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l. Introduction

A. Background

The current combination of infrared and microwave instruments
(AMSU/HIRS) on NOAA polar-orbiting platforms, versus the prior
MSU/HIRS combination offers improved atmospheric temperature
soundings using 14 microwave channels (sensitive to atmospheric and
surface properties), and six water-vapor-sensing channels, sensitive to
atmospheric water vapor and some also to surface properties. Infrared
(HIRS) channels are sensitive to cloud presence and the amount of
cloud water in the atmospheric column is evidenced to some degree in
all of the microwave channels, depending on frequency. An excellent
review of the characteristics of the current AMSU and HIRS instruments
has been given by Jun Li et al. (2000)

The architect of the system that we use for retrieval of atmospheric
temperature, moisture and microphysical quantities is John Eyre (U.K.
Met. Service), who developed a so-called Statistical Interpolation (Sl)
retrieval method appropriate to HIRS/AMSU data (Eyre 1989) while a
visitor to SSEC, as well as a method using infrared data to detect the
and quantify certain characteristics of clouds (the so-called “minimum
residual” method (Eyre and Menzel 1991). The atmospheric/cloud water
retrieval algorithm (Eyre 1989) was theoretical, developed in the absence
of real AMSU data, since a satellite version of the instrument was years
in the future. This study showed promise for the new instrument suite,
but used the forecast errors of the numerical models of the times to
demonstrate the impact of the data, errors that have been significantly
reduced in modern forecast models since that study of more than ten

years ago.



The 1989 study showed in a theoretical (no real or synthetic radiances
were used) context that the model forecast errors of that time for
temperature and moisture forecasts could be improved upon and there
was the possibility of estimating column cloud water with an accuracy of
about 0.2 mm from the AMSU. Retrieval of atmospheric profiles and
cloud water was done simultaneously in Eq. 1 (below, to be explained).
For a tabulation of the model standard errors and covariances used in
this study, see Eyre (1990)

Later, less-theoretical studies were performed by Diak et al. (1992)
and Wu et al. (1995). They were different in the sense that a real
forecast model was used in experiments of Observing System Simulation
(OSSE) mode. Control or “truth” forecasts were made to represent
nature, which later were perturbed, using the spatial characteristics of
the errors of real forecast model to simulate real forecasts (containing
errors). So-called “forward” radiances generated from the control
(“perfect”) forecast were then used to try to eliminate the errors that were
added. Our retrieval findings in this mode were very similar to the
theoretical results of Eyre (1989), but again used the errors of the
models of the early 1990s, error statistics that have been significantly
improved upon at this writing.

Wau et al. (1995) used a similar OSSE procedure as Diak et al (1992),
but added the assimilation of the retrieved cloud water amounts into
subsequent model forecasts, finding most significantly that this
assimilation reduced the so-called “spin-up” time for forecasts to
generate precipitation and geographical accuracy of precipitation
locations. Diak (19xx) and Huang and Diak (19xx) showed the sensitivity
of various AMSU channels to the presence of cloud liquid water and the

potential for detection and quantification using channel pairs.



B. Anticipated Complications using Real Data

While initial results of our HIRS/AMSU studies were encouraging, we
anticipated certain complications that would arise with real data and
almost certainly modify the accuracy of these theoretical and pre-flight
results. Foremost among those is the influence of the microwave
emissivity of the earth’s surface, both ocean and land on low-level
retrievals of any quantity. In both land and water cases, the emissivity of
the surface is not well-known in relationship to the accuracy required to
produce high-quality sounding results. For both water and land, the
emissivity is frequency-dependent: for water there also wind speed
dependence and other subtle relations to content. For land surfaces, soil
moisture, vegetation land cover and smaller water bodies with a pixel
can make the scene emissivity hard to quantify. If the emissivity is not
properly estimated, there can be several degrees of brightness
temperature difference between the forward estimates and real
measurements used in so-called “physical” or “statistical-physical
retrievals that will cause erroneous retrieval results in the lower
atmosphere. This will be elaborated on later.

Additionally, forecast errors have been significantly reduced in the
past ten years. The RMS forecast errors that we use now in the SI
retrieval scheme (Eqg. 1) comes from a 50-km, 43—level mesoscale model
(the CIMSS Regional Assimilation System, CRAS; Diak et al. 1998) are
about half of those used in the initial experiments described. At 500 hPa,
the CRAS has a twelve-hour RMS forecast error in temperature of about
0.7-0.8 degrees K for data-rich areas (varying slightly with season),

indeed hard to improve upon with current sounders.



| Retrieval Methodology- Clear and Cloudy Atmospheres

A simplified (linearized) mathematical form of the retrieval algorithm is
adequate to elaborate on the characteristics of the Sl retrieval system.

