PROGRESS REPORT THE THE PERIOD 1 AUGUST - 31 OCTOBER 1971
 FOR RESEARCH PERFORMED UNDER
 CONTRACT NAS5-11542
 Dhirendra N. Sikdar

1. A study of the correlation between cloud motion and wind field has been initiated. Cloud heights and displacements are being obtained from a ceilometer and movie pictures; while winds are being measured from pilot balloon observations on a nearsimultaneous basis.
2. Cloud motion vectors obtained from ATS-III time-lapse cloud pictures, using the WINDCO program, are being processed for 27, 28 July, 1969, in the Atlantic. The purpose is to investigate the relationship between observed features of cloud clusters (e.g., growth, intensification, decay, etc.) and the ambient wind field derived from cloud trajectories on a wide range of space and time scales.

$$
\begin{gathered}
\text { TECHNICAL STATUS REPORT ON } \\
\text { THE FNTING ERRORS OF GEOSYNCHRONOUS SATELLITES } \\
\text { by Aniruddha Das }
\end{gathered}
$$

This report presents the first phase of the work completed on the pointing error analysis. This phase consisted of chosing a configuration of the spacecraft and obtaining a mathematical model of the dynamic problem. The assumptions made and the derivation of the guiding equations are briefly described in the following pages.

The simulation includes elastic shells, plates, beams, rigid bodies and point masses. The effects of thermal stresses, large angular velocities and the effect of the motion of the centre of mass due to vehicle deformation, are included in the analysis. In this formulation, the spatial dependences are maintained linear. But the time-dependences are nonlinear. It is in these respects that this formulation claims to be more exact than any previous one.

The current phase of the research is centered on the solution of the homogeneous part of the problem. The governing equations are a complex set of coupled integro-differential equations. Attempts are now being made to obtain the uncoupled eigenfunction expansions for each of the variables.
Page
Introduction 8
The Simulation Problem 8
Objectives 10
Nomenclature 11
Flexible Appendage Equations of Motion
Equations for Particles 18
Equations for Beams 20
Equations for Rigid Bodies 26
Equations for Plates 27
Equations for Shells 30
Equations of Motion for the Elements in Body A 35
Equations of Motion for the Composite Bodies 38
Equation of Motion for the Body B 39
Coupling Equations for the Bodies A, B and C 41
Models of the Environmental Torques 42
Residual Magnetic Torque 42
Eddy Current Torque 42
Torque Due to Electromagnetic Radiation 44
Gravity Gradient Torque 45
Control Torque Pulses 47
Conclusions 48
References 50

FIGURE 4 .

FIGURE 5

Evaluation of Satellite Configurations for Optimum Pointing Accuracy

Introduction

The two principal requirements for scientific synchronous satellites are:
a) Constant attitude angles.
b) Precise determination and control of the attitude angles.

The possible satellite configurations are:
a) A spinning satellite.
b) A three axes stabilized satellite.
c) A dual-spin satellite, which contains a spinning part and a depsun part. The problems influencing the choice are as follows:
a) For a three-axis stabilized satellite, a very precise determination of instantaneous attitude angles is possible with interferometric methods. But its motion at a subsequent time and corresponding control is very uncertain.
b) A spinning satellite provides a very stable platform in space. But the attitude measurement creates a great deal of uncertainty because of the flexibility of the structure and the antennas attached to it.

Our present study is to determine the configuration of the satellite offering a stability and accuracy within certain limits.

The Simulation Problem

The development of an attitude control system necessarily involves
a dynamic simulation of the vehicle being controlled, but the accuracy required of that simulation varies widely from system to system. When space vehicies missions do not impose stringent attitude control requirements, and when the vehicle is essentially rigid, the simulation of the vehicle as a fully rigid body is more than satisfactory. But modern space vehicles are very flexible with low natural frequencies. At the same time severe demands are being made on attitude control and attitude pointing error analysis. This is true, especially for remote sensing operations and optical observations. So a more improved dynamic simulation is required.

In the past Landon [16] and Iorillo [11] pioneered the analysis of the stability problem of nonrigid masses. They were closely followed by Karymov [13], Rossi [14] and Mingori [12], where the principal stress was given on the stability of motion. But the most important contributions are by Likins [1, 2, 4, 5, 6, 9]. . He has shown a method in which the vibration frequencies, and modes of flexible satellites can be analyzed. Though he mostly uses the lumped mass discrete model, he has shown the usefulness of using synthetic modes where a structure can be treated as a combination of rigid and flexible masses [6].

As the present analysis is oriented towards pointing error studies, the principal stress is given on the mode shapes rather than on the stability of the motion. For an accurate modal analysis, discrete mass approximations are not satisfactory. Also the thermal stress effects, left out by
earlier writers will be taken into consideration. The technique of coupling together the equations for the individual appendages through suitable continuity conditions follows that shown by Huang and others [17, 18, 19, 20]. The analysis will be made for force free motion as well as with self-disturbing and environmental torques [21, 22].

The principal problems that are faced in this analysis are: a) the accommodation of the nonvibratory motion of the flexible appendages, and b) the complete withdrawal of all restrictions on the angular velocities of bodies. The first condition introduces inertial coupling in the system, leading to time-varying inertia matrices. The second consideration brings in nonlinearities due to the centripetal and Coriolis accelerations. The Coriolis terms bring in a skew-symmetric coefficient matrix. And this is completely different from the classical "damping" matrix. So none of the advantages of the classical modal coordinate analysis are available because of the unrestricted rotation of the components.

Objectives:

The objective of this analysis is to estimate the pointing error. This is to be obtained in the following method. For a particular base line configuration, one or more of the rigid bodies $m_{i}(i=1-4)$ will be the model of the attitude determination sensors. The rest will be modelled to be the imaging or sounding sensors. So this analysis will provide:
a) the extremes of the attitude error between the different sensors;
b) the extremes of the phase difference of the attitude error;
c) a probabilistic time history of the phase and magnitudes of the error for the transient zone after every control torque pulse;
d) a computer program to plot out the pitch, roll and yaw limit cycles for a 90 percent probability density band width;
e) an estimate of the stiffness requirement and the number and positions of the antennae and other flexible elements for a given maximum error limit;
f) Comparison of the error limits for 3-axes stabilized, spinning and dual-spin configurations for the same base-line configurations.

Nomenclature

$C M$	$=$ Vehicle center of mass		
A, B, C	$=$ Satellite sub-assemblies		
$m_{i}, i=5-20$	$=$ Point masses (scalar)		
$m_{i}, i=1-4$	$=$ Rigid bodies having inertia tensors.		
$\underline{a}_{1}, \underline{a}_{2}, \underline{a}_{3}$	$=$ Orthogonal unit vectors fixed in A.		
$\underline{b}_{1}, \underline{b}_{2}, \underline{b}_{3}$	$=$ Orthogonal unit vectors fixed in B.		
$\underline{m}_{1}, \underline{m}_{2}, \underline{m}_{3}$	$=$ Inertially fixed orthogonal unit vectors		
$\\|M\\|$	$=$ Total vehicle mass (scalar)		
O	$=$ Nominal location of center of mass in B		
O	$=$ Inertially fixed point		
O	$=$ Reference point, fixed in B		

$\mathrm{F}_{\mathrm{i}}, \mathrm{F}_{i}(\mathrm{i}=1-20)$	$=$ Vector and B-basis matrix of force on m_{i}
	$(\mathrm{i}=1-20)$
\underline{T} T	$=$ Vector and B-basis matrix of torque on vehicle
$\mathrm{T}_{\mathrm{i}}, \mathrm{T}_{\mathrm{i}}(\mathrm{i}=1-4)$	$=$ Vector and B-basis matrix of torque on mass m_{i}
	$(i=1-4)$
H	$=$ Vehicle angular momentum about CM
$\mathrm{H}_{\mathrm{i}}(\mathrm{i}=1-4)$	$=$ Angular momentum of masses $\mathrm{m}_{\mathrm{i}}(i=1-4)$
	about its own c.m., $\mathrm{P}_{\mathrm{i}}(i=1-4)$
Q_{i}	$=$ Position of m_{i} (nominal)
P_{i}	$=$ Mass center of m_{i}
$\mathrm{r}_{\mathrm{i}}, \mathrm{r}_{i}$	$=$ Position vector and B-basis matrix of Q_{i}
	relative to Q
$A^{\frac{r}{i}}, A^{r}$	$=$ Position vector and A-basis matrix of Q_{i}
	relative to Q
$N^{a_{i}}$	$=$ Inertial acceleration of masses m_{i}
Θ	$=$ Transformation matrix of direction cosines which
	transforms the inertial basis to B-basis
$\mathrm{N}_{(}{ }^{\circ}$)	$=$ Inertial time derivative of vector
$\left({ }^{\circ}\right)$	$=$ Time derivative of vector in ref. frame B
(\sim)	= Skew symmetric matrix operator defined by eq. (3)
$\eta_{i}(i=1-8)$$A^{\eta_{i}}(i=1-8)$	$=$ Displacements of beams no. 1-8in B-basis
	$=$ Displacements of beams no. 1-8 in A-basis

ξ_{B}	$=$ Displacements of cylindrical shell B in B-basis
ξ_{A}	$=$ Displacements of cylindrical shell A in B-basis
${ }_{A} \xi_{B} \quad$	Displacements of shell B in A-basis

$A^{\xi_{A}}$
$x_{i} \quad(i=1-4)$
$=$ Displacements of shell A in A-basis
$X_{i}(i=1-4) \quad=$ Displacements of plates no. 1 to 4 in B-basis
$A^{X_{i}}(i=1-4) \quad=$ Displacements of plates no. 1 to 4 in A-basis
$\rho_{B} \quad(i=1-4) \quad=$ Mass per unit length of beams, $i=1-4$
$\rho_{S A}, \rho_{S B} \quad=$ Mass per unit area of shells A and B
$\rho_{P_{i}}(i=1-4) \quad=$ Mass per unit area of plates no. $1-4$
$e_{1} \quad=$ Mass centre shift for beam, plate and shell deformation in B-basis
$=$ Mass center shift for beam, plate and shell deformation in A-basis
$\mu_{i, 1} ; \mu_{i, 2}, \mu_{i, 3}=$ Local orthogonal coordinates for axes for beams, and fixed to B
$A^{\mu_{i, 1}},_{A}^{\mu_{i, 2}}, A^{\mu_{i, 3}^{z}}=$ Local orthogonal coordinate axes for beams and fixed to A
$q_{i, 1}, q_{i, 2}, q_{i, 3}=$ Beam elastic deformation in μ_{i}-axis in B
$A^{q_{i, 1}}, A^{q_{i, 2}}, A^{q} \cdot i, 3=$ Beam elastic deformation in $A^{\mu_{i} \text {-axis in } A}$

