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1. A study of the correlation between cloud motion and wind field

has been initiated. Cloud heights and displacements are being

obtained from a ceilometer and movie pictures, while winds are

being measured from pilot balloon observations on a near-

simultaneous basis.

2. Cloud motion vectors obtained from ATS-III time-lapse cloud

pictures, using the WINDCO program, are being processed for

27, 28 July, 1969, in the Atlantic. The purpose is to

investigate the relationship between observed features of

cloud clusters (e.g., growth, intensification, decay, etc.)

and the ambient wind field derived from cloud trajectories

on a wide range of space and time scales.
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This report presents the first phase of the work completed on the

pointing error analysis. This phase consisted of chosing a configuration of

the spacecraft and obtaining a mathematical model of the dynamic problem.

The assumptions made and the derivation of the guiding equations are briefly

described in the following pages.

The simulation includes elastic shells, plates, beams, rigid bodies and

point masses. The effects of thermal stresses, large angular velocities and

the effect of the motion of the centre of mass due to vehicle deformation,

are included in the analysis. In this formulation, the spatial dependences

are maintained linear. But the time-dependences are nonlinear. It is in

these respects that'this formulation claims to.be more exact than any

previous one.

The current phase of the research is centered on the solution of the

homogeneous part of the problem. The governing equations are a complex set

of coupled integro-differential equations. Attempts are now being made to

obtain the uncoupled eigenfunction expansions for each of the variables.
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Evaluation of Satellite Configurations for Optimum Pointing Accuracy

Introduction

The two principal requirements for scientific synchronous satellites

are:

a) Constant attitude angles.

b) Precise determination and control of the attitude angles.

The possible satellite configurations are:

a) A spinning satellite.

b) A three axes stabilized satellite.

c) A dual-spin satellite, which contains a spinning part and a depsun

part. The problems influencing the choice are as follows:

a) For a three-axis stabilized satellite, a very precise determination

of instantaneous attitude angles is possible with interferometric methods.

But its motion at a subsequent time and corresponding control is very un-

certain.

b) A spinning satellite provides a very stable platform in space. But

the attitude measurement creates a great deal of uncertainty because of the

flexibility of the structure and the antennas attached to it.

Our present study is to determine the configuration of the satellite

offering a stability and accuracy within certain limits.

The Simulation Problem

The development of an attitude control system necessarily involves



a dynamic simulation of the vehicle being controlled, but the accuracy

required of that simulation varies widely from system to system. When

space vehicles missions do not impose stringent attitude control require-

ments, and when the vehicle is essentially rigid, the simulation of the

vehicle as a fully rigid body is more than satisfactory. But modern space
s

vehicles are very flexible with low natural frequencies. At the same time

severe demands are being made on attitude control and attitude pointing

error analysis. This is true, especially for remote sensing operations

and optical observations. So a more improved dynamic simulation is re-

quired.

In the past Landon [16] and lorillo [11] pioneered the analysis of the

stability problem of nonrigid masses. They were closely followed by

Karymov [13], Rossi [14] and Mingori [12], where the principal stress was

given on the stability of motion. But the most important contributions are

by Likins [1, 2, 4, 5, 6, 9]. • He has shown a method in which the

vibration frequencies, and modes of flexible satellites can be analyzed.

Though he mostly uses the lumped mass discrete model, he has shown the

usefulness of using synthetic modes where a structure can be treated as

a combination of rigid and flexible masses [6].

As the present analysis is oriented towards pointing error studies,

the principal stress is given on the mode shapes rather than on the stability

of the motion. For an accurate modal analysis, discrete mass approxima-

tions are not satisfactory. Also the thermal stress effects, left out by
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earlier writers will be taken into consideration. The technique of coupling

together the equations for the individual appendages through suitable

continuity conditions follows that shown by Huang and others [17, 18,

19, 20]. The analysis will be made for force free motion as well as with

self-disturbing and environmental torques [21, 22].

The principal problems that are faced in this analysis are: a) the ac-

commodation of the ndnvibratory motion of the flexible appendages, and

b) the complete withdrawal of all restrictions on the angular velocities

of bodies. The first condition introduces inertial coupling in the system,

leading to time-varying inertia matrices. The second consideration brings

in nonlinearities due to the centripetal and Coriolis accelerations. The

Coriolis terms bring in a skew-symmetric coefficient matrix. And this is

completely different from the classical "damping" matrix. So none of the

advantages of the classical modal coordinate analysis are available because

of the unrestricted rotation of the components. •

Objectives;

The objective of this analysis is to estimate the pointing error. This

is to be obtained in the following method. For a particular base line con-

figuration, one or more of the rigid bodies m. (i = 1 - 4) will be the model

of the attitude determination sensors. The rest will be modelled to be the

imaging or sounding sensors. So this analysis will provide:

a) the extremes of the attitude error between the different sensors;
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b) the extremes of the phase difference of the attitude error;

c) a probabilistic time history of the phase and magnitudes of the

error for the transient zone after every control torque pulse;

d) a computer program to plot out the pitch, roll and yaw limit cycles

for a 90 percent probability density band width;

e) an estimate of the stiffness requirement and the number and po-

sitions of the antennae and other flexible elements for a given maximum

error limit;

f) comparison of the error limits for 3-axes stabilized, spinning and

dual-spin configurations for the same base-line configurations.

