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1. PROJECT OVERVIEW

This project will use simulated satellite brightness temperatures to evaluate the ability of
advanced parameterization schemes in the GFS model to produce accurate cloud and
water vapor forecasts. Model output from both full-resolution and coarse-resolution GFS
model simulations employing different parameterization schemes will be converted into
simulated infrared and microwave brightness temperatures for both clear- and cloudy-sky
conditions using the Community Radiative Transfer Model (CRTM) included in the
Gridpoint Statistical Interpolation (GSI) system or in the Unified Post Processor (UPP).
The satellite simulator capabilities of the CRTM will be enhanced by increasing the
consistency between the cloud property assumptions made by a given microphysics
parameterization scheme and those used by the CRTM when computing cloud-affected
brightness temperatures. These enhancements will be part of a flexible satellite-based
forecast verification system that incorporates a variety of statistical methods.

We will rigorously evaluate the accuracy of the simulated cloud and water vapor fields
generated by each suite of parameterization schemes through comparison of observed and
simulated infrared and microwave brightness temperatures from multiple geostationary
and polar-orbiting satellite sensors. The forecast accuracy will be assessed for different
regions using traditional grid point statistics and neighborhood-based methods such as the
Fractions Skill Score (FSS) and probability distributions. Satellite-based verification
metrics developed during this project will be used in combination with traditional
operational verification methods to provide a comprehensive assessment of the impact of
the advanced parameterization schemes on the GFS forecast accuracy over a range of
spatial and temporal scales. Though the project initially focuses on the GFS model, the
verification system will be developed to be extensible and beneficial to other model
development efforts in the NGGPS framework. Our research efforts will be closely
coordinated with collaborators at the Environmental Modeling Center (EMC) and the
Global Model Test Bed (GMTB) at the Developmental Testbed Center (DTC) to ensure
operational relevance.



2. RECENT ACCOMPLISHMENTS

During the past six months, our efforts have primarily focused on assessing the accuracy
of high-resolution GFS model forecasts generated by our collaborators at EMC through
comparisons of observed and simulated infrared brightness temperatures. Recent work
includes development of new satellite-based verification tools and an assessment of both
large-scale and regional forecast errors. Results are discussed in more detail below.

2.1. Analysis system development and data preparation

During the past six months, we have continued to assess the accuracy of a large set of
GFS model simulations run at T1534 spectral resolution. These model simulations were
performed by Ruiyu Sun at EMC to assess the performance of the WSM6 and Thompson
microphysics schemes, both of which are candidates for future inclusion in the FV3GFS
model. A set of 10-day long forecasts covering parts of July and December 2014 was
generated using each microphysics scheme. Our recent analysis has focused on the
WSMb6 scheme due to a bug in the implementation of the Thompson scheme that led to
unrealistically warm infrared brightness temperatures due to insufficient upper-level
cloud cover. As discussed in the previous report, this bug suppressed homogeneous ice
nucleation, which caused ice clouds to primarily be generated by upward advection of
cloud water, thereby leading to a notable lack of upper-level clouds. Given this bug, it is
prudent to only focus on assessing the accuracy of the forecasts employing the WSM6
scheme. Dates with complete 10-day forecasts include July 3-7 and December 11-12, 14,
18, and 31. In this project, we have focused on validating Northern Hemisphere regions
associated with GOES-15 over the northern Pacific and western North America, GOES-
13 over eastern North America and the northern Atlantic, and the full-disk domain of the
Meteosat SEVIRI covering Europe and Africa. We are supporting model development
efforts at EMC through a detailed evaluation of the forecast accuracy via comparisons of
simulated and observed infrared brightness temperatures from these sensors.

To ensure that the model verification tools are as portable as possible, they have been
written using Python, Fortran, and Bash scripting. The tools are flexible so that they can
be used to assess any region of interest. The specific focus thus far has been on the 10.7
um (infrared window) and 6.5 um (water vapor) bands. The analysis tools were applied
both to the full region covered by a given satellite sensor as well as to smaller regions
demarcating important cloud regimes, such as the subtropical stratocumulus regions over
the northeastern Pacific and southeastern Atlantic, mid-latitude cyclones, and the inter-
tropical convergence zone (ITCZ). As described in more detail in the previous report,
simple tools such as root-mean square error and bias provide a bulk understanding of how
well the GFS represents clouds and moisture, but these statistics do not indicate which
brightness temperature ranges are most problematic or which geographical regions or
cloud regimes have the greatest systematic and random errors. Thus, to provide additional
insight into the forecast accuracy, we also developed probability density functions (PDFs)
of brightness temperatures for each satellite sensor and channel. In this report, we provide
an update on the development of new tools that give greater physical insight into the
errors in the GFS. The tools that have been most informative are scatterplot analyses and
the neighborhood-based verification technique known as the Fractions Skill Score (FSS).



