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1. Project objectives and methodology 

This project will develop a drought early warning toolkit based on satellite-derived maps 
of evapotranspiration (ET) and forecast output from the National Multi Model Ensemble 
(NMME) that will provide probabilistic drought intensification forecasts over weekly to 
monthly time scales.  Recent examples of rapid drought development have demonstrated 
the need for a reliable drought early warning system capable of providing vulnerable 
stakeholders additional time to prepare for worsening drought conditions.  The project 
will use the Evaporative Stress Index (ESI) dataset generated with the Atmosphere-Land 
Exchange Inverse (ALEXI) surface energy balance model and GOES satellite thermal 
infrared observations.  The ESI represents standardized anomalies in the ratio of actual-
to-reference ET and can be used to depict moisture stress in vegetation with high spatial 
resolution.  Because the ALEXI model computes ET using remotely sensed land surface 
temperatures that respond quickly to changes in soil moisture content, the ESI is often 
able to detect increasing moisture stress sooner than other drought metrics, thereby 
making it a useful drought early warning tool.  Temporal changes in the ESI have been 
shown to provide valuable information about the rate of drought intensification, thus 
other variables have been developed to encapsulate the cumulative magnitude of the ESI 
changes occurring over longer time periods.  Prior work has shown a strong relationship 
between the magnitude of the ESI changes and subsequent drought intensification as 
depicted by the U.S. Drought Monitor (USDM). 

Probabilistic drought intensification forecasts will be generated each week across the 
contiguous U.S. using the ESI and other relevant drought monitoring variables.  New 
insight into the causes of rapid drought development will be gained through detailed 
analyses of soil moisture, rainfall, and atmospheric anomalies both preceding and 
accompanying recent flash drought events.  Refinements will be made to the ESI-based 
drought intensification forecasts based on these insights and through development of 
synergistic methods that combine drought early warning signals from multiple data 
sources, such as the Standardized Precipitation Index (SPI) and soil moisture anomalies 
from the North American Land Data Assimilation System (NLDAS).  After evaluating 



the efficacy of these drought intensification probabilistic forecasts, new methods will be 
devised to incorporate ensemble forecasts of temperature and rainfall from the NMME as 
a means of further enhancing their forecast skill.  The drought forecast products will be 
relevant to multiple end users, including authors of the NOAA Climate Prediction Center 
Seasonal and Monthly Drought Outlook products. 

2. Research and accomplishments 

During the past 12 months, we enhanced the empirical drought intensification forecasting 
method developed during the first two years of the project through inclusion of forecast 
model output from the NMME and performed a climatological study to identify the main 
forcing mechanisms contributing to changes in the ESI during the growing season. 

A) Drought intensification forecast enhancements through inclusion of NMME output 

Two papers describing an empirical method used to predict changes in the USDM over 
sub-seasonal time scales (2-8 weeks) using anomalies in the ESI, SPI, and NLDAS data 
sets computed over various time scales were accepted for publication in the Journal of 
Hydrometeorology in May 2017 (Lorenz et al. 2017a, b).  Revisions were performed to 
both of these papers during this reporting period.  Though this method has been described 
in detail in a previous report, a quick summary of the basic framework used to compute 
the drought intensification forecasts is provided here.  The predictions are probabilistic 
and involve two main components.  The first component is used to better characterize the 
current state of the USDM by quantifying how far the current USDM state is from the 
next higher or lower drought category.  In effect, this component defines a “continuous” 
version of the USDM that is most consistent with the discrete, categorical version of the 
USDM.  The second component is then used to predict the probability of future changes 
in the USDM using recent anomalies in precipitation (SPI), soil moisture (NLDAS) and 
evapotranspiration (ESI).  Results from these studies showed that the improved USDM 
current state estimates obtained through development of the continuous version of the 
USDM added significant skill to the probabilistic forecasts.  The state information was 
useful because the USDM is more likely to intensify when it is “close” to the next higher 
drought category.  Overall, this version of the forecasting method that uses only recent 
anomalies to predict changes in the USDM was shown to produce skillful forecasts over 
sub-seasonal time scale. 

The empirical method described above essentially relies on the long-term memory in soil 
moisture and land surface conditions combined with climatological information to predict 
changes in the USDM over sub-seasonal time scales.  Additional forecasting skill should 
be achievable through inclusion of climate model forecast output depicting land surface 
and atmospheric conditions during the next 1-3 months.  To explore this possibility, we 
expanded the empirical method to include model output from the Climate Forecasting 
System’s contribution to the NMME (hereafter referred to as CFS NMME).  To this end, 
we initially evaluated the relationship between the USDM intensification and various 
predictor variables in the CFS Reanalysis (CFSR) dataset using correlation analysis.  
Through this analysis, we determined that the predictor variables most closely related to 



USDM intensification are the 2-m dew point depression, potential evapotranspiration 
(PET) and topsoil moisture content (1-10 cm). 

