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1. Project objectives and methodology 

This project will develop a drought early warning toolkit based on satellite-derived maps of 
evapotranspiration (ET) and forecast output from the National Multi Model Ensemble (NMME) 
that will provide probabilistic drought intensification forecasts over weekly to monthly time 
scales.  Recent examples of rapid drought development have demonstrated the need for a reliable 
drought early warning system capable of providing vulnerable stakeholders additional time to 
prepare for worsening drought conditions.  The project will use the Evaporative Stress Index 
(ESI) dataset generated with the Atmosphere-Land Exchange Inverse (ALEXI) surface energy 
balance model and GOES satellite thermal infrared observations.  The ESI represents 
standardized anomalies in the ratio of actual-to-reference ET and can be used to depict moisture 
stress in vegetation with high spatial resolution.  Because the ALEXI model computes ET using 
remotely sensed land surface temperatures that respond quickly to changes in soil moisture 
content, the ESI is often able to detect increasing moisture stress sooner than other drought 
metrics, thereby making it a useful drought early warning tool.  Temporal changes in the ESI 
have been shown to provide valuable information about the rate of drought intensification, thus 
other variables have been developed to encapsulate the cumulative magnitude of the ESI changes 
occurring over longer time periods.  Prior work has shown a strong relationship between the 
magnitude of the ESI changes and subsequent drought intensification as depicted by the U.S. 
Drought Monitor (USDM). 

Probabilistic drought intensification forecasts will be generated each week across the contiguous 
U.S. using the ESI and other relevant drought monitoring variables.  New insight into the causes 
of rapid drought development will be gained through detailed analyses of soil moisture, rainfall, 
and atmospheric anomalies both preceding and accompanying recent flash drought events.  
Refinements will be made to the ESI-based drought intensification forecasts based on these 
insights and through development of synergistic methods that combine drought early warning 
signals from multiple data sources, such as the Standardized Precipitation Index (SPI) and soil 
moisture anomalies from the North American Land Data Assimilation System (NLDAS).  After 
evaluating the efficacy of these drought intensification probabilistic forecasts, new methods will 
be devised to incorporate ensemble forecasts of temperature and rainfall from the NMME as a 



means of further enhancing their forecast skill.  The drought forecast products will be relevant to 
multiple end users, including authors of the NOAA Climate Prediction Center Seasonal and 
Monthly Drought Outlook products. 

2. Research and accomplishments  

During the past 9 months, we have developed an empirical method that can be used to estimate 
the current state of the USDM (e.g. by converting the discrete USDM categories into a 
continuous function) and forecast subsequent changes in the USDM over different forecast lead 
times.  We have also assisted efforts to transition the research version of the ESI into NOAA 
operations and gathered datasets to perform a detailed analysis of the 2012 flash drought across 
the central U.S. to more closely analyze changes in vegetation health and soil moisture 
conditions during its evolution. 

A) Transitioning the Evaporative Stress Index into NOAA operations 

Prior work using the ESI to enhance our ability to monitor and predict drought conditions has 
used ESI datasets generated in a research setting; however, reliable access to these datasets is 
necessary to meet the long-term goal of this project of developing a reliable drought early 
warning toolkit.  Thus, we are assisting an ongoing NOAA- and NASA-funded effort led by Co-
PI Hain that is transitioning the ALEXI/ESI modeling system to NOAA operations.  This system, 
which is known as the “GOES Evapotranspiration and Drought Product System (GET-D)”, is 
expected to become operational in August 2015 and will produce ESI datasets covering most of 
North America with 8-km horizontal resolution and the contiguous U.S. with 4-km resolution.  
We have assisted development efforts by evaluating prototype versions of the GET-D system 
and identifying errors in preliminary datasets.  Once operational, these datasets (along with 
retrospective) analyses will be used during this project. 

B) Developing empirical methods to predict drought intensification 

An empirical method using logistic regression has been developed to predict the current and 
future states of the USDM using anomalies in the ESI, SPI, and NLDAS datasets.  Because the 
USDM is a discrete variable, predicting its intensification over different time periods requires 
predicting a discrete yes/no variable for which logistic regression is well suited.  Unlike standard 
linear regression, which minimizes the squared error between the predicted variable and the 
weighted sum of the predictors, logistic regression inserts the weighted sum of the predictors into 
the logistic function to predict the probability, p, that drought intensification will occur: 
 
p = L(a0 + a1x1 + a2x2 + a3x3 +…),       (1) 
 
