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Abstract 21 

 Automated aircraft observations of wind and temperature have demonstrated 22 

positive impact on numerical weather prediction since the mid 1980s.   With the advent 23 

of the WVSS-II humidity sensor, the expanding fleet of commercial aircraft with on-24 

board automated sensors is also capable of delivering high-quality moisture observations, 25 

providing vertical profiles of moisture as aircraft ascend out of and descend into airports 26 

across the continental United States.  Observations from the WVSS-II have to-date only 27 

been monitored within the Global Data Assimilation System (GDAS) without being 28 

assimilated. 29 

 In this study, aircraft moisture observations from the WVSS-II are assimilated in 30 

the GDAS, and their impact is assessed in the Global Forecast System (GFS).  A two-31 

season study is performed, demonstrating statistically significant positive impact on both 32 

the moisture forecast and the precipitation forecast at short-range (12-36 hours) in the 33 

warm season.  No statistically significant impact is observed in the cold season. 34 

 An additional experiment is carried out to investigate if aircraft observations can 35 

completely replace rawinsonde observations where aircraft typically provide vertical 36 

profiles throughout the day.  Results are mixed, leaving the impression that aircraft are 37 

currently not capable of routinely replacing rawinsonde observations, although available 38 

evidence suggests that profiles from aircraft observations can effectively remove the 39 

impact of a rawinsonde observation if aircraft observations are present in large enough 40 

numbers, leaving open the possibility for routine replacement of rawinsondes by aircraft 41 

observations in the future when aircraft observations become more numerous.  These 42 
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results may also have relevance to the deployment of supplementary, off-time 43 

rawinsondes. 44 

 45 

1. Introduction 46 

 Automated observations of wind and temperature from commercial aircraft have 47 

become a significant source of observations, especially since the establishment of the 48 

Meteorological Data Collection and Reporting System (MDCRS; Petersen et al. 1992).  49 

Today, 39 participating airlines deploy more than 3500 aircraft under the World 50 

Meteorological Organization’s broader Aircraft Meteorological Data Relay (AMDAR) 51 

program, delivering more than 680,000 wind and temperature reports daily (Petersen et 52 

al. 2015). 53 

Aircraft wind and temperature observations have demonstrated positive impact on 54 

numerical weather prediction since the mid 1980s when aircraft data became available in 55 

significant numbers (Moninger et al. 2003).  Data denial experiments in the Rapid Update 56 

Cycle model (RUC, replaced by the Rapid Refresh (RAP) model in 2012; Benjamin et al. 57 

2010) demonstrate that aircraft data is the most important dataset over the continental 58 

United States for 3-6 hour forecasts as well as 12-hour forecasts of upper tropospheric 59 

winds.  Assimilation of wind, temperature, and moisture observations from Tropospheric 60 

AMDAR (TAMDAR) observations in the RUC demonstrate positive impact on wind, 61 

temperature, and moisture fields for the 3-hour forecast (Moninger et al. 2010).  Impact 62 

tests in the European Centre for Medium-range Weather Forecasts (ECMWF) global 63 

forecast system demonstrate positive impact at 48 hours over the North Pacific, North 64 

America, North Atlantic, and Europe when assimilating aircraft wind and temperature 65 
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observations (Andersson et al. 2005).  An experimental ensemble-based observation 66 

impact system used with the NCEP GFS demonstrated that aircraft wind and temperature 67 

observations supply the largest per-observation impact of any in-situ observation type on 68 

the 24-hr forecast error, even surpassing rawinsonde observations (Ota et al. 2013). 69 

Early attempts to derive automated moisture observations from aircraft sensors 70 

included the Water Vapor Sensing System (WVSS), which used a thin-film capacitor to 71 

measure relative humidity (RH; Fleming 1996).  Tests of the device indicated a wet bias 72 

at high RH values and a dry bias at low RH values (Fleming 1998).  In addition, biases in 73 

AMDAR temperature reports made it difficult to retrieve precise values of moisture 74 

variables, such as specific humidity (SH).  The WVSS-II sensor was redesigned to use a 75 

tunable diode laser to measure water vapor content via infrared absorption spectroscopy, 76 

determining the water vapor content of sampled air from the measured transmittance of 77 

the laser across the air tube (Helms et al. 2010).  Version 3 of the WVSS-II was 78 

developed in 2008, and performed well under most test conditions and eliminated 79 

technical issues with seals and thermal control that plagued the earlier versions of the 80 

design.  The WVSS-II_(v3) is the device currently on board over 100 aircraft, routinely 81 

producing approximately 100,000 moisture observations daily over the continental US 82 

(Petersen et al. 2015). 83 

WVSS-II moisture observations from AMDAR have been assimilated into the 84 

NDAS since the 18 October 2011 upgrade2, which included substantial modification of 85 

the model grid, model physics, and data assimilation.  However, these observations have 86 

only been monitored within the GDAS, passing through the data assimilation system and 87 

                                                 
2 http://www.emc.ncep.noaa.gov/mmb/mmbpll/eric.html#TAB4 
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being assigned an interpolated model background moisture value, but not actually being 88 

assimilated.  It is the goal of this study to assimilate these moisture observations in the 89 

GDAS, evaluate their impact on the GFS forecast, and determine what level of 90 

redundancy may exist between aircraft observations and rawinsonde observations in 91 

locations where airports provide ascending and descending aircraft observation profiles 92 

near rawinsonde launch sites.  Section 2 outlines the model setup and experiment design; 93 

section 3 describes the methodology for assessing forecast impact; the results are 94 

presented in section 4, and conclusions are provided in section 5. 95 

 96 

2. Model Setup and Experiment Design 97 

 Observations are assimilated using the operational, hybrid ensemble/3DVAR 98 

formulation of the GDAS to produce 6-hourly analyses.  Analyses are produced at T670 99 

resolution while using a set of 80 ensemble members at T254 resolution to define flow-100 

dependent covariance (e.g. Wang et al. 2013).  A 168-hr forecast is initiated from every 101 