The USDM forecasts generated with our empirical method are issued at weekly intervals 
to mimic the weekly release schedule of the USDM, however, the CFS NMME forecasts 
were available at five-day intervals during most of the 2000-2016 time period used 
during this study.  Therefore, to more closely replicate an operational forecasting 
environment, only the CFS NMME forecasts available before the Tuesday morning data 
cut-off for the USDM are used to develop the enhanced version of our empirical method 
and to assess its accuracy. Because of the mismatch between the 5- and 7-day release 
schedules, some of the CFS NMME forecast lead times are shorter than others.  The CFS 
NMME forecasts used here include four ensemble members that are distinguished by 
slight differences in their initialization time (00, 06, 12 and 18 UTC every fifth day).  The 
CFS NMME predictors are then averaged over all ensemble members (4 total).  Though 
the CFS NMME forecasts are issued on the same day, the multiple forecast times allow 
for some incorporation of forecast model uncertainty in the empirical method. 

Most of the predictors are used over multiple time lags.  These type predictors include the 
topsoil moisture (0-10 cm), PET, 2-m dew point depression, and precipitation.  For the 2-
week forecasts, the time lags are the future 1- and 2-week forecasts from the CFS NMME 
and the observed precipitation from the CPC gridded daily precipitation product (Higgins 
et al. 2000) and the CFSR for all variables other than precipitation during the past 3 
weeks.  Hence for the 2-week forecasts there are 6 temporal time lags (weeks -3, -2, -1, 0, 
1 and 2 weeks from present) for each of the type predictors.  From the perspective of the 
statistical model, each time lag is a separate predictor. The empirical model was designed 
this way so that the degree of temporal averaging/weighting (i.e. the relative size of the 
regression coefficients) is flexible and can be empirically determined by the data itself.  
For longer predictions, additional future time lags up until the end of the verification time 
are used.  For example, the 4-week predictions also incorporate the 3- and 4-week CFS 
NMME forecasts. The remaining two predictors, including the USDM state predictor 
(Lorenz et al 2017a) and the climatological USDM intensification predictor (Lorenz et al 
2017b), are used at a single "lag" valid at the present time.  The statistical model uses 
logistic regression with a sign constraint placed on the predictor coefficients, which is 
unchanged from the previous work described in Lorenz et al (2017b). 

To assess the effect of the CFS NMME forecasts on the drought intensification forecast 
skill, we compare the skill with the same statistical model but using only current and past 
time lags (i.e. no future CFS NMME forecasts are used).  This is essentially the same as 
the USDM predictions shown in Lorenz et al (2017b) but with slightly different 
predictors.  The cross-validated Brier Skill Scores (BSS) for the "no CFS NMME" 
forecasts and for the new forecasts incorporating CFS NMME model output are shown in 
Figs. 1a and 1b, respectively, with the change in skill shown in Fig. 1c.  Overall, it is 
evident that inclusion of the CFS NMME forecast model output in the empirical method 
improves the drought intensification forecast skill in many locations; however, the 
change in skill is very modest. 



 

Figure 1a) Brier Skill Scores (BSS) for the 2 week USDM intensification forecasts using 
only current and past CFSR data as the predictors. b) Same as (a) except including future 
CFS NMME predictors. c) The difference in BSS between panels (a) and (b). d) Same as 
(a) except for using future observed CFSR analyses instead of CFS NMME forecasts (i.e. 
the realizable skill if the CFS NMME data had "perfect" forecast skill) e) The difference 
in BSS between the “perfect” and “imperfect” CFS NMME experiments. 

Because the local impacts of recent events affecting the USDM analyzed drought severity 
are sometimes not known until after the USDM is issued each week, there is sometimes a 
lag between drought related anomalies on the ground and the USDM.  Because of this 
potential time lag one might argue that there is not much more skill that is attainable from 
future CFS NMME predictors and perhaps that is why the forecast skill shown in Fig. 1 is 



only marginally better than that obtained using only current and past predictors.  To test 
this hypothesis, we performed an additional experiment where we substituted future 
observations (CPC precipitation and CFSR) for the CFS NMME forecasts in the future 
time lags.  In other words, for the 2-week drought intensification forecasts, the predictors 
for the 2 future weeks are taken from real future observations rather than the CFS NMME 
forecasts of the future.  The result of this "perfect" CFS NMME forecast experiment is 
shown in Fig. 1d and the change compared to the original “imperfect” CFS NMME 
forecast experiment is shown in Fig. 1e. Overall, the improvements in the forecast skill 
are obvious and dramatic.  This analysis demonstrates that a very significant portion of 
the USDM variability is reacting in real-time to changes in conditions on the ground. 
Moreover, these results show that future improvements in the CFS NMME forecast skill 
could lead to significant improvements in forecasts of USDM drought development. 