where L(x) is the logistic function (1 + exp(-x))-1 spanning from 0 to 1 as x goes from minus 
infinity to positive infinity, which ensures that the probability is always between 0 and 1.  The 
parameters (a0, a1, a2, a3…) are fit using maximum likelihood. 
When making predictions with multiple input variables it is essential to avoid over-fitting of the 
data, which can occur when there are too many predictors relative to the number of observations.  
With over-fitting, the model optimizes over the “random” variability in a given sample in 
addition to any real relationships that might be present.  This may cause an over-fit model to 
perform poorly when applied to independent data.  For this study, cross validation was used to 



determine if a given variable adds real skill to the statistical model. This involves 1) removing 
one year of data from the analysis, 2) fitting the statistical model on all other years, 3) calculating 
the skill when applying the model to the year that was left out, and 4) repeating until all years 
have had a chance to be left out.  We first performed cross validation to determine if an 
individual variable has skill.  If the first variable has skill, we then repeat with the next variable 
to determine if two variables improve the skill.  If adding the kth variable degrades the model 
skill, then k-1 variables are used.  To avoid artificially inflating the skill, all steps are calculated 
independently for each sub-period, including the calculation of anomalies and any 
standardization of the variables.  The final result is the estimated skill and the number of useful 
predictors for each sub-period, which can then be used to determine the best predictors for all 
years. 
 
Next, we discuss an example of logistic regression used to predict USDM intensification over a 
2-week time period given the 4 week precipitation totals, ESI, ensemble-mean top soil and total 
column (0-2 m) soil moisture from NLDAS (e.g., Noah, VIC, and Mosaic), and the changes in 
the ESI and NLDAS anomalies over one week.  The chosen variables and compositing time 
periods are used here to illustrate issues we have encountered, and will be generalized later.  The 
most important issue we have encountered when using many variables is the increased chance 
that the model will identify no useful predictors when there is actually useful skill.  For example, 
using the predictors listed above, we find that 85% of grid points have useful skill east of 
105°W; however, if only a single predictor is used, such as precipitation, then 97% of the grid 
points have useful skill.  Apparently, with a larger number of predictors the model is more likely 
to find random co-variability between unimportant predictors and the predicted variable that does 
not hold up when independent data is used.  While on average the “real” predictor will have the 
strongest relationship and will therefore be chosen, with thousands of grid points there will be 
cases where a predictor will accidently be included in the model only to be later rejected on the 
independent data.  An additional issue when using many predictors is that adjacent points 
sometimes use different predictors and this can potentially lead to discontinuities in the predicted 
probabilities that are likely artificial in most cases.  Due to these issues, it was necessary to 
explore ways to filter or combine the potential predictors beforehand so that fewer variables were 
provided to the cross validation step. 
 
Because we know that the USDM authors use many drought indictors when constructing their 
weekly analyses, we take the approach of combining multiple variables into a single “master 
index” via weighted averaging.  One approach to finding the weights would be to use the 
coefficients from multi-linear regression between the predictors and the predicted variable; 
however, because simple regression is prone to over-fitting, we chose to use a form of 
regularized linear regression to find the weights.  Regularized regression methods introduce a 
penalty for complexity that typically favors models with smaller and/or fewer regression 
coefficients. Recently, Meinshausen (2013) and Slawski and Hein (2013) have shown that least 
squares regression with a sign constraint on the regression coefficients can be used without 
having to determine the “best” value of the regularization parameter. Because the sign of the 
relationship between the drought indicators and the USDM is known a priori (in the absence of 
random sampling noise), sign constrained regression is easy to apply in our case.  To further 
reduce the potential for over-fitting, we apply the sign constrained regression to a 4x4° box 
surrounding each grid point when calculating the weights.  Once the weights for the “master 



index” are computed, however, the fitting of the logistic regression and the skill scores are 
applied at each individual grid point.  As with all other calculations, the weight calculations are 
cross-validated to ensure that the skill is not artificially enhanced. With this new method, the 
cross-validated variable selection procedure is fed a single index, which is a weighted sum of 
multiple predictors.  This method greatly increases the number of grid points that have skill on 
independent data and allows multiple variables to impact the predictions.  We also use this 
weighting procedure to determine the “optimal” compositing period when averaging each 
variable.  For example, by feeding the sign constrained regression method the precipitation for 
the past week and at multiple time lags, the method computes the relative weights for each time 
lag.  The advantage of our method is that any combination of positive weights will be included in 
the optimization, whereas simple regression would allow both positive and negative weights, but 
at the expense of over-fitting. 
 
