,
for example, may be up to 160 Kb per grid, and approximately 500 grids
are sent in this format.

SSEC recommends that your McIDAS-XCD workstation has a minimum
of 2 Gb of hard disk for the typical ingest/decode configuration.

McIDAS Developer/Operator Training Developing Local Decoders in McIDAS-XCD
October 24, 1995 8-17

Other McIDAS-XCD subsystems

Many of the processes done in decoders are the same, regardless of the data
type. This section describes some of the common subsystems in McIDAS-
XCD that you can integrate into your site’s local decoder system.

Gross error checking system

MCcIDAS-XCD performs gross error checks, discarding values that are not
meteorologically possible. The McIDAS-XCD functions mcgrssecl and
moOgrserr perform this task [A708-A709]. Below is a table of the current
parameters and thresholds used for gross error checking.

Parameter Name Units Level Min. value Max. value

Pressure P mb All 0 1100

Sea level pressure SLP mb All 800 1100

Precipitation PCP M All 0 2

Snow depth SNOW M All 0 25

Sea surface temp SST K All 265 315

Temperature T K All 188 340

Dew point TD K All 188 310

Wind direction ~ DIR Deg All 0 360

Wind speed SPD MPS All 0 200

Zonal wind U MPS All 0 200

Meridional wind V MPS All 0 200

Visibility VIS M All 0 300000

Cloud height CLD M All 0 27,000

Height Z M MSL -500 500

Height Z M SFC -500 no maximum

Height V4 M 1000 -500 500

Height V4 M 925 0 1000

Height Z M 850 1000 2000

Height Z M 700 2500 4000

Height Z M 500 4000 7000

Height Z M 400 6000 9000

Height Z M 300 8000 11000

Height Z M 250 9000 13000

Height Z M 200 10000 14000

Height Z M 150 11000 15000

Height Z M 100 12000 18000

Height Z M TRO 0 no maximum
Developing Local Decoders in McIDAS-XCD McIDAS Developer/Operator Training

8-18

October 24, 1995

Configuration file system

Some McIDAS-XCD subsystems require numerous settings for proper
configuration. Because it is impractical to enter these fields from a
McIDAS command line, a configuration script language and interface was
developed. Users can write scripts with a text editor and the subsystem will
get the information it needs from the text file instead of the command line.
This mechanism is currently used for configuring communications ports
and defining settings for decoders.

The syntax of the configuration script language is simple. It is designed to
get specific values based on keywords and positional parameters. The
MCcIDAS-XCD routines used to interface with this subsystem are:

Function Description Language
Mcgtcfgstr retrieves a value as a string from the file C

mcgtestr retrieves a value as a string from the file FORTRAN
Mcgtcfgint retrieves a value as an integer from the file C

mcgtcint retrieves a value as an integer from a file = FORTRAN
Mcgtedbl retrieves a value as a double from a file (€

mcgtcdbl retrieves a value as a double from a file FORTRAN

The contents of a sample file are shown below.

Cross reference list

The cross reference list allows values to be accessed with
multiple keyword names

:FLAGS [01]MD

: FLAGS [02] NR

:FLAGS [03]NC

MD=101 # first MD file in real-time range

NR=24 # number of rows to make for MD file

NC=500 # number of columns to make for MD file

WMO=FOUS FOUE # list of WMO headers to decode

MINPRD=51 # minimum WMO product number to decode

MAXPRD=57 # maximum WMO product number to decode
DTIME=17.0 # number of hours to scan back in time to locate data

Below is sample code used to extract information.

integer intval

double

precision fltval

character*80 error , string
character*12 file

file
ok

ok
ok

McIDAS Developer/Operator Training

October 24, 1995

= ‘example.cfg’
= mcgtcstr (file , ‘WMO’ , 1 , string , error)
string will contain ‘FOUS’
mcgtedbl (file , ‘DTIME’ , 1 , fltval , error)
fltval will contain 17.0
= mcgtcint (file , ‘FLAGS[01]’ , 1 , intval , error)
intval will contain 101

The McIDAS-XCD decoders have a useful interface into the configuration
scripts through the function mOdcinfo [C187-C195].

Developing Local Decoders in McIDAS-XCD

8-19

Decoder status display (

The McIDAS-XCD status display monitors the status of the ingestors and
decoders. Operators can check the status display by running the STAT
command in McIDAS, or statdisp from the Unix prompt. The functions for
reading from and writing to the status display are mOrsdcd [A375] and
mOwsdcd [A800], respectively. The positions in the memory structure
written to the status display are found in xcd.inc, and are shown below.

Gridf Grid
Decoder Time Begptr Lasptr MD Row Col Text Index
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Flagname Description

1 BBTASK Name of the decoder, 8 characters maximum
2 BBTIME Time stamp, hhmmss
3 BBBPTR Beginning index location being processed, usually set
by mOnxtidx

4 BBLPTR Last index location to process, usually set by mOnxtidx
5 BBMD MD file number being processed v
5 BBGRDF Grid file number being processed (
6 BBROW MD file row number being written to
6 BBGRID Grid number being written to
7 BBCOL MD file column number being written to
8 BBTEXT General text, 12 characters maximum
9 BBDXNM Index file being processed, usually set by mOnxtidx

BBON Status flag indicating the decoder is on

BBDAY Julian day stamp

The information in the status display is stored on disk. McIDAS-XCD
decoders read from/write to the file ~oper/mcidas/data/ DECOSTAT.DAT.
If you write local decoders that use the status display, SSEC recommends
writing your status to a different file so you won’t have to modify the file
with each upgrade. To display local decoder status, assign a file name to
the environment variable XCD_disp_file and start a second version of
statdisp.

The structure for writing data to the status display is provided in the
include file xcd.inc. Portions of this information may be written to the
status display by the index block access routine mOnxtidx, but most
information is provided by the decoder.

The typical way to write data to the status display is to fill the array bullbd
with the appropriate values and to call the writing routine mOwsdcd
[A792-A800], as shown in the example below.

Developing Local Decoders in McIDAS-XCD McIDAS Developer/Operator Training |
8-20 October 24, 1995 i

INCLUDE ‘xcd.inc’
IMPLICIT INTEGER (A-2)

md=102
row=3
col=21
decnum=4

bullbd (BBON)= 1
bullbd (BBDAY) = yyddd
bullbd (BBTIME) = now
bullbd (BBMD) = md
bullbd (BBROW) = row
bullbd (BBCOL)= col

call movcw('TRIJDEC’ , bullbd (BBTASK))

call movcw('TRAJECTORY’,bullbd (BBTEXT))
ok = mOwsdcd (‘LOCALSTA.DAT’,’'DEC’,decnum,bullbd,BBSIZE, jstat)

Once the call to mOwsdcd is complete, the status display looks like this:

Decoder Time Begptr Endptr MD Row Col Text
4 TRIJDEC 063423 160000 160160 102 3- 21 TRAJECTORY

Station monitoring

The station tables delivered with McIDAS-XCD don’t always contain all
stations available for a data type. They may also contain obsolete stations
no longer reporting a certain data type. McIDAS-XCD lets you monitor
incoming stations in a decoder with the mOidnew function [A565]. This
function keeps a running count of the number of times a station reports,
and files the last day and time a station reported.

Use the command IDMON to display the station status. To add a station to
a decoder type, enter: IDU EDIT stdid SWITCH=YES DEC=decname
replacing stdid with the station to modify and decname with the name of
the decoder to add to the station. :

If you add a station to a decoder that is currently filing in an RA file
(rafile), you must add that station separately with the BILDTEXT ADD
command. For example: BILDTEXT ADD stdid rafile.

DECTEST
The command DECTEST is included in the McIDAS-XCD package. As a
developer, you can link your text decoder into DECTEST during
development to simulate how the decoder will work in a real-time data
monitor. It is a good way to expose problems while they are easy to locate.
McIDAS Developer/Operator Training Developing Local Decoders in McIDAS-XCD

October 24, 1995

8-21

Compiling and linking

To build decoders in the McIDAS-XCD environment, you typically write
decoders as functions placed in a library and call these decoders from the
MCcIDAS command line or scheduler. Decoder software is usually built
using the McIDAS library archive script mcar and the McIDAS
compilation script mccomp.

To compile the decoder function, mOtrjdec.for, and place the object in the
library libmylib.a, perform these two steps.

1. Compile the function mOtrjdec.for.

mccomp -I. -I/~mcidas/inc -c¢ mOtrjdec.for

2. Put the object code created in step 1 in the library libmylib.a.

mcar libmylib.a mOtrjdec.o

Now, compile the data monitor, dmlocal.pgm; link it with the appropriate
libraries; and create the McIDAS executable, dmlocal.mx.

3. Compile the data monitor, dmlocal.pgm.

mccomp -I. -I~mcidas/inc -c dmlocal.pgm

4. Link the data monitor to the appropriate libraries and generate the
MCcIDAS executable dmlocal.mx.

mccomp ~mcidas/lib/main.o dmlocal.o -L. -L/~mcidas/lib
-L/~oper/mcidas/lib -1lmylib -1lxcdcli -1lxcd -lmcidas -1X11
-0 dmlocal.mx

Developing Local Decoders in McIDAS-XCD McIDAS Developer/Operator Training
8-22 October 24, 1995

Integrating a local decoder in McIDAS-XCD

This section provides an example of how to decode and file NGM

Trajectory Forecasts. These forecasts are sent twice daily in conjunction

with the NGM model runs. This is not a high volume dataset, as the NCEP
5 supplies trajectory forecasts for only about 40 stations. The reports are sent

| in WMO headers FOUS50-57. The decoder provided at the end of this

section can be implemented to run either as-needed or automatically. The
! steps for making the decoder run automatically are in the last part of the

i exercise.

i . The raw data format is as follows:

FOUS51 KWBC 181200
TRAJECTORY FCST

1812002

LATLONPPP

BIL 700 446169672

850 466129813

SFC 466128819

LND 700 424119703

SFC 441081807

1818002
LATLONPPP
445148642
465108826
465107832
423100681
434071814

1900002
LATLONPPP
446126631
462093842
462092848
421087693
428067813

1506002
LATLONPPP
449107659
456086841
456085846 854
420087694
423077781 767

TEM
2.

10.
8.

740
8.

1912002
P DEWPT

~

0
8
3
7

-22.
-4.
=3
-8.

oHOoOOW

Part 1: Building the decoder and putting the data into MD files

K
-9

Perform the six steps below to build the pieces of the decoder and put the
data into MD files.

| 1. Build the schema template and register the schema. Since this is
point source data at fixed locations, place the location-dependent
information in the column header and the time-dependent

information in the row header.

By default, you will want 10 rows for the MD file because there

are five forecast periods per model run and two model runs per

day.

The row header will contain the following:

DAY

TIME

this data

McIDAS Developer/Operator Training

October 24, 1995

Julian day of the model run that generated

time of the model run that generated this

Developing Local Decoders in McIDAS-XCD

8-23

P

Sample MD file structure

N 4 -
]]
! | 00008 T=KIIA
! | LTOS6=AYaA
, ; 0000ZT=AWIL
_ _ LT0S6= A¥Q
o S e o v o 6 i v R T o Bl s p. . Joy up O om0 R) i i s TR 8 5 e e o I e i s i
1 |
i DdS= ATT 886= d £°88= NOT T°Th= IVT ¥°LLZ=AL T°P6Z=L
| 0S8= ATT T€8= d T°L8= NOT T°bb =IVI Z'TLZ=AL T°8LZ=L | 0000ZT=HILA
| 00L= ATT 969= & p°68= NOT T°Eb= IVT b 89Z=AL T°€LT=L' LT0S6=XvaA
_ i ! 00002 T=AWIL
! Seedpz. 3 ' LT0S6= Xvd
R 7 B R T e ey - aE o e Y
1 i //
] 1
I] /
| | AT 4 NOT IV¥I QI &
1 1
| | ATTI 4 NOT IVI dI & e
_ | AFT 4 NOT IV1 Qi & T
" : AWIL
" | doH N
) | \ \ ISpucH wing I9PRVOH MOY
]] \ \
! s9z= sZ ! sz
. IM= IS | IS
: NSW= dI | ar
' 1 J9pwoH uwWnToD
ainjonJis 9l N Atoyoales

886€88TTy 0Ods

TESTLETPY 0S8

969¥68ZEY 00L NSW
¥ IdMIA dWEL JJANOTIVT ddANOTIVT ddANOTIVT dddNOTIVT

Z00ZT8T Z00908T Z00008T Z008TLT ZOOZILT

McIDAS Developer/Operator Training

Developing Local Decoders in McIDAS-XCD

8-24

October 24, 1995

McIDAS Developer/Operator Training

October 24, 1995

You will need one column for each station reporting trajectories.
The column header will contain the following:

ID station ID
ST state
ZS station elevation

The data header will contain the following:

MOD modification flag

3 REPEAT groups (SFC, 850 and 700)
T temperature at the station
D dew point at the station
LAT latitude of the parcel
LON longitude of the parcel
P pressure of the parcel
LEV pressure level of the parcel (SFC, 850 or 700)

Once the schema is designed appropriately it is registered with the
LSCHE command. ;

See the sample trajectory MD file structure on the adjacent page.

Write a decoder that parses out the information into a known
structure. Remember to adhere to the standard calling sequence
[A0-A47] used by the core decoders if you want to test the decoder
using DECTEST. If the decoder will run in automatic mode, use
the configuration script interface of the function m0Odcinfo. The
standard calling sequence looks like this:

integer function mOtrjdec(wmohdr, block, nlines, circit, julday,
timdec, flags, cflags)

The input values are defined below.
wmohdr c*(*) line containing the WMO header
for example: FOUS51 KWBC 231200
block - c*(¥*) array containing the data portion
nlines integer number of lines in block that this
data section uses
circit c*(™) data source; seldom used
julday integer Julian day for which the data is valid,

yyddd
timdec integer time of the data filing, hhmmss
flags integer array containing the integer values

for this decoder; typically they will be:

1 - error output flag (1 = active)

2 - ID monitoring key

3 - decoder number for the status display
4 - base MD or grid file range

5 - number of rows in the MD file

6 - number of columns in the MD file

7 - rapid text filing flag

Developing Local Decoders in McIDAS-XCD
8-25

e

I C |

cflags c*(*) array containing the characters strings (
for this decoder; typically they will be:
1 - error file name
2 - old station ID file name
3 - new station ID file name
4 - ID table name to use
5 - master station list to use
6 - pointer file for the RA format

3. Create the MD file, if it does not exist, and initialize its row and
column headers [A809-1014]. Building the row headers is easy
[A979-A1000] because all the information is in the decoding
process. Building the column headers is more difficult because the
only information you have is the station ID, and you also need the
state and station elevation. i

The McIDAS-XCD function mObildid [A959] builds a station ID

table from parameters that you suggest. Since you need the station

ID, state and station elevation for the column header, send your [
request to mObildid to build a file with these parameters [A1002-

A1009]. Once the ID table is built, you can build the column

headers for the MD file. ‘
4. When the data is decoded, find the column number in the MD file

where the station will be filed. Use the function m0loccol to find (

the appropriate column number; you must provide the station ID .

and MD file number [A637-A640]. This function may appear
cumbersome, but it was designed to work with an unlimited
number of MD files simultaneously. This is useful when you have
multiple decoders activated by the same data monitor.

5. Convert the known decoded trajectory structure to the format that
MDO expects and file the data in the MD file. The conversion
process may include unit conversions (Celsius to Kelvin), type
conversion (floating point to scaled integer), or some type of
symbol conversion.

6. Write the output to the decoder status display using mOwsdcd
[A792-A800], and process the next observation to decode.

Developing Local Decoders in McIDAS-XCD McIDAS Developer/Operator Training
8-26 October 24, 1995 ‘

Part 2: Automating the decoder process

Use the three steps below to make the decoder/filer an automatic process
and connect it to McIDAS-XCD.

1. Create a data monitor. The easiest way to do this is to start with an
existing one. If you use dmmisc.pgm as the template for
dmlocal.pgm [C0-C540] and you use the standard decoder
calling sequence enumerated in step 2 below, you will only have
to change about 10 lines of code to install your decoder.

For these trajectory products you will change:
numdec to 1 [C47]
task to DMLOCAL [C53]
decnam to TRIDEC [C157]

The actual call to the decoder will look like this [C433-C439]:

if (decnam(dec) .eqg. ‘TRJDEC’)then
decok = mOtrjdec(cblk(1l),cblk(2),
& nlines-1,circit, yyddd time, flags (1,dec),cflags (1, dec))
endif

2. Setup a configuration file to tell the system where to look for data,
the MD file range in which to put the data, the number of rows and
columns in the MD file, and the name of the station ID table.

Assume that you want the data filed in MD files 101 to 110 and the
MD files are 10 rows by 600 columns. The data comes in as WMO
headers FOUS50-57. Your configuration file, TRIDEC.CFG,
might look like the one below.

McIDAS Developer/Operator Training Developing Local Decoders in McIDAS-XCD
October 24, 1995 8-27

TRJIDEC.CFG

- Configuration file for the Trajectory forecasts
-------- Cross reference Ligt -------cc-e--on--

FLAGS [01] ERRORFLG

FLAGS [02] IDMONFLG

FLAGS [03] DISPLAYNUM

FLAGS [04] MDF

FLAGS [05] NROWS

FLAGS [06] NCOLS

CFLAGS [01] ERRORFILE

CFLAGS [02] OLDIDFILE

CFLAGS [03] NEWIDFILE

CFLAGS [04] IDTABLE
: CFLAGS [05] MASTERFILE
e End Of Cross Reference List ----------=--------
- You can modify any of the fields below -

decoder description
DESCRIPTION="FOUS50-57 Decoder"

which indices to search for this decoder
INDEX=FO

which specific WMO headers to activate the decoder for
WMO=FOUS
MINPRD=50
MAXPRD=57

which specific station origins to activate the decoder for
ORIGIN=KWBC

error output flag set to 1 to activate

error file name

station id monitoring activation flag
set to 1 or 3 to monitor new stations
set to 2 or 3 to monitor old stations

OLDIDFILE=OLDFOS50.IDM old station id file used for monitoring

ERRORFLG=0 #
#
#
#
#
#

NEWIDFILE=NEWFOS50.IDM # new station id file used for monitoring
#
#
#
#
#
#

ERRORFILE=FO50DEC.ERR
IDMONFLG=0

DISPLAYNUM=1 decoder number on status display

MDF=101 first real-time MD file number to use for decoder
NROWS=10 number of rows to make for MD file
NCOLS=600 number of columns to make for MD file

ID file to build when creating MD file
master ID table file to use to build IDTABLE

IDTABLE=FO50DEC.IDT
MASTERFILE=MASTERID.DAT

3. Configure the system so STARTXCD activates the data monitor
DMLOCAL and starts the decoder TRIDEC. Enter the three
commands below from the McIDAS command line, logged on as
oper.

DECINFO ADD DMLOCAL DEC=TRJDEC

DECINFO EDIT DMLOCAL TRJDEC ACTIVE
CONFIG=TRJDEC.CFG

DECINFO SET DMLOCAL ACTIVE

The next time STARTXCD samples the system configuration, it
will see that DMLOCAL is active and will try to start it.

Developing Local Decoders in McIDAS-XCD McIDAS Developer/Operator Training
8-28 October 24, 1995

Developing local decoders for your site

Below is a list of local decoders that you may want to develop at your site.

Binary

BUFR format
Lightning

Text

Description

Hurricane forecast positions

Model output text

BATHY (bathythermal obs)

WAVEOB (spectral wave obs)

C-MAN (automated pier obs)

WINTEM (aviation wind/temp forecast)

ARFOR(area forecast for aviation)

SARAD(satellite clear radiance obs)

SATEM (satellite remote upper air
soundings)

Frontal analysis

Forecasted frontal analysis

Winds aloft forecast

Satellite derived cloud information

Daily climate summaries

Dropsonde

SFLOC (Report of geographic location
of atmospherics)

River and rainfall observations

Aircraft recon data

Coded city forecasts

Convective outlook

Coded upper air forecasts

McIDAS Developer/Operator Training

October 24, 1995

WMO
Header

WT
FO
SO
SX
SX
FB
FA
TR

TH
AS
FS

FD
TB
CS
8y

SF
SR
UR
FP
AC
FU

Text
Format

Plain
Tabular
Formatted
Formatted
Formatted
Tabular
Tabular
Formatted

Formatted
Formatted
Formatted
Tabular
Tabular
Plain
Formatted

Formatted
Plain
Formatted
Formatted
Plain
Formatted

Developing.Local Decoders in McIDAS-XCD

8-29

Useful functions in MclIDAS-XCD

Ingestors

The library functions described below are provided in the McIDAS-XCD
package in two separate libraries. Functions called by the McIDAS-XCD
user commands reside in the library ~mcidas/lib/libxcdcli.a. The source
code associated with libxcdcli.a is located in ~mcidas/xcd1.X/src.
Functions specific to the server portion of the package are in
~oper/mcidas/lib/libxcd.a. The source code associated with libxcd.a is

located in ~oper/mcidas/xcd1 X/src.

