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1. Introduction

Infrared (IR) imagery from geostationary satellites is a fundamental tool for diagnosing
and forecasting tropical cyclones (TC) because the temporal and spatial regularity of sam-
pling allows for continuous and timely global monitoring of TCs. However, IR imagery
is often severely limited at giving direct information about TC inner core structure and
evolution because upper level cirrus clouds are opaque at typical IR wavelengths. This is es-
pecially problematic in TC scenes which often display a central dense overcast (CDO) aloft,
and much of the structure of the eyewall and surrounding rainbands becomes obscured. Al-
though TC diagnosis and forecasting is challenged by the presence of upperlevel cirrus, the
frequent sampling (half hourly or better with present day GOES) and long history of IR
data collection has resulted in large-volume archival data sets that allow for calculation of
indirect relationships between IR-measured temperatures and intensity.

The first widely disseminated method that correlates IR imagery with TC intensity was
the Dvorak Enhanced IR (EIR) technique (Dvorak and Wright 1977, Dvorak 1984). The
correlations that the Dvorak EIR technique are based on were determined informally by
means of human experience (empirically). The Dvorak EIR technique is still in use today
and serves as a global benchmark method for estimating TC intensity using remote sensing
data. The method does, however, suffer from subjectivity — that is, different forecasters
will typically estimate different TC intensities based on the same IR imagery (Velden et
al. 1998). The differences are often large. Another pitfall of the Dvorak technique is that it
requires measurable operator training. This can be a significant problem in forecast offices
that experience a large volume of forecaster transience (Engel 2002).

Similar to the Dvorak technique, the Tropical cyclone Intensity Estimation (TIE) model
provides estimates of TC intensity based in part on features of the temperature field measured
from geostationary infrared satellite imagery. The TIE-model was developed at UW-CIMSS
to take advantage of large volume data sets that are presently available, by considering more
statistically formal relationships between IR derived variables and TC intensity. The TIE-
model is a multivariate linear model (multiple regression) and is thus completely objective.
The model is applicable throughout the entire TC lifetime and its application requires no
training.

2. TIE-model construction
The TIE-model is deﬁned in the multiple linear regression framework
Yy=a+axy+...+a,T,

where y is the predictand (estimated value) based on the values of the known input parame-
ters (predictors) 1, ..., z,. The constant coefficients ay, . .., a, are determined using a large
developmental data set and a statistical software package.

The TIE-model estimates TC central pressure (P.) using five predictors Tyamm, Teold, SYM,
LAT, and MPI. The IR-derived predictors Tyarm, Teold, and SYM are described in section 2
of Velden et al. (1998) but are also redefined here:



1. Tywarm = temperature (°C) of the warmest pixel found within 40 km of TC center. This
value is the eye temperature (when an eye exists).

2. Teoiq = average temperature (°C) within an annulus surrounding the TC center. The
annulus is defined by 24 < r < 136 km. T,,q represents an average eyewall cloud-top
temperature.

3. SYM = temperature (°C) of the coldest pixel from a set of 28 warm pixels found along
a set of 28 circles centered at TC center. The 28 circles lie within the annulus used
to calculate Tcolq. The warmest pixel temperature along each circle is computed and
SYM is the temperature of the coldest of those temperatures. SYM gives a measure
of how symmetric and “closed” the eyewall area is.

4. LAT = latitude (°N or S) of the TC center. LAT should always be positive.

5. MPI = exp(0.1813 SST) where SST is the sea surface temperature (°C) at TC center.
MPT represents TC maximum potential intensity based on SST (DeMaria and Kaplan
1994).
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The UW-CIMSS TIE-model is specifically defined by
P, = ao + ap Twarm + asg Tcold +as SYM + a4 LAT -+ as MPL (1)

where P, has units of mb, and

ap = 1003.1324076 a; = —0.3980090 ay = 0.6746796
az = 0.4220070 ay = —0.5440850 a5 = 0.1780407.

e

The coeflicients ao, . . ., a5 were determined using a developmental data sample that contains
1688 data points from 26 TCs that occurred in the Atlantic basin during the period 1995
to 2002. The 26 TCs in the sample are Bertha (1996), Bonnie (1998), Bret (1999), Danielle
(1998), Danny (1997), Dennis (1999), Edouard (1996), Erika (1997), Felix (1995), Floyd
(1999), Fran (1996), Georges (1998), Gert (1999), Hortense (1996), Trene (1996), Iris (1995),
Iris (2001), Keith (2000), Lenny+(1999), Lili (2002), Luis (1995), Marilyn (1995), Michelle
(2001), Mitch (1998), Opal (1995), and Roxanne (1995).