The retrieval equation can be presented as:
X = Xo + CK(KCK +E)" (Tby - Tb(xp))

It is called a “physical-statistical’ system because a physical forward
model of radiative transfer is used, but forecast error statistics come into
play in several ways. Each capitol letter in this equation is matrix of one
or two dimensions. X is a column vector representing quantities to be
retrieved by the system: these can include temperate and humidity at
various levels, as well as cloud liquid water. Other variable could be
included. X, is a guess of the retrieval quantities that may come from
climatology, or more frequently in modern systems, a mesoscale forecast
model. K s the so-called “forward” model (actually, here the derivatives
of retrieve variables with respect to measured brightness temperatures)
that enables measured increments in brightness temperature from those
produced using the guess to be translated into the changes to the
retrieval variables (e.g., temperature, etc.) from the guess.

C is a matrix of error covariances of the background information that
serves two purposes in the retrieval scheme. The first is to provide a
restraint on the retrieval if corrections to the guess are excessive
compared to the statistical errors of the model. The second purpose of
this covariance matrix is to relate errors at one atmospheric level to
those at other levels, and also examine the relationship (inter-variable
covariances) of errors between different variables (T versus moisture for
example), which often are correlated. The C matrix acts to interpret how
brightness temperature signals should be apportioned to variables in the

vertical column (help to mathematically condition the system), and also



make corrections in variables that are statistically correlated to others,
but perhaps not represented in measured brightness temperatures.

The last term in Eq. 1 [(Tbm - Tb(xy))], is the “signal” or forcing in this
equation, the difference between measured brightness temperatures and
those synthesized through the forward model using the “first guess” set
of atmospheric variables, represented by X, Lastly, E, represents
errors in the forward model and errors of measurement (instrument
noise, for example. In practice, a slightly more complex, iterative version

of Eq. 1 is used to solve the equation system.

. A Realistic Approach to the Retrieval of Atmospheric
Profiles and Cloud Liquid Water

A. General

Since our methodology requires the derivatives of brightness
temperature with respect to retrieved quantities, we chose the RTTOV-6
forward radiance package, product of the U.K. Met. Office (Saunders et al.,
1999) and a follow-up to the package use by Eyre (1990), that calculates
these derivatives with respect to temperature, moisture, emissivity, level
cloud water values and other quantities of interest. This forward model
uses 43 atmospheric levels of information on atmospheric temperature,
moisture, clouds and certain surface properties to caiculated forward
brightness temperatures in all HIRS and AMSU channels.

As is often the case, simulation studies are somewhat over-optimistic of
the real results that are later obtained with real data and procedures; they
are necessary, however, because if a simulation study does not work, the
odds of a real system working are nil. This is exactly what we found when
trying to simultaneously retrieve atmospheric profiles and cloud water
amounts via Eq. 1 using real HIRS/AMSU data. As in the simulation

studies, cloud top pressure and effective fraction (the area fraction times



the emissivity) were evaluated in a first pass using only two IR channels in
the “Minimum Residual’ method (Eyre and Menzel, 1989). Subsequent to
this, all the channels were used to retrieve IR clouds, but using the results
at the RMS errors of the Minimum Residual method to constrain changes to
the cloud variables

The results of this procedure were that about three-quarters of the time
when there were clouds, the system was numerically unstable, and when
convergence was achieved, most often large and unrealistic changes were
made to level values of temperature. Cloud fractions less than unity cause
channel weighting functions that may have duplicate peaks, causing ill-
conditioning in the retrieval matrix. Additionally, the forward brightness
temperatures in the IR channels are extremely sensitive to cloud fraction
and level (temperature), making the entire retrieval system extremely
sensitive and not very stable more often than not under cloudy conditions.

Much better results, however, were achieved using the following
procedure that separated clear versus cloudy retrieval philosophies. If
clouds are detected by the Minimum Residual (infrared) method, we
retrieve only cloud height and effective fraction using Eq. 1 and no
atmospheric profile variables. If the retrieval of the cloud parameters is
successful, we try a retrieval of level cloud liquid water, if the clouds
detected are above a critical temperature (the approximate minimum for
supercooled water). Detection of clouds below about 850 hPa was not
reliable due to uncertainties in surface quantities translating into inaccurate
forward radiances (used in the Minimum Residual method) and false cloud
evaluation. Only clouds evaluated at 100 hPa above the surface, or lower
pressure are considered valid. If no clouds are detected or the clouds
pressure is above this surface minus 100 hPa value, we attempt a clear

retrieval of certain levels of atmospheric temperature and moisture.