Source file
mOfilblk.for

MOpt_utils.c

Data retrieval

Library
libxcd.a

libxcd.a-

Description

files a text data block in the native
McIDAS-XCD format

group of functions that configures and
reads from communications ports

Source file
mcfndgrd.for
mcgetidx.for
mclddatb.for
mclodbin.for
mctxtopn.for
mctxtred.for
Mcrtgdfile.c
Mcrtmodels.c
MOgetsplbyt.c
mOsplnam.for

mOtxtget.for

rriOtxtput.for

Library

libxcdcli.a
libxcdcli.a
libxcdcli.a
libxcdcli.a
libxcdcli.a
libxcdcli.a
libxcdcli.a
libxcdcli.a
libxcd.a

libxcdcli.a

libxcdcli.a

libxcd.a

Developing Local Decodets in McIDAS-XCD

8-30

Description

returns a list of grids in a grid file
given search conditions ;
retrieves the index block directory
given search conditions

loads the raw text of a data block
loads the list of text index files
opens an RA text file

reads an observation from an RA file
given search conditions

retrieves the list of real-time grid files
given search conditions

retrieves the list of real-time grid files
retrieves bytes from a spool file
creates the *. XCD file name for a
given day and source

retrieves an observation from an

RA file

writes an observation to an RA file

McIDAS Developer/Operator Training
October 24, 1995

Station IDs

Source file

mcclsest.for

mcid2idn.for

mclodids.for

mObildid.for

Library

libxcdcli.a
libxcdcli.a
libxcdcli.a

libxcdcli.a

Description

returns a list of stations interactively
from the cursor

converts station ID to station block
number

loads a list of station IDs from a group
list

builds a station ID table based on
selection criteria

mOidnew.for libxcd.a monitors new and old station
acquisition tables
String parsing
Source file Library Description
mcextrin.for libxcd.a retrieves parameters from a fixed
format string
Mcgtpstrg.c libxcd.a parses a formatted string that contains

McIDAS Developer/Operator Training
October 24, 1995

mcscnblk.for
mOdcsplt.for
mOgrbval.for

mOparobs.for

libxcdcli.a

libxcdcli.a

libxcdcli.a

libxcd.a

field separators

scans an entire data block looking for
string matches

tokenizes a string into its basic
components

retrieves a component of a
mOdcspltED tokenized string

parses a SYNOPTIC style text string

Developing Local Decoders in McIDAS-XCD

8-31

-

General utilities

Source file Library Description

mccidflt.for libxcdcli.a returns a reasonable default contour
interval for a given parameter/level

mcfiltim.for libxcd.a returns the nominal time of an
observation

Mcibmfloat.c libxcd.a converts IBM floating point
representation to machine native
format

Mcisbitset.c libxcd.a tells whether a bit in a buffer is set

Mcpackbit.c libxcd.a packs bits into a buffer

Mcupackbit.c libxcd.a unpacks bits from a buffer

mcydd2ch.for libxcd.a converts Julian day to a variety of
formats

mOaf2wmo.for libxcd.a converts AFOS PILs to WMO
headers

mOgrserr.forl ibxcd.a performs gross error checks on known
meteorological parameters

mOisrung_.c libxcd.a tells whether a Unix PID is active

mOrsdcd.for libxcd.a reads from a status display

mOwsdcd.for libxcd.a writes to a status display

MOunixuser.c libxcd.a returns the user ID of the session

Developing Local Decoders in McIDAS-XCD MCcIDAS Developer/Operator Training

8-32 October 24, 1995

Sample decoder

S A A A R R R R R R R R R R R R R R R T T R TR TR T T TR T TR T T T
w
=

WO d W KHO

“Lrrnrnnnnnnntntntntrtnrrnnnnnannnnnnnntntanntnuntannnnnnnnn

L0 1 o B I T © T @ @ & & I o 1 I o 2 I 2o I o 2o J'o o o Io Mo o B o B o B o o Mo I o Mo M e Mo I o o Mo N o Mo Mo IR o I o I o R e BN o NN o IR O IR O MU O IR 0]

Cc---
C---
C---
C=-=--
c---

Name:

mOtrjdec - decode trajectory forecasts from FOUS51-57 into
TRAJ schema MD file

Interface:
integer funct

ion

mOotrjdec (character* (*) wmo, character* (*) cblk(*),
integer nlines,integer julday, integer timdec,
character* (*) circit, integer flags(*),
character* (*) cflags(*))

Input:

wmo wmo header of data block

cblk array containing raw text data
nlines number of lines in cblk used
julday julian day of the data

timdec time stamp from the data (hhmmss)
cireit source of the data

flags array of integer flags

3
4
5
6

Input and Output:

none

Output:
none

Return values
0 - success

Remarks:

- decoder display number

- base md file in range

- number of rows for the file
- number of columns

cflags array of character strings

3 - file name to use to contain

the list of new stations

5 - station id file to use

The RA text file for this file format is initialized by

the keyin.

BILDTEXT INIT FOS0.RAP FOS50.RAT 600 3 C4 5 12 80 FOUS14 X 1

The resultant MD file schema used is the TRAJ schema.

This decoder is intended as an example only. It was built
to demonstrate many of the features at the disposal of the
developer in writing local decoders.

integer function mOtrjdec (wmo, cblk,nlines, julday, timdec,
circit, flags,cflags)

&
implicit none
include 'xecd.

maxlev
maxper
maxsta
maxids
ndkeys

inc!'

- maximum
- maximum
- maximum
- maximum
- number

integer maxlev

integer maxpe
integer maxst

McIDAS Developer/Operator Training

October 24, 1995

r
a

number
number
number
number
of data

of trajectory levels
of forecast periods
of stations

of stations in this data block

keys in md file

Developing Local Decoders in McIDAS-XCD

8-33

—~

Developing Local Decoders in McIDAS-XCD

8-34

S g A A T L T TTwe.

v es o

integer maxids
integer ndkeys
parameter (maxlev = 3 , maxper = 5 , maxsta = 600)
parameter (maxids = 30 , ndkeys = 19)

character* (*) cblk(*) , cflags(*) , circit , wmo

integer flags(*)
c-~- daylst - array containing recent days of the month
c-~- yyddd - julian days associated with recent days of
Cw-- the month

integer daylst (4)
integer yyddd(4)

@~ == idinfo - return array from mOloccol containing station

(At information
integer idinfo(6)

c--- vday - list of forecast valid julian days
integer vday (maxper)

c--- vtime - list of forecast valid times (hhmmss)
integer vtime (maxper)

c--- pre - list of pressure levels of parcels
integer pre (maxper , maxlev , maxids)

c--- lat - list of latitudes of parcels

c--- lon - list of longitudes of parcels

integer lat (maxper , maxlev , maxids)
integer lon(maxper , maxlev , maxids)

c--- linloc - location in data block where each ob is found
c--- for level and station
integer linloc (maxlev , maxids)

c--- becol - beginning column for a forecast
c--- ecol - ending column for a forecast
integer bcol (maxper)
integer ecol (maxper)

c--- tlat - temporary latitude array for storing
c--- maxper latitudes for one level
c--- tlon - temporary longitude array for storing
c--- maxper longitude for one level
c--- tpre - temporary pressure array for storing
c--- maxper pressure for one level

integer tlat (maxper)
integer tlon (maxper)
integer tpre (maxper)

c--- staton - list of all possible stations that could
c--- file this type of report

c--- slat - list of latitudes of possible stations that
c--- could file this type of report

c--- slon - list of longitudes of possible stations that
c--- could file this type of report

integer slat (maxsta)
integer slon(maxsta)
integer staton (maxsta)

c--- line - temporary array used for cracking raw text
integer line(20)

c--- mdbase - base md file number

c--- mdrow - md row number to write to

c--- mdcol - md column number to write to

c--- nr - number of rows to make for md file

c--- nc - number of columns to make for md file

c--- record - array containing decoded data section for

c--- writing to md file

McIDAS Developer/Operator Training
October 24, 1995

A 134: integer mdbase
A 13S: integer mdrow
A 136: integer mdcol
A 137: integer nr
A 138: integer nc
A 139: integer record (ndkeys)
A 140:
A 141: c--- mdlocs - array containing md file positions for all
A 142: c--- of the parameters in the data section
A 143: integer mdlocs (ndkeys)
A 144
A 145: c--- mdidtb - array containing list of stations in column
A 146: c--- headers for mO0loccol
A 147: integer mdidtb (maxsta)
A 148:
A 149: c--- blkdom - block domain used for RA
A 150: c--- timdom - time domain used for RA
A 151: ¢c--- ptrhed - pointer header for RA
A 152: c--- idtab - station id table for RA
A 153: integer blkdom(4)
A 154: integer timdom(8)
A 155: integer ptrhed(THSIZE)
A 156: integer idtab (maxsta)
A 157:
A 158: c--- t - array containing all temperature forecasts for
A 159: c--- the final period
A 160: c--- td - array containing all dew point forecasts for
A 161: c--- the final period
A 162: double precision t (maxlev,maxids)
A 163: double precision td(maxlev,maxids)
A 164:
A 165: c--- tt - temporary temperature storage
A 166: c--- ttd - temporary dew point storage
A 167: double precision tt
A 168: double precision ttd
A 169
A 170: c--- cvalue - temporary string value used in mcgrbval
A 171: character*12 cvalue
A 172:
A 173: c--- stafil - file containing list of all possible stations
A 174: character*12 stafil
A 175: .
A 176: c--- cid - array of decoded station ids
A 177: character*12 cid(maxids)
A 178:
A 179% e--- ctemp - temporary string
A 180: character*12 ctemp
A 181
A 182: g--- ctemp4 - temporary string
A 183: character*4 ctemp4
A 184:
A 185: c--- cline - temporary string used for debug messages
A 186: character*80 cline
A 187:
A 188: c--- ptrfil - pointer file for RA
A 189: character*12 ptrfil
A 190
A 191: c--- lvls - array containing observation levels for each
A 192: c--- station
A 193: character*4 lvls (maxlev,maxids)
A 194
A 195: c--- Elvi - temporary storage variable for observation level
A 196: character*4 tlvl
A 197
A 198: c--- clit - function declaration
A 199: c--- lit - function declaration
A 200: c---~ incday - function declaration
A 201: c--- dectrj - function declaration
A 202: c--- makmdf - function declaration
A 203: c--- mdo - function declaration
A 204: c--- mctxtopn- function declaration
McIDAS Developer/Operator Training Developing Local Decoders in McIDAS-XCD

October 24, 1995 8-35

A 205: c--- mcgrsscl- function declaration (‘
A 206: c--- mclodids- function declaration

A 207: c--- mO0dcsplt- function declaration

A 208: c--- mO0loccol- function declaration

A 209: c--- mctxtwrt- function declaration

A 210

A 211z character*4 clit

A 212: integer 1lit

A 213: integer incday

A 214: integer mctxtopn

A 215: integer mcgrsscl

A 216: integer mclodids

A 217: integer mOdcsplt

A 218: integer dectrj

A 219: integer makmdf

A 220: integer mOloccol

A 221: integer mctxtwrt

A 222: integer mdo

A 223

A 224: c--- nlines - number of lines used in cblk

A 225: integer nlines

A 226:

A 227: c--- julday - julian day the data represents 4
A 228: c--- timdec - current time

A 229: integer julday

A 230: integer timdec

A 231: !
A 232: c--- frstcl - flag indicating this is the first call to dectrj
A 233: integer frstcl

A 234:

A 235: c-== opnrap - return value from mctxtopn i
A 236: integer opnrap

A 237:

A 238: c--- 1.3,k - loop counters

A 239: integer i

A 240: integer j (
A 241: integer k E
A 242

A 243: c--- decnum - decoder number to write to on status display
A 244: integer decnum

A 245:

A 246: c--- month - month number for julday

A 247: c--- year - year for julday

A 248

A 249: integer month

A 250: integer year

A 251

A 252: c--- numrap - number of stations stored in RA file

A 253: integer numrap

A 254

A 255: c--- stat - status returned from mOwsdcd and mOrsdcd

A 256

A 257: integer stat

A 258

A 259: c ok - function return value

A 260: integer ok

A 261

A 262: c--- numlod - number of stations loaded from mOloccol

A 263: integer numlod

A 264

A 265: c--- linnum - internal line number counter

A 266: integer linnum

A 267:

A 268: c--- numgrp - number of groups tokanized by mOdcsplt

A 269: integer numgrp

A 270

A 271: c--- dum - dummy variable

A 272: c--- duml - dummy variable

A 273: c--- dum2 - dummy variable

A 274: c--- dum3 - dummy variable

A 275: c--- dum4 - dummy variable (

Developing Local Decoders in McIDAS-XCD
8-36

McIDAS Developer/Operator Training
October 24, 1995 t

331
332:
333
334:
335:
336
33%:
338:
339:
340:
341:
342:
343:
344:
345:
346:
347:

PRPPEPPOYPPPYPPPRPYDEPPOYPPOYPPPYPPPYPYPP PP PYPOPPY PP PP PP PP DYDY P YYD Y
w
o
N

c--- dum5 -
integer dum
integer duml
integer dum2
integer dum3
integer dum4
integer dum5

c--- value -
integer value

c--- group -
integer group

c--- numper -
integer numper

c-- tday -
integer tday

c--- numid -
integer numid

c--- nostat -
integer nostat

c--- clat -

c--- clon -
integer clat
integer clon

c--- lev -
integer lev

c--- id -
integer id

c--- mdfile -
integer mdfile

c--- mdlist -
integer mdlist

c--- pt -
c__-

integer pt
c--- 1n -

integer 1ln

c--- pres -
integer pres

dummy variable

value returned from mOgrbval
group counter from mOdcsplt
number of forecast periods
temporary day storage

counter for number of stations decoded

flag indicating if a station id had been found

station latitude
station longitude

pointer to the level 1-SFC 2-850 3-700

station id

mdfile number to make

list of md files to use for mOloccol

pointer describing where in 'record' array to

store decoded data

line number to use for filing

type value used for storing in RA file

data bcol/10,20,30,40,50/
data ecol/18,28,38,48,67/

data frstcl/o/

c--- generate the md key locations for the data section of

, opnrap/-1/

c--- the observation

do 1 i =1, ndkeys

mdlocs (i) = i + 7

1 continue
c--- assign values for decoder number, base md file, number
c--- of rows and columns to make md file based on input from
c-~- data monitor

decnum = flags(3)

mdbase = flags(4)

nr = flags(5)

nc = flags(6)

McIDAS Developer/Operator Training

October 24, 1995

Developing Local Decoders in McIDAS-XCD

8-37

o

349: c--- calculate the day of the month to julian day conversions

418: c call ddest(cline,0)
419: 210 continue

A

A

A 350: c--- this is necessary becaues the report retrieved from the
A 351: c--- raw text is day of month but we need julain day for filing.
A 352: c--- the 4 values stored will be value from julday and the

A 353: c--- 3 following days.

A 354:

A 355: yyddd (1) = julday

A 356: dosd = 14 4

A 357: call yddmy (yyddd (i) ,daylst (i), month,year)

A 358: if (i .1t. 4)yyddd(i+1l) = incday(yyddd(i),1)

A 359: 5 continue

A 360:

A 361: ¢--- initialize the arrays for the RA files if this is the

A 362: c--- first call to the decoder

A 363:

A 364: ptrfil = cflags(6)

A 365: if (frstcl .eqg. 0)then

A 366: fratel = 1

A 367: opnrap = mctxtopn (ptrfil , ptrhed , maxsta , idtab, numrap)
A 368: endif

A 369: motrjdec = 0

A 370:

A 371 stafil = cflags(5)

A 372

A 373: c--- get the values currently stored in the status display

A 374:

A 375: call mOrsded(' ', decnum, 'DECO',bullbd,BBSIZE, stat)

A 376

A 377: c--- acquire the list of stations/lat/lons possible for]
A 378: c--- this data type , this is used to determine station lat/lon
A 379

A 380: ok = meclodids (stafil,maxsta,staton,slat,slon,numlod)

A 381: call ddest ('number of stations loaded ', numlod)

i ggg: C-=-=- *********************************t***jﬁ*t***i******t*********
A 384: c--- * the actual decoding begins here *
A 385: C=-=-- hhkkdhkkhhhdhbhrdbhkdhbhdhbhrhkrrhbhbkdr bk rdhbbkbhbkdhkhkkhdhhkkhhhdhhx
A 386

A 387: c--- we will look for a line that contains 6 digits

A 388: c--- immediately followed by a single character 'Z'. this will
A 389: c--- be the valid forecast times of the trajectory data.

A 390: e--= ex. 1412002

A+ 391

A 392: linnum = 0

A 393:

A 394: 200 continue

A 395

A 396: c--- grab one line at a time until you reach the end of

A 397: c--- the data block

A 398:

A 399: linnum = linnum + 1

A 400: if (linnum .le. nlines)then

A 401:

A 402: c--- tokanize the line into decodable groups

A 403:

A 404: call ddest (cblk(linnum),0)

A 405: numgrp = 0

A 406: call movc(80,cblk, (linnum-1)*80,1ine, 0)

A 407: call crack(80,line,msqg)

A 408: ok = mOdesplt (80,numgrp, 0, dum)

A 409:

A 410: c--- print debug messages showing how the string was

A 411: c--- tokanized otherwise loop 210 is frivolous

A 412:

A 413: do 210 i = 1 , numgrp

A 414: call mOgrbval (cvalue , value , i)

A 415: write (cline, FMT="' (4 (a2,1i5,1x),a12)"')

A 41l6: & '‘gp',i, 'pt=",point (i), 'tp=',type(i),

A 417: & ‘'ne=',numch (i), cvalue

A

A

Developing Local Decoders in McIDAS-XCD McIDAS Developer/Operator Training
8-38 October 24, 1995

S A S S S S SaS S S S S S S S R R R S 2 AR AR TR R T R R R R R T S SV S S VR VR SR O O O SF Oy Oy

McIDAS Developer/Operator Training
October 24, 1995

c--- this is where you actually scan for 6 digits
c--- followed immediately by the character Z.
group = 0
numper = 0
220 continue
c--- scan through the tokanized groups of the line until
c-=~ you have no more groups to check for this line
group = group + 1
if (group .le. numgrp)then
c--- if this group is NOT 6 digits immediately followed
c--- by a single character, it cannot be the valid
c--- forecast time, so go check the next group
if (type(group) .ne. ADIGIT .or.
& numch (group) .ne. 6 .or.
& type (group+1l) .ne. ACHAR .or.
& numch (group+1) .ne. 1l)goto 220
c--- if you have made it to here, you know you have
c--- a forecast period
numper = numper + 1
call mOgrbval (cvalue , value., group)
c--- extract the valid date ,and convert to julian
tday = value / 10000
do 230 j =1, 4
if (daylst(j) .eq. tday)then
tday = yyddd(j)
goto 235
endif
230 continue
235 continue
vday (numper) = tday
C--x extract the valid time and convert to hhmmss
'vtime(numper) = mod (value , 10000) * 100
c--- if the number of periods is less than maxper,
c-~-- continue extracting periods from the line
if (numper .lt. maxper)goto 220
c--~ if you have made it to here, you have all the
c-=-=- periods, so go to the next point in the decoding
goto 290
endif
c--- if you have made it to here, you haven't found the
c--- forecast periods yet. go back and grab a new line.
goto 200
else
call sdest('unable to find valid forecast labels',0)
goto 999
endif
290 continue

c--- if you have made it to here, you have all the forecast
Cc-=- dates and times in 'vday' and 'vtime'.

Developing-Local Decoders in McIDAS-XCD
8-39

492: ‘.

A

A 493: c--- loop 295 is printing the valid times that were decoded

A 494:

A 495: do 295 i = 1 , maxper

A 4096: write (cline, FMT=' (a4,i2,1x,a5,1i5,1x,a5,1i6.6)"')

A 497: & 'per=',1i, 'vday="',vday (i), 'vtim="',vtime (i)

A 4098: call ddest(cline,0)

A 499: 295 continue

A 500:

A 501: c--- now that we have the forecast information, we will scan

A 502: c--- each line for decodable data. Since this format only

A 503: c--- sends the station id once regardless the number of levels

A 504: c--- forecasted we will assume that lines that do not contain

A 505: c--- station ids have the same station id as the previous line

A 506:

A 507: numid = 0

A 508: nostat = 0

A 509: linnum = linnum + 1

A 510: 300 continue

A 511:

A 512: c--- loop through the remaining number of lines until you

A 513: c--- reach the end of the data block

A 514

A 515 linnum = linnum + 1

A 516: if (linnum .le. nlines)then

A 517

A 518: c--- initialize the output arrays to missing value codes

A 519:

A 520: call zmiss (maxper , tlat , MISS)

A 521: call zmiss(maxper , tlon , MISS)

A 522: call zmiss (maxper , tpre , MISS)

A 523: tt = -9999.d0

A 524: ttd = -9999.d0

A 525: !

A 526: c--- decode the current line &

A 527: (

A 528: ok = dectrj (cblk(linnum), ctemp,tlat,tlon,tpre,tlvl,tt,ttd)

A 529

A 530: c--- if we haven't found a station id yet and this line

A 531: c--- does not include a station id then go grab the next

A 532: c--- line and start over.

A 533

A ©534: if (nostat .eqg. 1 .and. ok .ne. 1l)goto 300

A 535: nostat = 0

A 536:

A 537: c--- if the decoding detected a station id you must find

A 538: c--- the lat/lon of the station

A 539:

A 540: if (ok .eq. 1)then

A 541:

A 542: do 315 i = 1 , numlod

A 543

A 544: c--- if a station match is found, assign the appropriate

A 545: c--- lat/lon, increment the number of stations found, and

A 546: c--- reset the level counter for the new station.