Nomenclature

CM = Vehicle center of mass

A, B, C = Satellite sub-assemblies

m., i = 5-20 = Point masses (scalar)

m., i = 1-4 = Rigid bodies having inertia tensors.

AT >-§.-» sU = Orthogonal unit vectors fixed in A.
JL C* J

b-iih?, b_o = Orthogonal unit vectors fixed in B.
•1 £* J

Uli > HI? > JHo = Inertially fixed orthogonal unit vectors

||M|| . = Total vehicle mass (scalar)

O = Nominal location of center of mass in B

O' = Inertially fixed point

Q = Reference point, fixed in B
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R, R ' = Position vector and B-basis maxtrix of Q relative

to O

X, X - = Inertial position of the center of mass and inertial-

basis matrix

Cj C = Vector and B-basis matrix for CM motion in B

to COD = Inertial angular velocity vector and B-basis matrix
B B

for B

US _ • \JJ _ ~~

-A' A
w , COA = Inertial angular velocity vector and A-basis

matrix for A

Xl X2 X3A , A , A = Coordinate measure numbers in A-basis

Xl X2 X3B , B , B = Coordinate measure numbers in B-basis

y. , y. , y = Displacements of masses m. in B-basis
1» A 1_ L* 1. j X

(i = 1,-rZO)

^i 1 ^i 2 ^i 3
A ' , A ' , A ' = Displacements of masses m. in A-basis

(i = 1 to 20)

0. ,; 0. ; 0. (i = 1-4) = Rotations of rigid bodies m ,m , m and m in
x« j> i« £ x. j x £, j rt

B-basis

6i 1 9i 2 ei 3A ' ; A ' ; A ' (i = 1-4) = Rotations of rigid bodies m , m , m

and m^ in A-basis4

F, F • = Vector and inertial-basis matrix of force on

vehicle
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F., F. (i = 1-20) = Vector and B-basis matrix of force on m.—L' i i

(i = 1-20)

T, T = Vector and B-basis matrix of torque on vehicle

T., T. (i = 1-4) = Vector and B-basis matrix of torque on mass m.

(i = 1-4)

II = Vehicle angular momentum about CM

H. (i = 1-4) = Angular momentum of masses m. (i = 1-4)

about its own c. m., P. (i = 1-4)

Q. = Position of m. (nominal)

P. = Mass center of m.

r.,r. = Position vector and B-basis matrix of Q.

relative to Q

^1 riA ,A = Position vector and A-basis matrix of Q.

relative to Q

a.
N = Inertial acceleration of masses m,i

6 = Transformation matrix of direction cosines which

transforms the inertial basis to B-basis

N o( ) = Inertial time derivative of vector

(°) • = Time derivative of vector in ref. frame B

(~) = Skew symmetric matrix operator defined by eq. (3).

tj. (i = 1-8) = Displacements of beams no. 1 - 8 in B-basis

^i
A (i = 1-8) .= Displacements of beams no. 1-8 in A-basis
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£ = Displacements of cylindrical shell B in B-basis
13

£ = Displacements of cylindrical shell A in B-basis
** - "

eB
A = Displacements of shell B in A-basis

A = Displacements of shell A in A-basis

X. (i =1-4) = Displacements of plates no. 1 to 4 in B-basis

xi
A (i = 1-4) = Displacements of plates no. 1 to 4 in A-basis

pi (i = 1-4) = Mass per unit length of beams, i = 1-4

p ,. p _ = Mass per unit area of shells A and B
sA' sB

pp (i = 1-4) = Mass per unit area of plates no. 1-4
i

e1 = Mass centre shift for beam, plate and shell

deformation . in B-basis.

e = Mass center shift for beam, plate and shell deforma-
£• i

tion in A-basis

•V- ' |J- -)•> H" = Local orthogonal coordinates for axes for beams,
*» *s ^ x> ̂

and fixed to B

A 1 ^i 2 ^i 3A ' , A ' , A ' - Local orthogonal coordinate axes for beams and fixed

to A

q. ,, q , q. _ = Beam. elastic deformation in fj..-axis in Bi, i i, Z i, 3 i
Qi 1 qi 2 qi 3

A ' , A ' , A ' = Beam elastic deformation in (j^-axis in A



15

B
IJL. . = Transformation matrix for |jL.-axes to B-basis

R
p. = Transformation for u.i-axes to A-basis

A i A x

F (i = 1-4) = Inertia force on the element of beam no. i (1-4) in B-basis
b B.

F" (i = 1-4) = Inertia force on the element of the i -beam in IJL-
b IJL.

basis, i.e. local coordinates .

s., s., s. = Position vectors of i beam element from the

reference end in local, B-basis and A-basis

coordinates respectively

R. = B-basis position vector to the reference end of the i

beam

AR = A-basis position vector to the reference end
i

of the i beam

= |ji-basis position vector, transformed from R.