0000 UTC analysis for the purposes of assessing impact on the short- to medium-range 102 

forecast. 103 

 The GDAS was cycled for a warm season (01 April 2014 – 29 May 2014) and a 104 

cold season (01 December 2014 – 11 January 2015) to examine the impact of assimilated 105 

aircraft moisture observations across seasons.  Moisture observations from AMDAR 106 

were switched from a monitoring-mode to an assimilation-mode at the script level, with 107 

an observation error profile copied from the NDAS.  No change to quality control was 108 

made to account for the new moisture observations, allowing the GDAS to apply its 109 

existing quality control algorithm to these observations.  Aircraft moisture observations 110 



 6 

are assimilated in SH space, rather than as a relative humidity measurement, which can 111 

be subject to significant effects from known biases in AMDAR temperature reports (Zhu 112 

et al. 2015).  Each seasonal experiment was compared with a control that assimilated all 113 

observations except aircraft moisture observations.  AMDAR wind and temperature 114 

observations are assimilated in both the experiment and control runs. 115 

 To test the redundancy of aircraft observations near rawinsondes, an additional 116 

warm season experiment was run.  This experiment was identical to the moisture 117 

assimilation experiment already performed, except that rawinsondes at 10 selected sites 118 

in the continental US were deactivated in assimilation for all analysis periods, regardless 119 

of the aircraft observational coverage at any individual time.  The choice of which sites to 120 

deactivate was based on the coverage of the rawinsonde site by aircraft moisture 121 

observations calculated from the original experiment (see Section 4c).  This experiment 122 

was (referred to hereafter as the data-denial experiment) compared with the original 123 

experiment (referred to hereafter as the assimilation experiment) to determine the impact 124 

of the missing rawinsondes. 125 

 126 

3. Methodology 127 

 Forecast impact was investigated in several ways.  Observation-minus-128 

background (OMB) statistics of assimilated moisture observations from both rawinsondes 129 

and nearby aircraft observations were compared to assess the data-quality of aircraft 130 

moisture observations relative to rawinsondes, an approach that is similar to that used in 131 

previous aircraft/rawinsonde collocation studies (e.g. Schwartz and Benjamin 1995).  The 132 
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OMB statistics provide an evaluation of possible bias that may exist in the model 133 

background moisture field, as well as a measure of 6-hr forecast improvement. 134 

 Forecast performance in the shorter-range (1-2 days) is evaluated by examining 135 

the impact of assimilated observations on the Equitable Threat Score (ETS) and Bias 136 

Score3 for precipitation in the 12-36 hour forecast.  Forecast improvement or degradation 137 

is evaluated for statistical significance based on 10,000 Monte Carlo simulations.  138 

Although precipitation statistics are available for the 36-60 hour forecast range and the 139 

60-84 hour forecast range, focus is maintained on the 12-36 hour forecast, because this is 140 

the time period over which aircraft moisture observations had the greatest impact on the 141 

forecast. 142 

 Forecast performance in the mid-range (2-3 days) is evaluated by comparing 143 

forecast total-column precipitable water (TPW) against TPW observed by Global 144 

Positioning Satellite (GPS) signals (e.g. Duan et al. 1996) available from Earth System 145 

Research Laboratory (ESRL).  Unlike precipitation statistics that focus on the impact of 146 

moisture observations as the model approaches saturation, TPW comparisons provide a 147 

good means of evaluating the vertically integrated effect of AMDAR moisture reports 148 

throughout the full range of humidity.  Errors from GPS-TPW have been shown to be less 149 

than 1 mm when compared to ground based Microwave Radiometer observations during 150 

the Measurements of Humidity in the Atmosphere and Validation Experiment (Leblanc et al. 151 

2011) in California and at the Atmospheric Radiation Measurement (ARM) program 152 

(Dworak and Petersen, 2013) in Oklahoma.  Furthermore, positive impacts on RUC 153 

                                                 
3 Bias in the NCEP precipitation statistics is calculated as the ratio of the number of 
verification grid-boxes that are forecast to have precipitation in a given range (mm day-1) 
to the number of grid-boxes where that amount of precipitation actually occurred. 
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forecasts out to 12 hours have been observed with the assimilation of GPS TPW data 154 

(Gutman et al 2004, Smith et al. 2007).  Forecast errors relative to GPS observations were 155 

computed in this study for every 6-hour forecast period out to 72 hours, and deviations 156 

from the error in the control forecast are evaluated for statistical significance using a 157 

student’s t-test for mean error and bias, and a chi-squared test for random error (see 158 

Section 4b). 159 

Two differences between precipitation skill scores and TPW fit-to-observation 160 

scores must be considered.  First, GPS observational coverage is more comprehensive 161 

spatially and temporally than precipitation data, which allows every forecast to be tested 162 

for accuracy at more locations than with the more sparse precipitation data.  For example, 163 

the 12-36 hour forecast period over which the precipitation skill scores are presented is 164 

binned by precipitation amount, with the largest number of precipitation observations in 165 

the lowest-value bin.  For the warm-season experiment, there are at least 42,057 data 166 

points used to determine ETS and Bias Scores when comparing the assimilation 167 

experiment and the data-denial experiment.  By contrast, in the forecast fit-to-168 

observations test, 69,071 observations were tested over the same forecast period, a 64% 169 

increase in available observations.  This is due in part to the fact that TPW observations 170 

can exist where precipitation observations do not, sampling across the full spectrum of 171 

moisture values.  There are over 400 active GPS-MET stations at any given observation 172 

period +/- 15 minutes from the hour, with high geographic density in California.  Second, 173 

the forecast fit-to-observations test shows statistically significant degradation in the 174 

medium-range (72 hours), while statistically significant impact on precipitation scores 175 
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only extends to the 12-36 hour forecast.  For these reasons, one could argue that the GPS-176 