Because the USDM uses discrete categories, our results have shown that predictability can be 
gained by better characterizing its current state.  For example, when the USDM is in the “no 
drought” category, it is useful to know whether conditions are near normal or unusually wet 
because this will have a large impact on future changes in the USDM depiction.  Using this state 
information will also better leverage information from the ESI and NLDAS because the skill 
using the predictors discussed above is dominated by precipitation.  In order to create an explicit 
statistical model with quantifiable predictions, we assume that there exists a hypothetical 
continuous, normally distributed version of the USDM that can be observed after it is artificially 
discretized based on the 70th, 80th, 90th 95th, and 98th percentiles.  We assume that in the absence 
of the discretization that simple linear regression would be a good model to relate the SPI, ESI 
and NLDAS to the USDM (i.e. the USDM state is linearly related to these predictors).  Using 
these assumptions, the likelihood function is a function of the regression coefficients.  For 
predictors, we use the SPI averaged over 4, 8, 12, 16, 20, 26, 39 and 52 weeks, the ESI averaged 
over the same time periods, and the NLDAS soil moisture averaged over 4 weeks for the 0-10 
cm, 0-100 cm and 0-200 cm layers.  Sign constrained regression is used to find the weighting of 
the predictors to create a master index.  The model is fit using data from May through September 
from 2001-2014 and all results are cross-validated.  Since the model predicts a continuous 
USDM index we use the best guess (in a least squares sense) discretized version of our 
prediction for comparison purposes.  The observed and predicted USDM state for the middle of 
July for several years is shown in Fig. 1.  The cross-validated correlation between the empirical 
model prediction and the USDM for the full record is shown in Fig. 2.  Overall, the regression-
based predictions of the current USDM state are very good with correlations exceeding 0.8 
across much of the central and eastern U.S. 
 
 



         

Figure 1:  Observed and empirical-model estimated USDM drought analyses for 20 July 2010 
(top left panels), 19 July 2011 (top right panels), 17 July 2012 (bottom left panels), and 16 July 
2013 (bottom right panels). 

 

Figure 2: Correlation between the 
cross-validated observed and 
empirical model predicted USDM 
drought analyses using weekly data 
from May-September for 2001-2014.  



There are different ways to use information from the USDM state model to predict the likelihood 
of an increase in drought severity.  Our tests have shown that intensification in the USDM 
drought depiction is most strongly related to the ratio of two probabilities: 1) the probability that 
the USDM drought severity should be worse than the current analysis indicates (i.e. if the USDM 
depicts “no drought”, integrate the probability function from the 70th percentile upwards (call 
this P)), and 2) the probability that the USDM depiction should be less severe than currently 
indicated (e.g., 1 – P).  After looking at histograms of precipitation and the above “odds ratio” 
(P/(1 – P)) for times when the USDM intensifies versus times when the USDM does not, it was 
determined that the logarithm of the odds ratio is the best predictor. 
 
Combining all this information showed that the best model for predicting increases in the USDM 
drought severity over 2, 4 and 8 week time periods involves precipitation at the 4 latest time lags 
(e.g. 4-16 weeks) and the “odds ratio” predictor from the USDM state model described above.  
For a few locations, adding the smoothed climatology of drought intensification as a predictor 
added skill to the model, thus it was also included even though for most regions this variable has 
zero weight.  The cross-validated Brier Skill Score (BSS) for the 2-week drought intensification 
predictions is shown in Fig. 3a.  For comparison, the BSS for the basic forward selection logistic 
regression model with 7 variables discussed earlier is shown in Fig. 3b.  Most of the increased 
skill when using the new regression model is due to the USDM state prediction, which illustrates 
the value of converting the discrete USDM categories into a continuous distribution.  Figure 4 
shows several examples of the 2-week drought intensification predictions for the middle of July 
for recent drought years (2010-2013).  Because the “observed” value of USDM intensification is 
a yes/no variable, the observed plots show two colors: orange for drought intensification and 
white for no intensification in the USDM.  While general features in the observed and predicted 
USDM changes are similar, it is evident that these predictions are less skillful than the model 
estimates of the current drought state.  Even so, it is encouraging to see that this empirical model 
is able to produce skillful drought intensification forecasts using only the current conditions and 
no forecast information. 

 

Figure 3: Brier skill scores (BSS) for two-week predictions of USDM-depicted drought 
intensification using the cross-validated optimized logistic regression model (left panel) and the 
basic forward selection logistic regression model (right panel), computed using all weekly 
forecasts from May-September for 2001-2014. 
 