= p.-basis position vector, transformed from AR.

\
\ ' -iMll . '

t Vi
M = Thermal bending moment in the i beam

Ti, 2 or 3

E = Modulus of elasticity

bl. , bl. = Moments of inertia of the i beam in the direction
i, 2 i, 3

of |JL. and IJL. respectively
1. & 1, J

.
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and "36 = Thermal curvature of the i beam in the direction

5 —> ' —>•

of |JL. and (JL. respectively
i, i i, 3

j.i_

K. = Thermal bending constant for the i beam

T. = Characteristic time for heat transfer across the

. th , .i beam

a. and a, = Beam attitude angles w. r. to the sum
i, 2 i, 3

*•*•* 1*1̂

Tfc'L, = Thermal curvature maximum values for i beam
i, 2 or 3

A th
riC ., = Moment of inertia sensor of the i rigid body
. i, jk

in A-basis

rl. = Moment of inertia sensor of the i rigid body in
ij JK

B- basis

D - = Stiffness of the i plate.
Pi

E. = Mod. of elasticity of the i plate.

h. = Thickness of the i plate.

1~Vi
p.. = Poisson's ratio of the i plate.

T. ' = Differential temperature distribution of the i plate.

a. - Thermal coeff. of expansion for the i plate.

f"V»
k , T , pT. „ • = Thermal constants for the i plate.

P.' P.' *i, 0

p = Attitude of the sun from the plate nominal normal vector.
pi
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*
(3 = Flexural attitude change of plate element from

the nominal normal.

£ D , £ n , £ D = Radial tengential and axial deformation of an
. DJ r DJ 0 DJ o

element of shell B.

FD i> Fr> o> Fn o = Inertia! force components per unit area of shell B
S D} i S Dp £ S Df J

in b_-basis.

h = Thickness of shell B.
s o

x , x x = Polar cylindrical coordinates for shell B.
B r B e , . B -

a = Nominal radius of shell B.
B

u_. = Poisson's ratios for shell B.S B

E = Modulus of elasticity for shell B.
S t3

-J = Identity matrix.

_T_. = Differential temperature distribution of shell B.s c

6 = Attitude of the sun from the nominal normal of the
So

shell element.

*
p = Flexural change of attitude of shell B element

S D
/

from the nominal normal.
»

k „, T , sT = Thermal constants for shell B.
So So B 0
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Flexible Appendage Equations of Motion;

A) Equation of motion of particles m., i = 17, 18, 19, 20.

The equations of motion for a particle are

F. = m.• a.1 "1

Now a. = the inertial second derivative of the sum of the displacement
N""1

vectors (X + C + R + r.+ y.) . Vectors C and . y . are assumed to be con— — — —]_ •*-! — •*--!

tinuous and small, such that the terms containing square and higher powers

of these and their derivatives are neglected.. The vector X establishes the

trajectory of the vehicle mass center (See Figure 2).

Equation (1) in the B-basis is given by

F.1 = m.[NX + C + y. + 2u> D x(C + y . ) ' + Nu>Dx(C + R + r. + y.)i i i D i D 11

+ coBx{u>Bx(C + R + r. + y.) }:].

N o -
( ) = differentiation in the interial frame, with time.

0 -v_ v^

Now defining v = V 0

where v = [v , v v ] , then v ; X w = vw .
i £i 3

.". Equation (2) becomes

A(2)

A(3)
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00 OO

F. = m.[GX + C + y. + 2un( •:• C + y.) + u>n(C + R +r . + y.) + u> w[C + R + r. + y.]]
1 1 I D I D 1 1 1 1

Aa) Expression for C (Shift of mass center)

-20 4 i
C =•-

1
Mi

4

k=l

2°

*. Equation (2) becomes:

F. = m.[0<X° + ^ - 1
20

20

(say) (5a)

20

A(4)

A(5)

20

.

This is the guiding equation in B-basis for masses

A(6)

m
17*
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B. Equation of motion for beams no. 1. 2. 3. 4

In the local coordinate frame IJL., let (j.. be along the axis of the beam
i 1,1

B
as shown. The transformation matrix to the b-frame is given by (j.. where

B

%
"i.
"i,

1

2

3

« b

° b

° b

1

1

1

i, 1

i, 2

i, 3

» b

° b

o b

2

2

2

^i 1 ° b

\ 2 ° b

fj.. ° b

3

3

3

B
. is a constant for the configuration.

B(2)

and

B

B(3) ,

where s. and s. are the position vectors of the beam element from one

B
end in local and B-basis coordinates respectively. Let dm = p .• ds. =

B1 X

the elemental mass = p • ds. .
B. i

The inertia force on the beam element, F , in B-basis is given by

= P B

V s'
<SB[C + R + s.

+ R + S
B
i+ -it']

.'. In local coordinates, the force is given by
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>i l = dm • n.B[0X + C + ?,' + 2wB[a +. f,.] +
.