A 547

A 548: ctemp4 = clit(staton(i))

A 549: if (ctemp(1:3) .eq. ctemp4(1:3))then

A 550: numid = numid + 1

A .551: cid(numid) = ctemp

A 552: clat = slat (i)

A 553: clon = slon(i)

A 554: lev =0

A 555: goto 316

A 6556: endif

A 557:

A 558: 315 continue

A 559:

A 560: c--- if the station was not found and the flag is set

A 561: c--- at the station to the monitor list

A 562: ‘ A

{

Developing Local Decoders in McIDAS-XCD McIDAS Developer/Operator Training

8-40 October 24, 1995

618:
619:
620:
621:
622:
623:
624:
6255
626:
627:
628:
629:
630:
631:
632:
633:
634:

PP ppRPRPEPEER PP PP PP PR P Y DD P DD I I N D D PN P YN DD
n
0
o

McIDAS Developer/Operator Training
October 24, 1995

if (flags(2) .eqg. 1)then
id = lit(ctemp4)
call mOidnew(id,cflags(3),1, 'NEW ')

endif
nostat = 1
goto 300
endif
c--- if you have made it to here you have successfully decoded
C-=-- the entire observation. clat/clon contain the station
C=== lat/lons you are currently processing

316 continue

c--- move the station lat/lon into the final forecast period's
C=== slot in the temporary array
tlat (5) = clat
tlon(5) = clon
c--- increment the level number being viewed and moved the
c--- data from the temporay arrays into the permanent ones
c--- the value for lev will be used to indicate where in the
c--- repeat section of the md file to store this report
if (tlvl .eqg. 'SFC')then
lev = 1
elseif (tlvl .eq. '850')then
lev = 2
else
lev = 3
endif
c--- moved the data just decoded from temporary into permanent
c--- storage arrays.
t (lev,numid) = tt
td(lev,numid) = ttd
linloc(lev,numid) = linnum
lvls (lev,numid) = welvl

call movw(maxper,tlat,lat(1,lev,numid))
call movw(maxper,tlon,lon(1l,lev,numid))
call movw(maxper, tpre,pre(1l,lev,numid))

c--- go back up looking for more stations

goto 300

endif
c--- if you have made it to here all of the important arrays
c--- have been filled so you can commence filing the reports
(o first check to see if the MD file you will be filing to
c--- exists. if it doesn't build the row/column headers

mdfile = mdbase + mod(julday,10)
if (mdfile .eq. mdbase)mdfile = mdfile + 10

ok = makmdf (mdfile,nr,nc,julday)

Cc-=-- ******t**i************i*******i***********************'*****
c--- * file decoded reports in MD and RA files *
C--- khkkkddkhkrhbhkkhhdhkkdhhbkb bk kbbb kbbb r bbbk hk kb h bk ke kkkkk
c--- loop through all of the stations that were decoded

do 400 i = 1 , numid
write(cline, FMT='(a3,a4) ') 'id="',cid (i)
call ddest(cline,0)

Developing Local Decoders in McIDAS-XCD
8-41

I U

635: c--- locate the appropriate column number to file data in ‘r

A

A $

A 637: id = lit (cid(i))

A 638: mdcol = mOloccol (id , mdfile , 1, 0 , 0 , O,

A 639: & 0, 1, mdlist , maxsta , mdidtb , dumil ,

A 640: & dum2 , dum3 , dum4 , dum5 , idinfo)

A 641

A 642: c--- if the station was not found go to the next station

A 643:

A 644: if (mdcol .le. 0)then

A 645: goto 400

A 646: endif

A 647

A 648: c--- figure out the appropriate row number

A 649: c--- if the first VTIM is 12Z that means this is the

A 650: c--- output from the 12z model run so begin filing

A 651: c--- after the 5 00Z rows

A 652

A 653: mdrow = 0

A 654: if (vtime (1) .gt. O)mdrow = 5

A 655

A 656: record(l) = 0

A 657: do 440 k = 1 , maxper

A 658

A 659: mdrow = mdrow + 1

A 660:

A 661: c--- loop through the forecast periods calculating the

A 662: c--- appropriate row number and filling up the record

A 663: c--- array for the md file. This section also files

A 664: c--- in the RA file if appropriate.

A 665:

A 666: do 420 j = 1 , maxlev

A 667

A 668:

A 669: c--- £ill the md data output array

A 670 (

A 671: ge--~ the storage format for the output array 'record' is: L

A 672: c--- 1 - MOD flag

A 673% ¢--- 2 - temperature from SFC (only reported for last period)

A 674: c--- 3 - dew point from SFC (only reported for last period)

A 675: c--- 4 - latitude from SFC

A 676: c--- 5 - longitude from SFC

A 677: c--- 6 - pressure level SFC

A 678: c--- 7 - ending pressure SFC

A 679: c--- 8 - temperature from 850

A 680: c--- 9 - dew point from 850

A 681l: c--- 10- latitude from 850

A 682: c--- 11- longitude from 850

A 683: c--- 12- pressure level 850

A 684: c--- 13- ending pressure 850

A 685: c--- 14- temperature from 700

A 686: c--- 15- dew point from 700

A 687: c--- 16- latitude from 700

A 688: c--- 17- longitude from 700

A 689: c--- 18- pressure level 700

A 690: c--- 19- ending pressure 700

A 691)

A 692: c--- convert the temp and dewpoint to kelvin and put

A 693: c--- in the appropriate record location for the final

A 694: c--- forecast period.

A 695

A 696: pt =1 + (j = 1) * 6

A 697: record (pt+1) = MISS

A 698: record (pt+2) = MISS

A 699: if (k .eq. maxper)then

A 700: £15.,4) = 273.16 % £(4,41)

A 701: tdits; i) =273.16 + td(j, 1)

A 702: record (pt+1l) = int(t(j,i) * 100.d0)

A 703: record (pt+2) = int(td(j,i) * 100.d0)

A 704:

A 705: ¢--- perform gross error checks on the temperature (

A 706: c--- and dew point ;
Developing Local Decoders in McIDAS-XCD McIDAS Developer/Operator Training

8-42 October 24, 1995

707:
708:

S S S A S SIS Sd A R RS A R R Rk R R R R R R R R R R R R R SRR N R Y VR S Sp oy Sy Sy e
9
=
N

McIDAS Developer/Operator Training

October 24, 1995

c---
Cc---
c---
c---

Qs
PO
oy
Erad
Chs

C-=--
C---
C-=--
c---

C--=
C-~--

C-==
C-==
C==-

C=-=--

420

ok = mcgrsscl(record(pt+1),2,MISS,'T 1, 'K %,0)
ok = megrsscl (record(pt+2),2,MISS,'TD ','K ',0)
endif

record(pt+3)= lat (k,j,i)
record(pt+4)= lon(k,j,1i)
record (pt+5)= pre(k,j,i)
record (pt+6)= lit(lvls(j,i))

if the RA text file was successfully opened
file the portion of the observation having
to do with this station, level, and forecast
period

if (opnrap .ge. 0)then

build the domain within the data block that
should be filed

since this is a bit of a flaky output, we will
build a temporary string which is what we will
actually file

1n = linloc(j, 1))
cline = cid(i) (1:4)//cblk(1ln) (6:9)
//cblk (1n) (bcol (k) :ecol (k))

blkdom contains the list of what section of the
raw observation stored in 'cline' is to be
included. This includes row/col information,
not to be confused with the MD row and col

blkdom (1) = 1
blkdom(2) = blkdom(1)
blkdom(3) = 1
blkdom(4) = 80

build the time domain information.
we store 1001 for SFC level.

pres = 1001
if (lvls(j,i) .eqg. '700')then

pres = 700

elseif (lvls(j,i) .eg. '850')then
pres = 850

endif

timdom stores pertinent meta-data about the
observation. What type of report (SFC, 850, 700)
valid day/time

timdom(1l) = pres
timdom(2) = 1
timdom(3) = vday (k)
timdom(4) = vtime (k)
timdom(5) = timdom(4)
timdom(6) = timdom(3)
timdom(7) = timdom(4)
timdom(8) = timdom(5)

id = lit(cid (1))
write the observation to the RA file
ok = metxtwrt (ptrfil,ptrhed,cline,blkdom,
id, timdom, maxsta, numrap, idtab)
call ddest (cline(1:60),0k)

endif

continue

Developing Local Decoders in McIDAS-XCD
8-43

819:
820:
821 :
822:
823:
824:
825:
826:
827:
828:
829:
830:
831:
832:
833:
834:
835:
836:
837:
838:

840:
841:
842:
843:
844:
845:
846:
847:
848:
849:
850:

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A 815
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Developing Local Decoders in McIDAS-XCD

8-44

C===
c-=--

Ce==
Cc---

440

400
999

[1 & 2o I o I o o 1o o I o B0 I 0 B0 I o Mo B 0 W 9}

“rr >R

C=-=--
C-=--
C-=--

c-=--
C-=--

Q===
C-~=-
o Lo

at this point the entire data record should be
filled so we can write the output to the md file

ok = mdo(mdfile, mdrow,mdcol,ndkeys,mdlocs, record)

write(cline, FMT='(a4,i2,1x,2(a2,i4,1x))")
& 'mdo="',0k, 'r=',mdrow, 'c=',mdcol
call ddest (cline,0)

update the buffer for the status display and output
it to the window

bullbd (BBON) =1
call gettim(bullbd (BBTIME))
call getday (bullbd (BBDAY))

bullbd (BBMD) = mdfile
bullbd (BBROW) = mdrow
bullbd (BBCOL) = mdcol
call movecw('TRAJECT ', bullbd (BBTASK))
call movcw(' ' ,bullbd (BBTEXT))
call mOwsded(' ', decnum, 'DECO',bullbd,BBSIZE, stat)
continue
continue
continue
return
end

makmdf - make the md file with the necessary row and colum
headers

integer function makmdf (integer mdfile , integer nr ,
integer nc , integer julday)

input:
mdfile md file number to build
nr number of rows to make md file
nc number of columns to make md file

julday julian day md file is valid for

return values:

0 - md file already exists

1 - md file made successfully
<0 - error while making md file

integer function makmdf (mdfile , nr , nc , julday)

implicit none
include ‘'xcd.inc'

nkeys - number of keys to get from master station list
maxsta - maximum number of stations that can be stored
in the column headers

integer nkeys
integer maxsta
parameiter (nkeys = 3 , maxsta = 600)

nrkeys - number of keys in the row header
nckeys - number of keys in the column header
integer nrkeys
integer nckeys
parameter (nrkeys = 4 , nckeys = 3)

mdfile - md file to be built

nr - number of rows to make the md file

nc - number of columns to make the md file
integer mdfile
integer nr
integer nc

McIDAS Developer/Operator Training
October 24, 1995

A 851:

A 852: c--- julday - julian day this md file represents

A 853: c--- record - storage array for output to the md file
A 854 integer julday

A 855 integer record (nrkeys+nckeys)

A 856

A 857: c--- title - array containing the title for the md file
A 858 integer title(8)

A 859

A 860: c--- rklocs - row key locations in the md file

A 861: c--- cklocs - columns key locations in the md file

A 862: integer rklocs (nrkeys)

A 863: integer cklocs (nckeys)

A 864:

A B865: c--- filnam - temp string containing lw filename of md file
A 866: character*12 filnam

A 867

A 868: c--- idfile - id file to use to build station list and
A 869: c--- column headers from

A 870: character*12 idfile

A 87%:

A 872: c--- ckeys - list of keys to get from station id list
A 873: character*4 ckeys (nkeys) ¥

A 874:

A 875: c--- cdate - string to contain date for title of md file
A 876: character*40 cdate

A 877:

A 878: c--- cttl - string containing md file title

A 879 character*40 cttl

A 880

A 881l: c--- filtmp - integer array name of md file

A 882: integer filtmp (3)

A 883:

A 884: c--- finc - forecast increment between md file rows
A 885 integer finc

A 886 F

A 887: c--- ids - array containing complete list of station ids
A 888: c--- to include in column headers

A 889: c--- ele - array containing complete list of elevations
A 890: c--- to include in column headers

A 891: c--- st - array containing complete list of states to
A 892: c--- include in column headers

A 893 integer ids(maxsta)

A 894: integer ele(maxsta)

A 895: integer st (maxsta)

A 896

Al B9 E=== lwfile - function declaration

A 898: c--- Idt - function declaration

A 899: c--- mcydd2ch- function declaration

A 900: c--- mdmake - function declaration

A 901: c--- mObildid- function declaration

A 902: c--- mdo - function declaration

A 903: c--- mcinchr - function declaration

A 904: c--- lwi - function declaration

A 905 integer lwfile

A 906 integer 1lit

A 907 integer mcydd2ch

A 908 integer mdmake

A 909 integer mObildid

A 910 integer mdo

A 911 integer mcinchr

A 912 integer 1lwi

A 913

A 914: c--- schema - md schema name

A 915: c--- ok - function return value

A 916: c--- nsta - number of stations returned from mObildid
A 9173 @--- start - starting word in station id table to begin
A 918: c--- loading station information

A 919: c--- g - loop counter

A 920 integer schema

A 921 integer ok

A 922 integer nsta

Developing Local Decoders in McIDAS-XCD
8-45

McIDAS Developer/Operator Training
October 24, 1995

9232 integer start
924: integer i

926; equivalence (filnam , filtmp)
927: data rklocs/1,2,3,4/ , cklocs/s,6,7/

929: c--- build the file name
931: call mdname (mdfile , filtmp)
933: c=r- check to see if the file already exists

9352 makmdf = 0
936: if (lwfile(filnam) .eq. 1)goto 999

938: c--- if you have made it to here, the file doesn't exist so
939: c--- create the md file with row and column headers

941; makmdf = -1
943: c--- build the md file title and make the md file

944 : schema lit ('TRAJ')
945: ok mcydd2ch (julday , 4 , cdate)

nnn

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A 946: cttl 'NGM Traj Fcst: '//cdate

A 947: call movew(cttl , title)

A 948: ok = mdmake (mdfile , schema , 0 , nr , nc , julday , title)

A 949: if (ok .lt. 0)goto 999

A 950:

A 951: c--- first we must build a station list. For this exercise

A 952: c--- we will use the station ids used for the FOUS14 decoder

A 953:

A 954: idfile = 'FOUSS1.IDT'

A 955: ckeys (1) = 'CID1'

A 956: ckeys(2) = 'ST '

A 957: ckeys(3) = 'ELEl'

A 958

A 959: nsta = mObildid(' ',1,idfile,ckeys,nkeys, 'DDS ', 0, 'FOUS14"',

A 960: & Lo)

A 961

A 962: c--- check for errors in building station id table

A 963:

A 964: if (nsta .le. 0)goto 999

A 965:

A 966: makmdf = makmdf - 1

A 967: if (nsta .gt. maxsta)goto 999

A 968

A 969: c--- load the station list into the appropriate arrays

A 970

A - 971: makmdf = makmdf - 1

A 972: start = 1024

A 973: if (1lwi(idfile, start , nsta , ids) .1lt. 0)goto 999

A 974: if (lwi(idfile, 1 * nsta + start , nsta , st) .lt. 0)goto 999

A 975: if (lwi(idfile, 2 * nsta + start , nsta , ele) .lt. 0)goto 999

A 976:

A 977: c--- build the row headers

A 978:

A 979: record (1) = julday

A 980: record(2) = 0

A 981: finc =0

A 982: do 10 i =1 , nr

A 983:

A 984: c--- if i = 6 that means that we are starting to build the

A 985: c--- row headers for the 12Z model run

A 986:

A 987: if (i .eq. 6)then

A 988: record(2) = 120000

A 989: finc = 0

A 990: endif

A 991

A 992: c--- increment the forecast time

A 993

A 994: ok = mcinchr (record(1l),record(2),finc,record(3),record(4))
Developing Local Decoders in McIDAS-XCD MCcIDAS Developer/Operator Training

8-46 October 24, 1995

996: c--- write to the row header
997:
998: ok = mdo(mdfile , i , 0 , nrkeys , rklocs , record)
999: finc = finc + 6
1000: 10 continue
1001:
1002: c--- build the column headers
1003:
1004: do 100 i = 1 , nsta
1005: record(l) = ids(i)
1006: record(2) = st (i)
1007: record(3) = ele(i)
1008: ok = mdo(mdfile , 0 , i , nckeys , cklocs , record)
1009: 100 continue
1010:
1011: makmdf = 1
1012: 999 continue
101 3¢ return
1014: end
1015:
1016: ¢ $ dectrj - decodes a line of the trajectory forecast
1017: ¢ $
1018: c $ integer function dectrj(line,cid,lat,lon,
1019: ¢ $ pre,level, t,td)
1020: ¢ $ input:
1021: c+8 line c(*)- line to be decoded
1022: c $ output:
1023: ¢ $ cid c(*)- station id
1024: c § lat i(*)- array of decoded latitudes
1025: c § lon i(*)- array of decoded longitudes
1026: c $ pre i(*)- array of presures
1027: c § £ dp - final temperature
1028: ¢ $ td dp - final dewpoint
1029: ¢ $ return values:
c $ 0 - success, no station id on this line
1031: ¢ $ 1 - success, station id on this line

[y
o
w
w

integer function dectrj(line,cid, lat,lon,pre,level, t,td)
implicit none

B
oo
w W
TS

1036: c--- numper - number of periods in the for aaaocooppp
1037 integer numper
1038: parameter (numper = 4)

1040; c--- line - line to decode
1041: c--- cid - station id decoded (if found)
1042: c--- level - level decoded (SFC, 850, 700)

1044: character* (*) line
1045: character* (*) cid
1046: character* (*) level

1048: c--- fltval - temporary floating point variable
1049: c--- t - temperature decoded from report
1050: c--~- td - dew point decoded from report

1052: double precision fltval
1053 double precision t
1054: double precision td

1056: c---~ ctemp - temporary character string
1067 character*12 ctemp

1089: ¢--- lat - array of decoded latitudes
1060: c--- lon - array of decoded longitudes
1061: c--- pre - array of decoded pressures
1062: integer lat (*) ‘
1063: integer lon(*)

1064: integer pre (¥)

PRPPPPPPPPPPPPPRPPPPPPPPPPPPPPP PP YRR PRI RRR ORI D PRI D PP YN
o
w
o

McIDAS Developer/Operator Training Developing Local Decoders in McIDAS-XCD
October 24, 1995 8-47

A 1066: c--- latcdl - column number where latitudes begin

A 1067: c--- loncol - column number where longitudes begin

A 1068: c--- pcol - column number where pressures begin

A 1069

A 1070: integer latcol (numper)

A 1071: integer loncol (numper)

A 1072: integer pcol (numper)

A 1073:

A 1074: integer ok

A 1075: integer strsta

A 1076: integer intval

A 1077: integer intsta

A 1078: integer fltsta

A 1079: integer mcextrln

A 1080: integer i

A 1081:

A 1082: data latcol/10,20,30,40/

A 1083: data loncol/13,23,33,43/

A 1084: data pcol /16,26,36,46/

A 1085:

A 1086: dectrj = 0

A 1087

A 1088: c--- extract the station id if it, exists from column 2-4

A 1089

A 1090: ok = mcextrln(line,2,4,cid, strsta,intval, intsta,fltval, fltsta)

A 1091:

A 1092: c--- if the line contains a station id, return 1

A 1093:

A 1094: if (cid .ne. ' ')dectrj = 1

A 1085

A 1096: c--- loop 10 scans through the line decoding the first 4

A 1097: c--- forecast periods

A 1098:

A 1099: do 10 i = 1 , numper

A 1100

A 1101: c--- extract the latitude

A 1102

A 1103: ok = mcextrln(line,latcol (i),latcol(i)+2,ctemp,strsta,

A 1104: & intval, intsta, fltval, fltsta)

A 1105: lat (i) = intval * 1000

A 1106

A 1107 c=-=-- extract the longitude, we may have to convert it

A 1108: c--- if the value extracted is less than 600 it implies

A 1109: c--- that the value is actually preceeded by 100.