TPW tests are more comprehensive. 177 

 178 

4. Results 179 

a) Impact of AMDAR moisture observations on rawinsonde moisture assimilation 180 

 A particular interest in this study is to investigate the relationship between 181 

rawinsonde moisture observations and AMDAR moisture observations during 182 

assimilation, when both are available in the same location.  It is desirable to know, for 183 

example, how rawinsonde and AMDAR moisture observations compare to the model 184 

background derived from the 6-hour forecast – a closer fit of observations to the 6-hour 185 

forecast following assimilation can indicate that the observations are high quality and 186 

improve the initial (analysis) state.  Likewise, an improved fit of rawinsonde observations 187 

to the 6-hour forecast as a result of assimilating AMDAR observations can indicate better 188 

model performance, as this can be equivalently expressed as a closer fit of the 6-hour 189 

forecast to trusted observations.  Lower OMB in general implies greater consistency of 190 

the observations with other observation data sources as well as with information from 191 

observations assimilated previously, contributing to the model background. 192 

 Mean profiles of OMB values of specific humidity are produced for rawinsonde 193 

observations without AMDAR moisture assimilation (from the control), rawinsonde 194 

observations with AMDAR moisture assimilation (from the assimilation experiment), and 195 

for AMDAR observations when they are assimilated (Fig. 1).  Profiles are produced at 196 

each rawinsonde site, averaging rawinsonde OMB scores within 25 equally-spaced 197 

pressure-layers between the highest recorded pressure and 300 hPa, which is the highest 198 
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level where moisture observations are assimilated.  AMDAR OMB scores are likewise 199 

averaged within these pressure-layers using all AMDAR moisture observation within 1 200 

hour and 0.5 degrees of the rawinsonde location, representing a radius of 66 km to 77 km, 201 

depending on the latitude of the rawinsonde site.  These profiles are then averaged across 202 

all rawinsonde sites in the continental US. 203 

 Profiles indicate that rawinsonde observations fit 6-hour forecasts better when 204 

AMDAR observations are assimilated during the warm-season experiment (Fig. 1a), 205 

signifying improved model performance in the warm-season.  No clear change is 206 

observed in the cold-season experiment (Fig. 1b).  Likewise, AMDAR moisture 207 

observations fit closer to the 6-hr forecast than rawinsonde observations at essentially all 208 

levels in the warm-season experiment, although this relationship does not exist in the 209 

cold-season.  This indicates that AMDAR moisture observations are of high quality, even 210 

in comparison to rawinsonde observations.  In the cold-season when SH patterns are 211 

more strongly organized by synoptic-scale weather systems and values are smaller due to 212 

colder temperatures, AMDAR and rawinsonde observations appear to have largely 213 

indistinguishable quality characteristics by this metric, except for perhaps the surface and 214 

near-surface levels where rawinsondes are more moist than the model background and 215 

AMDAR observations are not.  In the warm-season, the OMB for rawinsondes is 216 

improved to statistical significance within the lower troposphere down to just above the 217 

surface.  The difference in OMB performance between the warm and cold seasons may 218 

be a byproduct of the increased presence of smaller-scale moisture structures in the warm 219 

season. 220 

 221 
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b) Impact of AMDAR moisture observations on precipitation and TPW forecasts 222 

 To quantify the effect of the analysis changes on the forecast due to inclusion of 223 

AMDAR moisture observations, precipitation forecast skill was determined using the 224 

Equitable Threat Score (ETS) and Bias Score (Wilks 1995) over the continental United 225 

States, binned by precipitation thresholds per 24 hours.  The inclusion of both AMDAR 226 

and RAOB moisture observations (from the assimilation experiment) improved the mean 227 

ETS to statistical significance for 12-36 hour precipitation forecasts of below 5 mm/day 228 

in the warm-season experiment (Fig. 2a).  Bias is slightly improved for these categories 229 

as well.  There is statistically significant ETS degradation for only the 10 mm/day 230 

category of the 60-84 hour forecast (not shown), while the ETS and bias are not 231 

significantly changed for any other category at any forecast lead-time.  The cold-season 232 

experiment expresses no statistically significant improvement in ETS or bias for any 233 

category or forecast lead-time (Fig. 2b), with the exception of a degradation in bias for 234 

very high precipitation (50-75 mm/day) in 60-84 hour forecasts (not shown); these higher 235 

precipitation categories have very few observations from which to derive statistics, and 236 

are dominated by a single event, making the statistics less reliable.  Since the GFS 237 

precipitation forecast is more accurate in the cold-season, due to more organized 238 

convection from synoptic-scale forcing, improvement of the cold-season precipitation 239 

forecast is expected to be smaller than improvement of the warm-season forecast. 240 

 These precipitation statistics demonstrate an improvement to short-range (12-36 241 

hour) precipitation forecasts by assimilation of AMDAR moisture observations.  An 242 

additional measure of forecast skill can be observed by computing the forecast fit-to-243 

observations using GPS total-column precipitable water.  For each 6-hour forecast period 244 



 12 

from the analysis time to 72-hours, the forecast TPW fields were interpolated to a 245 

database of GPS observations and the error was computed (Fig. 3).  The error is divided 246 

into two components: the bias of the error, represented by the mean difference between 247 

observations and the forecast field, and the random error, represented by the standard 248 

deviation of the difference between observations and the forecast field.  In general, the 249 

bias of the error is typically 10-20% of the magnitude of the random error, indicating that 250 

the random error is responsible for most of the error.   251 

While bias in the error is slightly increased in the first 18 hours of the forecast in 252 

the warm season experiment (Fig. 3a), the total error is reduced, with random error 253 

improved to statistical significance from 0-36 hours into the forecast, with additional 254 

statistically significant improvement at 60-66 hours (Fig. 3b).  The mean error, which is a 255 

combination of both the bias and the random error, is reduced to statistical significance in 256 

for 0-18 hours into the forecast (not shown).  The impact of AMDAR moisture 257 

observations on the cold-season experiment is less significant, with no statistically 258 

significant change in bias of error (Fig. 3c) and statistically significant reduction in 259 

random error only in the first 0-6 hours of the forecast (Fig. 3d).  The mean error is only 260 

reduced to statistical significance at the analysis time (not shown).  The difference in 261 

impact between the warm and cold season experiments may be due to differences in 262 

precipitation regime between the two periods.  In the warm season, precipitation often 263 

forms in small-scale features under weak synoptic forcing, while in the cold season 264 

precipitation is dominated by large-scale, strong synoptic forcing.  The GFS has less skill 265 

in the warm season regime, leaving more room for improvement. 266 

 267 
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c) AMDAR/Rawinsonde redundancy experiment 268 