R. + S. +

R. B. .

6X -f C + wgC +

B
"B i

B r*> ~ B B

where Ri = B-basis position vector to the reference end of the beam.

Now e = - iM| |

20

E
k=l 0

4

m=l

k

//P,
m

and let C = - -jj-nr • p / ^ ds + e (say)
it *v* i\ *->** n

B(2)

Bi r B,T (B2a)

R
i. B . .B.T
-

. . f,) • / q.
B

'B
i , B.T

/_. Bi B B7 , B.T
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B B%T B(3)

Let R =
B T

i") B(4)

->"R " R T ^
Let jo., w((j,. ) be denoted by w" and I

R R I1 "°* r
[L. w w((x. ) be denoted by w where w is any matrix.

/*

Equation (3) can be written as

^
b

= dm

PB. I

rar{
PB.

'B

B.

R.)}

B

B(5)

or ,F = dm
b ^ .

.B {GX + e2 + 2«

at

*

'Si'
0
0

R . )

If ^ ""I, r j
' " Bi{9'J L . x u J

B(6)
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where k B.i

PB.i_
M i l

B(a). Thermo-elastic considerations on the beamis

The thermal oscillations of the outstretched booms cause considerable

changes in the attitudes of the spacecraft. The thermal curvature of the

boom will be assumed to bear a linear relation to the local heat input. This

assumption is made with success by Y. Y. Yu [23] and Etkin [24].

The effect of heat transfer across the beam is given by the following

equation. The inertia force on the beam

(

bF|a.^ 2

and F
b [i.

= IMDi j« q

i 2 ^
__ •»

:..\ n
2 + MT.; 2

32M?

]dm

, 2

(
T? /U.T \ -

= E(Mi,3)

dm

i o
• _l<

Ti 2

3S/ J

B(7) e

dm

where M = - E(bl _) • -*„
1,2 ' i, 2

and

Also

and

MT = - E(bl.
Xi 3 lf

1.2
at

where 0

S\3
at

T.
-^^ + K. cos (a. + 0. )

T 1 1, £ 1, 2

1,2
1,2 ~ 3S.

•T. ,
i. 3

B(9)

B(10)
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where 9. i. 3
38.

B(12)

Solutions of (B 11 and 12) are taken from Yu [23] and, for small 0. and
*« "

0. , are given by
1, 6

2 i 2 B(13)

and 2:, 'i. 2
as.at1

B(14)

Equations (13) and (14) are approximated by

1 2

:*
T.
1,2

^). sin » B(15)

cos as. T as.*— )'• sin a.
1,3

B(16)

B(b). Final guiding equations for the beams

E(bl i j3)

B(bl ,

i, 2 2

as a s

cos or,
as. as, as.3 at



- ,2

dt

D

* d

B

i 0

2"B*2
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B(17)

In this equation the gravity gradient torque on the beam is not considered,

as that would make this equation nonlinear. The gravity gradient torque

is assumed constant for small deflections of the beam, and is so will

be considered directly in the vehicle equation of motion. These equations

are simultaneous linear fourth order integral equations of the Fredholm

type. The kernel for a physical object can be separated into the spatial

and time dependent functions. The solution technique will be shown in

a later chapter..
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C. Equations of Motion for Rigid Bodies m. and m_1 i

A rigid body of finite dimensions has six degrees of freedom. So to

describe the motions of the bodies m. (i - i} z)} both the force and the

torque equations are to be considered.

The force equation is formally the same as the equation (A6) derived

for point masses.

. 20 20
•n ^ r r\V i 2° •*• V «° . <"> . -,~ ,« 1F. = m.[ OX + e -
1 1 1

~ . 20 20+ Vei - irar .^ m jy j + R + ri + yi} + vB
(ei - w^Vj

(1 = 1,2). (Cl)

The absolute angular velocity r<o. of the rigid bodies are given by

rco. = COR + 0. . (C2)

As derived by Likins and Gale (1),

, Jk

+ ^B ' rli^ jk ' A + [rlf, jk ' "B - (rlf, Jk ' UB) - * "B)

+ V r l f j k " ]0i ; (1 = 1,2) . ' (C3)

Equations (Cl) and (C2) are the guiding equations for the rigid bodies

m and m .
J. L*
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D. Equation for Thermal and Flexural Motion for Plates no. 1 and 2

The load-system on the plates is shown in Fig. 4.

As in the equations for the beams, the general solution for the plates

under inertial and thermal loads will be found first. These solutions will

then be coupled to the solutions for the attached rigid bodies and shells

through suitable continuity conditions.

To keep the governing equations in deflections linear, the extensions

of the plate will be considered to be decoupled from the flexural motion.

The coordinate system for each plate is stationary and parallel with respect

to the ID-basis and have the origins located at the nominal center of the plates.