A 1110: c--- example:

A 1111: c--- if the value is 765 it implies a value of 76.5

A 1112: c--- if the value is 116 that implies a value of 111.6

A 1113

A 1114: ok = mcextrln(line,loncol(i),loncol(i)+2,ctemp,strsta,

A 1115: & intval, intsta, fltval, fltsta)

A 1116:

A 1117: if (intval .ge. 600)then

A 1118: lon(i) = intval * 1000

A 1119: else

A 1120: lon(i) = 1000000 + (intval * 1000)

A 1121: endif

A 1122:

A 1123: c--- extract the pressure

A 1124

A 1125: ok = mcextrln(line,pcol (i), pcol (i)+2,ctemp,strsta,

A 1126: & intval, intsta, fltval, fltsta)

A 1127:

A 1128: c--- if the value extracted is less that 100 assume that

A 1129: c--- the data is actually for a level above 1000mb

A 1130:

/- Qs 1 e i if (intval .lt. 100)intval = intval + 1000

A 1132: pre(i) = intval

A 1133:

A 1134: 10 continue

A 1135:

A 1136: c--- now decode the final state of the parcel. put the

A 1137: ¢c--- results in position 5 of the lat, lon, and pre arrays.
Developing Local Decoders in McIDAS-XCD MCcIDAS Developer/Operator Training

8-48 October 24, 1995

1138

1139: c--- extract the ending parcel level

1140:

1141: ok = mcextrln(line,6,8,ctemp,strsta,

1142: & intval, intsta, fltval, fltsta)

1143:

1144: level = ctemp

1145:

1146: c--- if this is not the SFC level put this value in pre(5)
1147: c--- otherwise read the pressure value from SFC location
1148:

1149: if (ctemp .eq. 'SFC')then

1150
1151 ok = mcextrln(line,50,52,ctemp,strsta,intval, intsta,
1152: & fltval, fltsta)

1153:

1154: endif

1185:

1156: pre(5) = intval

13¥57:

1158: c--- extract the temperature

1159
1160 ok = mcextrln(line,53,57,ctemp,strsta,intval, intsta,
1161: & t,fltsta)

1162:

1163: c--- extract the dewpoint

1164:

¥165: ok = mcextrln(line,59,63,ctemp,strsta,intval, intsta,
1166: & td, fltsta)

1167:

1168: 999 continue

1169: return

1170: end

PRPRPPPPPEPPPPPPPPREPRRIIPRYD DY D DD

Source code used to run moOtrjdec from the command line

: ¢ $ trjdec - demonstration command for trajectory decoder

c $ this command runs the trajectory forecast decoder mOtrjdec
c $ to file information in an MD file format and RA format

c $ for quick access.

subroutine main0

implicit integer (a-z)

parameter (maxlin = 200 , idxsiz = 16)
integer idxblk(idxsiz) , flags(8)
character*4 header , clit , src , origin , cindex , wmo
10: character*80 cline , file , cblk(maxlin)
11: character*12 cflags(8)

12: double precision dtime

13; data cindex/'FO'/

14: data header/'FOUS'/

15: data minprd/50/ , maxprd/57/

data dtime/13.d0/

\Om\lmm&wMHO

18: call getday (today)

19: call gettim(now)

20: yyddd = ikwp ('DAY', 1, today)
21: time = ikwphr ('TIME', 1, now)

23: c--- set the appropriate values for the cflags array

25; cflags(3)

DO wWOw WO w oo oo wwwww
(=
[}

= 'NEWFO50.IDM'
26: cflags(5) = 'FOl14DEC.IDT'
27; cflags (6) = 'FOS50.RAP'
28: flags(2) =1
29: flags(3) = 12
30: flags(4) = 100
31: flags(5) = 10
32: flags(6) = 600
33: flag =0
McIDAS Developer/Operator Training Developing Local Decoders in McIDAS-XCD

October 24, 1995 8-49

]
o

34: found
35: 100 continue

37: ¢c--- get the next available index block

39; gidx = mcgetidx(yyddd, time,dtime, 1, cindex, idxblk, flag)
41; C=~~ if there was an error or we have no more data
43: if (gidx .le. 0)goto 999

clit (idxblk (1))

clit (idxblk (5))
clit (idxblk (7))

45: src
46: wmo
47: origin

49: write (cline, FMT=' (a4,1x,15,1x,19,1x, i6,1x,a4,1x,12,1x,a4) ')
50: & src, idxblk (2) ,idxblk(3), idxblk (4),wmo, idxblk (6) ,origin
51: call ddest(cline,0)

53: ¢--- make certain the wmo header products match

553 if (wmo .ne. header)goto 100
56: if (idxblk(6) .lt. minprd .or.
57: & idxblk(6) .gt. maxprd)goto 100

59: found = found + 1

61: c--- if you make it to here, you know you have the data you
62: ¢~~~ are interested in, so load the text and decode it

64; call mOsplnam(idxblk(3) , src , yyddd , file , ptr)
65: ok = mclddatb(file , ptr , idxblk(2),maxlin*80,80,cblk)
66: nlines = (idxblk(2) -1) / 80 + 1

68: do 200 i = 1 , nlines

69: call ddest (cblk(i),0)
70: 200 continue

71 call ddest('---------- L.9)

oF ok = motrjdec(cblk(1),cblk(2),nlines-1,yyddd, time, " '
74: & flags,cflags)

76; if (found .1lt. (maxprd-minprd+l))goto 100

78: 999 continue

79: call edest('done',0)
80: return

81: end

o b0 b0 bo o to to to o 0 b 00 00 b b0 b0 b9 B9 60 bo bo bo bo o Lo bO to b b b b0 bd bd bo bo bo bo bo o b9 b0 W0 W0 b9 o O WO bo
ul
@

Source code used to run mOtrjdec from a data monitor,

dmlocal.pgm

¢ 0 C THIS IS SSEC PROPRIETARY SOFTWARE - ITS USE IS RESTRICTED.

Cc 13

e 2: C ***McIDAS Revision History **%*

c 3: C ***McIDAS Revision History ***

Cc 4:

C 5: SUBROUTINE mainO

C 6:

(0 s IMPLICIT INTEGER (a-z)

c 8: INCLUDE 'xecd.inc’

(6] 9:

c 10: ¢ parameter definitions:

(6 11: @ maxlin - the maximum number of lines that can be decoded

(& 12: ¢ by one decoder call

e 13: c numdec - the number of decoders that are called in this

c 14: c particular processing data monitor

e 15: ¢ maxidx - the maximum number of different indices that can

o 16: ¢ be used by each decoder. this value is wired
Developing Local Decoders in McIDAS-XCD McIDAS Developer/Operator Training

8-50 October 24, 1995

173 € into the data structure for decinfo.dat and
18: ¢ cannot be altered.
19: ¢ mxiflg - the maximum number of integer decoding flags
20: ¢ that can be set for a particular decoder. this
21:-.¢ value is wired into the data structure for
22: ¢ decinfo.dat and cannot be altered.
23: ¢ mxcflg - the maximum number of character decoding flags
24: ¢ that can be set for a particular decoder. this
25: ¢ value is wired into the data structure for
26: c decinfo.dat and cannot be altered.
27: ¢ maxwmo - the maximum number of wmo headers
28: ¢ that can be set for a particular decoder. this
29: c value is wired into the data structure for
30: ¢ decinfo.dat and cannot be altered.
31:-e maxorg - the maximum number of station origins
32: € that can be set for a particular decoder.
33¢ © byprln - number of bytes per line
34:
35:
Y B i it +
37T: © If you build your own decoding task using this one as a
38: ¢ template, the only things that have to be changed are
39 ¢ 'numdec' - the number of decoders this task processes
40: c 'task' - the data monitor name that is running
41s-¢ 'decnam' the decoders to be processed for this task
42: c
43: c And the actual decoder calls themselves
44: C - e e e +
45: :
46: PARAMETER (idxsiz = 16)
47 PARAMETER (maxlin = 1000 , numdec = 1 , byprln = 80)
48: PARAMETER (maxidx = 8 , mxiflg = 16 , mxcflg = 8 , maxwmo = 20)
49: PARAMETER (maxorg = 128)
50: PARAMETER (maxbyt = maxlin * byprln)
51: 3
CHARACTER*12 task , decnam(numdec) , cuser

B3: PARAMETER

55: c---
56: c---
57: c---

(task = 'DMLOCAL')

wmo is a list of the maxwmo character portions
of the acceptable headers for each of the
numdec decoders ‘

59: CHARACTER*4 wmo (maxwmo, numdec)

61: c---

orglst is a list of the maxorg station origins

62: G~~~ that are acceptable for each of the numdec
63: @--= decoders

64:

65 : CHARACTER*4 orglst (maxorg, numdec)

67: c--~
68: ©G-~~

namidx is a list of the maxidx indices that are
to be processed for the numdec decoders

70: CHARACTER*4 namidx (maxidx,numdec)

72: c---

76: c---
178 B===

8l: o---
82: ¢---

86: c---
87: c---

O()()O(?()O(?()O(1()0(1()0(7()0(3()0(3()0(1()0(3()0(7()0(7()0(3()0(7()0()(]0(7()0(1()()0(3()O(7()0(3()()0(7()0(1()0(7()0
n
N

McIDAS Developer/Operator Training
October 24, 1995

descrp is a list of the decoder titles
74; CHARACTER*80 descrp (numdec)

cflags is a list of the mxcflg character
string flags used by the numdec decoders

79: CHARACTER*12 cflags (mxcflg, numdec)

cidxfl is a list of the mxcflg index file names
used by the numdec decoders

84: CHARACTER*12 cidxfl (maxidx,numdec)

cblk is the character array that will contain
the data to be decoded

Developing Local Decoders in McIDAS-XCD
8-51

—~

Developing Local Decoders in McIDAS-XCD

8-52

noNONNOONONNANANNNONNNONNNANNANNANNANANNNNNONNNANNANNNNNANANANANANAANNNAONNNANNNAN

T

.

e se se se ee e o

e er e es

CHARACTER*80 cblk(maxlin)

c--- begptr and lasptr are the beginning and ending
c--- index pointer locations processed for each of
c--- the maxidx indices for each numdec decoders.
c--- begptr is initialized to 0 if the task is just
c--- starting or if the day has changed. lasptr is
c--- initialized to -1.
c--- calflg is the flag indicating initial
c--- processing procedures, see mOnxtidx
INTEGER begptr (maxidx,numdec) , lasptr (maxidx,numdec)
INTEGER calflg (maxidx, numdec)
c--- flags is a list of mxiflg integer flags used
c--- by the numdec decoders
INTEGER flags (mxiflg,numdec)
c--- numwmo is the number of wmo headers defined
c--- for the numdec decoders
INTEGER numwmo (numdec)
c--- numorg is the number of station origins
c--- defined for the numdec decoders
INTEGER numorg (numdec)
c--- numidx is the number of indices that are
c--- actually defined for the numdec decoders
INTEGER numidx (maxidx)
c--- decsta is the decoder status flag for the
c--- numdec decoders
INTEGER decsta (numdec)
c--- minprd and maxprd are the minimum and
c--- maximum product numbers that are to be
c--- decoded for the numdec decoders
INTEGER minprd (maxwmo, numdec)
INTEGER maxprd (maxwmo, numdec)
c--- init is an initialization flag set to 0
c--- any time the day changes for a specific
c--- index/decoder pair
INTEGER init (maxidx,numdec)
c--- idxblk is the index directory for the
c--- data block being processed
INTEGER idxblk (idxsiz)
CHARACTER*12 cfu , chead , e¢spool , cbulll , cbull2 ,
& cerror , ctemp , cfj
CHARACTER*80 cline
CHARACTER*4 circit , cwmo , corgin , clit , afos , afostn ,
& afoorg
LOGICAL difday
DATA stlnot/0/
DATA decnam /'TRJDEC v/
c--- setting a debugging keyword

cdnum ,

McIDAS Developer/Operator Training
October 24, 1995

161: dbgflg = ikwp ('DEB',1,0)

163: c--- if mxstrt is set to -1 then this decoding
164: c--- task will run indifinitely. otherwise
165: c-~-- it will end normally after the routine
166: c--- sleep has been called mxstrt times

168: mxstrt = ikwp ('RESTART' , 1 , 500)
170; call getday (yyddd)

172: cerror = task
173: len = minO (nchars (cerror,ib, ie), 8)
174: cerror = cerror(l:len)//'.ERR'

176: c--- make certain the correct unix login is used

178; ok = mOoprchk(cuser, 1)
179: if (ok .eqg. 0)goto 2000

181: numoff = 0
183 do 100 dec = 1 , numdec
185: c--- get the decoder configuration information

187: active = mOdcinfo (FDCINF , task , decnam(dec) ,

tsksta , decsta(dec) ,

maxidx , numidx(dec) , namidx(1,dec) ,

mxcflg , cflags(l,dec) ,

mxiflg , flags(l,dec) ,

maxwmo , numwmo (dec) , wmo(l,dec) ,
minprd(1,dec) , maxprd(1l,dec) ,

maxorg , numorg (dec) ,orglst (1,dec),descrp (dec))

=
0
[
RRrgppRR

: if (tsksta .lt. 0)then

197: call edest ('Data Monitor '//task//'is inactive '//cerror,
198: & tsksta)

199: goto 2000

200: endif

202: c--- output any errors generated by mOdcinfo

204: if (active .eq. -1)then

205: call edest('Unable to find '//task//' and '//decnam(dec)
206: & //' in '//FDCINF,0)

207: goto 2000

208: endif

210: c--- if no indices are defined, the decoder does
211: c--- not know where to look for data, so
212: c--- exit out

214: if (numidx(dec) .le. 0)then

215: call edest('No indices defined for '//decnam(dec),0)
216: goto 2000)

217: endif

219: c--- if the decoder is currently labeled inactive
220: c--- notify the starter and exit out if no decoders
221: c--- are labeled active

223 if (decsta(dec) .lt. 0)then

225; numoff = numoff + 1

226: call edest (decnam(dec)//' is labeled inactive: '
227: & //descrp (dec) , 0)

228: if (numoff .eq. numdec)goto 2000

2302 elseif (decsta(dec) .eq. 0)then

nnanNNanNaNNNNNNNNNNNNNANNANNANNNNANANANNANANNANNNNNANANNNANNNQNNNNNANNNANAANANNAQNAN
[
0
()]

232; call edest ('No decoder found in '//task//' called '

McIDAS Developer/Operator Training Developing Local Decoders in McIDAS-XCD
October 24, 1995 8-53

|
!
{
i

233: & //decnam (dec),0) (

234: goto 2000

235:

236: else

237: call sdest(task//' Starting: '//descrp(dec),0)
238: endif

239:

240: c--- initialize the things that are index/decoder
241: ¢~~~ dependent

242:

243: do 110 idx = 1 , numidx(dec)

244:

245: calflg(idx,dec) = -2

246: begptr(idx,dec) = 0

247: lasptr(idx,dec) = -1

248: init (idx, dec) = 0

249: chead = namidx (idx, dec)

250: call mOidxnam (chead, yyddd, ' ', cidxfl (idx,dec))
251

252: 110 continue

253

254: c--- add startup information to the error

255: c--- message file

256

257: call mOrsded(' ',flags(3,dec), 'DECO',bullbd,BBSIZE,kstat)

cfu (bullbd (BBBPTR))
cfu (bullbd (BBLPTR))

258: cbulll
259: cbull2

(@

c

c

e

c

c

Cc

e

c

c

C

c

c

e

Cc

C

Cc

Cc

e

(!

C

(&4

c

c

c

c

c

C 260: cdnum cfu(flags(3,dec))

C 261: cline 'Started '//decnam(dec)//cbulll(1:10)

C 262: & //cbull2(1:10) //cdnum

C '263: call mcermess (1,cerror,cline)

C 264

C 265: 100 continue

€ 266

C 267: c--- difday - flag set to true if the data-day &
C 268: c--- currently being processed is differant from (
€ - 268n. G the system day. this was required to insure
Cc 270: c--- that all the text from one spool file is

CcC 271: ¢--- processed before going on to the next spool
c 272: c--- file.

€ 273

€ 1294z difday = .false.

c 275

Cc 276: c--- statement #5 is only accessed if no new data
G 12954 C-~= has come in in a while or if the task has been
c 278: ¢c--- asleep.

c 279

Cc 280: c--- rstart is a counter used to determine when
Cc 281: c--- this task is to restart

C 282:

C 283: rstart = 0

C 284:

€ 285: 5 continue

C 286:

c 28%: call getday (curday)

C 288

C 289: c--- if the system day is differant from the data-day
C 290: c--- set the difday flag to true

C ~291=

c . 292: if (yyddd .ne. curday)difday = .true.

c 293:

C 294: ¢--- loop 200 scans through each of the defined
C 2985: @==-~ decoders

c 296:

€ 297: do 200 dec = 1 , numdec

C 298:

€ 299: if (mod(dbgflg,2) .eq. 1)then

C 300:

C 301: call gettim(time)

C 302: ctemp = cfj (time)

C 303: cline = task//' processing for '//decnam(dec)//' '
C 304: & //ctemp (7:12) (

Developing Local Decoders in McIDAS-XCD McIDAS Developer/Operator Training
8-54 October 24, 1995 i

nnonoaooaoaoaaooaaooOaOOOOOOOOOOONONNONONOONONONNNONONNONANNNNNNNANNNNNANANNAN

339:
340:
341:
342:
343:
344:
345:
346:
347:
348:
349:
350:
351:
352:
353:
354:
358
356:
357
358:
3593
360:
361:
362:
363:
364:
365:
366:
367:
368:
369:
370%
371:
3712 %
373:
374:
375+
376:

Cc---

c---
c---

Cc---
c-=--
C---
C---

C---

C-e= °

Cc---
c---

400

R R R

C---
Cc---

490

ctemp
cline (49:)
ctemp
cline (56:)
call sdest

endif

cfu (yyddd)
ctemp
cfu (curday)
ctemp
(cline,0)

o unn

if the decoder is labeled as active

if (decsta(dec) .ge. 0)then

loop 300 scans through each of the defined
indices used by each decoder

do 300 idx =1

, numidx (dec)

call gettim(time)

if the task has just started, check to make
certain that the index lw file exists

(i.e.

been ingested).

data of the type you are interested has

if (init(idx,dec) .eq. 0)then

lwf = lwfile(cidxfl (idx,dec))

if (lwf

.eq. 0)goto 300

init (idx,dec) =1

endif

statement #400 starts the main processing

loop.
index

this section gets the next 4 word
block, and if it is a new block,

processes the data to completion

continue

next = mOnxtidx (cidxfl (idx,dec),yyddd, time,
idxblk, cspool,ptr,flags(3,dec),' ',
begptr (idx, dec), lasptr (idx,dec),
calflg(idx,dec))

circit = clit (idxblk (1))

nbytes = idxblk(2)

nlines = nbytes / byprln

tmstmp = idxblk(4)

cwmo = clit (idxblk(5))

prodct = idxblk(6)

corgin = clit (idxblk (7))

afos = !

if (idxblk(8) .ne. MISS)afos = clit (idxblk(8))

afostn = ' !

if (idxblk(9) .ne. MISS)afostn = clit (idxblk(9))

afoorg =

1 1

if (idxblk(10) .ne. MISS)afoorg = clit (idxblk(10))

faa =

0

if (idxblk(16) .ne. MISS)faa = idxblk(16)

if next .lt. 0 goto 300 for and look at the
next index/decoder

if (mod(dbgflg/2,2) .eqg. 1)then

write(cline,490)task,cidxfl (idx, dec),

begptr (idx,dec),lasptr (idx,dec),

cspool, nbytes, cwmo, prodct, corgin, next

format (2 (al12,1x),2(i6,1x),a12,1x,16,1x,
a4,1x,12,1x,a4,1x,13)

call sdest(cline,0)

McIDAS Developer/Operator Training

October 24, 1995

if not go to the next index file

Developing Local Decoders in McIDAS-XCD

8-55

Developing Local Decoders in McIDAS-XCD

8-56

oo nNnNOaNONOaNONONOONONAOONONOOaQOONONNNONNOONOOONNONONOAONONNNNNNANNNNNNNAN

431:
432:
433:
434:
435:
436:
437:
438:
439:
440:
441:
442:
443:
444:
445:
446:
447:
448:

C=-=-
Ce==-

Q===
c---
C-=-=

Cc---
c---
Ce=-

C---
c---
c-=--

R RRR

C-==-
C=-=--

c-=--
c---

C-=--
c---

250

cC---
C-=--
C-==-

endif
if (next .lt. 0)goto 300

if a new data block was found , reset
the processing counter to 0

stlnot = 0
now we will do a check on
this data block to be sure we really want to
load it.
if specific wmo headers are to be decoded
check to make certain that this might be
a correct block.
if (numwmo (dec) .gt. 0 .or. numorg(dec) .gt. 0)then
compare the wmo header, (ex. 'fous') and
the product number with the list of
acceptable values
ok = mOhedchk(cwmo , prodct , corgin ,
1, &, 1,
1 , numwmo (dec) , wmo(1l,dec) ,
minprd(1,dec) , maxprd(l,dec) ,
numorg (dec) ,orglst (1,dec))

if this is not a correct header go grab the
next index block

if (ok .1lt. O)goto 400
endif

if the index block is ok, load the data block
to cblk and do actual decoding

ok = mclddatb (cspool,ptr,nbytes,maxbyt, byprln, cblk)

if the data block was successfully loaded,
decode the data

if (ok .gt. 0)then
if (mod(dbgflg/4,2) .eq. 1)then
do 250 1n = 1 , nlines
call sdest (task//' '//cblk(ln) (1:65),0)
continue
call sdest ('--=--ece-mcmmccmcoaooom- 1510)
endif
if (decnam(dec) .eq. 'TRJDEC ')then
decok = mOtrjdec(cblk(l),cblk(2),nlines-1,
cirecit,yyddd, time,
flags (1,dec) ,cflags(1,dec))
endif
go back up and see if any more index blocks
can be processed before moving onto the next
index
goto 400

endif

McIDAS Developer/Operator Training
October 24, 1995

ananaoannNnannNnaONNONaONONONNONNNNANNANaANANNNNNNaNNNNNNNNNNNNNANANANANNNNNANANANNNAN
S
(o]
wm

520:

McIDAS Developer/Operator Training

October 24, 1995

300 continue
endif
200 continue

700 continue

c--- statement #700 checks the following:

c=-- 1) if the system day is differant from
Gr=e the data-day update the data-day to

G < the system day and build the new index
c--- file name.

c--- 2) increment the counter stlnot by 1. if
Ce== stlnot is .gt. 1 that means that mOnxtidx
=i has been called twice in a row without
G=es receiving any new data. if this occurs,
G set stlnot back to zero and go to sleep
Erims 3) else go back to the top and continue
G- processing

if (difday .and. stlnot .gt. 0)then

yyddd = curday

difday = .false.
c--- reinitialize all of the index/decoder
c--- dependent information for the new day

do 710 dec = 1 , numdec

do 720 idx = 1 , numidx(dec)

init (idx, dec) =0
calflg(idx,dec) = -1
begptr(idx,dec) = 0
lasptr(idx,dec) = -1

chead = namidx(idx,dec)
call mO0idxnam(chead,yyddd, circit, cidxfl (idx,dec))

720 continue
710 continue
endif

stlnot = stlnot + 1

c--- if stlnot is .gt. 1 that means that the
c--- cycle of loops 200 and 300 has been through
c--- 2 complete times without finding anything
c-~- new to decode so go to sleep

if (stlnot .gt. 1)then

stlnot = 0
goto 1000
endif
goto 5
c--- statement 1000 puts system to sleep for
c--- about 30 seconds

1000 continue
c--- check to see if the system is shutting down
if (luc(194) .ne. 0)goto 2000

c--- check to see if we should end the command

Developing Local Decoders in McIDAS-XCD

8-57

noaonNnonNnOoooNNNONNNNNNN

521: ¢c--- instead of sleeping

522

523: if (mxstrt .gt. 0 .and. rstart .ge. mxstrt) goto 2000
524:

528 : rstart = rstart + 1

526:

527: if (mod(dbgflg,2) .eqg. 1)call sdest(task//' is sleeping',0)
528:

529: call sleep(30000)

530:

531: @-=- after waking up. go back to the top and try
532: c--- processing again.