B. Cloud Liquid Water Approach

The RTTOV6 Radiative transfer model contains calculation of
brightness temperatures (Tb’s) and derivatives with respect to amount of
cloud liquid water (CLW) at its various levels. IR detection of cloud is
critical in positioning cloud top in the vertical. For retrieving level values of
CLW, the standard errors and vertical covariances that are required by the
retrieval method are very hard to estimate, since cloud variability is
extremely high and CLW values are in general poorly researched. Through
the literature and guidance of CRAS model cloud predictions, we chose 100
hPa as an average cloud depth and tried several covariance structures, one
with a linear correlation cloud top to bottom (which will essentially produce a
linear cloud water concentration through the cloud depth). The second was
a Gaussian shaped cloud covariance set, peaking in the middle of the cloud
depth and dropping off with a 50-hPa half-power depth, which proved
superior. The level values of CLW were capped at 1.0 g/kg in the retrieval,
an approximate threshold for light precipitation. With precipitation, our CLW
radiative transfer (absorption-based) model is no longer valid, since

scattering becomes relevant in the brightness temperatures.
lll. Examples of Retrieval Results over Water and Land Surfaces

A. Temperature and Moisture Soundings

As has been much discussed in the literature, HIRS+AMSU clear
soundings of temperature, while of decent accuracy, were not superior to
the guess (forecast) values that they began with in the conventional-data-
rich area (continental U.S) where our studies were run. Moisture
soundings, however, were superior to the guess about 50% of the time.
Seeing that both NCEP and the ECMWF have reported positive forecast
impact, using ATOVS data in conventional-data-sparse regions, we

presume that our region of emphasis had much to do with sounding results.



B. Cloud Liquid Water Estimates

Two case studies are shown in Figs. 1 through 4 of retrieval of clouds
and microphysical quantities using combinations of HIRS+AMSU A/B
channels. Both include land and water surfaces, and are typical of the
results achieved in our studies estimating cloud water. HIRS channels,
always required for cloud detection, were mid- and lower-atmospheric
channels 4 through 8. AMSU-A channels were also mid- to low-level
oxygen channels 5 through 9. In experiments where the AMSU-B was
included, we used channels 18 through 20.

In the case studies shown, we compare the results of cloud
quantification between results using HIRS+AMSU-A and HIRS+AMSU-A
and B. In the color figures, black indicates no clouds detected by the IR
minimum residual method, while gray indicates clouds at too low a
temperature to confidently presume that they are water clouds and
subsequently perform a CLW estimate. Both land and water surfaces are
present in these two studies. Figures 1 (a-d) and 2(a-b) are for the case
study of 4 February 2002 (NOAA-16 data), while Figures 3 (a-d) and 4 (a-b)
are for 22 October 2000 (NOAA-15 data).

Figures 1 (a-c) are for the case study of 4 February 2002. Here,
Figures 1B and 1B are identical, to show the identification of the cloud
fraction by the minimal residual method. Figure 1A shows clouds identified
by this IR method and CLW water quantified using only the AMSU-A
channels mentioned above. As can be seen, comparing these figures with
GOES IR and visible images at nearly the same time (Figures 2a-b), the
minimum residual method does a relatively good job of identifying clouds,
except for certain regions of low cloud, where this method (and similar
methods such as the so-called “CO? Slicing Method” have problems. In
Figure 1A, the CLW amounts retrieved (0-100 g/m**2) are physically
realistic and in line with those produced by a model simulation of this
synoptic situation. When the AMSU-B channels are added (Figure 1C), we



see an increased sensitivity to CLW amounts, especially over land
surfaces. This is expected, since these 183 GHz channels have the most
sensitivity to CLW, and enhance detection and quantification over land.

The story with the second situation (22 October 00) is much the same,
and the figures parallel those from the first case of 4 February. We see that
that the AMSU A+B combination is most effective in quantifying CLW
amounts (Figure 3C [HIRS +AMSU- A/B], versus Figure 3A [HIRS +AMSU-
A], again the difference most noticeable for land surfaces, where the
sensitivity of brightness temperatures to CLW is greatly enhanced with the
addition of AMSU-B channels. Again, the CLW amounts are physically

realistic for this type of synoptic system
IV. Conclusions

In work sponsored by a prior NASA grant, we demonstrated the
sensitivity of AMSU channels to CLW through simulation studies prior to
launch of the instrument, as well as the effect of atmospheric retrievals in
Observing System Simulation Experiments. Since that time, forecast
quality has substantially improved, and it is doubtful whether HIRS+AMSU
retrievals can make a contribution to temperature forecasts in
conventionally-data-rich regions such as the continental United States,
although the likelihood of improvements in moisture forecasts is somewhat
more probable.

In experiments sponsored by this grant, we have shown the potential to
retrieve CLW amounts. Verification of this quantity is very difficult, since the
data on CLW amounts is very sparse. The values we have retrieved,
however, are consistent with those produced by fairly sophisticated cloud
models. Results are based on an absorption model of radiative transfer,
and thus are best for mid-level (water clouds). Since results also depend to
the ability of IR channels to detect cloud, the quantification of low-level

clouds is also compromised. Improved quantification of the surface
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emissivity and temperature, especially in microwave channels, would
improve the accuracy of evaluation. We suggest that the best use for this
CLW information is for the initialization of mesoscale models at synoptic
times in combination with rawinsonde data, when the temperature and
moisture state of the atmosphere is relatively well-depicted by these
rawinsonde profiles, and thus much of the “signal” in the brightness
temperatures (measured minus “forward” values would likely come from the

presence of clouds.
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