The axis x passes through the mass center of the attached rigid body m .
B

The elastic forces acting perpendicular to the nominal plate surface

on the elemental mass of sides d x and d x =
B 1 B 2

= Dp.
3

2 n 2
9 x 9 x

B L B ^

d x • d x
B l B

where D = the stiffness of the plate = —
Pi 12(1 - p-iif

E. = Mod. of elasticity of the i . plate
P i

'h. = thickness of the i plate
P i

|JL. = Poisson's ratio of the i plate.
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Let T be the difference of temperature between the two faces of the
P ! . .

.thi plate at any point. .For a thin plate, a linear temperature distribution

across the thickness of the plate can be assumed. Also, the plates are

assumed homogeneous, so that the thermal bending moments at a point are

equal in two orthogonal directions.

So the thermoelastic forces perpendicular to the plate

D D

where V 2 ' 2 'a x a x
B i B

Then the guiding equation for the plate becomes, considering only x. o=

p. i p i

where

c = - z

4 Pi
Z T ' rr'
)=1

r. + y.)]

dA

T//

(Dl)

(D2)
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A model of the variation of pT. along the mid-plane of the plate, i.e.

in the x , x plane is obtained as follows. It is a first order time de-
B L B 2 .

pendent model made in a way similar to that used for the beam.

Let p be the attitude of the sun from the nominal normal of the plate.

Then for small deflections, let p" be the rotation of the plate surface

tV»
normal due to flexure of the i plate.

'= K Cos(p + P * ) . - (D3)
i i

Then the solution of (D3) is given by

_ *** p *T~ 2 °° "'̂  3 *<>« *t* -
T. = k T cos p - k T sin[p (p -T 6 + T p - T (3 + . . . ) ] .

P i P P P P
 l

 P
P

P P
P

P P

Keeping only the first power of T , the solution becomes

*j* •}* '

T. = ^T. n cos[p + p" - T 8 " ] (D4)
.Pi P 1,0 LPP i

 K
P . p . K P . J

where T. = k • T = the maximum value of T. .
P i, 0 pi pi Pi

In this analysis, k and T are thermodynamic constants for the i
p. p.i i

plate. For small values of

!\1 ,^1 ** (d\ 3 d\ 3 ATtr and TiT' P
P. = B x.at +

 d x?,9
 and

B B^ X B B

pi
3

1/2
. Hence, on further linearization,



(B\ 3 *\ 3
T = T cos fi + T • T I *— + *—pi P i, o pp. pi, o P.\ a x at a x _ a t ,

B B

30

sin p (D5)

So equations (Dl) and (D5) together govern the thermoelastic flexure of

the plates.

E. Equation of Motion for Shell B

The shell B is assumed to be a uniform, thin, isotropic, circular

cylindrical shell. For the elastic analysis, the linear equations of Vlasov

(25) will be used. The analysis of thermal effects follows that made by

Kraus (26).

The orientation of the cylindrical polar coordinates x , x and x
! r> D D^ O D

is shown in Fig. 5. Let £ be the radial displacement of the shell.B» r

£ and £ are the displacements in the tangential and axial directions.B, 6 B, 3

T is the temperature distribution on the mid-plane of the shell. The

distribution of temperature across the thickness of the shell is assumed to

be linear, with a constant gradient over the mid surface.

Let F_. F and F be the inertia forces per unit area
s B, 1 s B, 2 s B, 3

on a shell element along x1 , x and x respectively.
B B 2 B

s*B, l

sFB, s

B

'B :B B
R

(El)
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—>

In equation (El), R is the position vector of the plate element from the mass

center 0 of the spacecraft in the b-basis,

Let c = ' e, -4

Br

_sB_

l l M l l
(E2)

Let ji"* be the transformation matrix for changing the b-basis vectors to

the normal, tangential and axial components.

Br

COS X
B 6

- sin x
B

_ 0

sin x
B 9

cos 9

0

0

0

1 _

(E3)

*r
'B = V- > and Fns B

S F B

s B, 2

sFB, 3

where F and F and F are the radial, tangential and axial

components of the force vector F .

r o

or

R

R)
B B1 4 *)}
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r-1 it.
(5B" l l M l

sB

Settling
r 0 . r -1 r -1 **

Br

3?Br = sB
R)1

Mjl
2"B^B-W 'B

* ** r
"Br

sB
M 'B

(E4)

As in the case for the plates, to reduce the high-frequency response,

the contributions of £ and £ in the inertia force are neglected.
B, 6 B, 3

So the equationsof motion are given by

, 2
85c

B B
5 4

8 x 8 x • 8 x
B B B 6 '

' B (E5)
8 x,

B •
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sV
;B,e 6a

B
4 28 x, -8 x 8 x, • 8 x

- B B 6 B B £

(2
B

8 x 8 x
B 3 B

(E6)

> B r
B

n

B
84(j>

B

8 x,
- B '

2 2 48 x 8 x 8 x
B B 6 B 6-J

(E7)

and

12 a
B

2 h
D

12 a
B

Q8 x 8 x 8 x
B..-3 B 3 B

d - H ) 9 d -
-V 4 . F R +

 ( 1 "f B ) sV
2 s B, r 2

B D£j
B

Setting —
12 a

kD , _V = a V ,D
B B

x = a • x, ; such that
B 3 B B 3

V
8 x

B
8 x

B

V4
 = VV and V8 =

then the last equation of motion becomes

'B,r B 8 x 8
- B
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B-3 SB B

(E8).