1) VERTICAL AND TEMPORAL COVERAGE OF RAWINSONDE LAUNCH  269 

SITES BY AIRCRAFT OBSERVATIONS 270 

 In the data-denial experiment, the value of rawinsonde observations in regions 271 

best observed by aircraft observations was tested.  This is a very gross test of the 272 

potential of AMDAR observations (u,v,T,q) to complely replace rawinsondes at sites 273 

where AMDAR observations provide the most consistent coverage.  The availability of 274 

aircraft observations at US rawinsonde sites was determined at each six-hourly analysis 275 

period by collecting aircraft moisture observations available within varying spatial 276 

thresholds of 0.25 to 1 degree in latitude/longitude space and 0.75 to 1.25 hours in time 277 

of the rawinsonde launch (Table 1).  These aircraft observations are defined as 278 

‘collocated’ with the rawinsonde for the purposes of defining coverage of the site.  279 

Coverage of a rawinsonde by aircraft observations is determined through coverage by 280 

aircraft SH observations alone; many aircraft provide wind and temperature observations 281 

while relatively few aircraft provide WVSS-II moisture observations.  Thus coverage of 282 

wind, temperature, and SH observations by aircraft is primarily determined by the 283 

coverage of SH observations. 284 

 The vertical profile of the rawinsonde launch site is divided into 25 equally-285 

spaced pressure layers between the surface and 300 hPa (which is the lowest allowable 286 

pressure for assimilation of rawinsonde and aircraft moisture observations).  The vertical 287 

coverage of the site by aircraft observations (CVertical) is defined as the percentage of these 288 

layers that contain at least one aircraft moisture observation, computed every 0000 UTC 289 

and 1200 UTC analysis period and averaged to produce a final score.  The choice of 25 290 

layers was made because 25 layers appears to provide the most contrast between 291 
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rawinsondes with high vertical coverage and rawinsondes with low vertical coverage.  292 

Likewise, the temporal coverage of the site by aircraft observations (CTemporal) is defined 293 

as the percentage of 0000 UTC and 1200 UTC analysis-periods where at least one 294 

collocated aircraft moisture observation is available, such that an aircraft observation 295 

profile can be produced.  The total coverage score (Ctotal) for a rawinsonde launch site is 296 

the product of these two coverage statistics, varying between zero and one: 297 

 298 

 (1) 299 

 300 

 Rawinsonde launch sites are ranked by coverage, and the most well covered sites 301 

are used for the data-denial experiment.  Table 1 lists the coverage statistics for three 302 

spatial/temporal thresholds of coverage.  For example: The highest Ctotal value for a 1.0 303 

hour and 0.5 degree threshold around rawinsonde sites is Fort Worth, TX, with a value of 304 

Ctotal=0.603.  This can indicate, in the limiting cases, a situation where Cvertical=1.0 305 

(perfect vertical coverage) and Ctemporal=0.603 (profiles available in 60.3% of the 0000 306 

UTC and 1200 UTC analysis periods), or alternatively Cvertical=0.603 (an average of 307 

60.3% of vertical layers are covered by AMDAR moisture observations) and Ctemporal=1.0 308 

(profiles available in all 0000 UTC and 1200 UTC analysis periods).  The reality exists in 309 

between these limiting cases, with Cvertical=0.675 and Ctemporal=0.893.  The ten sites 310 

chosen for the experiment include sites that appear in the top-10 for at least two 311 

thresholds, except for Las Vegas, NV, which is in the top-11 for two thresholds and in the 312 

top-3 for the strictest (smallest space/time) threshold.  These sites are spread across the 313 
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continental US, which allows for the assumption that they impact the forecast largely 314 

independent of one another. 315 

 In the data-denial experiment, the GDAS was run on a six-hourly cycle over the 316 

warm season period from 01 April – 29 May 2014, following a spin-up period of one 317 

week.  All routine observations plus aircraft moisture observations were assimilated, but 318 

the entire rawinsonde (wind, temperature, and moisture observations) at each of the ten 319 

chosen sites was excluded for the full period of the experiment, regardless of the 320 

AMDAR coverage at any particular time.  The purpose of this experiment is to determine 321 

if forecasts are significantly impacted by eliminating rawinsonde data where AMDAR 322 

observations are known to provide their most substantial coverage.  323 

 324 

2) PRECIPITATION EQUITABLE THREAT SCORE (ETS) AND BIAS SCORE 325 

 The changes in ETS and Bias Score in the data-denial experiment are similar in 326 

form to the impact from the assimilation experiment that included both the aircraft 327 

moisture observations and the ten selected rawinsondes (Fig. 4).  The 12-36 hour ETS 328 

score is improved to statistical significance for low precipitation amounts (0.2-2.0 329 

mm/day) and bias is improved for precipitation amounts less than 10 mm/day.  When 330 

compared to the same portion of the experiment with and without AMDAR moisture 331 

data, there is a notably larger positive impact on both ETS and bias scores when the ten 332 

selected rawinsondes have been removed, with statistical significance over these same 333 

precipitation thresholds (Fig. 5).  Impacts on longer-range forecasts do not reach 334 

statistical significance (not shown).  These results demonstrate that the ten selected 335 

rawinsondes are reducing precipitation skill rather than improving it; as shown in Fig. 1, 336 