$\mu_{i}^{\text {B }}$	$=$ Transformation matrix for μ_{i}-axes to B-basis		
$A^{\mu}{ }_{i}^{B}$	$=$ Transformation for $A^{\mu_{i}-\text {-axes to A-basis }}$		
$\vec{b}_{B_{i}}(i=1-4)$	$=$ Inertia force on the element of beam no. $\mathrm{i}(1-4)$ in B-basis		
$\vec{b}_{\mu_{i}}(i=1-4)$	```= Inertia force on the element of the i ith}\mathrm{ -beam in }\mu\mathrm{ - basis, i.e. local coordinates.```		
$s_{i}, s_{i}^{B}, s_{i}^{A}$	$=$ Position vectors of $i^{\text {th }}$ beam element from the reference end in local, B-basis and A-basis coordinates respectively		
R_{i}	$=B$-basis position vector to the reference end of the $i^{\text {th }}$ beam		
AR_{i}	```= A-basis position vector to the reference end of the i }\mp@subsup{i}{}{\mathrm{ th beam}```		
$\mu \mathrm{R}_{\mathrm{i}}$	$=\mu$-basis position vector, transformed from R_{i}		
$\mu A R_{i}$ $k_{B_{i}}$	$\begin{aligned} & =\mu \text {-basis position vector, transformed from } A R_{i} \\ & =-\frac{{ }_{i} B_{i}}{\\| M} \\| \end{aligned}$		
$\mathrm{M}_{\mathrm{T}, 2 \text { or } 3}$	$=$ Thermal bending moment in the $i^{\text {th }}$ beam		
E	$=$ Modulus of elasticity		
$b I_{i, 2}, b I_{i, 3}$	$=$ Moments of inertia of the $i^{\text {th }}$ beam in the direction of $\vec{\mu}_{i, 2}$ and $\vec{\mu}_{i, 3}$ respectively		

$\mathscr{X}_{T_{i, 2}} \text { and } \mathcal{H}_{T_{i, 3}}$	$=$ Thermal curvature of the $i^{\text {th }}$ beam in the direction of $\vec{\mu}_{i, 2}$ and $\vec{\mu}_{i, 3}$ respectively
K_{i}	$=$ Thermal bending constant for the $\mathrm{i}^{\text {th }}$ beam
${ }^{\top}$ i	$=$ Characteristic time for heat transfer across the $i_{i}^{\text {th }}$ beam
$\alpha_{i, 2}$ and $\alpha_{i, 3}$	$=$ Beam attitude angles w.r. to the sum
$\mathcal{X}_{T_{i, 2} \text { or } 3}^{*}$	$=$ Thermal curvature maximum values for $i^{\text {th }}$ beam
$\mathrm{rr}_{i, j \mathrm{k}}^{\mathrm{A}}$	$=$ Moment of inertia sensor of the $i^{\text {th }}$ rigid body
	in A-basis
$\mathrm{rI}_{\mathrm{i}, \mathrm{jk}}^{\mathrm{B}}$	$=$ Moment of inertia sensor of the $i^{\text {th }}$ rigid body in
	B-basis
$\mathrm{D}_{\mathrm{p}_{\mathrm{i}}}$	$=$ Stiffness of the $\mathrm{i}^{\text {th }}$ plate.
$p_{i}{ }_{i}$	$=$ Mod. of elasticity of the $i^{\text {th }}$ plate.
p^{h} i	$=$ Thickness of the $i^{\text {th }}$ plate.
$\mathrm{p}^{\mu}{ }_{\text {i }}$	= Poisson's ratio of the $i^{\text {th }}$ plate.
$\mathrm{p}^{\mathrm{T}} \mathrm{i}$	$=$ Differential temperature distribution of the $\mathrm{i}^{\text {th }}$ plate.
$\mathrm{p}^{\alpha}{ }_{i}$	$=$ Thermal coeff. of expansion for the $\mathrm{i}^{\text {th }}$ plate.
$k_{p_{i}}, T_{p_{i}}, p T_{i, 0}$	$=$ Thermal constants for the $i^{\text {th }}$ plate.
$\beta_{p_{i}}$	$=$ Attitude of the sun from the plate nominal normal vector.

$\beta_{p_{i}}^{*}$	$=$ Flexural attitude change of plate element from the nominal normal.
$\xi_{\mathrm{B}, \mathrm{r}}, \xi_{\mathrm{B}, \theta^{\prime}},{ }_{\mathrm{B}, 3}$	```= Radial, tengential and axial deformation of an element of shell B.```
$s^{F} B, 1, \quad s^{F} B, 2, \quad s^{F} B, 3$	```= Inertial force components per unit area of shell B in b-basis.```
$s^{h} B$	$=$ Thickness of shell B.
$B^{x^{x}}, B_{\theta}^{x_{\theta}}, B^{x_{3}}$	$=$ Polar cylindrical coordinates for shell B.
${ }^{a_{B}}$	$=$ Nominal radius of shell B.
$S^{\mu}{ }_{B}$	$=$ Poisson's ratios for shell B.
$E_{s B}$	$=$ Modulus of elasticity for shell B.
d	= Identity matrix.
S^{T} B	$=$ Differential temperature distribution of shell B.
$\beta_{S B}$	$=$ Attitude of the sun from the nominal normal of the shell element.
$\beta_{s B}^{*}$	$=$ Flexural change of attitude of shell B element from the nominal normal.
	$=$ Thermal constants for shell B.

Flexible Appendage Equations of Motion:

A) Equation of motion of particles $m_{i}, i=17,18,19,20$.

The equations of motion for a particle are

$$
\begin{equation*}
{\underset{i}{i}}^{F_{i}} m_{N^{i}} \underline{a}_{i} \tag{1}
\end{equation*}
$$

Now $\underset{\mathrm{N}^{2}}{\mathrm{a}_{\mathrm{i}}}=$ the inertial second derivative of the sum of the displacement vectors $\left(\underline{X}+\underline{C}+\underline{R}+\underline{r}_{i}+y_{i}\right)$. Vectors \underline{C} and \underline{Y}_{i} are assumed to be con tinuous and small, such that the terms containing square and higher powers of these and their derivatives are neglected. The vector \underline{X} establishes the trajectory of the vehicle mass center (See Figure 2).

Equation (1) in the B-basis is given by

$$
\begin{gather*}
\underline{F}_{i}^{\prime}=m_{i}\left[{ }^{N} \underline{\underline{X}}+\ddot{C}+\ddot{y}_{i}+2 \underline{\omega}_{B} x\left(\dot{C}+\dot{y}_{i}\right)+{ }^{N} \underline{\omega}_{B} x\left(C+R+r_{i}+y_{i}\right)\right. \\
\left.+\underline{\omega}_{B} x\left\{\underline{\omega}_{B} x\left(C+R+r_{i}+y_{i}\right)\right\}\right] \tag{2}
\end{gather*}
$$

where ${ }^{\mathrm{N}}\left({ }^{\circ 0}\right)=$ differentiation in the interial frame, with time.

$$
\text { Now defining } \tilde{v}=\left[\begin{array}{ccc}
0 & -v_{3} & v_{2} \tag{3}\\
v_{3} & 0 & -v_{1} \\
-v_{2} & v_{1} & 0
\end{array}\right]
$$

where $v \equiv\left[v_{1}, v_{2}, v_{3}\right]^{T}$, then $\underline{v} \times \underline{w}=\tilde{v} w$.
\therefore Equation (2) becomes

$$
\begin{equation*}
F_{i}=m_{i}\left[\Theta \odot \dot{X}+\stackrel{\circ}{C}+\ddot{y}_{i}+2 \tilde{\omega}_{B}\left(\therefore \dot{C}+\dot{y}_{i}\right)+\tilde{\dot{\omega}}_{B}\left(C+R+r_{i}+y_{i}\right)+\tilde{\omega} \tilde{\omega}\left[C+R+r_{i}+y_{i}\right]\right] \tag{4}
\end{equation*}
$$

Aa) Expression for C (Shift of mass center)

$$
\begin{align*}
C=-\frac{1}{\|M\|}\left[\sum_{i=1}^{20} m_{i} Y_{i}+\right. & \sum_{j=1}^{4} \int_{0}^{l} \rho_{B}{ }_{B} \eta_{i} d s+\iint \rho_{S A} \cdot \xi_{A} d A+\iint \rho_{S F} \xi_{B} d A \\
& \left.+\sum_{k=1}^{4} \iint \rho_{P_{i}} x_{i} d A\right] \tag{5}\\
= & -\frac{1}{\|M\|} \sum_{i=1}^{20} m_{i} Y_{i}+e_{l} \quad \text { (say) }
\end{align*}
$$

\therefore Equation (2) becomes:

$$
\begin{aligned}
F_{i}= & m_{i}\left[\Theta \ddot{X}+\ddot{e}_{1}-\frac{1}{\|M\|} \sum_{j=1}^{20} m_{j} \cdot \ddot{y}_{j}+2 \tilde{\omega}_{B}\left(e_{1}-\frac{1}{\|M\|} \sum_{j=1}^{20} m_{j} \dot{y}_{j}+\dot{y}_{i}\right)+\ddot{y}_{i}\right. \\
& \left.+\tilde{\dot{\omega}}_{B}\left(e_{1}-\frac{1}{\|M\|} \sum_{j=1}^{20} m_{j} y_{j}+R+r_{i}+y_{i}\right)+\tilde{\omega}_{B} \tilde{\omega}_{B}\left(e_{1}-\frac{1}{\left\|M_{i}\right\|} \sum_{j=1}^{20} m_{j} y_{j}+R+r_{i}+y_{i}\right)\right]
\end{aligned}
$$

This is the guiding equation in B-basis for masses

$$
\mathrm{m}_{17}, \mathrm{~m}_{18}, \mathrm{~m}_{19}, \mathrm{~m}_{20} \text { and } \mathrm{m}_{13}, \mathrm{~m}_{14}, \mathrm{~m}_{15}, \mathrm{~m}_{16} .
$$

B. Equation of motion for beams no. 1, 2, 3, 4

In the local coordinate frame μ_{i}, let $\mu_{i, 1}$ be along the axis of the beam as shown. The transformation matrix to the b-frame is given by $\mu_{i}{ }^{B}$ where

$$
\mu_{i}^{B}=\left[\begin{array}{ccc}
\mu_{i, 1} \circ b_{1} & \mu_{i, 1} \circ b_{2} & \mu_{i, 1} \circ b_{3} \tag{1}\\
\mu_{i, 2} \circ b_{1} & \mu_{i, 2} \circ b_{2} & \mu_{i, 2} \circ b_{3} \\
\mu_{i, 3} \circ b_{1} & \mu_{i, 3} \circ b_{2} & \mu_{i, 3} \circ b_{3}
\end{array}\right]
$$

μ_{i}^{B} is a constant for the configuration.

$$
\begin{array}{ll}
\therefore\left[\vec{q}_{i}\right]=\left[\mu_{i}^{B}\right]\left[\vec{\eta}_{i}\right] . & B(2) \longrightarrow \vec{q}_{i}=\left[\mu_{i}^{B}\right]\left[\vec{\eta}_{i}\right] \\
\text { and } s_{i} \mu_{i, l}=\left[\mu_{i}^{B}\right]\left[s_{i}^{B}\right] & \mathrm{B}(3),
\end{array}
$$

where s_{i} and $s_{i}{ }_{i}$ are the position vectors of the beam element from one end in local and B-basis coordinates respectively. Let $d m=\rho_{B^{i}} \cdot d s_{i}^{B}=$ the elemental mass $=\rho_{B_{i}} \cdot d s_{i}$.