533:

534: goto 5

535:2000 continue

536:

537 call mcermess (1,cerror,task//' - Done')

538: call edest('Done',0)

539 return

540: end

Developing Local Decoders in McIDAS-XCD

8-58

McIDAS Developer/Operator Training
October 24, 1995

Moving to a
Distributed System

Presented by
Dee Wade
McIDAS Operations Manager

Session 9
- McIDAS Developer/Operator Training
October 23-25, 1995

Table of Contents

Overview

SSEC’s McIDAS system
Problems encountered
Future goals

...

...........................

......................................

Overview

This session will update you on SSEC’s status on moving to a distributed
system. It will also explain some of the problems SSEC has encountered
during our transition and the goals we have set for the near future.

SSEC’s McIDAS system

The SSEC McIDAS system currently consists of the following:

* anIBM 4381-T92 mainframe that ingests and serves satellite data
from GOES-8, GOES-9 and Meteosat-5, and receives
conventional data from the Unix -XCD relay workstation

+ several Unix workstations that handle a variety of tasks

The diagram below shows this configuration. The mainframe provides
users with applications that have not been ported to Unix or OS/2.

MCcIDAS Configuration

MCIDAS Operations FDDI[

FDDI
Workgroup Concentrator
| McIDAS -XCD &

, | Unidata R2D2

Client Cllw/::t PC h | | "

wis Archive | 1 !

| Recorders | | |

To SSEC , , ! '

Ethernet Backbone Operations Ethernet s <RI
—————— =Ethemet
wiess e e =Back-up Ethernet
McIDAS Developer/Operator Training Moving to a Distributed System

October 25, 1995 9-1

The Unix McIDAS network consists of the following workstations:

Workstations SSEC names
two IBM RISC/6000 3BTs spock and bones
one HP 725/75 kirk

two SUN SPARCstation 10s wxdata and r2d2
one IBM RISC/6000 S8H gold

The two 3BTs run McIDAS-XSD, ingesting and serving the POES relay
data: GAC, LAC and HRPT.

The HP receives and serves GOES-7 data.

The SUN workstations run McIDAS-XCD. wxdata is the primary -XCD
workstation; it also receives and serves GMS data from Australia. #2d2 is
a hot spare for -XCD, and is also used for product generation and serving.

The RISC/6000 58H serves in-house users who don’t have the computing
power on their desks. It is also the main source for tape output. go/d has
two 4mm DAT drives, an 8mm Exabyte drive, a 9trk drive, and a 3490E
drive. All Unix tape processing is done on this workstation.

We quickly found that we didn’t have enough disk space. All operation’s
Unix workstations now have 9 GB disk drives.

Moving to a Distributed System McIDAS Developer/Operator Training
9-2 October 25, 1995

Problems encountered

McIDAS Developer/Operator Training

October 25, 1995

Limited floor space

As we began moving towards a distributed system, one of the first
problems we encountered was where to put the workstations. Because
limited floor space didn’t allow us to add desks or tables, we had to build
vertically. Complicating the search for appropriate furniture was the
requirement that we handle multiple vendor hardware. Not only did the
furniture have to be flexible, since the size and shape of the workstations
and monitors varied from vendor to vendor, but the shelves had to support
a great deal of weight. We chose Ergotron because of their pricing and
flexibility. The picture below shows the Ergotron units.

Each unit holds six workstations: three on the bottom shelf and three on the
middle shelf. The top shelf is used for peripherals. So far, this has worked
well, but we don’t have six workstations on a unit yet. This will limit the
operator’s workspace.

Moving to a Distributed System

9-3

Operator training : (

Another problem we encountered was the training of our operations staff.
The Unix environment is very different from the mainframe. The staff was
not familiar with the Unix software or the new hardware. We will continue
our training until the McIDAS operators are completely familiar with the
new environment.

Increased staff

Operating a distributed Unix environment has forced an increase in the
operations staff numbers. We added two people with strong Unix
backgrounds to assist the McIDAS operators by writing scripts and
programs, and performing some administrative duties. Unix system
administrators are also needed to set up and maintain the workstations and
network. SSEC’s system administrator is responsible for all Unix systems
in the Center, not just those in the McIDAS area. It quickly became
apparent that McIDAS Operations needed its own system administrator.

Root access

In the McIDAS mainframe environment, the user oper often had power
that other users did not. In a Unix environment, the user oot has complete
control over the system. This is usually reserved for the system
administrator. We decided that the operator should not run as root. We use f
root only when necessary: when setting up accounts, for example. Each ‘
site must decide who has root access.

Shared files and peripherals

Multiple workstations must share common files and the use of peripherals.
Operators should not be required to maintain a list of user initials and
project numbers on each workstation, but every workstation needs access
to this data. Each workstation should not require a separate tape drive for
backups or saving data.

To solve these problems, we decided to NFS mount shared files, locate all
tape drives on one workstation, and connect the workstations with an

FDDI interface (100Mb/sec vs. 10Mb/sec of ethernet). We used the same
approach with printing. |

Moving to a Distributed System McIDAS Developer/Operator Training -
9-4 October 25, 1995 '

Future goals

McIDAS Developer/Operator Training

October 25, 1995

Have the option to turn off the mainframe

Our goal is to make all mainframe functions available on Unix by the end
of 1996. We can then turn off our mainframe if we choose. This means we
must have reliable -XSD GVAR and Meteosat ingestors. Both of these
satellite types are currently under development. Since SSEC maintains the
GOES archive, we must also be able to process the archive data via -XSD.
Finally, we must resolve our problems with tape processing, which Unix
does not readily address, and the porting of user commands.

Operate from a consolidated console

A distributed system means the operator must monitor multiple
workstations. Operators need a consolidated console that provides a
condensed status of processing on all workstations and sends warning
messages when a workstation has trouble. The operator must also be able
to get in-depth information about each workstation. We will be working on
this console in 1996.

Produce the Distributed Operations Manual

We hope to have the first version of the Distributed Operations Manual
available in the spring of 1996. Because we are still learning to run a
distributed system, this will be a living document. If you have suggestions
about what should be in this manual, please let me know.

I can be reached at (608) 263-0527 or via e-mail at deew@ssec.wisc.edu

Moving to a Distributed System

9-5

Moving to a Distributed System
9-6

MCcIDAS Developer/Operator Training
October 25, 1995

MclIDAS-XSD
Operations

Presented by
Dana Davis - McIDAS Operator
Jerrold Robaidek - Operations Programmer

Session 10
McIDAS Developer/Operator Training
October 23-25, 1995

Table of Contents

CIDERTREIN -5 205 £5 5 5 g e ol sad e ey TR R, e, ol o 10-1
TRMBIBBIBEY | L b ndonnn s B F iy o 60 s & hh kb 10-1
McIDAS-XSD ingest Systemcovevuiesacenssans 10-2
Satellite signals that McIDAS-XSD ingests............ 10-2
Satellite signal ingestors under development 10-2
MCcIDAS-XSD vs. -MVSingestors 10-3
McIDAS-XSDdataflowcovviiiiiinnnnennnnn 10-5
Image data oWcocovvinniniveriniiaiaaaninne 10-5
Control processes and information flow............... 10-6
McIDAS-X8D 880 . < cvcococvssranmnnssnnnnssvanas 10-12
Initializing schedulefiles0 . 0000 10-12
Modifying your startup environment 10-13
Obtainingnavigation.c.cocvvvnnanans 10-13
Setting up satellite schedules 10-14
Settingupeventschedules 10-15
Starting and stopping McIDAS-XSD 10-16
Geostationary satellite ingest vaem we s 10-16
Polarerbiteringestcococvieivancncns 10-17
Stopping MCIDAS-XSD. 10-17
Miscellaneous utilitiescooecovrvncesnsvcenen 10-18

TroubleshOotIng « .. .o vsvnsvacisusmnssasumensassssa 10-21

Overview

This training session will provide basic information about McIDAS-XSD
(McIDAS-X Satellite Data). After this session, you should be able to:

* start and stop McIDAS-XSD

* recognize and use the control and display windows

* make modifications to your configuration file, xsd.cfg

* recognize aborted processes and restart them

* setup an event schedule

Terminology

The following terms are used throughout this section.

cron
crontab
daemon
DDS

Sfull resolution buffer

PDL
rep
SAS

sector buffer

shared memory

$XSD

McIDAS Developer/Operator Training
October 25, 1995

Unix daemon that runs commands at
specified times

Unix command for submitting entries to
the cron daemon

a Unix process that operates continuously
and unattended to perform a service

Domestic Data Service

a portion of shared memory where the
ingd process stores full resolution data to
make it available for other processes

Processor Data Load
remote copy protocol
Satellite-data Acquisition System

the portion of shared memory where the
ingd process gets data

a block of memory accessible to more
than one process

Unix environment variable set as the
home directory path of McIDAS-XSD

McIDAS-XSD Operations
10-1

McIDAS-XSD ingest system

The McIDAS-XSD ingest system allows Unix-based workstations to
directly receive and process satellite data. With McIDAS-XSD, you can
schedule the creation of real-time areas, schedule post processing of those
areas, control the Satellite-data Acquisition System (SAS), and monitor
system operation.

Satellite signals that McIDAS-XSD ingests

McIDAS-XSD ingests the five types of satellite data below. SSEC
currently ingests only GOES-7 and POES-Relay data with McIDAS-XSD.

+ GOES AAA

* POES-Relay

* POES-Flyover
+ GMS

+ DMSP

Satellite signal ingestors under development

« METEOSAT
+ GVAR
McIDAS-XSD Operations McIDAS Developer/Operator Training

10-2 October 25, 1995

McIDAS-XSD vs. -MVS ingestors

McIDAS Developer/Operator Training

October 25, 1995

Besides being designed for Unix-based workstations, McIDAS-XSD has
several other differences from the McIDAS-MVS ingestor.

Ingest process

On the -MVS ingestor, the ingestor card does most of the work, including
averaging, sampling and resolution reduction. McIDAS-XSD has several
software processes to accomplish these tasks.

Operational commands

Many of the McIDAS-MVS operational commands for generating satellite
schedules are also available in McIDAS-XSD. However there are
important differences. The satellite scheduler commands in McIDAS-
MVS (SSKx and GEOx) are entered at the McIDAS command line. The
McIDAS-XSD scheduler commands (polx and geox) are entered at the
Unix prompt.

Independent operation

McIDAS-XSD does not need an active McIDAS session. The
McIDAS-MVS ingestor, however, requires that McIDAS be running.

Operator intervention

In McIDAS-XSD, the monitoring of incoming data is an automated
process. The same task in McIDAS-MVS requires operator intervention.

McIDAS-XSD Operations

10-3

McIDAS-XSD Ingestor Flow Chart.

Receiving
Electronics

v

PSK
Demodulator

v

SAS

Comm.
Process

(cm)

Sector
Buffer

Ingest
Process
(ingd)

Monitor
(mond)

Text
Display
(textdisp)

Antenna
Display
(ant_track)

Antenna
Table

Master
Control
(xsdm)

Control and

Information Exchange
Between Processes

Control and

Information Exchange
Between Processes

Full
Resolution
Buffer

Bulletin
Board

Status
Display
(statusd)

-af}—— Generator

Resolution
(show_conf/
ant_table

Master Control
User Interface
(ui)

W atch
Dog
(watchd)

Event
Schedule

Event
Handler
(ehd)

Journal
Process
(id)

Product

(pgd)

Digital
Data

Operational interface
to McIDAS-XSD

Journal
Lister
(ils)

Event
Scheduler
(ehx)

Satellite
Scheduler
(polx/geox)

Satellite
Schedule

: Hardware
Ej Process
8 Data file

sl D ata Flow

Shared Memory

User Interface

Control Information

Journal Information

v

McIDAS-XSD Operations
104

MclIDAS Developer/Operator Training

October 25, 1995

McIDAS-XSD data flow

MCcIDAS-XSD uses several processes when ingesting satellite data. The
data used, and the information exchanged by these processes follow many
paths. This section examines these processes and the flow of data and
information through McIDAS-XSD, as shown in the flow chart on the
adjacent page.

Image data flow

McIDAS Developer/Operator Training

October 25, 1995

Image data from the satellite is received by the antenna and passed to the
receiving electronics and PSK demodulator. From the demodulator, it is
passed to the SSEC ingestor card, or SAS (Satellite-data Acquisition
System).

The SAS is a stand-alone unit that collects satellite data and provides it to
another system upon request via an ethernet connection. The SSEC ingest
card, along with the software device driver, provides that same data to a
RS6000-based ingest system. Because the board is inserted into a Micro-
channel slot on the RS6000, an external communication link is not
required.

The communication process (¢m) receives the data from the SAS or SSEC
ingestor card and informs xsdm. xsdm then directs cm where in the sector
buffer section of shared memory to put the data. The ingest process (ingd)
takes the data from the sector buffer and creates a full resolution buffer
section of shared memory. The full resolution buffer contains full
resolution image data in a format that enables the product generator to use
the data. The product generator (pgd) gets the data from the full resolution
buffer and creates products (digital areas) on disk according to the requests
in the satellite scheduler.

McIDAS-XSD Operations

10-5

Control processes and information flow (

xsdm

The xsdm process is the master control for the entire McIDAS-XSD
system. This process is started at the Unix prompt by typing xsdm. The
following functions are performed by xsdm:

* reserves the use of the SAS
* manages all program-to-program communication
» allocates ingestor resources

 sends antenna positioning information to the SAS for polar HRPT
flyover ingests

 starts all other McIDAS-XSD processes

cm

The communications process, em, is the first process started by xsdm. It

establishes communication pathways that allow xsdm to pass commands

and to receive the satellite signals from the SAS. When the SAS begins (
sending data, a second cm process is started. This cm process receives the

satellite signal and writes the data to the sector buffer.

Information is also exchanged by xsdm and e¢m to control the rest of the
McIDAS-XSD system. The SAS receives antenna table information and
control information from cm, and returns the antenna position and SAS
status information. The SAS controls the antenna movements by sending
antenna position information to the antenna.

McIDAS-XSD Operations McIDAS Developer/Operator Training '
10-6 October 25, 1995 l

McIDAS Developer/Operator Training

October 25, 1995

ehd

The event handler process is ehd. It receives messages from other
processes and broadcasts the messages throughout the McIDAS-XSD
system. The event handler also evaluates user-defined expression and
command pair entries from the event scheduler. If an expression evaluates
as true, ehd runs the command. The user can create these expression and
command pairs with the ehe command.

The ingest process sends messages to the event handler for these events:

Event Message contents

image begin and end time image date and time, sensor source number
and type, scan number, scan date and time,
start block, satellite mode

navigation codicil filed scan count, slot where the data directory is
filed, scan date and time, image date and
time, sensor source number and type

calibration codicil filed scan count, scan date and time, image date
and time, slot of the data directory, bandmap,
sensor source number and type

PDL satellite mode, scan date and time, image date
and time, pdlscans, pdllats, pdlbands,
pdlspins (if DWELL), and pdlnum

ul

The process, ui, is the user interface process for xsdm. This process sends
user-entered commands back to xsdm. All processes in McIDAS-XSD use
the ui window for error and other text output.

Xsdsacquire 192,0,0,1

Acquire sas 192,0,0,1

Header size in xsdm_queup is 16
WATCHD: Lost SAS, working on it
Ksdsstart GOES

FIRST transition starting

Xsd:Starting CORE Process 6 is jd using xsdm_start
Starting CORE Process 7 is ehd using xsdm_start
OUTPUT DATA -2127441320
SECTOR SIZE 15872
POS AVAIL 251

SIGNAL 0 data_pos_ofst 2560

The user interface window is an xterm window with an Xsd: prompt, as
shown above. From this prompt, all processes in McIDAS-XSD can be
started or stopped. This is also where other ui commands are entered, such
as acquire SAS-address or start satellite.

McIDAS-XSD Operations

10-7

watchd (

The watchd process is known as the watch dog process. Information
regarding the status of all other McIDAS-XSD processes (except xsdm) is
exchanged between watchd and xsdm. If a process fails, watchd notifies
the operator by displaying a yellow popup window on the screen.

Once data is detected, the following processes are started:

* ingd
* pgd
e statusd

e textdisp
* mond
e ant_track

. jd

ingd
The ingestor process, known as ingd, reads the raw data from the sector §
buffer, and generates full resolution data. This data is later used by other (

processes in McIDAS-XSD. Status information is sent by ingd to the
Bulletin Board shared memory segment.

pgd

The product generator process, pgd, generates McIDAS areas from the full
resolution buffer. It creates products based on user-defined entries. Area
products may be single- or multi-banded, or full or reduced resolution
imagery. Status information is sent to the Bulletin Board and product
generation information to the event handler.

statusd

This is the status process that reads the ingestor and product generator
status from the Bulletin Board shared memory segment. The status process
then provides this information to textdisp for display in the status window.

McIDAS-XSD Operations McIDAS Developer/Operator Training '
10-8 October 25, 1995 ’

McIDAS Developer/Operator Training

October 25, 1995

textdisp

This process creates and displays status messages. The McIDAS-XSD
Status window, shown below, is generated by the textdisp process. It lists
information about the product generator (pgd) and ingest process (ingd).
Status information from ingd and pgd are obtained by statusd from the
Bulletin Board shared memory segment and passed to textdisp.

I MIVEL MASPL CURPL STATUS
214 368

2 368 231 processing

SCAN BSCH ESCH DAY TIME FRM S5 SIG BAUDE CDCHK EDSCHS LAG
23¢ 214 368 9527 172056 QN 32 DS 2345678 0 00

mond

The monitor process, mond, creates a window and displays data from the
full resolution shared memory buffer. Other image information can also be
found in this window such as date, time and element offset.

The McIDAS-XSD Monitor window, shown below, displays a portion of
the current image being ingested. If the ingest process flags a bad line of
data, a color line (shown as a gray line below) is displayed on the window.
The text line at the bottom of the window displays the current scan line,
date, time, and the type of data being displayed.

B

Note: For geostationary satellites, clicking the left mouse button on the
McIDAS-XSD monitor window toggles the display between visible and
infrared.

McIDAS-XSD Operations

10-9

ant_track

This process displays the current position of an antenna that is tracking
polar orbiting satellites.

jd
The journal process, jd, receives and stores status messages from other

MCcIDAS-XSD processes. It writes all journal messages that it receives to
the journal files, which can be listed with the jls command.

The ingestor process sends journal messages when the following events
occur:

* an image begins for all ingestor types

* an image ends for all ingestor types

* navigation is filed; GMS and geostationary satellites only
» calibration is filed

« abeta is filed; geostationary satellites only

» apiece of common doc is bad for any ingestor type

* abad scan line is detected for any ingestor type

The event handler, ehd, sends a journal message when the following
events occur:

+ ehd starts or shuts down

* ehd receives a messages

+ ehd updates its list of entries

* ehd receives a message in an incorrect syntax

The product generator process, pgd, sends a journal message each time the
following events occur:

» the pgd process starts or stops
» the product ends earlier then scheduled

» the percentage of good data in the product is less than the
minimum required to retain the product

+ the beginning and end of each product

McIDAS-XSD Operations MCcIDAS Developer/Operator Training

10-10

October 25, 1995

The monitor process, mond, sends a journal message each time it starts a
new image.

The journal process writes those messages to journal files in the
$OPROOT directory. Within that directory, journal files are broken into
subdirectories depending on the process sending the message and

the type of ingestor that is running. For example, the disk file
$OPROOT/GOES/db/ingd contains journal messages from the ingd
process of the GOES ingestor.