2.2. Large-scale model forecast accuracy assessments — scatterplots

One of the tools that we developed using Python generates two-dimensional scatterplots
that are used to compare observed and simulated brightness temperatures for the infrared
window and water vapor channels. Similar to PDFs, scatterplots provide useful insight
regarding which brightness temperatures contribute most to the overall errors in the
forecasts. Figure 1 shows several scatterplots valid at 6-h and 216-h forecast lead times
(left and right columns) computed using data from the July 2014 forecasts. The top row
shows the PDFs for the GOES-15 10.7 um (infrared window) band, whereas the bottom
row shows the PDFs for the GOES-15 6.5 um (upper-level water vapor) band. Note that
the PDFs are plotted using a logarithmic color scale.

For a 6-h lead-time, most of the simulated and observed 10.7 um brightness temperatures
(top left panel) are between 280 and 300 K, and are indicative of regions containing clear
skies or low-level clouds. For this brightness temperature range and forecast hour, there
is decent agreement between the forecasts and observations as is indicated by the highest
probabilities tending to cluster along a diagonal line. For colder brightness temperatures;
however, there is greater spread. Moreover, a large warm bias is present in the forecasts
with the simulated brightness temperatures seldom < 220 K despite a large number of
observations below that value. By the 216-h forecast (upper right panel), much greater
spread has developed in the PDF for observed and simulated brightness temperatures near
295 K. The larger spread is indicative of larger spatial errors in upper level clouds at the
longer forecast lead-times. It is also noteworthy that the probability of colder brightness
temperatures increases for the 216-h forecast lead-time; however, their occurrence is still
less than what was observed. Together, this indicates that though all of the forecast lead
times are deficient in upper-level cloud cover that this deficiency is largest during the
first part of the forecast, potentially due to model spin-up processes.

For the 6.5 um water vapor band (bottom row), there is decent agreement between the
observed and simulated brightness temperatures warmer than 235 K in the 6-h forecast.
The small cool bias in the forecast brightness temperatures indicates that there is slightly
too much water vapor in the middle troposphere in the forecasts. For colder brightness
temperatures; however, the much warmer simulated brightness temperatures indicate that
the model has large dry bias in the upper troposphere. This warm brightness temperature
bias is also associated with the large deficiency in upper-level cloud cover in the 6-h
forecasts. These error patterns persist into the 216-h forecast period.
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Figure 1. Scatterplots valid at 6-h (left-hand column) and 216-h (right-hand column)
forecast lead times for the GOES-15 10.7 um brightness temperatures (K) (top row) and
6.5 um brightness temperatures (bottom row). The observed brightness temperatures are
plotted along the x-axis, with the simulated brightness temperatures plotted along the y-
axis. Each scatterplot has been normalized by the sample size and thus provides a two-
dimensional probability distribution.

2.2. Large-scale model forecast accuracy assessments — Fractions Skill Score

It 1s well known that when comparing observed and predicted fields from high-resolution
models that point-based verification methods may unfairly penalize a prediction when a
model produces a reasonable cloud field resembling observations but is displaced by a
relatively small distance from the observed cloud field. Therefore, neighborhood-based
statistics such as the FSS (Roberts and Lean 2008; Roberts 2008) are useful because they
are less sensitive to small spatial displacements. As such, we here use the FSS to evaluate
errors in the forecast cloud field as depicted by the 10.7 um infrared window band.

The FSS is described in detail in Roberts and Lean (2008) so it is briefly summarized
here. For this project, the FSS is computed using a brightness temperature threshold,
where forecast grid points exceeding a given threshold are set to one and all other points
are set to zero. Then, a neighborhood size is defined as N x N grid points centered on any
given grid point. The fraction of grid points within the neighborhood surrounding a given
grid point that have brightness temperatures exceeding the chosen brightness temperature
threshold is then calculated. Thus, for each grid point in a given domain, we can calculate
the fraction of grid points within a given neighborhood that exceed the chosen brightness



temperature threshold for both the observed field (f,) and the simulated field (f,). The
FSS is then related to the mean-square error as follows:

Iiv=1(fo,i - fm,i)z

N 2 N 2
i=1 fo,i - Zi:l fm,i

Figure 2 shows the FSS computed using the simulated and observed 10.7 um brightness
temperatures for different forecast lead times along the x-axis and brightness temperature
thresholds along the y-axis. The left panel shows the FSS when a large neighborhood size
is used (N=10), whereas the right panel uses a smaller neighborhood (N=4). Together,
this allows us to assess the forecast accuracy over different spatial scales. All values were
computed using data from the July 2014 forecasts. Values greater than approximately 0.5
indicate a skillful forecast. Overall, there is a general decrease in the forecast skill with
increasing forecast lead-time for brightness temperatures warmer than 245 K. This is true
for both the N=4 and N=10 neighborhood sizes, but it is evident the skill is higher for the
larger neighborhood size. This is to be expected given that the large neighborhood size is
more forgiving of small spatial displacement errors in the forecast cloud field. The skill
increase as the brightness temperature threshold increases simply because more of the
domain will be covered. As such, these charts are most useful for assessing errors in the
colder brightness temperatures. It is interesting to note that there is a slight decrease in
forecast skill in the 12-h forecast (second column from left) that is then recovered by the
24-h forecast. These changes in forecast skill could be related to model spin-up issues or
to the diurnal cycle. Further investigation will be necessary to discern the exact reason.
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Figure 2. Fractions skill score for GOES-15 10.7-um brightness temperatures (K) for

various brightness temperatures thresholds and forecast lead-times using neighborhood
sizes of N = 10 (left panel) and N = 4 (right panel).



2.3. Regional model forecast accuracy assessments — tropical convection

We are also using the verification tools described above to better understand sources of
error in the simulated moisture and cloud fields in regions containing different cloud
regimes. For example, the scatterplots shown in Fig. 1 depict large errors around the 295
K threshold. We hypothesize that these errors are, in part, due to spatial errors associated
with deep convective clouds. To test this hypothesis, we examined errors in the ITCZ
where vigorous tropical convection is evident in both the observed and simulated satellite

imagery (e.g., Fig. 3).

Figure 3. Observed (left) and simulatéd (right) GOES-15 10.7-um brightness
temperatures (K) for a 24-h forecast valid at 00 UTC 4 July 2014. The white box on the
right-hand panel indicates the region examined in this section.

The left panel of Fig. 4 shows the GOES-15 6.7 um brightness temperature scatterplots
valid at the 24-h forecast lead-time for the latitude band of 2-14.5°N that corresponds to
the ITCZ during July 2014. The scatterplot shows a sharp horizontal error band for the
~295 K simulated brightness temperatures that can be attributed to displacement errors as
well as to general misses and false detections of specific convective clouds. There is a
broader vertical error band associated with observed 285-295 K brightness temperatures
that is consistent with the failure of the GFS model to produce the sharp gradients in
brightness temperatures seen in the observed clouds. This should not be surprising since
the GFS is a global model that cannot adequately capture small-scale convective details.
As was seen in Fig. 1, the scatterplot depicts a warm bias in the simulated brightness
temperatures. Looking at the 24-h forecast example shown in Fig. 3, the behaviors in the
scatterplot make intuitive sense because the simulated convection contains less small-
scale detail and the anvils in the vicinity of active convective cores are not as cold as in
the observations. Scatterplots for other forecast hours show similar horizontal and vertical
bands of enhanced probabilities associated with spatial cloud errors.

The right panel of Fig. 4 shows the FSS with respect to lead-time and various brightness
temperature thresholds using a neighborhood size of N=4. Overall, there is some periodic
behavior in the FSS with respect to lead-time, but it is possible that the oscillatory
behavior would disappear if more forecast dates were available. The decrease in FSS with
lead-time seen for the entire domain (right panel of Fig. 2) is not apparent in the ITCZ
region. Considering only the earlier lead-times, the entire domain has higher FSS than in



the ITCZ, indicating that the GFS, despite its ability to produce an ITCZ, is limited in its
ability to properly predict the location and spatial distribution of convection within the
ITCZ at all forecast lead-times.