The inertia force on the beam element, $\vec{F}_{B_{i}}$, in B-basis is given by

$$
\begin{aligned}
\overrightarrow{\mathrm{F}}_{\mathrm{B}_{i}}=\rho_{B_{i}} \cdot d s_{i}^{B}[\Theta \ddot{X}+\stackrel{\circ}{\mathrm{C}} & +\ddot{\eta}_{i}+2 \tilde{\omega}_{\mathrm{B}}\left[\dot{\mathrm{C}}+\dot{\circ}_{i}\right]+\tilde{\dot{\omega}}_{B}\left[\mathrm{C}+\mathrm{R}+\mathrm{S}_{i}^{B}+\eta_{i}\right] \\
& \left.+\tilde{\omega}_{B} \tilde{\omega}_{B}\left[\mathrm{C}+\mathrm{R}+\mathrm{S}_{i}^{B}+\eta_{i}\right]\right]
\end{aligned}
$$

\therefore In local coordinates, the force is given by

$$
\begin{aligned}
& b^{F} \mu_{i}=\left[\mu_{i}^{B}\right] \cdot{ }_{b} F_{B_{i}}=d m \cdot \mu_{i}^{B}\left[\Theta \ddot{X}+\mathscr{C}+\tilde{\eta}_{i}+2 \tilde{\omega}_{B}\left[\mathscr{C}+\tilde{\eta}_{i}\right]+\tilde{\omega}_{B}\left[C+R_{i}+S_{i}^{B}+\eta_{i}\right] .\right. \\
& \left.+\tilde{\omega}_{B} \tilde{\omega}_{B}\left[C+R_{i}+S_{i}^{B}+\eta_{i}\right]\right] \\
& =\operatorname{dm}\left[\mu_{i}^{B} \Theta \ddot{X}+\mu_{i}^{B \circ \circ}+\mu_{i}^{B} \tilde{\eta}_{i}+2 \mu_{i}{ }^{B} \tilde{\omega}_{B} \dot{C}+2 \mu_{i}^{B} \tilde{\omega}_{B} \dot{\circ}_{i}\right. \\
& +\mu_{i} B \tilde{o}_{B}^{\sim} C+\mu_{i}^{B} \stackrel{\sim}{\dot{\omega}} R_{i}+\mu_{i}^{B} \tilde{\circ}_{\dot{\omega}}^{\sim} S_{i}^{B}+\mu_{i}^{B} \tilde{\circ}_{B}^{\sim} \eta_{i}+\mu_{i}^{B} \tilde{\omega}_{B} \tilde{\omega}_{B} C \\
& \left.+\mu_{i}^{B}{\underset{\omega}{\omega}}^{\sim} \tilde{\omega}_{B} R_{i}+\mu_{i}{ }^{B} \tilde{\omega}_{B} \tilde{\omega}_{B} S_{i}^{B}+\mu_{i}^{B} \tilde{\omega}_{B} \tilde{\omega}_{B} \eta_{i}\right],
\end{aligned}
$$

where $R i=B$-basis position vector to the reference end of the beam.

$$
\begin{align*}
& \text { Now } e=-\frac{1}{\|M\|}\left[\sum_{j=1}^{20} m_{j} y_{j}+\sum_{k=1}^{4} \int_{0}^{l} \rho_{B_{k}} \eta_{k} d s+\iint \rho_{S A} \xi_{A} d A\right. \\
& \left.+\iint \rho_{S B} \xi_{B} d A+\sum_{m=1}^{4} \iint \rho_{p_{m}} x_{m} d A\right] \\
& \text { and let } \vec{C}=-\frac{1}{\|M\|} \cdot \rho_{B_{i}} \int_{0}^{\ell} \vec{\eta}_{i} d s+\vec{e}_{2} \text { (say) } \tag{2}\\
& =-\frac{\rho_{B_{i}}}{\|M\|}\left[\mu_{i}^{B_{1} T} \int_{0}^{\ell} \vec{q}_{i} d s+\vec{e}_{2} .\right. \tag{B2a}\\
& \therefore{ }_{b}^{F} \mu_{i}=d m\left[\mu_{i}^{B} \Theta \ddot{O}+\mu_{i}^{B} \ddot{e}_{2}-\frac{{ }^{\beta} B_{i}}{\|M\|} \mu_{i}^{B} \cdot\left(\mu_{i}^{B}\right)^{T} \cdot \int_{0}^{\ell} \stackrel{q}{q}_{i} d s+\mu_{i}^{B}\left(\mu_{i}^{B}\right)^{T}{ }^{G} G_{i}\right. \\
& +2 \mu_{i}^{B} \tilde{\omega}_{B}\left\{-\frac{P_{B}}{\|M\|}\left(\mu_{i}^{B}\right) T \int_{0}^{\ell} \vec{q}_{i} d s+\dot{e}_{2}\right\}+2 \mu_{i}^{B} \tilde{\omega}_{B}\left(\mu_{i}^{B}\right)^{T} \dot{q}_{i}
\end{align*}
$$

$$
\begin{align*}
& +\mu_{i}^{B} \cdot \tilde{\circ}_{B}\left(\mu_{i}^{B}\right)^{T} q_{i}+\mu_{i}^{B} \tilde{\omega}_{\omega_{B}}\left[-\frac{\rho_{B}}{\|M\|}\left(\mu_{i}^{B}\right)^{T} \int_{0}^{\ell} \vec{q}_{i} d s+\vec{e}_{2}\right]+\mu_{i}^{B} \omega_{B} \tilde{\omega}_{B} R_{i} \\
& \left.\left.\quad+\quad \mu_{i}^{B} \tilde{\omega}_{B} \tilde{\omega}_{B}\left(\mu_{i}^{B}\right)\right]_{S_{i}} \cdot \vec{\mu}_{i, 1}+\mu_{i}^{B} \tilde{\omega}_{B} \tilde{\omega}_{B}\left(\mu_{i}^{B}\right)^{T} q_{i}\right] \tag{3}
\end{align*}
$$

Let $\mu R_{i}=\left[\mu_{i}^{B}\right]\left[\vec{R}_{i}\right], \quad \therefore \quad \vec{R}_{i}=\left(\mu_{i}^{B}\right)^{T} \cdot\left(\mu R_{i}\right)$.

Let $\mu_{i}^{B} \tilde{w}\left(\mu_{i}\right)^{T}$ be denoted by w^{*} and $\mu_{i}^{B} \widetilde{w} \tilde{w}\left(\mu_{i}^{B}\right)^{T}$ be denoted by $w^{* *}$ where w is any matrix. $\}$
\therefore Equation (3) can be written as

$$
\begin{aligned}
& b^{F} \mu_{i}=d m\left[\mu_{i}^{B}\left\{\Theta \ddot{X}^{\circ}+\ddot{e}_{2}+2 \tilde{\omega}_{B} \dot{e}_{2}+\tilde{\dot{\omega}}_{B}\left(e_{2}+R_{i}\right)+\tilde{\omega}_{B} \tilde{\omega}_{B}\left(e_{2}+R_{i}\right)\right\}\right. \\
& +\stackrel{\circ}{q}_{i}-\frac{\rho_{B_{i}}}{\|M\|} \int_{0}^{\ell} \ddot{\circ}_{i} d s+2 \omega_{B}^{*} \stackrel{q}{q}_{i}-2 \frac{\rho_{B_{i}}}{\|M\|} \omega_{B}^{*} \int_{0}^{\ell} \stackrel{\circ}{q}_{i} d s+\stackrel{\circ}{\omega}_{B}^{*} q_{i} \\
& -\stackrel{\circ}{\omega}_{B}^{*} \cdot \frac{\rho_{B_{i}}}{\|M\|} \int q_{i} d s+\stackrel{\circ}{\omega}_{B}^{*} S_{i} \cdot \mu_{i, 1}+\stackrel{\circ}{\omega}_{B}^{* *} q_{i}-\frac{\rho_{B_{i}}}{\|M\|} \omega_{B}^{* *} \int_{0}^{l} q_{i} d s \\
& \left.+\omega_{B}^{* *} S_{i} \cdot \mu_{i, l}\right], \\
& \text { or }{ }_{b}{ }^{F} \mu_{i}=d m\left[\mu_{i}^{B}\left\{\stackrel{\circ}{\Theta} \dot{X}+\tilde{e}_{2}+2 \tilde{\omega}_{B} \stackrel{\ddot{e}}{2}+\tilde{\dot{\omega}}_{B}\left(e_{2}+R_{i}\right)+\tilde{\omega}_{B} \tilde{\omega}_{B}\left(e_{2}+R_{i}\right)\right\}\right. \\
& +\left\{\frac{d^{2}}{d t^{2}}+2 \omega_{B}^{*} \frac{d}{d t}+\left(\stackrel{\circ}{b}_{B}^{*}+\omega_{B}^{* *}\right)\right\}\left\{q_{i}+k_{B_{i}} \int_{0}^{l} q_{i} d s\right\} \\
& \left.+\left(\dot{\omega}_{B}^{*}+\omega_{B}^{* *}\right)\left\{\begin{array}{c}
S_{i} \\
0 \\
0
\end{array}\right\}\right]
\end{aligned}
$$

where $k_{B_{i}}=-\frac{{ }^{\rho} B_{i}}{\|M\|}$.

B(a). Thermo-elastic considerations on the beams
The thermal oscillations of the outstretched booms cause considerable changes in the attitudes of the spacecraft. The thermal curvature of the boom will be assumed to bear a linear relation to the local heat input. This assumption is made with success by Y. Y. Yu [23] and Etkin [24].

The effect of heat transfer across the beam is given by the following equation. The inertia force on the beam

$$
\equiv{ }_{b} F_{\mu_{i, 2}}=\left[E\left(b I_{i, 3}\right] \cdot q_{i, 2}^{(i v)}+M_{T_{i, 2}}^{\prime \prime}\right] d m=\left[E\left(b I_{i, 3}\right) \frac{\partial^{4} q_{i, 2}}{\partial S_{i}^{4}}+\frac{\partial^{2} M_{T_{i, 2}}}{\partial S_{i}^{2}}\right] d m
$$

and ${ }_{b} F_{\mu_{i, 3}}=\left[E\left(b I_{i, 2}\right) \cdot \frac{\partial^{4} q_{i, 3}}{\partial S_{i}^{4}}+\frac{\partial^{2} M_{T_{i, 2}}}{\partial S_{i}^{2}}\right] d m$
where $\quad M_{T_{i, 2}}=-E\left(b I_{i, 3}\right) \cdot \mathcal{X}_{T_{i, 2}}$
and

$$
\begin{equation*}
M_{T_{i, 3}}=-E\left(b I_{i, 2}\right) \cdot \mathscr{X}_{T_{i, 3}} \tag{10}
\end{equation*}
$$

and $\quad \frac{\partial \mathcal{X}_{T_{i, 3}}}{\partial t}=-\frac{\mathscr{Z}_{T_{i, 3}}}{\tau}+K_{i} \cos \left(\alpha_{i, 3}+\theta_{i, 3}\right)$,

$$
\begin{equation*}
\text { where } \theta_{i, 3}=\frac{\partial q_{i, 3}}{\partial S_{i}} \tag{12}
\end{equation*}
$$

Solutions of (B 11 and 12) are taken from $Y u$ [23] and, for small $\theta_{i, 2}$ and $\theta_{i, 3}$, are given by

$$
\begin{align*}
\mathcal{X}_{\mathrm{T}_{i, 2}} & =\mathcal{Z}_{\mathrm{T}_{i, 2}}^{*} \cdot \cos \left(\alpha_{i, 2}+\frac{\partial q_{i, 2}}{\partial S_{i}}-\tau \frac{\partial^{2} q_{i, 2}}{\partial S_{i}, \partial t}\right) \tag{13}\\
\text { and } \quad \mathcal{X}_{T_{i, 3}} & =\mathcal{X}_{\mathrm{T}_{i, 3}}^{*} \cos \left(\alpha_{i, 3}+\frac{\partial q_{i, 2}}{\partial S_{i}}-\tau \frac{\partial^{2} q_{i, 2}}{\partial S_{i} \partial t}\right) \tag{14}
\end{align*}
$$