OMB is smaller for aircraft moisture observations than for rawinsondes on average.  337 
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Aircraft moisture observations may be higher quality than rawinsonde moisture 338 

observations, consistent with other studies (Petersen et al. 2016), and that coverage by 339 

AMDAR moisture observations provides more information than rawinsondes launched 340 

twice daily.  Thus it is possible that removing rawinsondes in regions of dense aircraft 341 

observational coverage could yield a positive impact at short-range (12-36 hours) in the 342 

warm season.  The availability of aircraft observations at locations and times other than 343 

the twice-daily, point-specific rawinsonde launches may also allow aircraft observations 344 

to provide more information on moisture variability than is capable with rawinsondes. 345 

 346 

 3) FORECAST FIT-TO-OBSERVATIONS: GPS TOTAL-COLUMN PRECIPITABLE WATER 347 

 The fit of GPS-TPW observations to forecasts was calculated at all forecast times 348 

out to 72 hours for the data-denial experiment in the same manner that was applied to the 349 

assimilation experiment.  The negative (dry) bias of forecast error in the data-denial 350 

experiment is more pronounced than in the original assimilation experiment (Fig. 6a), 351 

with a pronounced, statistically significant increase in bias through 0-48 hours into the 352 

forecast as well as at 66 hours.  Random error is reduced in the data-denial experiment at 353 

a statistically significant magnitude on par with the original assimilation experiment up to 354 

30 hours into the forecast, after which the random error of the data-denial experiment 355 

begins to become larger than the control, and exhibits statistically significant degradation 356 

from 60-72 hours (Fig. 6b). 357 

  358 

 4) OBSERVATION-MINUS-ANALYSIS (OMA) STATISTICS 359 

 As a final test of the impact of denying the selected rawinsondes, the observation-360 

minus-analysis (OMA) statistics of aircraft moisture observations assimilated near the 361 
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missing rawinsonde sites was compared with and without the rawinsondes present, and 362 

the difference was plotted against the density of aircraft observations present within a 363 

pressure layer and within 0.5 degrees and one hour of the rawinsonde (Fig. 7).  While 364 

there is no correlation (i.e. linear relationship) between these two statistics (r = -0.0144), 365 

a relationship becomes clear when the points are plotted on a phase-space.  The more 366 

aircraft observations nearby (higher values along the abscissa), the less the OMA statistic 367 

for aircraft moisture observations is capable of changing when the rawinsonde is denied 368 

(lower values along the ordinate).  Thus the relationship between these two statistics is 369 

represented by an upper-bound on the ordinate as a function of the abscissa, which 370 

appears to obey an exponential-decay-like form. 371 

 372 

 5) EVALUATION OF RAWINSONDE DATA-DENIAL 373 

 The scores presented for this admittedly extreme test of the redundancy of 374 

rawinsondes at sites well covered by AMDAR observations do not reach a clear 375 

conclusion.  While precipitation skill can be improved in the short range (12-36 hours) by 376 

their exclusion, forecast fit-to-observation against GPS total-column precipitable water 377 

suggests that denying the rawinsondes increases error, even to statistically significant 378 

degradation in random error at 60-72 hours against a control that contains no aircraft 379 

moisture observations.   380 

In reconciling these results, one must consider the relative impact of moisture 381 

versus temperature and wind observations from aircraft.  As shown previously, aircraft 382 

moisture observations near rawinsondes exhibit a lower OMB than rawinsonde 383 

observations (Fig. 1), which implies that aircraft moisture observations may be of higher 384 

quality.  However, temperature observations from aircraft have been shown to suffer 385 
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biases that can vary by individual aircraft as well as by whether the aircraft is ascending 386 

or descending (e.g. Ballish and Kumar 2008).  While efforts to address these biases are 387 

currently being investigated (Isaksen et al. 2012, Zhu et al. 2015), NCEP does not 388 

currently employ a bias correction mechanism for these observations.  It is possible that 389 

higher-quality moisture observations from aircraft improve the short-range precipitation 390 

forecast, when more accurate estimation of the humidity field may be most important, 391 

while denying rawinsondes may introduce errors into the wind and temperature fields that 392 

grow over time to degrade the later forecast, explaining the results from both the 393 

precipitation skill score test and the forecast fit-to-observations test. 394 

 The impact of the missing rawinsondes, measured as the change in OMA of the 395 

aircraft observations when the rawinsondes are excluded, demonstrates a relationship to 396 

the number of aircraft observations present; the more aircraft observations present 397 

(meaning the more redundancy in aircraft observational coverage at a particular location 398 

and pressure level), the smaller the upper-bound on the expected impact of denying the 399 

rawinsondes.  Based on the best-fit curve describing the upper-bound, the expected 400 

OMA-impact of denying the 10 selected rawinsondes on a single, lone aircraft moisture 401 

observation is 1.47x10-3 kg/kg.  To reduce this upper-bound by 50%, roughly 20 aircraft 402 

observations need to be present to reduce the impact of the missing rawinsondes.  To 403 

reduce the upper-bound by another 50%, roughly 40 aircraft observations must be 404 

present.  Given a threshold maximum allowable impact from denied rawinsondes, a 405 

minimum number of aircraft observations must be present. 406 

 Since the amount of aircraft observational coverage is highly variable, even for 407 

the most well-covered rawinsonde sites, permanent exclusion of these sondes in favor of 408 
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aircraft observations, representing an extreme and permanent departure from reliance on 409 

the rawinsonde network, does not seem plausible.  However, the opposite case could be 410 

considered: “Where would an additional rawinsonde provide the most impact, based on 411 

aircraft observational coverage?”  This scenario occurs during off-time rawinsonde 412 

launches, which have become part of the adaptive observation network, especially during 413 

the Atlantic hurricane season when a significant hurricane threatens to make landfall on 414 

the east coast of the United States.  Under extreme scenarios rawinsondes can be 415 

launched at 0600 and 1800 UTC from all operating sites in the continental US, as was the 416 

case with the days leading up to landfall of Hurricane Sandy (2012). 417 

 In scenarios such as these, the goal may be to deploy a limited number of off-time 418 

rawinsondes with a goal to maximize the impact on the analysis and the forecast of an 419 

extreme weather event.  One could then expect that rawinsondes deployed where there is 420 

an expectation of dense aircraft observations would have less impact than rawinsondes 421 

deployed where there is an expectation of sparse aircraft observational coverage.  The 422 

decision to launch an off-time rawinsonde at a particular site could be aided by statistics 423 

on the aircraft observational coverage at existing rawinsonde sites for these times. 424 