—

McIDAS Developer/Operator Training McIDAS-XSD Operations
October 25, 1995 10-11

MclIDAS-XSD setup

The McIDAS-XSD setup consists of the following procedures, each of
which is described below.

* initializing the schedule files
* modifying the startup environment
» obtaining navigation

* setting up the satellite schedules{and event schedules

Initializing schedule files

Before McIDAS-XSD can ingest data, the software has to be told what
type of data it will ingest, and when to ingest it. This information is kept in
the satellite scheduler files, which must be initialized with the files
command before they can be edited or added to using the geoe and pole
commands. The files command initializes the satellite scheduler data files
by deleting their contents. Run this command once at installation to
initialize these files. Use this command with caution! It deletes all entries
and windows. It is usually run only at installation, when major ingestor/
scheduler software changes occur, or if the satellite scheduler files are
accidentally deleted or become corrupt.

Another command that must be run at installation is popdbs. This
command creates a binary version of the satellite scheduler database file
(SATDBS). You must run popdbs before requests for satellite data can be
made with the geoe and pole commands. You must also run it after any
changes are made to the scheduler database file. These changes are usually
provided in software upgrades.

sites.dat

The scheduler command polx will not work with earth coordinates until
your antenna location is defined in the sites.dat file in the $XSD/lib/pfdata
directory. Below is an example of a sites.dat file:

SSEC 43.07 89.41
sentry -1000.0 -1000.0

The first line contains the name of the site and the location of the site’s
antenna. The second line denotes the end of the file.

McIDAS-XSD Operations McIDAS Developer/Operator Training
10-12 October 25, 1995

Modifying your startup environment

The attributes of the processes started by xsdm are determined by the
McIDAS-XSD system defaults. To change these attributes, you must
create or modify the text file xsd.cfg, which is located in the $XSD
directory. The xsd.cfg contains a set of user defined arguments that xsdm
uses when it starts the other McCIDAS-XSD processes. An example of an
xsd.cfg file is shown below:

#

#MOND_POES=“-s $DATA -k $OUT -w 640 -h 500 -I 30 -b 2 -f”
MOND_POES="-s $DATA -k $OUT -w 640 -h 350 -I 160"
MOND_GOES=“-s $DATA -k $OUT -w 1000 -h 350 -I 25”

This file overrides the default for mond and starts mond with a window
size as defined by the w and h flags. The symbol # denotes comment lines
and is ignored when the file is read.

Obtaining navigation

McIDAS Developer/Operator Training

October 25, 1995

In addition to the commands described above, you must obtain navigation
for the satellites.

POES

POES navigation is sent via DDS under the header TBUS. The TIRDEC
decoder in the miscellaneous data monitor dmmisc (provided in McIDAS-
XCD), decodes POES navigation and files it into the file SYSNAV1 on a
McIDAS-XCD machine. SYSNAV1 is then transferred via rcp to the
McIDAS-XSD machine and put into the directory $XSD/lib/mcdata.

DMSP

DMSP navigation is sent as part of the DMSP data stream. The DMSP
ingestor decodes and files the navigation into the proper system navigation
files.

GMS

GMS navigation is sent as part of the GMS data stream. The ingestor puts
navigation into the GMS DOC areas. The event handler then runs an entry
containing the McIDAS-X utility GMSGRD, which reads the navigation
from the GMS DOC areas and files landmarks into the appropriate system
navigation file. The McIDAS-X utility, NVUP, which is run from the
crontab, reads those landmarks and updates the navigation.

McIDAS-XSD Operations

10-13

GOES

GOES navigation is sent as part of the GOES data stream. The GOES
ingestor decodes and files the navigation into the proper system navigation
files.

PRED

PRED navigation predictions are done for all types of data to ensure that
the current days navigation always exists in $XSD/lib/mcdata/SYSNAV 1.

Setting up satellite schedules

The satellite scheduler commands determine ingest windows and products.
The command syntax, keywords, flags, and results are very similar to those
for the McIDAS-MVS commands SSKx and GEOx. The scheduler
commands for polar and geostationary satellites are defined below.

Commands Description

pole creates satellite scheduler windows, entries and
named sectors for polar orbiting satellites.

polu modifies satellite scheduler windows, entries and
named sectors for polar orbiting satellites

poll lists satellite scheduler windows for polar orbiting
satellites

geoe creates satellite scheduler windows, entries and
named sectors for geostationary satellites.

geou modifies satellite scheduler windows, entries and
named sectors for geostationary satellites

geol lists satellite scheduler windows for geostationary
satellites

McIDAS-XSD Operations McIDAS Developer/Operator Training

10-14 October 25, 1995

Setting up event schedules

McIDAS Developer/Operator Training

October 25, 1995

ehe

Use ehe to create, edit, activate, or deactivate an event handler entry. Each
entry contains a Boolean expression and a Unix command. As the event
handler receives messages from other McIDAS-XSD processes, it checks
the message fields against entry expressions. If the expression is true, the
event handler runs the specified command. Utilities used by ehe can be
found in Miscellaneous utilities later in this section. The format is as
follows:

$prog{field} operator matchstring

For example: $ingd {event} eq “image end”

Use command ehls to list the event scheduler; use command ehrm to
delete entries from the event scheduler.

show_conf and ant_table

show_conf and ant_table resolve antenna conflicts for polar orbiting
satellites and send the antenna table to the xsdm, which in turn uses that
table to control the antenna movements. ant_table and show_confread all
the polar orbiter windows in the satellite schedule and determine which
subentries apply to the time interval given, and if any of those subentries
conflict with each other. If no conflicts exist, the antenna table is sent to
xsdm. If conflicts do exist, use show_conf to resolve the conflicts via a
series of graphical user interfaces (GUIs). If you use ant_table with the
-d flag, it will resolve any conflicts by choosing the longest of the
conflicting orbits; ant_table will not send the antenna table to xsdm if
conflicts exist.

McIDAS-XSD Operations

10-15

Starting and stopping McIDAS-XSD

This section describes how to start and stop geostationary satellite ingests
and polar orbiter ingests.

Geostationary satellite ingest

When all the necessary files are initialized and the satellite scheduler files
are updated, you can begin to ingest data. Use the steps below to start
McIDAS-XSD.

1. From an xterm window, logon to the accounf where McIDAS-
XSD is installed.

2. From the Unix prompt, start the master control process.
Type: xsdm

The xsdm process starts cm, watchd and ui. The Unix prompt in
the xterm window is replaced with the xsdm-User Interface
prompt, Xsd:.

3. From the Xsd: prompt, reserve the Satellite-data Acquisition
System (SAS).

Type: acquire address

where address is the IP address of the SAS to be used. Some sites
allow only numeric IP addresses. Contact your Unix system
administrator for more information.

4. From the Xsd: prompt, specify the type of satellite data to ingest.
Type: start satellite

where satellite is the type of satellite data to ingest, GMS or
GOES, for example. Enter the satellite name in uppercase. This
entry tells xsdm to allow data flow from the SAS when data is
available. Currently, McIDAS-XSD can process only one type of
geostationary satellite data at a time.

McIDAS-XSD Operations McIDAS Developer/Operator Training
10-16 October 25, 1995

When xsdm detects data, it starts ingd, jd, pgd, statusd, and mond using
the satellite type's default flags or user defined flags from the configuration
file xsd.cfg; see the Modifying your startup environment section above.

To enter McIDAS-XSD satellite schedule or event handler entries, or Unix
crontab entries, use another xterm window logged on to the account where
MCcIDAS-XSD is installed.

Polar orbiter ingest

Starting a polar orbiter ingest is similar to the geostationary ingest.
However, before you start McIDAS-XSD and before any scheduling is
done, verify that current navigation parameters exist; otherwise, the
antenna tracking will not function properly. See the McIDAS-XSD Users
Guide (9/95) for a complete description.

Stopping McIDAS-XSD

McIDAS Developer/Operator Training

October 25, 1995

To stop a geostationary or polar orbiter ingest system, you must stop the
master control process. From the Xsd: prompt,

Type: quit xsdm

This command stops all McIDAS-XSD processes and releases the SAS.

McIDAS-XSD Operations

10-17

Miscellaneous utilities

This section describes some of the miscellaneous Unix and McIDAS
utilities.

jls

jls lists journal records according to specified sort parameters. The search
keys available for the ehd, ingd, and pgd processes can be found in the
McIDAS-XSD Users Guide. jls is a Unix utility and must be issued from a
Unix prompt.

mccommand

mccommand creates an environment so that McIDAS commands can run
without an active McIDAS-X session. mccommand requires a connection
to an X Window server on which you have privileges. Use the Unix export
command to set your display environment variable, so the server’s output
is sent to your display. For example, export DISPLAY=unix:0

mccommand is ideal for scheduling McIDAS commands to run via the

event handler or UNIX crontab entries. When scheduling commands, you
may want redirect text output to a file, which can serve as a log of errors
and successful commands run by meccommand. The command format is:

mccommand COMMAND
where COMMAND is the complete McIDAS-X command, in uppercase.

To enter multiple McIDAS commands on one command line, separate the
commands with a backslash (\) and a semicolon (;). Use this format:

mccommand FIRST CMD\;SECOND CMD

There are many McIDAS-X utilities available for post processing of
ingested areas. On McIDAS-MVS, these utilities were run from McIDAS
with the event scheduler. McIDAS-XSD runs these commands via
mccommand. These commands are set up with the event scheduler
command ehe. The information below describes the McIDAS-XSD
utilities likely to be run.

McIDAS-XSD Operations McIDAS Developer/Operator Training
10-18 October 25, 1995

DMSPCAL

You must run the DMSPCAL command on an SSMI area before you can
display the area. DMSPCAL does not change the data values, but it does
record calibration information to the CAL portion of the area prefix. You
can enter DMSPCAL manually, but the event handler is normally used to
automate this process. Use the command format below for scheduling
DMSPCAL. Enter the entire command on one line, as shown.

ehe -e ‘$pgd{event)} eq “product end” && $pgd{sig} eq “ssmi”’ -c ‘mccommand DMSPCAL pgd{area}’

GMSGRD and GMSNVUP

GMSGRD and GMSNVUP update the navigation for GMS images.
GMSGRD files grid locations (landmarks) from the GMS DOC areas into
the specified navigation file. GMSNVUP is a macro that uses NVUP to
upgrade the current navigation with the landmarks created by GMSGRD.
GMSNVUP also uses PRED to predict navigation for the next day.

IMGFLIP

IMGFLIP flips polar orbiter images from left to right or top to bottom, so
the northwest corner of the image is in the upper-left. You can use this
command with all DMSP sensors and the POES AVHRR sensor. You
cannot flip POES HIRS and MSU images.

ORBPLOT

ORBPLOT displays the orbital tracks of polar orbiting satellites. It gets the
navigation information defining the orbital tracks from two different
sources. If you use the AREA keyword, the navigation stored with the
specified area generates the tracks. Otherwise, the navigation parameters
are taken from a system navigation file, specified with the NAVF
keyword.

By default, ORBPLOT plots orbital tracks over the displayed image or
map. If the frame contains no navigation, a Mercator map of the world is
displayed before plotting the orbital tracks. Use the MAP keyword to
specify a different map, or use MAP=DEF and the LAT and LON
keywords to define a custom map.

McIDAS Developer/Operator Training McIDAS-XSD Operations
October 25, 1995 10-19

PRED

PRED files predicted navigation based on a master navigation entry. It is
usually run from the crontab once per day.

TIRCAL

TIRCAL calibrates POES AVHRR images. It is scheduled to run at the
end of each image via the event scheduler. Use the command format below
for scheduling TIRCAL:

ehe -e ‘$pgd{event} eq “product end” && $pgd{bandmap} ne “<6>" && $pgd{satmode} eq
“POES”’ -c ‘mccommand TIRCAL $pgd{area}’

TIPTI
TIPTI creates HIRS and MSU products from the raw data in the POES TIP
areas.
McIDAS-XSD Operations McIDAS Developer/Operator Training

10-20

October 25, 1995

Troubleshooting

If you encounter any of the problems below, use the suggested solutions to
fix them. Although restarting McIDAS-XSD may fix a problem, do a
restart only after investigating all other avenues.

pgd has stopped

Problem:

Possible solution:

Navigation is lost

Problem:

Possible solutions:

The watchd process (watchdog) reports that
pgd has stopped. After restarting pgd, it stops
again. ;

The file system that pgd writes to could be
full. Check the file systems from the Unix
prompt with df. Delete any unneeded files,
such as old areas or debug files.

Loss of navigation

McIDAS-XSD may have been down for
more than 24 hours and PRED was not run.
You may need to run PRED. Or, TBUS may
be old. Check the TBUS time on a McIDAS-
XCD workstation. If TBUS is more than two
days old, contact your TBUS supplier.

Ingestion or processes are hung

Problem:

Possible solution:

McIDAS Developer/Operator Training
October 25, 1995

McIDAS-XSD is not ingesting or processes
seem to be hung. After trying a restart,
McIDAS-XSD still does not come up.

Duplicate processes may have been started.
Multiple processes are usually a result of
xsdm being stopped by means other than
quit xsdm at the Xsd: prompt. Stop/delete the
extra processes from the Unix prompt.
Restart McIDAS-XSD.

McIDAS-XSD Operations
10-21

McIDAS-XSD Operations
10-22

McIDAS Developer/Operator Training
October 25, 1995

MCcIDAS-XCD
Operations

Presented by
Chad Johnson

Operations Programmer

Session 11
McIDAS Developer/Operator Training
October 23-25, 1995

Table of Contents

OUBIVIEN. . (. vsrrcinosernumedaos i lsas sy s s 11-1
TRRABBIOEY . .« . s v50r0vwmneis s alibiates v w5 o 11-1
McIDAS-XCD ingestors and data monitors. 11-2

Bouncing ingestors and data monitors 11-3

Updating stotlon changes« vonvvnraramessosissss o 11-4
SASHON CHORBEIBE . « v 5 oo v s onesnps ridbaensnssasess 11-5
Site-specific ID tbles.o oovvuvvarnvinbononsssess 11-5

Setting up real-time data locations 11-6

Customizingthe GRIBdecoderccovvvevenennen 11-9

LR T R S T T L LT 11-12

The DATAREBCV prografll. . .« . ..ovonvavvnssvsoonines 11-14

Allocating disk space 7 IR S 11-15

Deleting text, MD and grid files. 11-16

5T T I A e e e 11-17

Recoveringarchived MK oo vuesnssnnnssssmnns 11-19

TroubICRMBONIE - o c 00 v 05 a8 sy EFRE RS HH S5 506K S 11-20

Overview

This training session will provide McIDAS operators with the information
they need to set up and maintain McIDAS-XCD. It describes the
conventional data ingestors and monitors, and the status display. It also
explains how to perform the following procedures:

* bounce ingestors and data monitors
* update station tables

e setup real-time data locations

« customize the GRIB decoder

e allocate disk space

» delete data files

* archive data

* troubleshoot

Terminology

The terms below are used throughout this section.

circuit file file containing text data blocks received from a text
ingestor; the file has the extension .XCD

data block text data containing a WMO header

data monitor a McIDAS program that periodically checks newly
ingested data to determine if a specific decoder should

be called
DDS Domestic Data Service
decoder software that parses data from one format into a

common format for use by another process such as a
plotter or lister

GRIB GRIdded Binary message format accepted by the
World Meteorological Organization for the
distribution of gridded data

McIDAS Developer/Operator Training McIDAS-XCD QOperations

October 25, 1995

11-1

—~

HRS
IDS

index file

ingestor

NGM

NWS

PPS
STARTXCD

status display

High Resolution Service
International Data Service

a file, written by ingestors, that contains pointers to
data blocks in circuit files; index files have the
extension .IDX

process that listens to data received by a
communications port and reformats the information
for further processing

National Meteorological Center Nested Grid Model
National Weather Service
Public Products Service

mother task of the entire McIDAS-XCD
ingestor/decoder package

X Windows application that displays the current state
of the McIDAS-XCD ingestor/decoder system

McIDAS-XCD ingestors and data monitors

The McIDAS-XCD ingestors read data from a communications port and
reformat that data for later processing. It has two types of ingestors:

¢ text

¢ binary

The text ingestor reads ASCII data from the communications port and files
that data in a circuit-specific file. For each block of text data written,
additional information is written to an index file specific to the WMO
category to which that block belongs. The binary ingestor reads data from
a circuit and files that data into a circular spool file for later processing.

The -XCD data monitors traverse through the index files or binary spool

files as data is filed by the ingestors. When new data arrives that a decoder
is interested in, that block of data is passed to the decoder for processing.
The decoder then parses the data and converts it into McIDAS file format.

The McIDAS-XCD ingestors and data monitoré are started by the XCD
master process, STARTXCD. Never start the ingestors or data monitors
from the McIDAS command line.

McIDAS-XCD Operations
11-2

MCcIDAS Developer/Operator Training
October 25, 1995

s

<

Bouncing ingestors and data monitors

You will rarely need to bounce a McIDAS-XCD ingestor or data monitor.
Ingestors run continuously. The only time you may need to bounce them
is for communications port changes, such as baud rate or port connection
changes.

Data monitors are designed to periodically restart with no intervention so
that any changes made since the last restart will become effective. For
example, if you make a station change to MASTERID.DAT, such as
adding a RAOB station with the IDU command, it becomes effective the
next time the decoder restarts.

You must bounce a data monitor manually if either of these events occur:

» adecoder within a data monitor is activated or inactivated; for
example, if you activate the TIROS Navigation decoder and want
the change to take effect immediately

* aconfiguration file is modified and must take effect immediately;
for example, if you activate the station ID monitoring system or
move real-time MD files

STARTXCD continuously monitors the state of -XCD. To bounce an
-XCD ingestor or data monitor, simply stop the version of the process
currently running just as you would stop any McIDAS command.
STARTXCD samples the system every 30 seconds and will restart any
process it finds no longer running.

McIDAS Developer/Operator Training McIDAS-XCD Operations
October 25, 1995 11-3

Updating station changes

McIDAS-XCD Operations

114

With the modemization currently taking place in the weather service,
stations are constantly being moved, commissioned, decommissioned, and
augmented.

When a station’s status is changed, the NWS typically sends a message
under WMO header NOUS41 containing relevant information about the
station change. Because this method is not 100% reliable, you should also
check the NWS gopher server, which was recently established to help
disseminate modernization information. The address is:
gopher.cominfo.nws.noaa.gov (140.90.5.206).

McIDAS-XCD can monitor some incoming stations for you, since most

McIDAS-XCD decoders contain software to do this. If you keep statistics
on stations that you are expecting to receive and those that are currently not
in your database, you can inactivate stations that are no longer reporting.

To activate station monitoring, you must set the IDMONFLAG= value in
the configuration file for that decoder. The configuration files reside in
~oper/mcidas/data. The IDMONFLAG value is a number between 0 and
3, as described below.

Value Description _

IDMONFLAG=0 no station monitoring; this is the default
when McIDAS-XCD is installed

IDMONFLAG=1 monitors new stations

IDMONFLAG=2 monitors old stations

IDMONFLAG=3 monitors both old and new stations

Use the McIDAS-XCD command, IDMON, to display the information
collected with station monitoring.

MCcIDAS Developer/Operator Training
October 25, 1995

Station dictionaries

You can find station ID information in these two files: IDMSL and
MASTERID.DAT

IDMSL is the Master Station Catalog, which is maintained by Tinker Air
Force Base, and is distributed with McIDAS-X. IDMSL is used by
McIDAS commands that convert station IDs to lat/lon groups, such as
MSL, PC L, and DF.

MASTERID.DAT is used by the McIDAS-XCD decoders. It contains both
geographical information about stations and the types of observations each
station reports. MASTERID.DAT resides in ~mcidas/data and is replaced
with each McIDAS-XCD upgrade. The site administrator uses the
MCcIDAS-XCD utility, IDU ADD/EDIT, to keep MASTERID.DAT up-to-
date. IDU is specifically designed to manipulate the individual entries in
MASTERID.DAT.

MASTERID.DAT and IDMSL are updated monthly and are available to
you via the MUG BBS (Bulletin Board System). If you don’t want to
replace your version of the file MASTERID.DAT, a list of changes made
each month and cumulative since the last MCIDAS-XCD upgrade is
provided. Instructions for upgrading your MASTERID.DAT and IDMSL
are also available on the BBS.

If you know of stations whose status is incorrect in MASTERID.DAT,
contact the McIDAS Help Desk and we will integrate those changes in the
next release if they are beneficial to the entire MCIDAS community. Until
the stations are updated in the core system, you can add them yourself.
Keep a copy of the IDU commands that you run locally in a batch file.
Then if you need to reload the core station list, you can run a batch
command to reimplement the station changes.

Site-specific ID tables

If you have numerous, specific station changes at your site, you should
maintain a batch file of IDU commands with these changes. When you
upgrade to a new version of MASTERID.DAT, you can simply run this
batch file to add your site-specific stations.

You can also maintain this station table separately from the core
MASTERID.DAT in LOCALID.DAT. To do this, write to an alternate file
with the FILE= keyword of the McIDAS-XCD IDU command. Then
modify the MASTERFILE= keyword in the configuration file for your
local decoder to use this station ID table.