E(A). Equation for T

In this case also, the method of modelling T is analogous to that
s B

used for the beam and plate.

Let 6 _, be the attitude of the sun from the nominal normal at an arbi-st>
*

trary point of the shell. Also, let (3 be the rotation of the shell element
S D

from the normaL

9 sTR s'TR *.... _ii + 1_S = ^ cos (PSB + PSB) . (E9)

sB

Neglecting all terms containing T , T and other higher powers of
SB SB

T , the solution to (E9) is
sB

STB = S T B 0 C O S [ P S B + - T S B - (E10)

where T = k - r = the maximum value of T .
S D , 0 S b S B SB

k and T are thermodynamic constants for the shell B.
sB sB

1/2
* / GR ft ° 5R r \ ° 5R r

P.

and

" psB

*
sB

- 2 2-

v aB aD 8 x ' 9x
B B 6 B S - 1
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2 . a
2 t

- . .r
B, e ' ~ a at

O •*»• O *» O ^.,_O L D

B 9 B 3

a x S B ' a x
«- B 6 B 6^

•J* .A.

Neglecting (3 in (^10), but keeping (3 we finally have
So So

1 r r
STB = sTB,0 C°S PsB - STB,0' TsB I~ TTlT + TlT

\ B B 6 B
(Bll)

Equations (E5), (E6), (E7) , (E8) and (El l ) are the required guiding equa-

tions for shell B.

F. Equations of Motion of the Elements of the Body A

The equations of motion of the elements of the body A are obtained in

the a^-basis in exactly the same way as that used to describe the motion

of the elements in body B in the JD-basis. In this case, all the angular

velocities, transformation matrices etc. will relate to the a_-basis. The
i

final dynamic coupling-of the bodies A, B and C is obtained by transforming

the reaction forces and couples between the bodies A and C to the t>-basis,

and solving the resulting equations for the complete vehicle in the b_-basis.

Let 6 be the transformation matrix for changing the inertial basis

to the a.-basis.

So if -TF be the force vector in ri-basis corresponding to F in a_-
*N f\

basis, then

? = 8A „? or .T? = 9~ • .? or
A A- N N A A '
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—

where F is the vector in b-basis corresponding to that in a_-basis.B

o o
Let co = 4' and co^ = d/ , where di and ib_ are angular

—A —A — B — B ' — A . -H3

rotation vectors of bases A and B, respectively.

In the application of equation (Fl ) and the preceding equations of mo

tion, two important cases can occur, and these are treated as follows:

Case I. The body is nominally inertially nonrotating.

Let the body A be nominally fixed in the n-basis. Then dj are
f\

small, and the following approximation can be made:

£] (F2). ^

where "^" is the identity matrix. A similar argument holds if ^ are

small.

Case II. The body is rotating.

Let the body B rotate with respect to the inertial frame having in-

stantaneous Euler angles denoted by ij; , i]j , ifj .
B, 1 B, Z B, 5

\\> is the spin angle. \\> and *\> are the precession -and
B, 3 B, Z B, 1

nutation respectively. Then the transformation equation is given as follows:
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Eqns. of Motion for the Composite Bodies

To describe the motion of the space vehicle, there are two quite different

approaches. The first method is to write the equations involving the motion

of every movable mass into one complex equation. The second method is to

solve the equations of motion of the sub-bodies separately and then accommo-

date the interactions between the bodies as external forces and torques. For

simpler configurations and lumped mass approaches, the first method is

advantageous. But when the bodies perform large relative .rotations, and when

continuous mass distribution is assumed, computational efficiency increases

greatly with the second method. In this analysis, it is the second method

that will be used.
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G. Eqn. of Motion for the Body B

F
Let N_EB be the external force in the inertial basis on body B. Also

F
let N_BC be the reaction force of body C on body B in the inertial basis.

(NFEB + NFBC) = llMll^Xg (Gl)

where ||M|| is the mass of the body B alone. }L is the inertial accelera-

tion of the mass centre CM_ of the body B.

•'• % = TOTr INFEB + NFBC] ' . . (G2)
B

Eqn. (G2) is the translational eqn. for body B.

The total torque on the body B = N^EB + NTBC + (N̂ BC x N̂ BC). N^EB is

T
the external torque applied on the body B, in the inertial basis. N_BC is

the reaction torque applied on the body B by the body C, in the inertial basis.

N_B_C is the inertial position vector of the point of contact of the bodies

B and C from the mass-centre of the body B.

H
Let the inertial angular momentum of the body B be N_B.

The rotational eqn. of motion of the body B is

[NTEB + NTBC + (N̂ C x NFBC)] = NlL = the time rate of
— — — S3

H '
change of N B in the inertial basis. (G3)

Let -C be the shift of the mass-centre QL from the nominal mass centre

of the body B at CL. Let p,, be the position vector of a mass-element in
B _JB

body B .