 425 

6. Conclusions 426 

 The impact of assimilated aircraft moisture observations from the WVSS-II was 427 

evaluated in the GDAS/GFS analysis-forecast system.  Cycled experiments were carried 428 

out for a warm season (April – May 2014) and a cold season (December 2014 – January 429 

2015).  The warm season experiment demonstrated positive impact on ETS and bias 430 

scores for low-precipitation categories in the 12-36 hour forecast.  Assimilation of 431 
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aircraft moisture observations in the warm season also produced smaller OMB values for 432 

rawinsonde observations, implying that the 6-hour forecast had been improved, though 433 

the nearby aircraft moisture observations had even lower OMB values.  When the total-434 

column precipitable water forecast was compared to observations from GPS, the 435 

assimilation of aircraft moisture observations in the warm season improved random error 436 

in the forecast as far out as 66 hours.  By contrast, the cold season experiment only 437 

demonstrated statistically significant positive impact on random error out to 6 hours. 438 

 The difference in impact between the warm season and cold season experiments 439 

may be partially attributable to different precipitation regimes in either season.  Warm 440 

season precipitation is often defined by small-scale moisture structures and weak 441 

synoptic forcing, which is an ongoing challenge to forecast in global NWP.  The most 442 

room for improvement in precipitation forecasting is in the warm season, which may 443 

allow assimilation of AMDAR moisture observations to express a larger impact.  By 444 

contrast, precipitation in the cold season is dominated by strong, synoptic-scale forcing 445 

that is more accurately predicted in global NWP.  Under these circumstances, there may 446 

be less importance from small-scale moisture structures observed by AMDAR, and the 447 

already accurate forecasts from the GFS are more difficult to improve upon. 448 

 Redundancy between rawinsondes and aircraft observations was investigated by 449 

assimilating aircraft moisture observations, but also denying rawinsonde observations at 450 

10 selected sites that are considered well-covered by aircraft in an a posteriori analysis.  451 

Precipitation skill scores are improved when the rawinsondes are denied, while the total-452 

column precipitable water forecast suffers statistically significant degradation by 60-72 453 

hours.  It is possible that both of these results can be reconciled by recognizing that 454 
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regions with denied rawinsondes will rely more heavily not only on aircraft moisture 455 

observations (which may be as high or higher quality than rawinsonde moisture 456 

observations), but also aircraft temperature observations, which are known to suffer 457 

biases based partially on phase of flight (ascending, descending, or flight-level).  Relying 458 

on superior moisture observations from aircraft may improve the short-range 459 

precipitation forecast, while relying on biased temperature observations from aircraft may 460 

create growing errors that degrade the later forecast. 461 

 When the impact of denying rawinsonde observations is plotted as a function of 462 

the number of aircraft observations present, an exponential-decay-like relationship 463 

appears.  Based on the relationship observed, it may take dozens of aircraft observations 464 

to reduce the impact of a denied rawinsonde to near zero, and coverage of a rawinsonde 465 

launch site by aircraft observations isn’t consistent enough in time to allow for 466 

deactivation of even a rawinsonde near a busy airport where aircraft observations are 467 

collected frequently.  However, the results may be of relevance to adaptive, off-time 468 

rawinsonde deployment; if the aircraft coverage at rawinsonde sites can be anticipated 469 

with enough lead time, it seems possible to anticipate when redundancy may occur and 470 

adjust the adaptive deployment accordingly.  The fleet of aircraft providing these 471 

observations is growing, allowing for a possible re-evaluation of these redundancy 472 

experiments in the future. 473 

 Based on the presented research, the decision was made to implement assimilation 474 

of aircraft moisture observations in the operational GDAS, as part of NCEP’s next 475 

upgrade.  Implementation is currently slated for May 2016. 476 

 477 
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Table and Figure Captions 579 

 580 

Table 1.  Total coverage (Ctotal) at each of ten rawinsonde launch sites considered for 581 

data denial experiment.  Rankings of each site by coverage are provided for three 582 

thresholds defining collocation of aircraft observations to the rawinsonde: (left) 583 

observations within 0.75 hours and 0.25 degrees of the site, (middle) observations within 584 

one hour and 0.5 degrees of the site, and (right) observations within 1.25 hours and 0.75 585 

degrees of the site.  Rankings in the top-10 are highlighted in red.  Rankings provided are 586 

ranks provided out of all US rawinsonde sites. 587 

 588 

Figure 1.  Mean profiles of specific humidity ob-minus-background (OMB) for the 589 

warm-season experiment (left) and cold-season experiment (right) at rawinsonde launch 590 

sites.  The blue profile is the mean rawinsonde moisture OMB when AMDAR moisture 591 

observations are not assimilated.  The red profile is the mean rawinsonde moisture OMB 592 

when AMDAR moisture observations are assimilated.  The green profile is the mean 593 

AMDAR moisture OMB.  The shading around each profile represents the 5% and 95% 594 

confidence limits around the mean, and pressure-levels where the rawinsonde OMB 595 

changes to statistical significance are highlighted with black squares along the ordinate. 596 