McIDAS Developer/Operator Training McIDAS-XCD Operations
October 25, 1995 11-5

Setting up real-time data locations

When you install McIDAS-XCD, real-time data is filed in these locations:

Data type MD/Grid files Files Config. file
SAO/METAR 1-10 SAOMETAR.RAP ISFCDEC.CFG
RAOB 11-30 RAOB.RAP IRABDEC.CFG
Ship/Buoy 31-40 ISHPDEC.CFG
FOUS14 41-50 FO14DEC.CFG
SYNOPTIC 51-60 SYNOPTIC.RAP SYNDEC.CFG
PIREP/AIREP 61-70 PIRDEC.CFG
FTs/TAFs TERMFCST.RAP TERDEC.CFG
Watch Box WXWATCH.DAT WBXDEC.CFG
TIROS Nav SYSNAVI1 TIRDEC.CFG
Real-time Grids 5001 - 5300 RTMODELS.CFG

MD filing

Do not alter the MD file locations at this time. Most of the applications that
display real-time conventional data call a subroutine that has not yet been
modified to allow more flexibility.

Grid filing

The miscellaneous grid file group (5001-5010) stores output from models
that send minimal data; for example, the Wind Wave Forecast Model
(WWFM). The grid files are divided by model: ETA, NGM, MRF, MAPS.
The file RTMODELS.CFG, located in ~mcidas/data, determines the
schemes used for filing gridded data. The three basic filing schemes are
described below.

» All grids from a model are filed in one grid file regardless of model
run and valid forecast times. Although this scheme is the simplest
to understand, the search time for specific grids may be excessive
if many products are generated by the model.

* Everything from the model is stored in one grid file per model run
time per day. For example, all the NGM data from the 12 Z model
run is stored in grid files 6001-6010, based on Julian day.

* @rids are filed based on model, model run time and model forecast
validation time. For example, all the MRF data from the 12 Z
model run with forecast times of 00hr through 24hr are stored in
grid files 5071-5080, based on Julian day. This scheme is the most
difficult for a user trying to find a specific grid file, but search
times for individual grids are shorter.

McIDAS-XCD Operations McIDAS Developer/Operator Training
11-6 October 25, 1995

HHIEH RIS

Software that uses the appropriate API for locating real-time grid files will
make whichever method you choose irrelevant to the user.

A complete description of RTMODELS.CFG can be found in Appendix D
of the McIDAS-XCD Installation and Users Guide.

Example

Below is an example of an RTMODELS.CFG file and a description of how
the various models are filed.

Positional parameter descriptions
position description
1 grid filing format
0 - everything from the model is stored in one
grid file per model run time
1 - grids are filed based on model run time and
valid forecast time
2 - all the grids from a model run are filed in

the same grid file regardless of run time
or forecast time
3 - same as 1 except no grids are assumed beyond
the max forecast time (parameter 5)
first grid file in the range for this model
interval between model runs (hhmmss)
which forecast period interval to use to separate
forecast grids
maximum forecast time, after which all grids are
stored in the same grid file

wn wwn

SCRATCH=5001
MAPS= 0 1001 30000

MRF= 1 1101 120000 240000 480000
NGM= 2 1201
In the above example, any model not specified in RTMODELS.CFG is
filed in the range specified by the SCRATCH= keyword. For example,
ETA grids are filed in a grid file between 5001 and 5010 based on the
Julian day of the model run time.
MAPS grids are filed only by model run time beginning with grid file
1001. See the table below.
Grid file Run time Forecast range
1001-1010 002z all forecast times
1011-1020 03Z all forecast times:
1021-1030 06Z all forecast times
1031-1040 092 all forecast times
1041-1050 12Z all forecast times
1051-1060 15Z all forecast times
1061-1070 18Z all forecast times
1071-1080 21Z all forecast times
McIDAS Developer/Operator Training McIDAS-XCD Operations

October 25, 1995

11-7

McIDAS-XCD Operations

11-8

MREF grids are filed based on model run time and model verification time.
In this example, the forecast period interval separating the forecast grids is
24 hours, and the maximum forecast time is 48 hours. This means that
forecast grids in 24-hour intervals are filed in one grid file. All grids with
a validation time greater than 48 hours are filed in another grid file. The
interval between model run times determines how many groups of these
model verification time grid files are created. In this example, the interval
between model run times is 12. This means that two of these groups will
be created. See the table below.

Grid file Run time Forecast range

1101-1010 002Z 00hr <= Forecast Time <= 24hr
1111-1120 002Z 24hr < Forecast Time <= 48hr
1121-1130 002 >48hr Forecast Time
1131-1140 12Z 00hr <= Forecast Time <= 24hr
1141-1150 12Z 24hr < Forecast Time <= 48hr
1151-1160 12Z >48hr Forecast Time

In the RTMODELS.CFG example above, all NGM grids are filed in one
range of grid files beginning with grid file 1201. Although this scheme is
the easiest to understand, it results in large search times and is very
difficult to locate grids of interest.

McIDAS Developer/Operator Training
October 25, 1995

Custom

McIDAS Developer/Operator Training

October 25, 1995

izing the GRIB decoder

MCcIDAS-XCD version 1.1 contains the first release of the GRIB decoder.
You can configure this decoder to discard grids that are not of interest to
you. This is advantageous because certain models are sent in multiple
projections and there is no need to store this duplicate information. It can
also limit the number of grids filed if disk space is a concern.

You can configure the GRIB decoder to discard individual grids based on
the following:

* model name

* model run time
« forecast time

e projection

¢ level

* parameter

This information is stored in the file NOGRIB.CFG in the directory
~oper/mcidas/data.

Below is the format of the entries in the configuration file.
A |.B | € |aDs|aBal B it JuBeladal g+ K

where: A model

model run time minimum

model run time maximum

model forecast validation hour minimum
model forecast validation hour maximum
grid projection minimum

grid projection maximum

grid level minimum

grid level maximum

grid parameter minimum

grid parameter maximum

ACCTImaoaTmmgow

The entries placed in NOGRIB.CFG are based on values sent in the

Product Definition Section (PDS) of the GRIB message. The information
in the PDS includes the model that generated the grid, the forecast period
this grid covers, and the parameter type and units of the grid. The values

used as parameters in NOGRIB.CFG are the same values sent in the PDS.

McIDAS-XCD Operations

11-9

The first value to an entry in NOGRIB.CFG is the model number, which
is the only required value. The values sent are as follows:

PDS number Model McIDAS name
39 Nested Grid Model NGM

64 Regional Optimal Interpolation ROI

77 Spectral Model, Aviation Run MRF

78 Medium Range Forecast Model MRF

83 80 km ETA ETA

84 40 km ETA ETA

85 30 km ETA ETA

86 Mesoscale Atmos. Prediction Sys ~ MAPS

For example, the entry to discard all output from the MAPS model will
look like this:

86| -1| -1| -1| -1| -1| -1| -1| -1| -1| -1

The second and third values are the model run times to discard. If you are
not interested in the MAPS model runs from 03 Z through 09 Z, your entry
will look like this:

86| 3| 9| -1| -1]| -1| -1| -1| -1] -1| -1

The fourth and fifth values are the forecast valid times to discard. If you
aren’t interested in the MRF forecast times beyond 48 hours, your entries
should look like this:

77| -1| -1| 49|999| -1| -1| -1| -1|] -1| -1

78 -1‘ -1[49'999 -1’ -1’ -1[-1‘ 41' -1
The sixth and seventh values relate to the projections in which the models
are sent. Some models are sent in more than one projection. It is usually
redundant to store more than one projection of the same data. The default
configuration for the GRIB decoder when McIDAS-XCD is installed is to
discard duplicate projections of the NGM, ROI and MRF.

Below is a table of common projections, their associated models, and the
PDS values to enter to discard them. '

Projection Description Models PDS values
Mercator 2.5x5.0 global MRF 21-24
Mercator 5.0x5.0 global MRF 25-26
Mercator 1.25x1.25 global thinned = MRF 37-44
Mercator 1,25x2.5 North America NGM, ROI 50
Polar St. North America ETA,ROI, 211
NGM, MRF
McIDAS-XCD Operations McIDAS Developer/Operator Training

11-10) October 25, 1995

For example, to discard all the 1.25x1.25 Mercator of the MRF, the entry
will look like this:

77 | -1| -1] -1] -1| 21| 24| -1] -1]-1] -1

Use parameters eight and nine to discard particular levels. For example, to
discard all data at 900 mb, and levels 350 through 150 mb for the MAPS
model, your entries in NOGRIB.CFG will look like this:
86 | -1| -1| -1] -1| -1] -1] 900] 00| -1| -1
86 I -1‘ -1, -1| -1| -1' -1| 150 3so| -1' -1

The final two values on the NOGRIB.CFG configuration line are the
parameters to discard. Below is a table of the most common values
transmitted. You can find a complete list in the file gbtbpds001.2v2 in

~oper/mcidas/data.

Parameter MCcIDAS name PDS value
Pressure P 1

Pressure reduced to MSL P 2
Geopotential Height Z 7
Temperature T 11
u-component wind U 33 .
v-component wind v 34
Relative Humidity RH 52

To discard all relative humidity grids from the ETA model, your entry will
look like this:

83| -1| -1| -1| -1| -1| -1] -1| -1| 52| 52

A complete description of NOGRIB.CFG and the discarding of grids is
described in Appendix D of the McIDAS-XCD Installation and Users
Guide.

McIDAS Developer/Operator Training McIDAS-XCD Operations
October 25, 1995 11-11

Status display

The status display (statdisp) monitors each decoder and ingestor. The
program statdisp reads from a file and displays the output as shown below.

McIDAS-H¥CD Status {wxdatad
Thu Oct S 17:44:59 1995
Ingestor Time Byte Index Index file Origin

DDS INGETEXT 174483 54111848 11848 FX95278.IDX K2ZSE FXUS 45
IDS INGETEXT 174347 17808880 169552 SM95278.IDX CWTO SNVD
HRS INGEBIN 174453 6654641 HRS. SPL

Gridf Grid
Decoder Time Begptr Lasptr MD Row Col Index

SAODEC 174448 288592 288592 8 53 1154 SA95278 |
RABDEC 174445 59688 59688 28 5 4474 UJ95278 §
SYNDEC 174449 189584 109584 58 6 SM95278 |
SHPDEC 174449 109584 189584 38 18 253 SM95278 |
F14DEC 174436 14672 14672 26 F095278 |
WBXDEC 174436 4960 4960 HWatch # 1014 WW9S5278
PIRDEC 174436 17856 17056 68 18 URS5278 |
TERDEC 174436 46336 46336 FT95278 |
TIRDEC 174436 1632 TIROS 11 TB95278 §
GRIB 173311 HHPES6 KWBC 851208

OV ~NOUDRWN -

-

The default status display file is DECOSTAT.DAT, which resides in
~oper/mcidas/data. If you want your local decoders to write to their own
status display, set the environment variable XCD_disp_file. Then statdisp
will use that file to determine what to update. For example, if your local
decoders write to their own status display file structure called ~local/
mcidas/data/LOCSTAT.DAT, you can force statdisp to read that file by
typing the following from the Unix command line.

export XCD_disp_file=~local/mcidas/data/LOCSTAT.DAT
statdisp &

The contents of the file can only be changed by the ingestors and decoders.
The ingestors change the contents of the file any time data is received from
a communications port. For the text ingestors, this occurs after a complete
data block is received. For the binary ingestors, this occurs after it reads
from the port 20 times. The decoders update DECOSTAT.DAT any time
the .IDX file that they are indexing through is updated.

Every five seconds, statdisp checks the contents of DECOSTAT.DAT. If
the status for any decoder or ingestor has not changed in five minutes, the
color of the output turns red. If a line for a decoder turns red, it means that
no data for the WMO product identifier that the decoder is interested in
was filed in the last five minutes. Except for the GRIB decoder, it is a rare
occurrence for a decoder line on the status display to turn red.

McIDAS-XCD Operations McIDAS Developer/Operator Training
11-12 October 25, 1995

McIDAS Developer/Operator Training

October 25, 1995

An ingestor line turning red means data was not received from the
communications port within the last five minutes. DDS, IDS and PPS
almost never change to the warning color. If they do, all of them will
probably change, indicating a fundamental problem with either the source
or your hardware. The ingestor for HRS often changes colors between

10 Z and 12 Z, and again between 22 Z and 00 Z. These are usually quiet
periods when no gridded data is sent.

To view the status display on a workstation other than the one processing
conventional data, you can set the DISPLAY environment variable to the
appropriate X-server, and then start statdisp by entering the following lines
from the Unix command line.

export DISPLAY=outfield.ssec.wisc.edu:0
statdisp &

Alternatively, you can use the -display command line option:

statdisp -display outfield.ssec.wisc.edu:0 &

McIDAS-XCD Operations

11-13

The DATARECV program

McIDAS-XCD Operations

11-14

You can use the McIDAS-XCD program DATARECY to graphically
display which stations are expected to be decoded for a data type, and
which stations were decoded the previous hour. A sample display is shown

below.

Although you can’t discern the color of the dots below, the white dots on
your display indicate the stations with their decoder turned on, and that
data was received for those stations. Red dots indicate stations with their
decoder turned on, but data was not filed by that decoder for those stations.

e e 5 A T T s samcrsoNER

Reported

172

Reported

Miseing
MD # 67 Da

Reported

McIDAS Developer/Operator Training
October 25, 1995

m—

. e = sow—— B | ey

Allocating disk space

Below is a list of all dynamic files used in McIDAS-XCD and the
approximate disk space they consume per day, in MB.

Data type

DD+

ID

HRS

SFC
IRAB/IRSG
ISHP
FO14

SYN

PIRP

ETA
NGM*
MRF*
MAPS
Other grids

Total

* if you save all the projections

McIDAS Developer/Operator Training
October 25, 1995

Format

TEXT
TEXT
SPOOL
MD
MD
MD
MD
MD
MD
GRID
GRID
GRID
GRID
GRID

Disk space per day

1o
235
16
20
6

3

2

7

6
52
50
350
140

751 MB

McIDAS-XCD Operations

11-15

Deleting text, MD and grid files

Up to 751 MB per day isa considerable amount of data and could fill your
file system to capacity within a matter of days. These two McIDAS
programs can help you remove old data files:

* DELWXT removes text and index files
* QRTMDG removes MD or grid files

They are designed to run from the McIDAS scheduler to delete files older
than a specified number of days. For example, to keep four days worth of
data online and remove all grid, MD, and text data older than that, enter the
following three lines in the McIDAS schedule.

#Y 00:05:00 999999 00100:00:00 “DELWXT 4
#Y 00:05:00 999999 00100:00:00 “QRTMDG MD mdl mdn 4
#Y 00:05:00 999999 00100:00:00 “QRTMDG GRID gridl gridn 4

McIDAS-XCD Operations McIDAS Developer/Operator Training
11-16 October 25, 1995

Archiving data

The most complete way to archive data is to save the text (*.XCD) and
index (*.IDX) files, and the MD and grid files.

Raw text

Use the steps below to archive raw text.

1. Collect the necessary files into an archive file. The resulting file
will be approximately 100 Mb for the Family of Services text
circuits.

tar -cvf TEXT93017.tar IDXALIAS.DAT ??93017.IDX ??930170.XCD

2. Compress the file. The resulting .Z file will be about 19 Mb.

compress TEXT93017.tar

3. Write the compressed tar file to tape, replacing tape-device with
the unix file name of your tape drive.

tar -cvf tape-device TEXT93017.tar.Z

Real-time MD files

Use the steps below to archive real-time MD files.

1. Collect the necessary files into an archive file. The resulting file
will be approximately 45 Mb for the standard McIDAS-XCD

real-time files.

tar -cvf MD93017.tar MDXX00?7

2. Compress the file. The resulting .Z file will be about 2.5 MB.

compress MD93107.tar

3. Write the compressed tar file to tape, replacing tape-device with
the unix file name of your tape drive.

tar -cvf tape-device MD93017.tar.Z

McIDAS Developer/Operator Training McIDAS-XCD Operations
October 25, 1995 11-17

Real-time grid files

Use the steps below to archive real-time grid files.

1. Collect the necessary files into an archive file. The resulting file
will be approximately 400 Mb for the standard McIDAS-XCD
real-time files.

tar -cvf GRID93017.tar GRID5[0-3]227

2. Compress the file. The resulting .Z file will be about 200 Mb.

compress GRIDS3107.tar

3. Write the compressed tar file to tape, replacing tape-device with
the unix file name of your tape drive.

tar -cvf tape-device GRID93017.tar.Z

McIDAS-XCD Operations McIDAS Developer/Operator Training
11-18 October 25, 1995

Recovering archived data

McIDAS Developer/Operator Training

October 25, 1995

Use the steps below to recover archived data files.

1

Change the directory to an appropriate directory in which to
recover the data.

Extract the archived grid files.

zcat GRID93017.tar.Z | tar -xvf -

This command uncompresses the file and extracts the tar file.

Extract the archived text files

zcat TEXT93017.tar.2 | tar -xvf -

Extract the archived MD files

zcat MD93017.tar.Z | tar -xvf -

McIDAS-XCD Operations

11-19

Troubleshooting

Below are some typical problems you may encounter and their solutions.
No real-time data

Symptoms: The user reports no real-time data, or the status
display is red for the ingestors.

Problem: The file system is full.

The antenna has an obstruction or there is a problem
with the antenna hardware.

The source provider is experiencing a problem.

Solution: Check the status of the file system on the workstation
with the Unix command df. If the file system is full,
clean the file system. You can use the McIDAS-XCD
programs QRTMDG and DELWXT to delete older
text, MD files and grid files. Do not delete any files
for the current day.

Check for an obstruction in the antenna and verify that
all receiving hardware is working properly.

Contact your source provider to see if they are having
a problem with the broadcast.

No grid data

Symptom: The GRIB decoder is not filing grids.

Problem: The decoder can’t find RTMODELS.CFG, which
contains information about the grid files to search.

Solution: The file RTMODELS.CFG should reside in
~mcidas/data when McIDAS-XCD is installed
correctly. Either the decoder can’t reach the file or it
is missing. If it’s missing, either recreate the file or
copy a new version from ~mcidas/xcd1.1/data/
RTMODELS.CFG, if your site is using the default
configuration for real-time grid file locations.

McIDAS-XCD Operations McIDAS Developer/Operator Training
11-20 October 25, 1995

Garbled or missing data

Symptom:

Problem:

Solution:

Text data is missing or text output is garbled. If
decoding grids, grids are missing.

More than one ingestor is trying to read the same
circuit, resulting in garbled or missing data. Or, there
could be an obstruction in the receiving antenna.

Check the process status of the system to see how
many ingetext and ingebin processes are running.
There should be only one ingetext process running for
each text circuit, and one ingebin process running for
each binary circuit. If this isn’t the case, stop all
MCcIDAS-XCD processes that are running.

Do a ps to get the PID of all the -XCD processes;
for example: ps -u | grep oper. Use the kill -9 PID
command to stop the -XCD processes in the
following order.

startxcd.mx
all ingetext.mx
all ingebin.mx
all dm*.mx

Then restart -XCD with the McIDAS command
STARTXCD.

If the above process doesn’t work, check for an
obstruction in the receiving antenna.

TIROS data lacks navigation

Symptom:

Problem:

Solution:

McIDAS Developer/Operator Training
October 25, 1995

Users report that TIROS data does not contain
navigation.

The McIDAS-XCD decoder TIRDEC may not be
running or is not able to write the SYSNAV1 file.

Verify that the TIRDEC decoder is turned on and the
decoder configuration file is correct. If you are
ingesting TIROS with McIDAS-XSD, verify that
your -XSD ingestor can retrieve the SYSNAV1 file
from the -XCD ingestor.

McIDAS-XCD Operations
11-21

McIDAS-XCD Operations McIDAS Developer/Operator Training
11-22 October 25, 1995 I

McIDAS Operations
on a Distributed
System

Presented by
Chad Johnson

Operations Programmer

Session 12
McIDAS Developer/Operator Training
October 23-25, 1995

Table of Contents

T T A R SRR S L L I 12-1
TEEIHOIORY v convvvenosninsonvsssiosnpmesasns 12-1
The McIDAS distributed system 12-2

Tho ADDIE BIVEE . &b ohs vs v i soammsiste £ o % s m v oy nes 12-3
ADDE server transaction logging. 12-3
ADDE Server SECUrity.o v vvn e e nnneennnns 12-4
ADDE serverinstallation 12-5
ADDE server configuration 12-6
ADDE serverstartup.oovviiuniniiina 12-11

MecIDAS systém SUPPOTL: « o 5. o wwewmswsss 16 0a s san s ele 12-12
File system limitations %% 6 3 e B A B ey 12-12
NFS (Network File System)o0.. 12-13
Off-line data storage and tape devices 12-14
Bringing a backup ingestor and server online 12-15

Frequently asked questions.couvtn, 12-16

Overview

This training session will provide McIDAS site administrators and
operators with information about McIDAS?® role in a distributed data
system. It includes the following topics:

« installing and configuring ADDE (Abstract Data Distributed
Environment) servers

» providing server security
* choosing dataset names

» following the life cycle of the server as it fulfills a request

This session will also present the following topics, which should be of
interest to Unix system administrators:

+ file system limitations of the supported platforms
* NFS (Network File System) and where it might be useful
» off-line data storage and tape devices in a distributed system

* how to bring a backup ingestor/server online

Terminology

The terms below are defined as they apply to a McIDAS distributed
system. Some of these definitions may not be applicable to other
distributed systems.

client workstation receiving and displaying data;
initiates the requests

daemon background process that periodically wakes
up, checking to see if it should do something

dataset collection of one or more files with a
common format

dataset name name used by ADDE to reference a dataset;
consists of the group name and a descriptor

McIDAS Developer/Operator Training
October 25, 1995

McIDAS Operations on a Distributed System

12-1

—

descriptor

file system

group

inetd
mcseryv
server

transaction logging

The McIDAS distributed system

name used to reference a dataset, separated
by a slash (/).

method for cataloging files in a computer
system

name used to reference a collection of
descriptors; used by the client to determine
which server to query for data requests

Unix system daemon that listens to various
network ports

ADDE server program started by inetd when
a network connection is made to a port

the machine that stores and supplies data in
response to clients’ requests

record keeping done by ADDE servers for
each transaction

A distributed system is a computing system in which the storing and
serving of data are distributed across multiple workstations. For example,
users may be working at a workstation, yet the data they are using may
exist on other workstations. Users request the data from the data storage
machines. The request is processed and the data is sent to the user.