Equations (13) and (14) are approximated by

$$
\left.\begin{array}{l}
\mathcal{Z}_{\mathrm{T}_{i, 2}}=\mathcal{X}_{\mathrm{T}_{i, 2}}^{*}\left[\cos \alpha_{i, 2}-\left(\frac{\partial q_{i, 2}}{\partial S_{i}}-\tau \frac{\partial^{2} q_{i, 2}}{\partial S_{i} \partial t}\right) \cdot \sin \alpha_{i, 2}\right] \\
\because \tag{16}
\end{array}\right]
$$

B(b). Final guiding equations for the beams

$$
\begin{aligned}
& A_{i} E \frac{\partial^{2} q_{i, 1}}{\partial S_{i}^{2}} \\
& E\left(b I_{i, 3}\right)\left[\frac{\partial^{4} q_{i, 2}}{\partial S_{i}^{4}}-\mathcal{K}_{T_{i, 2}}^{*}\left\{\cos \alpha_{i, 2}-\left(\frac{\partial^{3} q_{i, 2}}{\partial S_{i}^{3}}-\tau \frac{\partial^{4} q_{i, 2}}{\partial S_{i}^{3} \partial t}\right)\right\} \sin \alpha_{i, 2}\right] \\
& E\left(b I_{i, 2}\right)\left[\frac{\partial^{4} q_{i, 3}}{\partial S_{i}^{4}}-X_{T_{i, 3}}^{*}\left\{\cos \alpha_{i, 3}-\left(\frac{\partial^{3} q_{i, 2}}{\partial S_{i}^{3}}-T \frac{\partial^{4} q_{i, 2}}{\partial S_{i}^{3} \partial t}\right\} \sin \alpha_{i, 3}\right]\right.
\end{aligned}
$$

$$
\begin{align*}
& =\left[\frac{d^{2}}{d t^{2}}+2 \omega_{B}^{*} \frac{d}{d t}+\left(\stackrel{\circ}{\omega}_{B}^{*}+\omega_{B}^{* *}\right)\right] \cdot\left[q_{i}+k_{B_{i}} \int_{0}^{\ell} q_{i} d s\right] \\
& +\left(\stackrel{\circ}{\omega}_{B}^{*}+\omega_{B}^{* *}\right)\left\{\begin{array}{l}
S_{i} \\
0 \\
0
\end{array}\right\}+\mu_{i}^{B}\left[\Theta \bar{X}+\stackrel{\circ}{\epsilon}_{2}+2 \tilde{\omega}_{B} \stackrel{\circ}{e}_{2}\right. \\
& \left.+\tilde{\dot{\omega}}_{B}\left(e_{2}+R_{i}\right)+\tilde{\omega}_{B} \tilde{\omega}_{B}\left(e_{2}+R_{i}\right)\right] . \tag{17}
\end{align*}
$$

In this equation the gravity gradient torque on the beam is not considered, as that would make this equation nonlinear. The gravity gradient torque is assumed constant for small deflections of the beam, and is so will be considered directly in the vehicle equation of motion. The se equations are simultaneous linear fourth order integral equations of the Fredholm type. The kernel for a physical object can be separated into the spatial and time dependent functions. The solution technique will be shown in a later chapter.

C. Equations of Motion for Rigid Bodies m_{1} and m_{2}

A rigid body of finite dimensions has six degrees of freedom. So to describe the motions of the bodies $m_{i}(i=1,2)$, both the force and the torque equations are to be considered.

The force equation is formally the same as the equation (A6) derived for point masses.

$$
\begin{gather*}
F_{i}=m_{i}\left[\Theta X+\ddot{e}_{1}-\prod \frac{1}{M} \sum_{j=1}^{20} m_{j} \ddot{y}_{j}+\ddot{y}_{i}+2 \tilde{\omega}_{B}\left(\stackrel{\circ}{e}_{1}-\frac{1}{M \|} \sum_{j=1}^{20} m_{j} \dot{y}_{j}+\dot{y}_{i}\right)\right. \\
\left.+\tilde{\circ}_{B}\left(e_{1}-\frac{1}{\|M\|} \sum_{j=1}^{20} m_{j} y_{j}+R+r_{i}+y_{i}\right)+\tilde{\omega}_{B} \widetilde{\omega}_{B}\left(e_{1}-\frac{l}{\|M\|} \sum_{j=1}^{20} m_{j} y_{j}+R+r_{i}+y_{i}\right)\right] \\
(i=1,2) . \tag{Cl}
\end{gather*}
$$

The absolute angular velocity $\mathrm{r} \omega_{\mathrm{i}}$ of the rigid bodies are given by

$$
\begin{equation*}
\mathrm{r} \omega_{\mathrm{i}}=\omega_{\mathrm{B}}+\dot{\theta}_{\mathrm{i}} . \tag{C2}
\end{equation*}
$$

\therefore As derived by Likins and Gale (1),

$$
\begin{align*}
T_{i}= & r_{i, j k}^{B}\left(\stackrel{\circ}{\omega}_{B}+{\stackrel{\circ}{\theta_{i}}}_{i}+\tilde{\omega}_{B} \dot{\theta}_{i}\right)+\tilde{\omega}_{B} \cdot r I_{i, j k}^{B} \cdot \omega_{B}-\left(r I_{i, j k}^{B} \cdot \omega_{B}\right) \stackrel{\circ}{\theta}_{i} \\
+ & \tilde{\omega}_{B} \cdot r I_{i, j k}^{B} \cdot \stackrel{\circ}{\theta}_{i}+\left[r I_{i, j k}^{B} \cdot \tilde{\dot{\omega}}_{B}-\left(r I_{i, j k}^{B} \cdot \omega_{B}\right)-\tilde{\omega}_{B}\left(r I_{i, j k}^{B} \cdot \omega_{B}\right)\right. \\
& \left.+\tilde{\omega}_{B} \cdot r I_{i, j k}^{B} \tilde{\omega}\right] \theta_{i} ; \quad(i=1,2) . \tag{C3}
\end{align*}
$$

Equations (C1) and (C2) are the guiding equations for the rigid bodies m_{1} and m_{2}.

D. Equation for Thermal and Flexural Motion for Plates no. 1 and 2

The load-system on the plates is shown in Fig. 4.
As in the equations for the beams, the general solution for the plates under inertial and thermal loads will be found first. These solutions will then be coupled to the solutions for the attached rigid bodies and shells through suitable continuity conditions.

To keep the governing equations in deflections linear, the extensions of the plate will be considered to be decoupled from the flexural motion. The coordinate system for each plate is stationary and parallel with respect to the \underline{b}-basis and have the origins located at the nominal center of the plates. The axis $X_{B} x_{1}$ passes through the mass center of the attached rigid body m_{1}. The elastic forces acting perpendicular to the nominal plate surface on the elemental mass of sides $\mathrm{d}_{\mathrm{B}_{1}} \mathrm{x}_{1}$ and $\underset{\mathrm{B}_{2}}{\mathrm{~d}} \mathrm{x}_{2}=$

$$
=D_{p_{i}}\left[\frac{\partial^{4} x_{i, 3}}{\partial x_{B}^{4}}+2 \frac{\partial^{4} x_{i, 2}}{\partial x_{B}^{2} \partial x_{2}^{2}}+\frac{\partial^{4} x_{i, 3}}{\partial x_{B}^{2}}\right] d_{B} x_{1} \cdot d_{B} x_{2}
$$

where $D_{p_{i}}=$ the stiffness of the plate $=\frac{\left(_{p} E_{i}\right) \cdot\left({ }_{p} h_{i}\right)^{3}}{12\left(1-{ }_{p} \mu_{i}^{2}\right)}$;

$$
\begin{aligned}
& p_{i}^{E_{i}}=\text { Mod. of elasticity of the } i^{\text {th }} \text { plate } \\
& p_{i}^{h}=\text { thickness of the } i^{\text {th }} \text { plate } \\
& p_{i}^{\mu_{i}}=\text { Poisson's ratio of the } i^{\text {th }} \text { plate. }
\end{aligned}
$$

Let p_{i} be the difference of temperature between the two faces of the $i^{\text {th }}$ plate at any point. For a thin plate, a linear temperature distribution across the thickness of the plate can be assumed. Also, the plates are assumed homogeneous, so that the thermal bending moments at a point are equal in two orthogonal directions.

So the thermoelastic forces perpendicular to the plate

$$
\begin{aligned}
& =\frac{p^{\alpha} i_{i}}{\mathrm{p}_{\mathrm{i}}} \mathrm{D}_{\mathrm{p}_{\mathrm{i}}}\left(1+\mathrm{p}_{\mathrm{i}} \mu^{\prime}\right) \cdot \nabla^{2} \mathrm{p}_{\mathrm{i}} \cdot \underset{\mathrm{~B}}{\mathrm{~d}} \mathrm{x}_{1} \cdot \mathrm{~d}_{\mathrm{B}} \mathrm{x}_{2} \\
& \text { where } \nabla^{2}=\frac{\partial^{2}}{\partial \mathrm{x}_{1}^{2}}+\frac{\partial^{2}}{\partial \mathrm{x}_{2}^{2}} \text {. }
\end{aligned}
$$

Then the guiding equation for the plate becomes, considering only $X_{i, 3}=X_{i}$

$$
\begin{align*}
& D_{p_{i}} \cdot \nabla^{4} x_{i}+\frac{\left.p_{i}^{\alpha_{i}(l+} p_{p}^{\mu}\right)}{h_{i}} D_{p_{i}} \nabla^{2}{ }_{p} T_{i}= \\
& =\rho_{p_{i}}\left[\Theta \ddot{X}+\ddot{e}_{3}-\sum_{j=1}^{4} \frac{\rho_{p_{j}}}{\|M\|} \iint \ddot{x}_{j} d A+\ddot{x}_{i}\right. \\
& +2 \tilde{\omega}_{B}\left(\stackrel{\circ}{e}_{3}-\sum_{j=1}^{4} \frac{\rho_{p_{j}}}{\prod M \|} \iint \dot{\chi}_{j} d A+\dot{x}_{i}\right)+\left(\stackrel{\circ}{\omega}_{B}+\tilde{\omega}_{B} \tilde{\omega}_{B}\right)\left(e_{3}-\sum_{j=1}^{4} \frac{\rho_{p_{j}}}{\|M\|} \iint x_{j} d A+\right. \\
& \left.\left.+R+r_{i}+y_{i}\right)\right] \cdot \underline{b_{3}} \tag{Dl}
\end{align*}
$$

where

$$
\begin{equation*}
c=e_{3}-\sum_{j=1}^{4}\left[\frac{p_{p_{i}}}{\|M\|} \iint x_{i} d A\right] \tag{D2}
\end{equation*}
$$

A model of the variation of p_{i} along the mid-plane of the plate, i.e. in the ${ }_{B} x_{1},{ }_{B} x_{2}$ plane is obtained as follows. It is a first order time dependent model made in a way similar to that used for the beam.