B) Climatological study of factors controlling ESI anomalies 

Correlation analyses were used to better understand which meteorological and land 
surface variables are most closely related to changes in the ESI during different parts of 
the growing season.  Because previous work by Otkin et al. (2013) has shown that ESI 
anomalies computed over 2-, 4-, and 8-week time periods can convey unique information 
about the evolution of moisture stress, relationships were examined between each of the 3 
ESI variables and anomalies in soil moisture, precipitation, and meteorological variables 
computed over different time periods.  This includes 2, 4, and 8-week anomalies in 2-m 
temperature, 2-m dew point depression, 10-m wind speed, and downward shortwave 
radiation obtained from the CFSR; 0-10 cm and 0-2 m soil moisture anomalies computed 
using data from the North American Land Data Assimilation System (NLDAS); and 4, 8, 
and 12-week SPI anomalies computed using data from the CPC precipitation analyses. 
 
Figure 2 shows the resultant correlations over the central U.S. computed using data from 
2000-2015.  As expected, soil moisture is positively correlated to the ESI during most of 
the growing season, with the correlations generally increasing during the second half of 
the summer.  The shorter 2- and 4-week meteorological and topsoil moisture anomalies 
are more important for the 2-week ESI, whereas the longer-term meteorological and total 
column soil moisture anomalies are more important for the longer 8-week ESI.  Together, 
this shows that anomalies in shorter (longer) ESI composite anomalies are most closely 
related to recent (longer-term) anomalies in the forcing variables.  It is interesting to note 
that precipitation (SPI) and air temperature exhibit a much weaker correlation with the 
ESI, except for air temperature during late April – June, even though these two variables 
are often thought of as being the primary drivers of drought.  On the other hand, the dew-
point depression, an indicator of near surface humidity, is more strongly correlated with 
the ESI throughout the growing season and the correlations are even stronger than those 
associated with soil moisture during March – May.  These results are consistent with a 
recent study by Ford and Labosier (2017) showing that surface moisture balance and 
atmospheric evaporative demand, rather than temperature and precipitation, are more 
closely linked to flash drought development (identified using soil moisture anomalies).  
The overarching conclusion is that ESI variability across the central U.S. is dominated by 
moisture availability (both soil and air) rather than to precipitation and temperature. 
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Figure 2. Correlations 
between the a) 2-, b) 4-, 
and c) 8-week ESI 
anomalies and the SPI 
computed over 4, 8, and 
12 week periods; topsoil 
(NMV_TS) and root-zone 
(NMV_TC) soil moisture 
from NLDAS computed 
over 2, 4, and 8 week 
periods; 2-m dew point 
depression (DEWPTDEP), 
2-m air temperature (T), 
10-m wind speed (WSPD), 
and downward shortwave 
radiation (DSW) 
computed over 2, 4, and 8 
week periods shown at 
weekly intervals from 
March to November. 
Please note that all of the 
DEWPTDEP, T, WSPD, 
and DSW correlations are 
sign-reversed. 
	



3. Highlights of accomplishments 

• Enhanced the logistic regression model developed during the first two years of the 
project to produce probabilistic drought intensification forecasts through inclusion 
of forecast model output from the CFS NMME 

• Performed a climatological study that assessed relationships between the ESI and 
various soil moisture and atmospheric variables during the growing season; it was 
found that the ESI anomalies are most closely tied to anomalies in soil moisture 
and near surface humidity 

• Revised two journal articles describing the empirical drought forecasting method 
developed during the first two years of the project and demonstrated their value as 
a drought early warning tool 

4. Transitions to operations 

We supported efforts led by Co-I Hain as part of the GET-D project to transition the ESI 
from a research tool into a NOAA operational product.  The ESI became operational in 
August 2016.  Images can be found at http://www.ospo.noaa.gov/Products/land/getd/. 
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7. Budget for upcoming year 

We have requested a 1-year no-cost extension to spend the remaining funds; therefore, no 
budget is provided here because it was not part of the original proposal. 

8. Future work 

During the no-cost extension period, we will complete the remaining project tasks.  These 
include continuing to explore ways to increase the accuracy of the sub-seasonal drought 
intensification forecasts through inclusion of climate model forecast output, writing a 
journal article that describes the accuracy of the new forecasting method, and comparing 
the accuracy of the forecasting method to the NOAA CPC Seasonal Drought Outlook and 
Monthly Drought Outlook products. 