The McIDAS distributed system is similar, but differs from the generic
distributed system in two ways:

» the ingest of data may also be done on the data storage and serving

machines

« client and server software have specific data abstractions they
support, such as the McIDAS Area file in ADDE

ADDE has been part of the McIDAS-X software package since the

June 1995 upgrade.

McIDAS Operations on a Distributed System
12-2

McIDAS Developer/Operator Training
October 25, 1995

The ADDE server

This section provides information about the ADDE server, including the
following topics:

» transaction logging
e security
» installation and configuration

« startup

ADDE server transaction logging

McIDAS Developer/Operator Training

October 25, 1995

ADDE servers can provide logging for each request they serve. You can
initiate transaction logging for the following reasons:

* accounting
» server usage statistics

» dataset usage statistics

When server transaction logging is turned on, each transaction is

logged as a record to the file SERVER.LOG. This file resides in
~mcadde/mcidas/data or the first writable directory in the environment
variable MCPATH. Some of the parameters available in each log record
are: IP of the server and client, date and time of the transaction, user
initials, project number, return code, dataset name, bytes sent and received,
CPU time, and error messages.

The SERVER.LOG file is a continuously growing file. To prevent this file
from becoming very large, schedule a move of this file to a different file.
You can schedule the move via the McIDAS scheduler or the Unix cron
scheduler. SERVER.LOG is created again when the next transaction
record is written.

McIDAS Operations on a Distributed System

12-3

ADDE server security

You should consider these two forms of security before setting up your
ADDE server:

« file security, which attempts to prevent file deletion or
modification by unwanted sources

» access security, which attempts to prevent unauthorized users
from accessing your data

File security

The Unix operating system allows multiple users to share the same
workstation’s processing power and storage space. In this type of working
environment, it is logical to have a system that prevents users from being
able to modify and overwrite system and other user’s files. In the Unix
operating system, each file is owned by a user and a group, with a set of
associated permission flags. The owner can set read, write, and execution
privileges for each class: user, group and all other users on the system. It
is this that gives the ADDE servers a method of file protection.

To prevent users from writing to an ADDE dataset on your server, you
should set up another user account named mcadde. The ADDE server will
then be configured to run from this account. The name of the account you
choose doesn’t matter, as long as it is different from the account of your
data ingestion/storage.

The oper account is typically used for ingest and data storage. The
permission of the data files in this account should be set to allow reading
for all users, but writing by only oper. This will prevent the server from
overwriting your real-time data.

Access security

Access security is available with ADDE by turning on transaction logging,
as described on the previous page.

Access security uses the three pieces of information below, which are sent
to the server with each data request:

* user initials
* project number

» IP address of the client machine

McIDAS Operations on a Distributed System McIDAS Developer/Operator Training
124 October 25, 1995

]

The list of valid user initials, project numbers, and IP addresses is
contained in three text files: SERVER.USR, SERVER.PRJ and
SERVER.IP, respectively. These files are created by the operators and
should exist in the ~mcadde/mcidas/data directory of each server
workstation. The format of the file is one line per parameter; comments
begin with a *. Below is an example of a SERVER.PRIJ file.

* DDE VALID PROJECT NUMBER LIST
1000
1001
1002
1003
1004
1006

Access validation occurs if any of the above files exist. It is not mandatory
that all files be present. For example, if only the SERVER.USR file exists,
only requests made by users listed in that file are allowed. If all files exist,
validation will be checked for all three parameters, and only requests made
by valid users with valid project numbers from a valid workstation are
allowed. If none of the above files are present, no validation will take place
and all requests are allowed.

ADDE server installation

The ADDE server/client software package was included in the standard
distribution and installation of the June 1995 McIDAS-X upgrade. To
collect transaction logs or use the method of access security mentioned
above with the ADDE server, you must perform additional steps when
installing McIDAS-X 2.1. You must compile McIDAS-X 2.1 with the
DDE_ACCOUNTING compile flag turned on. The steps to accomplish
this are provided below.

1. Logon to the workstation as user mcidas.
2. Do not run the installation script mcidas2.1version#.sh.
3. Extract the tar file manually.

Type: zcat mcidas2.1xx.tar.Z | tar -xvf-

This will extract the tar file and create the mcidas2.1version#
directory. This directory contains the src and data directories.

4. Change the directory to the McIDAS source directory.

Type: ¢d SHOME/mcidas2.1xx/src

McIDAS Developer/Operator Training McIDAS Operations on a Distributed System
October 25, 1995 12-5

5. At the shell prompt, export the following two variables.

Type: export McINST_ROOT=$HOME
export McIDAS ROOT=$HOME

6. Build McIDAS. This will build the ADDE servers to perform
transaction logging.

Type: make INCARGS=“-DDD1<£_ACCOUNT1NG”
7. Have all your McIDAS users exit their McIDAS sessions.
8. Install the binaries that will perform transaction logging.
Type: make install

9. Have all McIDAS users start their McIDAS sessions.

The ADDE servers will now write to the LW file, SERVER.LOG, in the

~mcadde/mcidas/data directory as transactions are logged. This is a binary
file and is not viewable by any text editor. However, McIDAS Operations
has software to view it. Contact McIDAS Operations if you are interested
in any of these utilities.

ADDE server configuration

McIDAS Operations on a Distributed System

12-6

ADDE servers will typically run on the same workstation performing the
ingest. For example, you may have multiple workstations ingesting data
from multiple satellite sources. Each of these workstations must be
configured to run an ADDE server.

Naming the account

When setting up a workstation as an ADDE remote server, you must create
a remote server account on the workstation. Consider the following
guidelines when deciding on a name for the remote server account.

« Don’t use the mcidas account. You can’t run McIDAS-X from the
mcidas account or other SSEC-supplied software packages that
run under it.

* Don’t use any accounts that run McIDAS-XCD and McIDAS-
XSD packages which provide conventional or satellite data that
you may want to make available to users. For example, don’t use
the oper account.

McIDAS Developer/Operator Training
October 25, 1995

McIDAS Developer/Operator Training

October 25, 1995

Don’tuse accounts that may hold data you want to provide to users
via the ADDE server.

* Dedicate this account to the administration of the ADDE remote
server. For example, use it only for acquiring and naming data for
ADDE clients.

We recommend naming this new account mcadde. This account must be
configured as a McIDAS-X user account; for example, setting the
appropriate PATH and directories to run McIDAS-X.

Configuring the workstation

You must configure the Unix workstation to accept port connections from
ADDE clients and to run the server to fulfill these requests. Included with
the June ‘95 McIDAS-X upgrade is the script mcinetversion#.sh, which
will configure the system daemon inetd to do this.

The script mcinetversion#.sh configures two system files:
« /etc/services
» /etc/inetd.conf

The file /etc/services specifies the names of services available through the
Internet and the protocol of these services, and assigns a port number that
each service will connect. Below is an example of the /etc/services file.

UNIX specific services

#
these are NOT officially assigned

#

nfsd 2049/udp nfs # NFS server daemon
mcserv 500/tcp # McIDAS ADDE port
xcd_rlycl 502/tcp # XCD core data stream

The ADDE service is named mcserv and is defined as a TCP service that
connects to port 500.

The /etc/inetd.conf files contains a list of programs that inetd will start
when it receives an Internet request on that port. For example:

mcserv stream tcp nowait mcadde

/home/mcidas/bin/mcservsh mcservsh -H /home/mcoper

Y ou must configure the ADDE server account so the servers can locate the
data files. The ADDE servers use the MCPATH environment variable and
the REDIRECT table to locate the McIDAS data files. For example, if you
run a McIDAS-XSD ingestor on this same system, you will add the path to
the data files in the environment variable MCPATH or add them to the
REDIRECT table of the mcadde user.

MclIDAS Operations on a Distributed System

12-7

McIDAS Operations on a Distributed System

Assigning dataset names

To assign dataset names, perform the steps below.

1. Verify that McIDAS of the server account is able to locate the data
files you want to serve. You can do this by adding the data
directory to the MCPATH environment variable, or adding it to
the REDIRECT table.

2. Choose the dataset name for this dataset.

3. Start a McIDAS session under the ADDE server account and add
this dataset using the McIDAS command DSSERVE.

4. Notify your users that you have a new dataset available. Give them
the name of the dataset and the host name or IP address of the
server workstation.

For example:

Suppose areas 1000 through 1024 are GOES-8 CONUS visible areas and
the files reside in /home/oper/mcidas/data on the workstation
foo.ssec.wisc.edu. Verify that the McIDAS server account can locate areas
1000 through 1024 in the /home/oper/mcidas/data directory by starting
MCcIDAS in the server account.

Type: DMAP AREA

If the paths listed for AREAs 1000 through 1024 are different from
/home/oper/mcidas/data, you need to add the directory to the MCPATH
environment variable.

In this example, we will assign the dataset name to EAST/CONUSV. Start
a McIDAS session in the server account and assign this dataset to a group
of areas by entering the command below.

DSSERVE ADD EAST/CONUSV AREA 1000 1024 “GOES-8 visible CONUS

The ADDE server is ready to serve AREAs 1000 through 1024 as dataset
EAST/CONUSV. Notify your users that GOES-8 visible CONUS data is
available from the server foo.ssec.wisc.edu as dataset EAST/CONUSV.
They should add this dataset to their client routing tables with the
following command.

Type: DATALOC ADD EAST “foo.ssec.wisc.edu

MCcIDAS Developer/Operator Training
October 25, 1995

Ty

McIDAS Developer/Operator Training

October 25, 1995

Selecting a dataset name

All ADDE commands use dataset names (in a group/descriptor format)
that map to datasets on a server. It is easier for users to locate the data if
you follow a logical convention when assigning group and descriptor

names. There are three tiers in the hierarchical naming scheme for datasets.

3 type
* group

» descriptor

Type is the top tier and can be either image, grid, or point.

Group is the next tier in the naming scheme. A group name can be used
only once under each type. Groups are defined by the operator when
assigning dataset names to a dataset; for example, a range of McIDAS
areas.

Descriptors are the bottom tier in the naming scheme. They further classify
or describe the dataset. Descriptors are defined by the operator when
assigning dataset names to a dataset.

For example:

Group/descriptor Data format Comment

WEST/ALL AREA 101 150 ALL DATA FROM WEST
SATELLITE

WEST/CONUSV AREA 101 104 CONTINENTAL US; 1KM;
VIS; GOES-7

WEST/DS AREA 131 136 DWELL SOUNDING;
8KM; GOES-7

WEST/DSV AREA 141 142 DWELL SOUNDING;
1KM; GOES-7

WEST/FDIR AREA 109 112 FULL DISK; BAND 8;
4KM; GOES-7

WEST/FDMSI AREA 121 128 FULL DISK; MSI; 8KM;
GOES-7

WEST/FDV AREA 105 108 FULL DISK; VISIBLE;
4KM; GOES-7

The table above shows datasets that are being served by a server. All the
datasets with the group name WEST reference AREA files ingested from
the GOES-7 satellite. There are multiple WEST groups, each with a
different descriptor name. Each unique group/descriptor pair represents a
defined dataset on the server. Users locate the data using that name.

McIDAS Operations on a Distributed System

12-9

Defining group names

Below are some hints to help you select group names when defining your
dataset names.

Group names are used by the client to locate data. You cannot use a group
name that is already used to describe data served from another workstation.
You can use the same group name for different types served from the same
server.

Group names should describe the data source. For example, if you are
serving GOES-8 data, you can use EAST as the group name in all your
dataset names referencing data for the east satellite on that server.

Choose group names that do not change often. For example, don’t use
satellite names such as GOESS as group names.

Defining descriptor names

Below are some hints to help you select descriptor names when defining
your dataset names.

When assigning descriptor names for gridded data types, the name should
describe the time of the grid, or the model run time and verification time if
the grid is model output.

Descﬁptors should describe the geographical coverage of the data. For
example, a visible image area that covers a region in the Northern
Hemisphere could have a descriptor name such as NHEMV.

Make the names as short as possible. Some users may make aliases for the
dataset names, but all users may not. In this case, the users must remember
and type in the names you have chosen.

McIDAS Operations on a Distributed System McIDAS Developer/Operator Training
12-10 October 25, 1995

ADDE server startup

A user on a workstation starts an ADDE client process by entering the
McIDAS command IMGCOPY. This client process looks in the
DATALOQC table to determine the IP address of the server machine that is
serving the data requested. The client attempts to make a connection to
port 500 of the server machine. If the connection is successful, the inetd
daemon on the server machine wakes up and determines which service is
defined for port 500. inetd then starts the program meservsh, which
examines the request and activates the appropriate data server for finishing
the request.

MCcIDAS Operations
ADDE Client ADDE Server
TR N f»ti;,*;,{ e ™ / e 7 T = =
< : ;),?::é%é% g gﬁ’ »;7. g

| location of | .

| Makerequ

DATA

McIDAS Developer/Operator Training

October 25, 1995

There are several data servers, and each data server knows only about the
data type it serves. For instance, the data server agetserv only knows how
to subsect and serve McIDAS AREAs; the ggetserv server only
understands how to serve McIDAS GRIDs. Below is a list of data servers
and the services they provide.

Data server Service

adirserv sends McIDAS area directory listings
agetserv sends McIDAS areas from a server
aputserv receives McIDAS areas from a client
gdirserv sends McIDAS grid directory listings
ggetserv sends McIDAS grids from a server
gputserv receives McIDAS areas from a client

MCcIDAS Operations on a Distributed System

12-11

McIDAS system support

This section discusses topics of interest to site administrators who must set
up a McIDAS distributed system. The topics discussed include:

» file system limitations

* NFS (Network File System)

« off-line data storage

* how to bring a backup ingestor/server online

¢ FAQs (Frequently Asked Questions)

File system limitations

When setting up your McIDAS ingestors and configuring the ADDE
server, keep in mind any file system limitations that exist for that particular
platform. Below are the file system size limitations for each of the

platforms that SSEC supports:

Platform Limitation

IBM AIX 3.2.5 2 GB per file system

HP HPUX 9.0.5 4 GB per disk device

SGIIRIX 5.3 8 GB per file system

SUN Solaris 2.4 File system size limit unknown; SSEC has
had no problem with up to 9 GB per file
system.

HPUX has a limitation of 4 GB per device. If you purchase a 9 GB disk
drive for an HP system, you will only be able to utilize 4 GB (less than
half) of the total storage capacity of that drive. The remaining 5 GB cannot
be partitioned and mounted on additional file systems.

McIDAS Operations on a Distributed System McIDAS Developer/Operator Training
12-12 October 25, 1995

-

NFS (Network File System)

NEFS is a protocol and program set that allows file transfers to occur over a
network. It allows one workstation to share file systems with other
workstations on the network, rather than keeping separate copies of these
files on each workstation. When NFS is used, this shared file system will
appear in the local file system as though it really does exist there, although
the files actually reside in the file system on a remote workstation.

Some examples of where NFS may be used in the McIDAS distributed
system include the following:

If you’re sharing the -XCD data directory, users can mount the
data directory on their system.

If you’re performing access restrictions; you can share server
initial, project, or IP address files; for example, SERVER.USR,
SERVER.PRJ, SERVER.IP.

If you’re performing transaction logging, you can mount the
transaction log files from multiple workstations on one
workstation.

To use NFS, you must share or export the file system containing the
sharable files. When you share a file system, you allow this file system to
be remotely mounted on a remote host. You have the option to allow only
certain hosts to mount this file system, or you can give read-only
permission for connecting hosts. A shared file system can be thought of as
being served by an NFS server. To gain use of this shared file system on
the external host, users must mount the shared file system on their local
workstations. As with most system configurations, you must be root to
share or mount remote file systems.

NFS relies on the RPC (Remote Procedure Call) subsystem. If you have
trouble sharing or mounting shared-file systems, check to make sure RPC
is running on your systems. ‘

Type: ps -ef | grep rpc

You should see a line containing the string “rpc.bind” in the output. If you
don’t see it in the process listing, RPC isn’t running. There typically is an
administrative script to start the RPC subsystem under the /etc directory.

The name and location of this script varies among platforms; contact your
system administrator for details.

McIDAS Developer/Operator Training

October 25, 1995

McIDAS Operations on a Distributed System
12-13

Off-line data storage and tape devices

You can connect many different tape devices to Unix workstations for off-
line data storage; for example: DAT-4mm, Exabyte-8mm, 9-Track, 3480,
3490E, 3590. The media formats that your site supports will depend on
numerous factors, which may include:

* previous experience

e reliability

» the media on which the majority of your data is stored
+ future trends in off-line storage

In a distributed system it is inevitable that the files you would like to write
to tape are on a different workstation than the tape devices. Listed below
are three possible solutions to this problem.

» Ftp or rcp (remote copy) the files to the system with the tape
device.

» NFS mount the source file system to a file system on the
workstation containing the tape drive; the data is then accessible
via a file system on the machine with the tape drive.

» Execute a remote tar write across the network; for example, to
write the files to a remote device,

Type: tar -cvf - | rsh host dd of=device
To read the files from a remote device type,
Type: rsh -n dd if=device | tar -xvf -

where host is the name of the remote system with the tape device,
and device is the name of the device on the remote system you
want to write. :

Streaming tape devices, such as 8mm and 4mm devices, are very sensitive
to having a steady stream of data. When writing across a network to these
types of devices, network latency may cause tape write or read failures. To
prevent this, you should have 8 Mbits per second bandwidth available on
your network when writing to a streaming tape device. Due to the burst
nature of network traffic, you can’t assume that the required bandwidth
necessary for the device will be present at the moment data is written to
tape. Options one and two above are not recommended.

McIDAS Operations on a Distributed System McIDAS Developer/Operator Training
12-14 October 25, 1995

It is not recommended that you use any hardware compression that your
drive manufacturer supports. Different hardware vendors may not support
the same compression algorithm, resulting in an unreadable tape when
transferring it to another tape drive.

Bringing a backup ingestor and server online

McIDAS Developer/Operator Training

October 25, 1995

Your backup system must be configured exactly as your primary system.

Items that must be configured on the backup system include the following:

« Ifthisisa hot spare for immediate switchover, verify that you have
a second signal feed for the source you intend to back up.

e The McIDAS-XSD or -XCD software must be installed and

configured to ingest the same data source as the primary ingestor.

» Ifthis is a backup for McIDAS-XCD, configure the decoders just
as they are for the primary machine.

+ Ifthisisa McIDAS-XSD ingestor, the satellite scheduler windows
and McIDAS scheduler entries must be entered exactly as they are
on the primary system. !

» The ADDE server should be configured to use the same dataset
names as the real-time system to reference data files. This makes
the switchover to the hot spare easiest for the user.

Notify users that you are switching to a different workstation to serve data.
Inform them of the following:

* the name of the backup workstation
* any changes to the dataset names

If the dataset names were not changed, the users need only run the
McIDAS command DATALOC to change their routing table to point to
the backup workstation for that group. Users should be able to access the
data just as they had before with no change required to any scheduled
commands.

If the dataset names were modified for some reason, the users must run the
McIDAS command DATALOC to add the new group to their routing
table. They must also modify their scheduled data retrievals to use the new
dataset names.

McIDAS Operations on a Distributed System

12-15

Frequently asked questions

What is the effect of changing a machine’s IP address?

Changing the IP address should have no effect on users, provided they
reference that machine by the host name and not the IP address. When an
IP address changes on a system, the local name server must be updated.
This change will bubble up to the other name servers on the internet
system, although this may take a few hours to occur. If users have
difficulty accessing this machine, have the system administrator flush the
cache of their name server.

If the system is an ADDE server, have all ADDE users who have IP
numbers in their dataloc tables, change the IP address of this server with
the McIDAS command DATALOC. Also, have all ADDE users run this
MCcIDAS command: DATALOC HOST

ADDE client software does not look up the address for the server when
making each request. This command refreshes the internal name/IP lookup
table for servers.

How do I know who’s accessing the server at any given time?

Use the Unix utility, netstat, to display the network status of the
workstation. Appended to the end of this document is a shell script that
you can use to display a continually updated status of ADDE server
connections.

McIDAS Operations on a Distributed System McIDAS Developer/Operator Training
12-16 October 25, 1995

4910878831k

AR

b89108788316a