Let $\beta_{p_{i}}$ be the attitude of the sun from the nominal normal of the plate. Then for small deflections, let $\beta_{p_{i}}^{*}$ be the rotation of the plate surface normal due to flexure of the $i^{\text {th }}$ plate.

$$
\begin{equation*}
\therefore \quad \frac{\partial p_{i}}{\partial t}+\frac{p_{i}}{T_{p_{i}}}=K_{p_{i}} \cos \left(\beta_{p_{i}}+\beta_{p_{i}}^{*}\right) \tag{D3}
\end{equation*}
$$

Then the solution of (D3) is given by

$$
\mathrm{p}^{T}=k_{p_{i}}^{\tau} p_{i} \cos \beta_{p_{i}}-k_{p_{i}}^{\tau} p_{i} \sin \left[\beta_{p_{i}}\left(\beta_{p_{i}}^{*}-\tau p_{i} \stackrel{\circ}{\beta}_{p_{i}}^{*}+\tau_{p_{i}}^{2} \AA_{p_{i}}^{*}-\tau p_{i}^{3} \beta_{p_{i}}^{\infty}+\ldots\right)\right] .
$$

Keeping only the first power of ${ }^{\top} p_{i}$, the solution becomes

$$
\begin{equation*}
p_{i}^{T}=p_{i, 0} \cos \left[\beta_{p_{i}}+\beta_{p_{i}}^{*}-\tau_{p_{i}} \beta_{p_{i}}^{*}\right] \tag{D4}
\end{equation*}
$$

where ${ }_{p} T_{i, 0}=k_{p_{i}} \cdot \tau_{p_{i}}=$ the maximum value of $p_{i} \cdot$
In this analysis, $k_{p_{i}}$ and ${ }^{\tau} p_{i}$ are thermodynamic constants for the $i^{\text {th }}$ plate. For small values of
$\frac{\partial x_{i, 3}}{\partial x_{1}}$ and $\frac{\partial x_{i, 3}}{\partial x_{2}}, \quad \stackrel{\circ}{\beta}_{p_{i}^{*}}^{*}=\left(\frac{\partial^{2} x_{i, 3}}{\partial x_{1} \partial t}+\frac{\partial^{2} x_{i, 3}}{\partial x_{B}, \partial t}\right)$ and
$\beta_{p_{i}}=\left[\left(\frac{\partial x_{i, 3}}{\partial x_{1}}\right)^{2}+\left(\frac{\partial x_{i, 3}}{\partial x_{2}}\right)^{2}\right]^{1 / 2}$. Hence, on further linearization,
$p_{i}=p_{i, 0} \cos \beta_{p_{i}}+p_{p i, 0}^{T} \cdot \tau_{p_{i}}\left(\frac{\partial^{2} x_{i, 3}}{\partial x_{1} \partial t}+\frac{\partial^{2} x_{i, 3}}{\partial x_{2} \partial t}\right) \cdot \sin \beta_{p_{i}}$ (D5).

So equations (Dl) and (D5) together govern the thermoelastic flexure of the plates.

E. Equation of Motion for Shell B

The shell B is assumed to be a uniform, thin, isotropic, circular cylindrical shell. For the elastic analysis, the linear equations of Vlasov (25) will be used. The analysis of thermal effects follows that made by Kraus (26).

The orientation of the cylindrical polar coordinates $A_{B} x_{, ~}, x_{\theta}$ and X_{B} is shown in Fig. 5. Let $\xi_{\mathrm{B}, \mathrm{r}}$ be the radial displacement of the shell. $\xi_{B, \theta}$ and $\xi_{B, 3}$ are the displacements in the tangential and axial directions. $S^{T} B$ is the temperature distribution on the mid-plane of the shell. The distribution of temperature across the thickness of the shell is assumed to be linear, with a constant gradient over the mid surface.

Let ${ }_{s} F_{B, 1}, \quad{ }_{s} F_{B, 2}$ and ${ }_{s} F_{B, 3}$ be the inertia forces per unit area on a shell element along x_{B}, x_{B} and X_{B} respectively.

$$
\begin{align*}
\therefore\left\{\begin{array}{c}
s^{F}{ }_{B, 1} \\
s^{F} B, s \\
s F_{B, 3}
\end{array}\right\}= & {\left[\Theta \ddot{X}+\ddot{e}+\ddot{\circ}_{B}+2 \tilde{\omega}_{B}\left(\stackrel{\circ}{c}+\dot{\xi}_{B}\right)+\tilde{\dot{\omega}}_{B}\left(c+R+\xi_{B}\right)\right.} \tag{E1}\\
& \left.+\tilde{\omega}_{B} \tilde{\omega}_{B}\left(c+R+\xi_{B}\right)\right]_{s} h_{B} \cdot \rho_{s B}
\end{align*}
$$

In equation ($E 1$), \vec{R} is the position vector of the plate element from the mass center 0 of the spacecraft in the b-basis,

$$
\begin{equation*}
\text { Let } \vec{c}=\vec{e}_{4}-\frac{\rho s B}{\|M\|} \iint \vec{\xi}_{B} d A \tag{E2}
\end{equation*}
$$

Let μ^{Br} be the transformation matrix for changing the b-basis vectors to the normal, tangential and axial components.

$$
\begin{aligned}
& \therefore \mu^{\mathrm{Br}}=\left[\begin{array}{ccc}
\cos \mathrm{B}^{\mathrm{x}} & \sin \mathrm{~B}^{x_{\theta}} & 0 \\
\mathrm{~B}^{2} & \cos \theta & 0 \\
-\sin \mathrm{x}_{\theta} & & \\
\mathrm{B}^{2} & & 1
\end{array}\right]
\end{aligned}
$$

where $S_{s} F_{B, r}$ and $S_{B} F_{i}$ and $S_{B}, 3$ are the radial, tangential and axial components of the force vector S_{B}.

$$
\begin{aligned}
& \left.+\mu_{B}^{r} \tilde{\omega}_{B} \tilde{\omega}_{B}\left(c+R+\xi_{B}\right)\right]_{S} h_{B} \cdot \rho_{S B}
\end{aligned}
$$

or

$$
+\mu_{B}^{r} \stackrel{\ddot{\omega}}{B}_{\tilde{\omega}_{B}}\left(\mu_{B}^{r_{j}}\right)^{-1}\left(\xi_{B}^{r}-\frac{\rho}{\|M\|} \cdot \iint \xi_{B}^{r} d A\right)+\left\{\mu_{B}^{r} \tilde{\omega}_{B} \tilde{\omega}_{B}\left(\mu_{B}^{r}\right)^{-1}\right\}\left(\xi_{B}^{r}-\right.
$$

$$
\left.\left.-\frac{\rho_{S B}}{\|M\|} \cdot \iint \xi_{B}^{r} d A\right)\right]_{S} h_{B} \cdot \rho_{S B}
$$

Settling $\mu_{B}^{r} \tilde{\omega}\left(\mu_{B}^{r}\right)^{-1}=\omega_{B r}^{*} ; \mu_{B}^{r} \tilde{\omega}\left(\mu_{B}^{r}\right)^{-1}=\check{\omega}_{B r}^{*}$ and $\mu_{B}^{r} \tilde{\omega} \tilde{\omega}\left(\mu_{B}^{r}\right)^{-1}=\omega_{B r}^{* *}$,

As in the case for the plates, to reduce the high-frequency response, the contributions of $\xi_{B, \theta}$ and $\xi_{B, 3}$ in the inertia force are neglected.

So the equations of motion are given by

$$
\begin{align*}
\xi_{B, 3} & =\frac{S^{h_{B}^{2}}}{12 a_{B}^{2}}\left[\frac{\partial^{5} \phi_{B}}{\partial x_{B}^{5}}-\frac{\partial^{5} \phi_{B}}{\partial x_{B} \cdot \partial x_{B}^{4}}\right]+\frac{1}{a_{B}^{2}} \cdot \frac{\partial^{3} \phi_{B}}{\partial x_{B} \cdot \partial_{B} x_{\theta}^{2}}- \\
& -\frac{s^{\mu} B}{a_{B}^{2}} \cdot \frac{\partial^{3} \phi_{B}}{\partial x_{B}^{3}} \tag{E5}\\
& =-
\end{align*}
$$

$$
\begin{align*}
& +\left(\stackrel{\circ 0}{\xi}_{B}^{r}-\frac{\rho}{\|M\|} \iint \stackrel{\circ}{\xi}_{B}^{r} d A\right)+2 \omega_{B r}^{*}\left(\stackrel{\circ}{\xi}_{B}^{r}-\frac{\rho}{\| M} \| \int \dot{\xi}_{B}^{r} d A\right) \\
& \left.+\left(\stackrel{\circ}{\mathrm{e}}_{\mathrm{Br}}^{*}+\omega_{\mathrm{Br}}^{* *}\right)\left(\xi_{\mathrm{B}}^{\mathrm{r}}-\frac{\rho \mathrm{sB}}{\|\mathrm{M}\|} \iint \xi_{\mathrm{B}}^{\mathrm{r}} \mathrm{dA}\right)\right] \tag{E4}
\end{align*}
$$

and

$$
\left.\frac{s_{B}^{h}}{12 a_{B}^{2}}\left(\nabla^{4}+2 \nabla^{2}+1\right) \nabla^{4} \xi_{B, r}-\frac{2 s_{s}^{h_{B}^{2}}}{12 a_{B}^{4}}\left(1-{ }_{s} \mu_{B}\right) \frac{\partial^{4}}{\partial x_{3}^{4}}-\frac{\partial^{4}}{\partial x_{B}^{2} \partial x_{B}^{2}}\right) \nabla^{2} \xi_{B, r}
$$

$$
+\frac{\left(1-s_{B}^{\mu_{B}^{2}}\right)}{a_{B}^{4}} \frac{\partial^{4} \xi_{B, r}}{\partial{ }_{B}^{x_{3}^{4}}}=\frac{\left(1-s_{s}^{\mu_{B}^{2}}\right)}{s^{h} B_{B} \cdot E_{s B} a_{B}^{2}} \nabla^{4} \cdot F_{B, r}+\frac{\left(1-s_{B}^{\mu}\right)^{2}}{a_{B}^{2}} \alpha_{B} \cdot \nabla^{4}\left(\frac{s_{B}^{T}}{a_{B}}\right)
$$