 597 

Figure 2.  Precipitation skill and bias scores of 12-36 hour forecast over the continental 598 

United States for (a) warm-season experiment, and (b) cold-season experiment.  The left 599 

panel of each plot shows the Equitable Threat Score (ETS) for precipitation binned by 600 

precipitation amounts in mm/24 hours.  The right panel of each plot shows the 601 
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precipitation bias score in the same bins.  The black curve is for the control simulation, 602 

and the red curve is for the experiment. The bottom panels show the differences between 603 

the experiment and control, with bars indicating the minimum value necessary for 95% 604 

statistical significance. 605 

 606 

Figure 3.  Error in forecast fit-to-TPW observations from GPS for (top) April 2014 – 607 

May 2014 simulation and (bottom) December 2014 – January 2015 experiment.  608 

Statistics for the control simulation are provided in blue, and statistics for the experiment 609 

are provided in red.  Error is computed as (left) bias of error, calculated as the mean error, 610 

and (right) random error, calculated as the standard deviation of the error.  Thick contours 611 

represent the sample mean or standard deviation, and the shading represents the 5% and 612 

95% confidence limits on the mean or standard deviation.  Dots are placed on the red 613 

contour for all times where the difference between the experiment and control is 614 

statistically significant based on a student’s t-test (for bias of error) or a chi-squared test 615 

on variance (for random error). 616 

 617 

Figure 4.  Precipitation skill and bias scores of 12-36 hour forecast over the continental 618 

United States for the warm-season assimilation experiment and data-denial experiment.  619 

The left panel shows the Equitable Threat Score (ETS) for precipitation binned by 620 

precipitation amounts in mm/24 hours.  The right panel shows the precipitation bias score 621 

in the same bins.  The black curve is for the control simulation, the red curve is for the 622 

assimilation experiment, and the green curve is for the data-denial experiment. The 623 
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bottom panels show the differences between each experiment and the control, with bars 624 

indicating the minimum value necessary for 95% statistical significance. 625 

 626 

Figure 5.  Precipitation skill and bias scores of 12-36 hour forecast over the continental 627 

United States for the warm-season assimilation experiment and data-denial experiment.  628 

The left panel shows the Equitable Threat Score (ETS) for precipitation binned by 629 

precipitation amounts in mm/24 hours.  The right panel shows the precipitation bias score 630 

in the same bins.  The black curve is for the assimilation experiment, and the red curve is 631 

for the data-denial experiment. The bottom panels show the differences between the two 632 

experiments (data-denial experiment minus assimilation experiment), with bars indicating 633 

the minimum value necessary for 95% statistical significance. 634 

 635 

Figure 6.  Error in forecast fit-to-TPW observations from GPS for April 2014 – May 636 

2014 simulations.  Statistics for the control simulation are provided in blue, statistics for 637 

the assimilation experiment (rawinsondes, aircraft moisture observations) are provided in 638 

red, and statistics for the data-denial experiment (selected rawinsondes removed, aircraft 639 

moisture observations) are provided in green.  Error is computed as (top) bias of error, 640 

calculated as the mean error, and (bottom) random error, calculated as the standard 641 

deviation of the error.  Thick contours represent the sample mean or standard deviation, 642 

and the shading represents the 5% and 95% confidence limits on the mean or standard 643 

deviation.  Dots are placed on the red and green contours for all times where the 644 

difference between the experiment and control is statistically significant based on a 645 

student’s t-test (for bias of error) or a chi-squared test on variance (for random error). 646 
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 647 

Figure 7.  Phase-space diagram of relationship between (ordinate) how much denied 648 

rawinsondes impact the assimilation of nearby AMDAR moisture observations, and 649 

(abscissa) how many AMDAR moisture observations are nearby.  Each dot (red or blue) 650 

represents an AMDAR moisture observation assimilated within 1 hour and 0.5 degrees of 651 

a denied rawinsonde, for all 0000 UTC and 1200 UTC analysis periods in the data-denial 652 

experiment.  The ordinate measures the absolute value of the difference in Observation-653 

Minus-Analysis (OMA) between the assimilation experiment (where AMDAR moisture 654 

observations are assimilated and all rawindsondes are maintained) and the data-denial 655 

experiment (where AMDAR moisture observations are assimilated and selected 656 

rawinsonde observations are denied).  The abscissa measures the number of AMDAR 657 

moisture observations collocated to the same rawinsonde within the same vertical 658 

pressure layer.  The red dots represent the 5 highest OMA differences for each unique 659 

value along the abscissa, identifying the upper bound of the phase-space that is sampled 660 

by the observations.  The solid black line is an empirically-derived exponential best-fit to 661 

the red dots, representing a theoretical expected upper-bound on the potential impact of 662 

denied rawinsondes as a function of the density of AMDAR observational coverage.  The 663 

dashed black lines represent the 5% and 95% confidence bounds on the solid line.  664 

  665 
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Site    

Miami, FL (25th) 0.046 (5th) 0.446 (5th) 0.653 

Tampa, FL (7th) 0.166 (2nd) 0.569 (2nd) 0.861 

Atlanta, GA (21st) 0.076 (8th) 0.376 (7th) 0.517 

Fort Worth, 

TX 

(12th) 0.126 (1st) 0.603 (3rd) 0.739 

Nashville, 

TN 

(1st) 0.231 (4th) 0.524 (4th) 0.717 

Las Vegas, 

NV 

(3rd) 0.213 (11th) 0.318 (11th) 0.410 

Sterling, VA (2nd) 0.222 (3rd) 0.540 (1st) 0.864 

Denver, CO (5th) 0.199 (9th) 0.368 (10th) 0.446 

Oakland, 

CA 

(4th) 0.209 (6th) 0.394  (8th) 0.496 

Upton, NY (10th) 0.132 (7th) 0.379 (9th) 0.478 

 666 

 667 

  668 

Table 1.  Total coverage (Ctotal) at each of ten rawinsonde launch sites considered for data 
denial experiment.  Rankings of each site by coverage are provided for three thresholds 
defining collocation of aircraft observations to the rawinsonde: (left) observations within 
0.75 hours and 0.25 degrees of the site, (middle) observations within one hour and 0.5 
degrees of the site, and (right) observations within 1.25 hours and 0.75 degrees of the site.  
Rankings in the top-10 are highlighted in red.  Rankings provided are ranks provided out 
of all US rawinsonde sites. 
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 669 
 670 
 671 