Each data point in the developmental data sample comprises:

1. An aircraft reconnaissance fix. Each aircraft fix contains the maximum tangential
wind encountered along the flight-level radial leg (toward or away from the TC center,
typically along the 700 mb pressure level), and the TC central pressure extrapolated
from flight-level to the sea surface. Although the maximum tangential wind is a more
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important indicator of TC intensity, it can be strongly dependent on TC azimuth
(measured around the TC center) and thus can be highly variable between consecutive
flight-level radial legs. The TIE-model uses TC central pressure as an indicator of
intensity since it has no spatial dependence, and only varies in time.

2. Values of Tyarm, Teold, and SYM calculated from GOES IR imagery captured within 1
hour of the reconnaissance fix.

3. LAT.
4. MPI. The SST at TC center is from NOAA Optimal Interpolation (OI) fields.

The linear regression given by (1) explains 63% of the variance of aircraft-measured TC
central pressure in the developmental sample.

The relative importance of each of the five predictors of the TIE-model can be assessed by
normalizing the model and comparing the magnitudes of the five normalized (correlation)
coefficients (Table 1). The most important predictor is the central eye region parameter
Toarm, and its coefficient is negative in sign. The coefficients of the eyewall region predictors,
T.qq and SYM, are the next two largest and both are positive in sign. Thus, as expected,
warmer eye temperatures and colder eyewall cloud-top temperatures correlate with greater

Table 1: Correlation coefficients (sorted by amplitude) for the five predictors used in the
multivariate TIE-model. All coefficients are significant at greater than the 99.9% confidence
level. The regression explains 63% of the variance of aircraft-measured TC central pressure.

predictor correlation coefficient

J LS —0.64
Teold +0.43
SYM +0.34
MPI +0.26
LAT —0.16

intensity (lower pressure). The remaining two predictors, MPI and LAT act to modulate the
relationship between the IR-derived predictors and TC intensity. For example, the coefficient
of LAT is negative because the height of the tropopause typically lowers, and the tropopause
temperature consequently increases, with increasing latitude. Since the tropopause acts as
a lid on TC eyewall convection, the minimum achievable cloud-top temperature above the
eyewall region increases with increasing latitude. However, this latitude-dependent limitation
on the minimum achievable eyewall cloud-top temperatures apparently does not represent a
strong enough limitation on intensity to negate this effect (Kossin and Velden 2003). In other
words, imposing a lower lid on eyewall convection does not impede the intensity enough to



counteract the relationship between cold eyewall clouds and intensity. Thus, for example,
a TC with some fixed mean eyewall cloud-top temperature will be more intense at higher
latitudes, all other parameters being equal.
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Figure 1: The UW-CIMSS TIE-model.

The time variability of the IR-derived predictors Tyarm, Tcold, and SYM can exhibit short
period oscillations in addition to the more physically meaningful longer period tendencies.
These short period variations don’t typically correlate well with associated short period
variations of TC intensity and can lead to spurious indications of rapid intensity change.
Although accurate prediction or measurement of rapid intensity change is highly desirable,



it is necessary to filter the TIE-model output using a simple time average to remove the
recurring problem of “false alarms”. This is achieved with a 12h running mean of the P,
estimates. The complete sequence of steps that define the TIE-model are outlined explicitly
in Fig. 1.

3. TIE-model performance

The TIE-model was tested using a jackknife approach in which each TC in the 26 TC
sample was individually removed from the sample and the coefficients of the regression were
rederived using the remaining 25 TCs. The resulting regression was then used to estimate
P, in the omitted TC. The errors between the TIE-model P, and the aircraft-measured
central pressure for the omitted TC were then calculated. These steps were repeated for
each TC and the accumulated errors were tallied to form an overall error. This method gives
a good indication of how the TIE-model will perform, on average, in an operational real-time
environment. The overall error distribution from the jackknife procedure is shown in Fig. 2.
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Figure 2: Distribution of TIE-model errors. Negative (positive) error indicates that the TIE-
model overestimated (underestimated) intensity compared to aircraft measurements. The
root mean square error (rmse), bias, and average absolute error (aae) are shown in mb.