N

+ / p x p dm.
jj ri

As CL is small, so H,, =. !„ • w^ + / p x p^ dm.
• D Jj i5 XS J3 J5

where I = the inertia dyadic of the body B with respect to 0 .
O



40

If there are rigid rotating bodies inside the body B, like reaction wheels

and motors, then

V- IB • «SB +• !IB +• ' PB * PB dm' (G4)

where h,, = the relative angular momentum w.r. to B of the rotating—

wheels etc.

NH = H + w x HHB B + B X H

• [1B . WB + IB . J)B + hB + / PB x pB dm]

+ u>B x [IB . UB + hB + / pB x pB dm].

*

Neglecting I , we get,

[NTEB + NTBC + (N^C-x NFBC) ] = [I_ . w_ + h_ + / p_ x pc dm
£ > £ > £ > 1 5 ± 5

+ WB x hfi + WB x / pB x pB dm.] (G5)

Neglecting (y. x y.)> and the product of other flexible appendage

displacements, eqn. (G5) becomes,

NTEB + NTBC + (N̂ C x NFBC) = [1̂ . . UL + hD + w, x hjo o o O U

20 20 ^
+ Z [mi(Ri-fri) x y, .] + Z [o3B{mi(Ri-fri)x y.,}]

Z {pBi J (Ri+S!} X «i dSi} + Z
1=1 1=1

PSB // (Rs+y
nB)x ?BdA + PSB-WB./ (Rs+u

nB) x

HX_) x X. dA) + £ p ..0) f//(R.+n ) x X. _dA) (G6), _ U/JL J . 1 5 1 y .D p i j j 1 J5 ljJ5

Eqn. (G6) is the rotational equation of motion for body B. Two equations

similar to (G2) and (G6) are also developed for body A.
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H. Coupling equations for the Bodies A, B and C.

The body C is considered to be a mass-less, extensionally and torsionally

rigid body. But C behaves as a combination of a linear spring and viscous

damper against transverse linear and angular displacements of one side with

respect to the other.

Let V,, V~, V_, and V, be the stiffness and damping constants for transla-

tion and rotation of the ends of the body C. So the coupling equations are

developed as follows:

||M||X = INI^ +. MM||AXA (HI)

NFBC = -NFAC = V ( X - X ) +. V ( X - X ) (H2)

NTBC = -NTAC = V3OJ»B-iJ;A) + V̂ û -û  (H3)

/EB + NFEA = (||M||B + ||M||A)X (H4)

T T N. N.
N EB + N EA = Hg H- HA (H5)

F F
From the equilibrium condition in force-free motion, N EB = N EA = 0 and X=0.

NFBC = M X a n d NFAC =

(H6)
and XA = "

Also if NTEB = NTEB* + NTEB** (H7)
m rp JU m &&

and N EA = N EA + N EA (H8)

* **
where ( ) is the environmental torque and ( ) is the control torque, then

T1 "&$( T1 Â c

N EB = LB(̂ B)
 and N EA = LA

(^A) (H9)

L and L are the specific attitude .control system operators.
jj A
X A f *

N EB and N EA can be determined explicitly in terms of the vehicle

geometry and angular rotations.

Eqns. (HI) through (H9) are sufficient to describe the dynamic system

completely.
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I: Models of the Environmental Torques.

1. Residual Magnetic Torque;

The residual magnetic torque exists in a spacecraft because .of the

interaction,of the flow of current in the spacecraft electrical circuits,

and the Earth's magnetic field vector B.

For a geosynchronous satellite, the torque will be. time periodic.

The time period will be equal to the spin-rate of the satellite. The

magnitude of the torque has to be determined from experimental values.

The torque model is

EBM = TEBM* sin(i]jBBt) and TEAM = TEAM* sinOj^Agt) (II)

Approximate values will be of the order of 5 x 10 ft Ibs.

2. Eddy Current Torque;

The eddy current torque on a body is given by

T e.c. = \ / r x (JxH)dv
c

_̂ . T>

where H = — = the Earth's magnetic field and ]lo = permeability of aluminium.

->
J = volume eddy current density.

i
-»-
r = position vector from the centre of mass.

*
c = speed of light in vacuum.

Also, J = -|̂- (to x H) x r + Vd

where 0 = static electrical conductivity

2
and V <J> ' = 0 for the body under consideration with the condition that

•jr*- =0 on the boundary.

In this case, the field of <J> will be taken as the thin shells and the

plates. This assumption makes the Laplacian a two dimensional operator.

Then the boundary condition that the slope is zero makes $ = a constant,

so that V<}> = 0.
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/. J = .- (wxH)x r

Te.c. = -~ •/ r x [{(uixH)x r} x Hjdv
2ac

= -̂ -jf / r x [{(w-r)H - (H • r)aJ}x .Hjdv
2ac

= -— / [(w-r)[r x (HxH)J - (H-r)"[r x (aixH) J ] dv
20c

A
2ac

2ac

(H-r)[Cr-H)to - (r-w)H]dv

[(H.r)2ai+ (r.H)(r.w)H]dv

-»•-»• . - - * • - » •
Now for the spacecraft, H,to are constants. Also / r • k dv = 0

where k is constant, because the equations are co.r. to the mass centre.