  672 

Figure 1.  Mean profiles of specific humidity ob-minus-background (OMB) for 
the warm-season experiment (left) and cold-season experiment (right) at 
rawinsonde launch sites.  The blue profile is the mean rawinsonde moisture OMB 
when AMDAR moisture observations are not assimilated.  The red profile is the 
mean rawinsonde moisture OMB when AMDAR moisture observations are 
assimilated.  The green profile is the mean AMDAR moisture OMB.  The shading 
around each profile represents the 5% and 95% confidence limits around the mean, 
and pressure-levels where the rawinsonde OMB changes to statistical significance 
are highlighted with black squares along the ordinate. 
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 673 
674 

Figure 2.  Precipitation skill and bias scores of 12-36 hour forecast over the 
continental United States for (a) warm-season experiment, and (b) cold-season 
experiment.  The left panel of each plot shows the Equitable Threat Score 
(ETS) for precipitation binned by precipitation amounts in mm/24 hours.  The 
right panel of each plot shows the precipitation bias score in the same bins.  
The black curve is for the control simulation, and the red curve is for the 
experiment. The bottom panels show the differences between the experiment 
and control, with bars indicating the minimum value necessary for 95% 
statistical significance. 
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  675 

Figure 3.  Error in forecast fit-to-TPW observations from GPS for (top) April 2014 – 
May 2014 simulation and (bottom) December 2014 – January 2015 experiment.  
Statistics for the control simulation are provided in blue, and statistics for the 
experiment are provided in red.  Error is computed as (left) bias of error, calculated as 
the mean error, and (right) random error, calculated as the standard deviation of the 
error.  Thick contours represent the sample mean or standard deviation, and the 
shading represents the 5% and 95% confidence limits on the mean or standard 
deviation.  Dots are placed on the red contour for all times where the difference 
between the experiment and control is statistically significant based on a student’s t-
test (for bias of error) or a chi-squared test on variance (for random error). 
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 677 

 678 

 679 

 680 

681 

Figure 4.  Precipitation skill and bias scores of 12-36 hour forecast over the 
continental United States for the warm-season assimilation experiment and data-
denial experiment.  The left panel shows the Equitable Threat Score (ETS) for 
precipitation binned by precipitation amounts in mm/24 hours.  The right panel shows 
the precipitation bias score in the same bins.  The black curve is for the control 
simulation, the red curve is for the assimilation experiment, and the green curve is for 
the data-denial experiment. The bottom panels show the differences between each 
experiment and the control, with bars indicating the minimum value necessary for 
95% statistical significance. 
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 683 

 684 

 685 

 686 

 687 

688 

Figure 5.  Precipitation skill and bias scores of 12-36 hour forecast over the 
continental United States for the warm-season assimilation experiment and data-
denial experiment.  The left panel shows the Equitable Threat Score (ETS) for 
precipitation binned by precipitation amounts in mm/24 hours.  The right panel shows 
the precipitation bias score in the same bins.  The black curve is for the assimilation 
experiment, and the red curve is for the data-denial experiment. The bottom panels 
show the differences between the two experiments (data-denial experiment minus 
assimilation experiment), with bars indicating the minimum value necessary for 95% 
statistical significance. 
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  689 

Figure 6.  Error in forecast fit-to-TPW observations from GPS for April 2014 – 
May 2014 simulations.  Statistics for the control simulation are provided in blue, 
statistics for the assimilation experiment (rawinsondes, aircraft moisture 
observations) are provided in red, and statistics for the data-denial experiment 
(selected rawinsondes removed, aircraft moisture observations) are provided in 
green.  Error is computed as (top) bias of error, calculated as the mean error, and 
(bottom) random error, calculated as the standard deviation of the error.  Thick 
contours represent the sample mean or standard deviation, and the shading 
represents the 5% and 95% confidence limits on the mean or standard deviation.  
Dots are placed on the red and green contours for all times where the difference 
between the experiment and control is statistically significant based on a student’s 
t-test (for bias of error) or a chi-squared test on variance (for random error). 
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 690 

Figure 7.  Phase-space diagram of relationship between (ordinate) how much 
denied rawinsondes impact the assimilation of nearby AMDAR moisture 
observations, and (abscissa) how many AMDAR moisture observations are 
nearby.  Each dot (red or blue) represents an AMDAR moisture observation 
assimilated within 1 hour and 0.5 degrees of a denied rawinsonde, for all 0000 
UTC and 1200 UTC analysis periods in the data-denial experiment.  The ordinate 
measures the absolute value of the difference in Observation-Minus-Analysis 
(OMA) between the assimilation experiment (where AMDAR moisture 
observations are assimilated and all rawindsondes are maintained) and the data-
denial experiment (where AMDAR moisture observations are assimilated and 
selected rawinsonde observations are denied).  The abscissa measures the number 
of AMDAR moisture observations collocated to the same rawinsonde within the 
same vertical pressure layer.  The red dots represent the 5 highest OMA 
differences for each unique value along the abscissa, identifying the upper bound 
of the phase-space that is sampled by the observations.  The solid black line is an 
empirically-derived exponential best-fit to the red dots, representing a theoretical 
expected upper-bound on the potential impact of denied rawinsondes as a function 
of the density of AMDAR observational coverage.  The dashed black lines 
represent the 5% and 95% confidence bounds on the solid line.  
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