        

Figure 4:  Observed and probabilistic predictions of 2-week changes in the USDM drought 
analysis for 20 July 2010 (upper left panels), 19 July 2011 (upper right panels), 17 July 2012 
(lower left panels), and 16 July 2013 (lower right panels).  The observed plots show orange for 
drought intensification and white for no intensification. 

C) 2012 Central U.S. flash drought analysis 

Late in the reporting period, we also started performing a detailed analysis of the flash drought 
event that impacted the central U.S. during the summer and fall of 2012.  The primary goal of 
this part of the project is to assess changes in vegetation health and soil moisture conditions 
through a comparison of in situ, modeled, and observed datasets.  This analysis will increase our 
understanding concerning the response of vegetation and soil moisture to flash drought onset and 
its subsequent evolution. 



3. Highlights of accomplishments 

 Supported ongoing efforts led by Co-I Hain to transition the ALEXI/ESI system from a 
research tool to a NOAA operational data product 

 Developed a logistic regression model that uses the ESI, SPI, and NLDAS soil moisture 
datasets to estimate the current USDM state by converting the discrete USDM drought 
categories into a continuous function 

 Developed a logistic regression model that uses the USDM state estimates along with the 
current values and temporal changes in the ESI, SPI, and NLDAS datasets to produce 
probabilistic drought intensification forecasts for the USDM over sub-seasonal time 
scales 

 Evaluated and optimized the logistic regression models through cross-validation and an 
examination of individual case studies 

 Started a new case study analysis of the 2012 flash drought over the central U.S. that will 
assess changes in vegetation health and soil moisture during the onset and development 
of the flash drought event 

4. Future work 

During the next twelve months, we will finalize the empirical models used to estimate the current 
USDM drought state and to predict future intensification in the USDM over sub-seasonal time 
scales.  This includes testing other methods for regularization, such as LASSO (Tibshirani 1996) 
that may allow more variables to be used in a skillful manner.  We will also assess whether 
including surrounding points (e.g. spatial smoothing) when computing the logistic regression fits 
reduces sampling noise and leads to more skillful forecasts.  After finishing these tasks, we will 
use data from the Climate Forecasting System Reanalysis (CFSR) to examine relationships 
between meteorological variables and changes in the ESI and NLDAS datasets during drought 
and flash drought events.  This will lead to additional insight into the typical evolution of flash 
drought from a soil moisture and vegetation health perspective.  This information will also be 
used to assist efforts to develop synergistic methods that combine drought intensification 
forecasts from the logistic regression models with medium-range (0-3 months) temperature and 
precipitation forecasts from the National Multi-Model Ensemble (NMME).  Last, we will also 
finish the analysis of the 2012 flash drought event across the central U.S. 
 
5. Publications from the project 

Otkin, J. A., D. Lorenz, M. Svoboda, C. Hain, and M. C. Anderson, 2015: Probabilistic drought 
intensification forecasts using empirical methods.  In preparation for submission to J. 
Hydrometeor. 

6. PI contact information 

Jason Otkin 
CIMSS/SSEC 
University of Wisconsin-Madison 
1225 West Dayton Street 
Madison, WI  53706 
Phone:  608-265-2476 
Email:  jasono@ssec.wisc.edu 



7. Budget for upcoming year 

Detailed Year 2 budget for the University of Wisconsin-Madison: 

	
	
Combined	Year	2	budget	for	all	organizations:	
	

	
	

Year 2
09/01/2015 - 08/31/2016

I. Labor and Fringe Benefits Hours Rate Salary Fringe % Fringe Cost Totals     _____     _____     _____     _____     _____      _____      _____
J.Otkin - PI 150 53.13 $   7,969 34.5% $   2,749 $   10,718
Post Doc - Res. Associate 1770 32.43 $   57,409 23.8% $   13,663 $   71,072   _______
   Subtotal $81,790

 
II. Travel  

1 Trip / 2 people / 6 days / AMS Conference 3,385   _______
3,385

III. Materials and Supplies 1,014

IV. Publication 15 pages @ $145 each page 2,175

V. University Indirect Cost at 53% 46,833

VI. Equipment 7,803  ________
UW-MADISON YEAR 2 TOTAL $143,000  ________  ________

Year 2 Budget Summary
UW - Madison $   143,000
U Nebraska - Lincoln $   29,000
U Maryland - College Park $   23,000
Total $   195,000