.". Te.c. = -- ^~ S (H-r)2u> dv . (12)
2ac

,2 2 . ,,2 2
•z I [H r + H r + H r + 2H H r r + . . . Jdv* x x y y z z x y x y

2ac

->
/ i O O O

= [HI + H I + HI + 2H H I + 2H- H I + 2H H I ]
„ * x xx y yy z zz x y xy y .z yz z x zx

Assuming the spacecraft to be nominally symmetric,

Te.c. = - ~̂ -r [H2I + H2I + H2I J (13)
2(Jc* x xx y yy z z^
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3. Torque due to Electromagnetic Radiation:

The equations for th.e solar torque are obtained from Baletskii (27)

These are

T = Pe[(l-e ){T x /c r(n-t)ds} + e {2/c n x r (n-T)2ds}j (14)
sp o P . ob.^ 1 1

In these equations

-7 2Pe = constant solar pressure = 1 x 10 Ibs/ft , for a surface

normal to the sun.

e = reflection coefficient
o

n = unit outward normal to the surface S, exposed to the sun.

T = unit vector directed from the sun.

r = position vector from the centre of mass
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4. Gravity Gradient Torque;

The torque on a rigid body caused by the gravity gradient is given by

T (3u r) •*• T
G = • • x (.1 * r) , when G is expressed in the body fixed basis.
. • R .... '

In this equation it is assumed that the Earth is spherical.
r O 9

Also, y = The Earth's gravitational constant ~ 1.4082 x 10 ft /sec.

r = unit vector in the direction of the Earth's radius vector

R = The distance from the CM to the centre of the Earth
•>->
I = The inertia dyadic of the body.

For the body B, the expression for the gravient gradient torques

becomes

TGB i - - ^ KiB22-iB33)d2d3 - * - * '
ix

TGB 2 - -

and

T "\\\
GB 3 - - ^ I(IB11-IB22)d1d2 +

X

->
where dn f d9, d_ are the dir cosines of r.

For the nominally symmetric body, the torque expressions become

(16)

and

In terms of the Euler angles, d-. , d2 and d- are given by the following

equations:
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dl = C°S *B,1

d2 =

d3 =

where it is assumed that the axis n.. of the inertial basis is parallel

to the radius vector of the Earth.
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5. Control Torque Pulses:

The method of modelling the torque pulses depends on the frequency

of free rigid body vibration of the spacecraft, as compared to the

angular velocity of the rotor if there is any. If the two frequencies

are close, an error based sampled data control system will be assumed.

The jet torque pulses will then be considered to be series of gate-

functions having a frequency, which is a multiple of the rotor spin rate.

For the three axes actively controlled spacecraft, the pulsing frequency

will be a parameter of the equations. It will be assumed that linear

superposition of the solutions for individual gate-function-torques will

hold.

But if the error sampling frequency is large compared to the

spacecraft natural frequency, the sampling will be considered to be

continuous and a Fourier's series will be assumed for modelling the

train of torque pulses.
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Conclusions;

The basic features of the present analysis in which it claims to be a

more accurate model of any particular satellite is the following:

1) The hybrid formulation involving modal coordinates, as well as

position and attitude coordinates of rigid elements.

2) The complete spacecraft structural flexibilities are considered.

Structural damping can easily be taken into consideration by modeling the

materials as linear viscoelastic and changing the elastic' modulii into the

corresponding complex modulii. The only limiting problem is the computer

memory. For introduction of the complex modulii will double the number

of coordinates.

3) The model is already large and flexible enough to accommodate

a large class of satellites, which are structurally similar.

4) If stiffened plates and shells are used, which most probably is

the case, then those stiffened elements will first have to be cpnverted

into regular elements by methods already well known.

5) The model can most easily be extended to nonsynchronous satel-

lites.

6) The most important mathematical feature is that the solution

bound is much less restricted than that shown by Likins, Kane and others.

The existing models are almost wholly restricted to a rigid rotor with a

constant angular velocity, together with the flexible elements having very

low angular velocities. So their equations are all linear. In this solution,

the angular velocities will be assumed partially unrestricted so that asymptotic
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expansion methods will be used for each structural/element. The first

attempt at the asymptotic solution will be made by assuming the angular

velocities to be of the form to. = X.. + e . sin p.t where \. will be a1 1 1 1 i

completely unrestricted quantity. But e. will be considered small. This will

require us to generate a new series of functions comparable to Matheu

functions. After completion of the present work we hope to prepare a

comprehensive ta bte for such functions so that ill future work in dynamics

will be considerably simplified.

Finally, I thank you all to offer me this project which has given me

quite a few new insights into the problem of modeling flexible bodies in

motion.
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