Setting $\frac{s^{h_{B}^{2}}}{12 a_{B}^{2}}=k_{B}^{2}, \quad \nabla^{2}=a_{B}^{2} \nabla^{2}, \quad x_{3}=a_{B} \cdot \frac{x}{B}^{x_{3}} ;$ such that

$$
\underline{\nabla}^{2}=\frac{\partial^{2}}{\partial \mathrm{~B}_{3}^{2}}+\frac{\partial^{2}}{\partial \mathrm{~B}_{\theta}^{2}}, \quad \nabla^{4}=\nabla^{2} \nabla^{2} \quad \text { and } \nabla^{8}=\nabla^{4} \nabla^{4}
$$

then the last equation of motion becomes

$$
k_{B}^{2}\left(\nabla^{4}+2 \underline{\nabla}^{2}+1\right) \underline{\nabla}^{4} \xi_{B, r}-2 k_{B}^{2}\left(1-s_{B}^{\mu}\right)\left[\frac{\partial^{4}}{\partial x_{B}^{4}}-\frac{\partial^{4}}{\partial{\underset{B}{3}}_{4}^{4}{\underset{B}{B}}^{x_{\theta}^{2}}}\right] \nabla^{2} \xi_{B, r}
$$

$$
\begin{align*}
& \xi_{B, \theta}=\frac{s^{h}{ }^{2}}{6 a_{B}^{2}}\left[\frac{\partial^{5} \phi_{B}}{\partial x_{B}{ }^{4} \cdot \partial{ }_{B} x_{\theta}}+\frac{\partial^{5} \phi_{B}}{\partial x_{B}{ }^{2} \cdot \partial x_{B} x^{\prime}}\right] \\
& -\frac{\left(2+{ }_{s^{\mu}}\right)}{a_{B}^{2}} \frac{\partial^{3} \phi_{B}}{\partial{ }_{B} x_{3}^{2} \partial{ }_{B} x_{\theta}}-\frac{1}{a_{B}^{2}} \frac{\partial^{3} \phi_{B}}{\partial{ }_{B} x_{\theta}} \tag{E6}\\
& \xi_{B, r}=\frac{1}{a_{B}^{2}} \nabla^{4} \phi_{B}=\frac{1}{a_{B}^{4}}\left[\frac{\partial^{4} \phi_{B}}{\partial{x_{B}}^{4}}+2 \frac{\partial^{4} \phi_{B}}{\partial{x_{B}}^{2} \partial{ }_{B}{ }^{2}{ }^{2}}+\frac{\partial^{4} \phi_{B}}{\partial x_{B}^{4}}\right] \tag{E7}
\end{align*}
$$

$$
\begin{equation*}
+\left(1-s_{s}^{\mu}{ }_{B}^{2}\right) \frac{\partial^{4} \xi_{B, r}}{\partial \underline{x}_{3}^{4}}=a_{B} \underline{\nabla}^{4}\left[\left(1+{ }_{s} \mu_{B}\right) s_{B}^{\alpha} S_{B}\right]+\frac{\left(1-{ }_{s} \mu_{B}^{2}\right) \cdot s_{B}{ }_{B} \nabla^{4}{ }_{s} F_{B, r} .}{12 E_{s B} \cdot k_{B}^{2}} \tag{E8}
\end{equation*}
$$

$\underline{E(A) \text {. Equation for }{ }_{S} T_{B}}$
In this case also, the method of modelling $\mathrm{s}_{\mathrm{T}} \mathrm{B}$ is analogous to that used for the beam and plate.

Let β_{SB} be the attitude of the sun from the nominal normal at an arbitrary point of the shell. Also, let $\beta_{S B}^{*}$ be the rotation of the shell element from the normal.

$$
\begin{equation*}
\therefore \frac{\partial s^{T} B}{\partial t}+\frac{s^{T} B}{{ }^{T} s B}=k_{s B} \cos \left(\beta_{S B}+\beta_{S B}^{*}\right) \tag{E9}
\end{equation*}
$$

Neglecting all terms containing $\tau_{S B}^{2},{ }^{2}{ }_{S B}$, and other higher powers of ${ }^{T}{ }_{s B}$, the solution to (E9) is

$$
\begin{equation*}
s_{s}=s^{T}{ }_{B, 0} \cos \left[\beta_{s B}+\beta_{S B}^{*}-\tau, s B \cdot \stackrel{0}{\beta}_{s B}^{*}\right] \tag{E10}
\end{equation*}
$$

where ${ }_{s} T_{B, 0}=k_{s B} \cdot{ }^{\top}{ }_{S B}=$ the maximum value of $s^{T} B$. $k_{s B}$ and $\tau_{s B}$ are thermodynamic constants for the shell B. Now, if $\beta_{S B}^{*}$ is small, then

$$
\beta_{S B}^{*}=\left[\left(\frac{\xi_{B, \theta}}{a_{B}}-\frac{\partial \xi_{B, r}}{a_{B} \partial_{B} x_{\theta}}\right)^{2}+\frac{\partial \xi_{B_{,} r}}{\partial{ }_{B} x_{S}}\right]^{2-2}
$$

and

$$
\stackrel{\circ}{\beta}_{S B}^{*}=\frac{1}{a_{B}}\left(\stackrel{\circ}{\xi}_{B, \theta}-\frac{\partial^{2} \xi_{B, r}}{\partial{ }_{B}^{x_{\theta} \partial t}}\right)-\frac{\partial^{2} \xi_{B, r}}{\partial{ }_{B} x_{3} \partial t} \stackrel{o}{=}-\frac{1}{a_{B}} \frac{\partial}{\partial t}\left[\frac{\partial \xi_{B, r}}{\partial x_{\theta}}+a_{B} \cdot \frac{\partial \xi_{B, r}}{\partial x_{3}}\right]
$$

Neglecting $\beta_{s B}^{*}$ in $(\eta 10)$, but keeping $\dot{\beta}_{s B}^{*}$, we finally have

$$
\begin{equation*}
T_{B}=s_{B, 0} \cos \beta_{s B}-s_{B, 0^{\prime}} T_{s B}\left(\frac{1}{a_{B}} \frac{\partial^{2} \xi_{B, r}}{\partial x_{\theta} \partial t}+\frac{\partial^{2} \xi_{B, r}}{\partial x_{B} \partial t}\right) \sin \beta_{s B} \tag{Bl1}
\end{equation*}
$$

Equations (E5), (E6), (E7), (E8) and (E11) are the required guiding equations for shell B.

F. Equations of Motion of the Elements of the Body A

The equations of motion of the elements of the body A are obtained in the a-basis in exactly the same way as that used to describe the motion of the elements in body B in the \underline{b}-basis. In this case, all the angular velocities, transformation matrices etc. will relate to the a-basis. The final dynamic coupling of the bodies A, B and C is obtained by transforming the reaction forces and couples between the bodies A and C to the \underline{b}-basis, and solving the resulting equations for the complete vehicle in the b-basis.

Let Θ_{A} be the transformation matrix for changing the inertial basis to the \mathfrak{a}-basis.

So if \vec{N} Fe the force vector in \underline{n}-basis corresponding to ${ }_{A} \vec{F}$ in abasis, then

$$
\vec{A}=\Theta_{A} \cdot N^{\vec{F}} \quad \text { or } N^{\vec{F}}=\Theta_{A}^{-1} \cdot{ }_{A} \vec{F}, \text { or }
$$

$$
\begin{equation*}
{ }_{B} \vec{F}=\Theta_{N} \vec{F}=\Theta_{A}^{-1} \cdot{ }_{A} \vec{F} \tag{F1}
\end{equation*}
$$

where ${ }_{B} \vec{F}$. is the vector in b-basis corresponding to that in \underline{a}-basis.
Let $\quad \underline{\omega}_{A}=\dot{\Psi}_{A}$ and $\underline{\omega}_{B}=\dot{\Psi}_{B}$, where Ψ_{A} and Ψ_{B} are angular rotation vectors of bases A and B, respectively.

In the application of equation (F1) and the preceding equations of motion, two important cases can occur, and the se are treated as follows:

Case I. The body is nominally inertially nonrotating.

Let the body A be nominally fixed in the n-basis. Then Ψ_{A} are small, and the following approximation can be made:

$$
\begin{equation*}
\Theta_{A} \cong\left[d-\tilde{\psi}_{A}\right] \tag{F2}
\end{equation*}
$$

where " ℓ " is the identity matrix. A similar argument holds if Ψ_{B} are small.

Case II. The body is rotating.
Let the body B rotate with respect to the inertial frame having instantaneous Euler angles denoted by $\psi_{B, 1}, \psi_{B, 2}, \psi_{B, 3}$
$\psi_{B, 3}$ is the spin angle. $\psi_{B, 2}$ and $\psi_{B, 1}$ are the precession and nutation respectively. Then the transformation equation is given as follows:

A similar equation holds if the body A rotates.

Eqns. of Motion for the Composite Bodies
To describe the motion of the space vehicle, there are two quite different approaches. The first method is to write the equations involving the motion of every movable mass into one complex equation. The second method is to solve the equations of motion of the sub-bodies separately and then accommodate the interactions between the bodies as external forces and torques. For simpler configurations and lumped mass approaches, the first method is advantageous. But when the bodies perform large relative rotations, and when continuous mass distribution is assumed, computational efficiency increases greatly with the second method. In this analysis, it is the second method that will be used.
G. Eqn. of Motion for the Body B

Let $N E E B$ be the external force in the inertial basis on body B. Also let $N_{B C}{ }^{F}$ be the reaction force of body. C on body B in the inertial basis.

$$
\begin{equation*}
\left(N^{F} E B+N^{F} B C\right)=||M||_{B}{ }^{N} \ddot{x}_{B} \tag{GI}
\end{equation*}
$$

where $||M||_{B}$ is the mass of the body B alone. \ddot{X}_{B} is the inertial acceleration of the mass centre $C M_{B}$ of the body B.

$$
\begin{equation*}
\therefore N_{\dot{X}_{B}}=\frac{1}{\prod M \prod_{B}}\left[N^{F} E B+N^{F} B C\right] \tag{G2}
\end{equation*}
$$

Eqn. (G2) is the translational eqn. for body B.
The total torque on the body $B=N_{-}^{T} E B+N^{T} B C+\left(N_{-B C}^{R} \times N_{B C}{ }^{F_{B}}\right)$. $N_{-}^{T} E B$ is the external torque applied on the body B, in the inertial basis. $N_{\mathrm{N}}^{\mathrm{T}} \mathrm{BC}$ is the reaction torque applied on the body B by the body C, in the inertial basis. $N^{R} B C$ is the inertial position vector of the point of contact of the bodies B and C from the mass-centre of the body B. Let the inertial angular momentum of the body B be $N_{-} H^{H}$.

$$
\begin{align*}
& \text { The rotational eqn. of motion of the body } B \text { is } \\
& {\left[N^{T} E B+N^{T} B C+\left(N_{-}^{R} B C \times N^{F} B C\right)\right]=N_{H_{B}}=\text { the time rate of }} \\
& \text { change of } N^{H} B \text { in the inertial basis. } \tag{G3}
\end{align*}
$$

Let $-C_{B}$ be the shift of the mass-centre $C M_{B}$ from the nominal mass centre of the body B at O_{B}. Let P_{B} be the position vector of a mass-element in body B.

$$
\begin{aligned}
& N_{B}^{H_{B}}=\int\left(p_{B}-C_{B}\right) \times\left({ }_{-}^{N} \dot{p}_{B}-{ }^{N} \dot{C}_{-B}\right) d m=I_{B} \cdot \omega_{B}+\left||M|_{B} \cdot \dot{C}_{B} \dot{C}_{-} x_{B}\right. \\
& +\int \underline{p}_{B} \times \underline{p}_{B} d m .
\end{aligned}
$$

where $I_{B}=$ the inertia dyadic of the body B with respect to 0_{B}.