Sensor: g15; Scheme: tamu; Lead-time: 24 h 200 Fractions Skill Score for N = 4 (GOES-15 Infrared) ,

300

N
3
S

280 4

»
2
5]

N
-3
=)

S
N
S

Tb threshold (K)

Probability (%)
2
3

IR BT (sim) (K)

N
B
S

=
o
|
N
R
S

220

240

+ + T + + + 1074
230

200 220 240 260 280 300 612 24 48 72 96 120 144 168 192

IR BT (obs) (K) Lead Time (h)

Figure 4. (left panel) scatterplot of simulated vs. observed GOES-15 10.7-um brightness
temperatures (K) and (right panel) the FSS computed with respect to forecast lead-time
(h) along the x-axis and brightness temperature (K) threshold along the y-axis. Both
panels are for the latitudinal band of 2-14.5°N indicated by the white box in Fig. 3.

2.4. Regional model forecast accuracy assessment — maritime stratocumulus clouds

This section presents results from an analysis of the forecast errors within the persistent
stratocumulus cloud region in the eastern Pacific located to the southwest of California
and Mexico. As indicated in Fig. 5, a distinct error pattern is present in these clouds when
a color bar with a limited range is used to plot the image. In particular, there is a distinct
wave-like pattern in the stratocumulus clouds that oscillates between warmer and colder
brightness temperatures roughly on a southwest-to-northeast transect. It is also evident
that the southward extent of the colder brightness temperatures within this region is more
limited than that indicated by the observations. This implies that the top of the boundary
layer is lower than what actually occurred within the southern part of the stratocumulus
cloud region. This behavior stands in sharp contrast to the larger westward extension of
the forecast stratocumulus cloud region, where the more homogeneous appearance of the
clouds suggests that boundary layer mixing is insufficient in that region. Lastly, this 6-h
forecast is also deficient in low-level clouds across the east-central Pacific to the north of
the stratocumulus region. Together, these results indicate that there are substantial errors
in the representation of low-level maritime stratocumulus clouds in the GFS model.

To understand the cause of the wave-like structure, the GFS simulated fields of integrated
cloud water content and cloud top pressure are shown in Fig. 6. The cloud top pressure
shows a discrete, stair stepping pattern of a cloud top boundary layer increasing in height
from northeast to southwest. The constant cloud top pressure within each north-to-south
band corresponds to an individual sigma level in the GFS model and clearly depicts the
limitation of the model vertical resolution when it comes to resolving the boundary layer
height and more importantly cloud features occurring at the top of the boundary layer.
The effect of the discrete vertical representation of the boundary layer is also evident in
the majority of the forecasts and forecast lead times (not shown). Preliminary inspection
of the results indicates that the minimum cloud water values along the edge of each band



are likely due to the conversion of cloud water to rain at the boundary between adjacent
stratocumulus clouds with cloud tops occurring on different sigma levels. The transfer of
cloud water to rainwater along this boundary decreases the optical depth of the clouds,
thereby resulting in warmer infrared brightness temperatures. This pattern is not evident
in other cloud types so it suggests that the errors in cloud top height and cloud condensate
are peculiar to this particular cloud type. Given that these clouds are strongly influenced
by boundary layer processes, the errors indicate potential limitations in the cumulus or
planetary boundary layer parameterization schemes. These results also highlight the
ability of satellite-based model verification methods to identify errors in conventional
observation-sparse regions. For the next reporting period, we will use both infrared and
microwave brightness temperatures to more closely evaluate errors in the stratocumulus
cloud field and to try to identify model processes contributing to their development.
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Figure 5. Simulated (left panel) and observed (right panel) GOES-15 10.7 um brightness
temperatures valid at 0600 UTC on 03 July 2014. The simulated brightness temperatures
are from a 6-h forecast.
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Figure 6. Integrated cloud water content (left panel) and cloud top pressure (right panel)
from a 6-h forecast valid at 0600 UTC on 03 July 2014.

3. ISSUES DELAYING CURRENT OR FUTURE PROGRESS

None.

4. INTERACTIONS WITH EMC AND OTHER NOAA-FUNDED SCIENTISTS
During the past 6 months, we have had several conversations with researchers at EMC
and the DTC to discuss the model simulations we are using during this project. We are
also participating in the NGGPS telecons in order to stay abreast of recent research
performed by other groups. Lastly, we have had several email exchanges with researchers
at GFDL concerning the availability of FV3 model output. Based on these conversations,
we anticipate that we will be able to start assessing the accuracy of model forecasts using
the FV3 dynamic core during the next reporting period.

5. CHANGES IN PROPOSED PROJECT

None.

6. OUTCOMES TRANSITIONED TO OPERATIONS

No outcomes have been transitioned to operations during this reporting period.

7. BUDGET ISSUES

None.



8. PRESENTATIONS

No presentations have been given during this reporting period.
9. JOURNAL ARTICLES

None.
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