The largest errors (+45 to +50mb) and a substantial majority of the errors between +30
and +35mb are due entirely to poor performance in estimating the intensity over the lifetimes
of Opal (1995) and Mitch (1998) (Fig. 3). Consequently, removal of these two TCs from the
testing sample results in significantly better performance. This may be justified in the case of
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Opal (1995) because the poor performance of the TIE-model was caused by instrumentation
problems — the pinhole eye that emerged during Opal’s rapid intensification was too small
to be adequately resolved by the GOES IR sensor. If a warm eye temperature is artificially
introduced into the TIE-model predictor Tiyam, the intensity estimate errors are reduced

nearly to zero during Opal’s maximum intensity.
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Figure 3: Time evolution of central pressure in Hurricanes Opal (1995) and Mitch (1998);
aircraft-measured central pressure (black curve), TIE-model estimates (red curve), and op-
erational Dvorak technique estimates from the Tropical Analysis and Forecasting Branch
(TAFB, red squares), Satellite Applications Branch (SAB, green circles), and Air Force
Global Weather Center (AFGWC, blue triangles).

Unfortunately, it is not presently clear what is responsible for the poor performance in
Mitch (1998). The values of aircraft-measured central pressure during maximum intensity
lie at the extreme range of the sample, and thus lie outside the range of the training sample
when Mitch is omitted in the jackknife procedure. This situation can be problematic for
statistical methods such as linear regression and neural networks because the method is
forced to extrapolate beyond its training range, and this usually results in significant loss of
accuracy. It is hoped that future inclusion of additional very intense TCs into the training
sample will improve this weakness. If expanding the sample does not improve performance
in the strongest TCs, then the need for additional predictors that can identify the important
features missed by the five present predictors must be addressed.
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Examples of good TIE-model performance are shown in Fig. 4. For the case of Hortense
(1996), there is some noise in the TIE-model during the developing stages (Julian days 251
255) that was not entirely removed by time averaging. Nevertheless, the TIE-model does
a good job of capturing the development, maximum intensity, and weakening of Hortense.
The initial weak tropical storm stage was also well estimated.
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Figure 4: Same as Fig. 3, but for Hurricanes Hortense (1996) and Keith (2000).

Also shown in Fig. 4, the entire life-cycle of Hurricane Keith (2000) was well estimated by
the TIE-model. The maximum intensity was estimated slightly late, and the reintensification
that occurred as Keith emerged from land and moved over the Bay of Campeche (Julian
day 279) was overestimated, but the overall TIE-model error was small. The TIE-model
captured the rapid intensification and subsequent weakening very well.

4. Summary

The UW-CIMSS TIE-model is a multivariate linear model that estimates TC intensity in
terms of central pressure. The input parameters (predictors) of the model are derived from
geostationary satellite IR imagery and sea surface temperature. The latitudinal dependence
of IR-derived cloud-top temperatures is accounted for explicitly by including latitude as a
predictor. The IR-derived predictors give information about TC eye temperature, eyewall
cloud-top temperature, and eyewall symmetry. The TIE-model is completely objective and
is applicable to all stages of TC lifecycle.



In quasi-independent (jackknife) testing, the TIE-model was found to perform well in a
variety of situations. Overall rmse within the developmental sample is less than 12mb. Two
TCs in the 26 TC sample were found to be problematic for the TIE-model — Opal (1995)
and Mitch (1998) — and are responsible for a a significant portion of the sample rmse. In
the case of Opal, the problem was not a model problem, but was caused by the inability of
the GOES-IR sensor to resolve Opal’s pinhole eye. For the case of Mitch, it is not so clear
where the problem lies, but it may be due to the fact that Mitch is the most intense TC in
the developmental sample, and thus lies outside the training range in the jackknife testing.
Future expansion of the sample to include more very intense TCs will hopefully mitigate this
problem. At the end of each TC season, the developmental sample will be expanded and the
TIE-model coefficients will be rederived.

The TIE-model is expected to evolve considerably in the near future. The multiple regres-
sion framework offers an excellent platform for testing a wide variety of predictors. These
may include parameters derived from synoptic fields or satellite microwave imagery or sound-
ings.
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