If there are rigid rotating bodies inside the body B, like reaction wheels and motors, then

$$
\begin{equation*}
\underline{H}_{B}=\underline{I}_{B}: \underline{\omega}_{B}+\underline{h}_{B}+\int \underline{p}_{\underline{B}} \times \underline{\underline{p}}_{\underline{B}} d m . \tag{G4}
\end{equation*}
$$

where $\underline{h}_{\mathrm{B}}=$ the relative angular momentum w.r. to B of the rotating wheels etc.

$$
\begin{aligned}
N_{\dot{H}_{B}}= & \dot{H}_{B}+\omega_{B} \times H_{B} \\
= & {\left[\dot{\mathrm{I}}_{B} \cdot \omega_{B}+I_{B} \cdot \dot{\omega}_{B}+\dot{h}_{B}+\int p_{B} \times \ddot{p}_{B} d m\right] } \\
& +\omega_{B} \times\left[I_{B} \cdot \omega_{B}+h_{B}+\int p_{B} \times \dot{p}_{B} d m\right]
\end{aligned}
$$

Neglecting \dot{I}_{B}, we get,

$$
\begin{align*}
{\left[N^{T} E B+N^{T} B C+\right.} & \left.\left(N^{R} B C \cdot N^{F} B C\right)\right]=\left[I_{B} \cdot \dot{\omega}_{B}+\dot{h}_{B}+\int p_{B} \times \ddot{p}_{B} d m\right. \\
& \left.+\omega_{B} \times h_{B}+\omega_{B} \times \int p_{B} \times \dot{p}_{B} d m .\right] \tag{G5}
\end{align*}
$$

Neglecting ($y_{i} x \ddot{y}_{i}$), and the product of other flexible appendage displacements, eqn. (G5) becomes,

$$
\begin{align*}
& N^{T} E B+N^{T}{ }^{T} C+\left(N^{R} R_{B C} \times N^{F}{ }_{B C}\right)=\left[I_{B} \cdot \dot{\omega}_{B}+\dot{h}_{B}+\omega_{B} \times h_{B}\right] \\
& +\sum_{i=1}^{20}\left[m_{i}\left(R_{i}+r_{i}\right) x \ddot{y}_{i}\right]+\sum_{i=1}^{20}\left[\tilde{\omega}_{B}\left\{m_{i}\left(R_{i}+r_{i}\right) x \dot{y}_{i}\right\}\right] \\
& +\sum_{i=1}^{4}\left\{\rho_{B i} \int_{0}^{\ell}\left(R_{i}+S_{i}^{B}\right) \times \ddot{n}_{i} d S_{i}\right\}+\sum_{i=1}^{4} \tilde{\omega}_{B}\left[\rho_{B i} \int_{0}^{\ell}\left(R_{i}+S_{i}^{B}\right) \times \dot{\eta}_{i} d S_{i}\right] \\
& +\rho_{S B} \iint\left(R_{S}+\mu{ }^{n} B\right) x \xi_{B} d A+\rho_{S B} \cdot \tilde{\omega}_{B} \cdot \int\left(R_{S}+\mu{ }^{\eta} B\right) \times \dot{\xi}_{B} d A . \\
& +\sum_{i=1}^{2} \rho_{\phi i}\left(\iint\left(R_{i}+X_{B}\right) \times \ddot{x}_{i, B}^{d A}\right)+\sum \rho_{p i} \cdot \tilde{\omega}_{B}\left(\iint\left(R_{i}+\eta_{B}\right) \times \dot{x}_{i, B}^{d A}\right) \tag{G6}
\end{align*}
$$

Eqn. (G6) is the rotational equation of motion for body B. Two equations similar to (G2) and (G6) are also developed for body A.

H. Coupling equations for the Bodies A, B and C.

The body C is considered to be a mass-less, extensionally and torsionally rigid body. But C behaves as a combination of a linear spring and viscous damper against transverse linear and angular displacements of one side with respect to the other.

Let $\nu_{1}, \nu_{2}, \nu_{3}$, and ν_{4} be the stiffness and damping constants for translation and rotation of the ends of the body C. So the coupling equations are developed as follows:

$$
\begin{align*}
& \|M\| X=\|M\|\left\|_{B} X_{B}+\right\| M\| \|_{A} X_{A} \tag{H1}\\
& N^{F} B C=-N^{F} A C=v_{1}\left(X_{B}-X_{A}\right)+\nu_{2}\left(\dot{X}_{B}-\dot{X}_{A}\right) \tag{H2}\\
& N^{T} T_{B C}=-N^{T} A C=\nu_{3}\left(\psi_{B}-\psi_{A}\right)+v_{4}\left(\omega_{B}-\omega_{A}\right) \tag{H3}\\
& N^{F} E B+N^{F} E A=\left(\|M\|_{B}+\|M\|_{A}\right) \ddot{X} \tag{H4}\\
& N^{T} E B+N^{T} E A=N_{\dot{H}_{B}}+{ }^{N_{H}} A \tag{H5}
\end{align*}
$$

From the equilibrium condition in force-free motion, $\mathrm{N}^{\mathrm{F}} \mathrm{EB}=\mathrm{N}^{\mathrm{F}} \mathrm{EA}=0$ and $\mathrm{X}=0$.

Also if $\quad N^{T} E B=N^{T} E B{ }^{*}+N^{T} E B{ }^{* *}$
and $N^{T} E A=N^{T} E A^{*}+N^{T} E A^{* *}$
where ($)^{*}$ is the environmental torque and ($)^{* *}$ is the control torque, then

$$
\begin{equation*}
N^{T} E_{B}^{* *}=L_{B}\left(\psi_{B}\right) \quad \text { and } \quad N^{T} E A^{* *}=L_{A}\left(\psi_{A}\right) \tag{H9}
\end{equation*}
$$

L_{B} and L_{A} are the specific attitude control system operators. $N^{T} E B^{*}$ and $N^{T} E A{ }^{*}$ can be determined explicitly in terms of the vehicle geometry and angular rotations.

Eqns. (H1) through (H9) are sufficient to describe the dynamic system completely.

I: Models of the Environmental Torques.

1. Residual Magnetic Torque:

The residual magnetic torque exists in a spacecraft because of the interaction of the flow of current in the spacecraft electrical circuits, and the Earth's magnetic field vector B.

For a geosynchronous satellite, the torque will be time periodic. The time period will be equal to the spin-rate of the satellite. The magnitude of the torque has to be determined from experimental values. The torque model is

$$
\begin{equation*}
\overrightarrow{\mathrm{T}}_{E B M}=\overrightarrow{\mathrm{T}}_{E B M}{ }^{*} \sin \left(\psi \mathrm{~B}_{B} t\right) \quad \text { and } \quad \overrightarrow{\mathrm{T}}_{E A M}=\overrightarrow{\mathrm{T}}_{E A M}^{*} \sin \left(\psi A_{B} t\right) \tag{II}
\end{equation*}
$$

Approximate values will be of the order of $5 \times 10^{-6} \mathrm{ft}$ lbs.
2. Eddy Current Torque:

The eddy current torque on a body is given by
$\overrightarrow{\mathrm{T}}$ e.c. $=\frac{1}{c}{ }_{c} \int \overrightarrow{\mathbf{r}} \times(\vec{J} \times \vec{H}) \mathrm{dv}$
where $\vec{H}=\frac{\vec{B}}{\mu O}=$ the Earth's magnetic field and $\mu o=$ permeability of aluminium.
$\vec{J} .=$ volume eddy current density.
$\overrightarrow{\mathbf{r}}=$ position vector from the centre of mass.
$c^{*}=$ speed of light in vacuum.
Also, $\vec{J}=\frac{1}{2 \sigma}(\vec{\omega} \times \vec{H}) \times \vec{r}+\nabla d$
where $\sigma=$ static electrical conductivity
and $\nabla^{2} \phi=0$ for the body under consideration with the condition that $\frac{\partial \phi}{\partial n}=0$ on the boundary.

In this case, the field of ϕ will be taken as the thin shells and the plates. This assumption makes the Laplacian a two dimensional operator. Then the boundary condition that the slope is zero makes $\phi=$ a constant, so that $\nabla \phi=0$.

$$
\begin{aligned}
\therefore \vec{J} & =\frac{1}{2 \sigma}(\vec{W} \times \vec{H}) \times \vec{r} \\
\vec{T} e . c & =\frac{1}{2 \sigma c^{*}} \cdot \int \vec{r} \times[\{(\vec{\omega} \times \vec{H}) \times \vec{r}\} \times \vec{H}] d v \\
& =\frac{1}{2 \sigma c^{*}} \int \vec{r} \times[\{(\vec{\omega} \cdot \vec{r}) \vec{H}-(\vec{H} \cdot \vec{r}) \vec{\omega}\} \times \vec{H}] d v \\
& \left.=\frac{1}{2 \sigma c^{*}} \int[(\vec{\omega} \cdot \vec{r})[\vec{r} \times(\vec{H} \times \vec{H})]-(\overrightarrow{\mathrm{H}} \cdot \vec{r}) \vec{\Gamma} r \times(\vec{\omega} \times \vec{H})]\right] d v \\
& =-\frac{1}{2 \sigma c^{*}} \int(\overrightarrow{\mathrm{H}} \cdot \vec{r})[(\vec{r} \cdot \overrightarrow{\mathrm{H}}) \vec{\omega}-(\vec{r} \cdot \vec{\omega}) \vec{H}] d v \\
& =-\frac{1}{2 \sigma c^{*}} \int\left[(\overrightarrow{\mathrm{H}} \cdot \vec{r})^{2} \vec{\omega}+(\vec{r} \cdot \vec{H})(\vec{r} \cdot \vec{\omega}) \vec{H}\right] d v
\end{aligned}
$$

Now for the spacecraft, $\vec{H}, \vec{\omega}$ are constants. Also $\int \vec{r} \cdot \vec{k} d v=0$ where \vec{k} is constant, because the equations are ω.r. to the mass centre.

$$
\begin{align*}
\therefore \text { Te.c. } & =-\frac{1}{2 \sigma c^{*}} \int(\vec{H} \cdot \vec{r})^{2} \vec{\omega} d v \tag{I2}\\
& =-\frac{\vec{\omega}}{2 \sigma c^{*}} \int\left[H_{x}^{2} r_{x}^{2}+H_{y}^{2} r_{y}^{2}+H_{z}^{2} r_{z}^{2}+2 H_{x} H_{y} r_{x} r_{y}+\ldots\right] d v \\
& =-\frac{\vec{\omega}}{2 \sigma c^{*}}\left[H_{x}^{2} I_{x x}+H_{y}^{2} I_{y y}+H_{z}^{2} I_{z z}+2 H_{x} H_{y} I_{x y}+2 H_{y} H_{z} I_{y z}+2 H_{z} H_{x} I_{z x}\right]
\end{align*}
$$

Assuming the spacecraft to be nominally symmetric,

$$
\begin{equation*}
\text { Te.c. }=-\frac{\vec{\omega}}{2 \sigma c^{*}}\left[H_{x}^{2} \mathrm{I}_{x x}+H_{y}^{2} \mathrm{I}_{y y}+\mathrm{H}_{z}^{2} \mathrm{I}_{z z}\right] \tag{I3}
\end{equation*}
$$

3. Torque due to Electromagnetic Radiation:

The equations for the solar torque are obtained from Baletskii (27). These are

$$
\begin{equation*}
\vec{T}_{s p}=\operatorname{Pe}\left[\left(1-\varepsilon_{o}\right)\left\{\vec{\tau} \times \int_{S_{i}} \vec{r}(\vec{n} \cdot \vec{\tau}) d s\right\}+\varepsilon_{o}\left\{2 \int_{S_{i}} \vec{n} \times \vec{r}(\vec{n} \cdot \vec{\tau})^{2} d s\right\}\right] \tag{I4}
\end{equation*}
$$

In these equations

$$
\begin{aligned}
& \text { Pe }=\text { constant solar pressure }=1 \times 10^{-7} 1 \mathrm{bs} / \mathrm{ft}^{2} \text {, for a surface } \\
& \text { normal to the sun. } \\
& \varepsilon_{0}=\text { reflection coefficient } \\
& \overrightarrow{\mathrm{n}}=\text { unit outward normal to the surface } S_{1} \text { exposed to the sun. } \\
& \vec{\tau}=\text { unit vector directed from the sun. } \\
& \overrightarrow{\mathbf{r}}=\text { position vector from the centre of mass }
\end{aligned}
$$

4. Gravity Gradient Torque:

The torque on a rigid body caused by the gravity gradient is given by $\overrightarrow{\mathrm{T}}_{\mathrm{G}}=\frac{(3 \mu \vec{r})}{R^{3}} \times(\stackrel{\vec{子}}{\mathrm{I}} \cdot \overrightarrow{\mathrm{r}})$, when $\overrightarrow{\mathrm{T}}_{\mathrm{G}}$ is expressed in the body fixed basis.

In this equation it is assumed that the Earth is spherical.
Also, $\mu=$ The Earth's gravitational constant $=1.4082 \times 10^{6} \mathrm{ft}^{3} / \mathrm{sec} .^{2}$ $\vec{r}=$ unit vector in the direction of the Earth's radius vector $R=$ The distance from the $C M$ to the centre of the Earth $\vec{I}=$ The inertia dyadic of the body.

For the body B, the expression for the gravient gradient torques
becomes

$$
\begin{align*}
& T_{G B 1}=-\frac{3 \mu}{R^{3}}\left[\left(I_{B 22}-I_{B 33}\right) d_{2} d_{3}+I_{B 12} d_{1} d_{3}-I_{B 13} d_{1} d_{2}+I_{B 23}\left(d_{3}^{2}-d_{2}^{2}\right)\right] \\
& T_{G B 2}=-\frac{3 \mu}{3}\left[\left(I_{B 33}-I_{B 11}\right) d_{1} d_{3}+I_{B 23} d_{1} d_{2}-I_{B 12} d_{2} d_{3}+I_{B 13}\left(d_{1}^{2}-d_{3}^{2}\right)\right] \tag{I5}
\end{align*}
$$

and

$$
T_{G B} 3=-\frac{3 \mu}{R^{3}}\left[\left(I_{B 11}-I_{B 22}\right) d_{1} d_{2}+I_{B 13} d_{2} d_{3}-I_{B 23} d_{1} d_{3}+I_{B 12}\left(d_{2}^{2}-d_{1}^{2}\right)\right]
$$

where d_{1}, d_{2}, d_{3} are the dir cosines of \vec{r}.
For the nominally symmetric body, the torque expressions become

$$
\begin{gather*}
T_{G B 1}=-\frac{3 \mu}{R^{3}}\left[\left(I_{B 22}-I_{B 33}\right) d_{2} d_{3}\right] \\
T_{G B 2}=-\frac{3 \mu}{R^{3}}\left[\left(I_{B 33}-I_{B 11}\right) d_{1} d_{3}\right] \tag{I6}
\end{gather*}
$$

and

$$
T_{G B} 3=-\frac{3 \mu}{R^{3}}\left[\left(I_{B 11}-I_{B 22}\right) d_{1} d_{2}\right]
$$

In terms of the Euler angles, d_{1}, d_{2} and d_{3} are given by the following equations:

$$
\begin{aligned}
& \mathrm{d}_{1}=\cos \psi_{\mathrm{B}, 1} \cos \psi_{\mathrm{B}, 2} \cos \psi_{\mathrm{B}, 3}-\sin \psi_{\mathrm{B}, 2} \sin \psi_{\mathrm{B}, 3} \\
& \mathrm{~d}_{2}=\cos \psi_{\mathrm{B}, 1} \cos \psi_{\mathrm{B}, 2} \sin \psi_{\mathrm{B}, 3}+\sin \psi_{\mathrm{B}, 2} \cos \psi_{\mathrm{B}, 3} \\
& \mathrm{~d}_{3}=-\sin \psi_{\mathrm{B}, 1} \cos \psi_{\mathrm{B}, 2}
\end{aligned}
$$

where it is assumed that the axis \vec{n}_{1} of the inertial basis is parallel to the radius vector of the Earth.
5. Control Torque Pulses:

The method of modelling the torque pulses depends on the frequency of free rigid body vibration of the spacecraft, as compared to the angular velocity of the rotor if there is any. If the two frequencies are close, an error based sampled data control system will be assumed. The jet torque pulses will then be considered to be series of gatefunctions having a frequency, which is a multiple of the rotor spin rate. For the three axes actively controlled spacecraft, the pulsing frequency will be a parameter of the equations. It will be assumed that linear superposition of the solutions for individual gate-function-torques will hold.

But if the error sampling frequency is large compared to the spacecraft natural frequency, the sampling will be considered to be continuous and a Fourier's series will be assumed for modelling the train of torque pulses.

Conclusions:

The basic features of the present analysis in which it claims to be a more accurate model of any particular satellite is the following:

1) The hybrid formulation involving modal coordinates, as well as position and attitude coordinates of rigid elements.
2) The complete spacecraft structural flexibilities are considered. Structural damping can easily be taken into consideration by modeling the materials as linear viscoelastic and changing the elastic modulii into the corresponding complex modulii. The only limiting problem is the computer memory. For introduction of the complex modulii will double the number of coordinates.
3) The model is already large and flexible enough to accommodate a large class of satellites, which are structurally similar.
4) If stiffened plates and shells are used, which most probably is the case, then those stiffened elements will first have to be converted into regular elements by methods already well known.
5) The model can most easily be extended to nonsynchronous satellites.
6) The most important mathematical feature is that the solution bound is much less restricted than that shown by Likins, Kane and others. The existing models are almost wholly restricted to a rigid rotor with a constant angular velocity, together with the flexible elements having very low angular velocities. So their equations are all linear. In this solution, the angular velocities will be assumed partially unrestricted so that asymptotic
expansion methods will be used for each structural element. The first attempt at the asymptotic solution will be made by assuming the angular velocities to be of the form $\omega_{i}=\lambda_{i}+\varepsilon_{i} \sin p_{i} t$ where λ_{i} will be a completely unrestricted quantity. But ε_{i} will be considered small. This will require us to generate a new series of functions comparable to Matheu functions. After completion of the present work we hope to prepare a comprehensive table for such functions so that s.ll future work in dynamics will be considerably simplified.

Finally, I thank you all to offer me this project which has given me quite a few new insights into the problem of modeling flexible bodies in motion.

References:

1. Likins, P. W., and Gale, A. H., "A Study of the Dynamics of Spacecraft with Flexible Appendages with Special Attention to a Gyrostat with a Flexible Despun Section, "Aerospace Technology Research Report, Hughes Aircraft Company, Space Systems Division, Report No. 35, SSD 90003R., January, 1969.
2. Likins, P. W., "Attitude Stability of Dual Spin Systems," Space Systems Research Report, Hughes Aircraft Co., SSD 60377R, September 1966.
3. Velman, J. R., "Attitude Dynamics of Dual Spin Satellites, " Space Systems Division Research Report, Hughes Aircraft Co., SSD 60419R, September, 1966.
4. Likins, P. W. and Fleischer, G. E., "Results of Flexible Spacecraft Attitude Control Studies Utilizing Hybrid Coordinates," AIAA Paper 70-20, New York, January 1970.
5. Likins, P. W., and Mingori, D. L., "Liapunov Stability Analysis of Freely Spinning Systems, " Proceedings of the 18th International Astronautical Congress, Belgrade, Yugoslavia, September 1967, pp. 89-102.
6. Likins, P. W., and Wirsching, P. H., "Use of Synthetic Modes in Hybrid Coordinate Dynamic Analysis, " AIAA Jour., Vol. 6, Oct. 1968. pp. 1867-1872.
7. Gerarder, W. B., "Basic Relations for Control of Flexible Vehicles," AIAA Paper 69-115, New York, January 1969.
8. Ashley, H., "Observationsof the Dynamic Behavior of Large Flexible Bodies in Orbit," AIAA Jour., Vol. 5, No. 3, 1967, pp. 460-469.
9. Likins, P. W., and Gale, A. H., "The Analysis of Interactions Between Attitude Control Systems and Flexible Appendages, "Paper IAF AD29, October 1968, 19th International Astronautical Congress, New York.
10. "Proceedings of the Symposium on Attitude Stabilization and Control of Dual-Spin Spacecraft, " Air Force Rept. SAMSO-TR-68-191.
11. Iorillo, A. J., "Nutational Damping Dynamics of Axi-symmetric Rotor Stabilized Satellites, " ASME Winter Meeting, Nov. 1965, Chicago, Ill.
12. Mingori, D. L., "Effects of Energy Dissipation on the Attitude Stability of Dual-Spin Satellites, " AIAA Jour., Vol. 7, Jan. 1960, pp. 20-27.
13. Karymov, A. A., and Kharitonova, T. V., "The Effect of External Perturbing Moments on the Dynamics of a uni-axial Single-flywheel Attitude Control System of a Spacecraft, " Journal of Applied Math. \& Mechanics, 1967, pp. 1098-1106.
14. Rossi, L. C., et al., "Attitude Dynamics and Stability Conditions of a Non-rigid Spinning Satellite," Aeronautical Quarterly, August 1969, pp. 223-236.
15. Kane, T. R., and Robe, T. R. "Dynamics of an Elastic Sätellite," Int. Journal of Solids and Structures, May, July, Nov., 1967, pp. 333-352, 691-703, 1031-1051.
16. Landon, V. D., and Stewart, B., "Nutational Stability of an Axisymmetric Body Containing a Rotor, " Journal of Spacecraft and Rockets, Vol. 1, No. 6, June 1964, pp. 682-684.
17. Huang, T. C., and Lee, C. C. L., "Free Vibrations of Space Framed Structures, " Proc. of the 11 th Midwestern Mechanics Conference, 1969, pp. 861-885.
18. Huang, T. C., and Lee, C. C. L., "Orthogonality Conditions and Normalization of Normal Modes of Space Framed Structures and Applications to Initial Value and Forced Vibration Problems. " (In preparation for submission)
19. Huang, T. C., and Saczalsky, K. J., "Elastodynamics of Complex Structural Systems, " Proc. of the 12th Midwestern Mechanics Conference, August, 1971.
20. Huang, T. C., and Saczalski, K. J., "Complex Response of Spatial Vibratory Structures Mounted to Isotropic Plate Elements, :' Proc. of the 3rd Vibration Conference, Toronto, Sept. 1970.
21. Dobrotin, B., et al., "Mariner Limit Cycle and Self-disturbance Torques, " Journal of Spacecraft and Rockets, June 1970, pp. 684-689.
22. Tidwell, N. W., "Modelling of Environmental Torques of a Spinstabilized Spacecraft in a Near-Earth Orbit, " Journal of Spacecraft and Rockets, December, 1970, pp. 1425-1433.
23. Yu, Y. Y., "Thermally Induced Vibration and Flutter of a Flexible Boom, " Journal of Spacecraft and Rockets, August 1969, Vol. 6, No. 8, pp. 902910.
24. Etkin, B., and Hughes, P. C., "Exploration of the Anomalous Spin Behaviour of Satellites with Long, Flexible Antennae, " Journal of Spacecraft and Rockets, Vol. 4, No. 9, September 1967, pp. $1139-$ 1145.
25. Vlasov, N. Z., "General Theory of Shells and its Applications in Engineering. " National Technical Information Service translation no. N64-19883.
26. Kraus, H., "Thin Elastic Shells. "' John Wiley \& Sons, Inc., 1967.
27. Belettskii, V. V., "Motion of an Artificial Satellite About its Centre of Mass, "TTF-429, 1966, NASA.
