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1. A study of the correlation between cloud motion and wind field

haé been initiated. Cloud heights and displacements are being

obtained from a ceilometer and movie pictures,-while winds are
being measured from pilot balloon observations on a near-
simultaneous basis.
2. Cloud motion vectors obtained-from ATS-III time-lapse -cloud

pictures, using the WINDCO p;ogram, are being proceésed for
27, 28 July, 1969, in the Atlaﬁtic.” The purpose is to
investigate the relationship between observed features of

~cloud clusters (e.g., growth, intensification, decay, etc.)

- and the ambient wind field derived from cloud trajéctories

on a wide range of space and time scales,
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‘This report presents the first phase of the work completed on the
pointing -error analysis. This phaée consisted of chqsing a configuration of
thg spacecraft and obtaining a mathematical model of.the dynamic problem.
The assumptions made and the derivation of the guiding equations ére briefly
described in‘the following pages.

The simulation includes elastic sﬁells, plates, beans, rigid bodies and
point masses. The'effects of thermal stresses, large angular velocities and
the effect of the mbtioﬁ of the centre of mass due to vehicle deformation, -
are included in the analysis. ‘In this formulation, the spatial dependences
are maintained linear. But the time—dependenceé are nonlinear. It is in
thesé respects‘that'this formulation claims to be more exact than any
previbus one. |

The current phase of the research is centered on the solution of the
homogeneous part of the problem. The governing equations are a complex set
of coupled integro-differential equations. Attempts are now being made to

obtain the uncoupled eigenfunction expansions for each of the variables.
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Evaluation of Satellite Configurations for Optimum Pointing Accuracy

Introduction

’I;he two principal requirements for scientific sync.hrono,us satellites

are: |
~a) Constant attitude angles.
' >b) Precise determination and control of the avttitude-angle S..

The possible satellite configurationé are:

a) A .spinning satellite,

b) A three qxés stabilized satellite_.'

| c) A dual-spin satellite, which contains a spinning part and a depsun
part. The problems influencing the choice are as follows:

a) For a three-axis stabilized sa.tellite, a very pfecise determination
of instantaneous attitude angles is possible with interferometric methods.
But its motion at a subsequent time 7andicorre sponding Control is very un-
certain, .

b) A spinning satellite provides a very stable platform in space. But
the attitude measurement creates a great deal of uncertainty because of the
flexibility of the structure and the antennas attached to it.

Our present study is to deterrnine the configuration of fhe satellite

offering a stability and accuracy within certain limits,

The Simulation Problem

-

The development of an attitude control system necessarily involves
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a dynamic simulation of the vehicle being controlled, but the accuracy
fequired of that simulation varies widely from system to system, When
space vehicles missions do nof impose stringent attitude control require-
ments, _arid when the vehicle is essentially rigid, the simulation of the
vehicle as a fully rigid body is more than satisfactory; But modérn space

vehicle.s are very flexible with low natural frequencie s. At the same time

' severe demands are being made on attitude control and attitude pointing

error analysis., This is true, especially for remoté sensing operations
and optical observations, So a more improved dynamic simulation is fe—
quired. |

In the pasf Landon[16] and Iorillo [11] pioneered the analysis of the
stability problem of nonrigid masses. They were closely followed by
Karymov [13], Rossi [14] and Mingori [12], where the principal stress was
given on the stabi_iity of ﬁotion. But the most important contributions ére
by Likins [1, 2, 4,5,6,9]. - He has shown a method in which the
vibration frequencies, | and modes of flexible satellites can be analyzed.
Though he mostly uses the lumped mass discrete model, he has shown the
usefulness of using synthetic modes where a structure can be treated as
a combination of rigid and flexible masses [6]. |

As the present analysis is oriented towards pointing error studies,
the principal stress is given on the mode shapeﬁs rather than on the stability
of the motion, For an accurate modal analysis, discrete mass approxima—

tions are not satisfactory. Also the thermal stress effects, left out by
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earlier writers Will be taken into consideration. The technique of coupling
together the equations for the individual appendages through suitable |
contiﬁuity-conditions follows that shown by Huang and others f17, 18,
19, 20]. The analysis will be made for force free métion as well as with
self-disturbing and environmenfal torques [21, 22].

’The_ principal problems that are faced in this analy;is are: a) the ac-
commodation of-the nonvibratory motion of the flexible appendage s, and
b) the complete withdrawal of all restrictions on the anéula;‘ velocities
of bodies. The first condition introduces inertial coupling in the system,

leading to time-varying inertia matrices, The second consideration brings

in nonlinearities due to the centripetal and Coriolis accelerations. The

Coriolis terms bring in a skew-symmetric coefficient matrix. And this is
completely different from the classical "damping' matrix., So none of the
advantages of the classical modal coordinate analysis are available because

of the unrestricted rotation of the components. '

Objectives:

The objective of this énalysis is to estimate the pointing érror. This
is to be obtained in the foilowing method, For a particular base line con-
ﬁguration,' one or more of the rigid bodies mi i=1-4) will_ be the model
of the attitude determination sensors. The rest will be modelled to be the
imaging or sounding sensors, So thi‘s analysis will provide:

a) the extremes of the attitude error between the different sensors;
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b) the extremes of the phase difference of the attitude error;
c) a probabilistic time history of the phase and magnitudes of thei
" error fo; the transient zone after evéry contrbl torque pulse;

d) a computer program to plot out the pitch, roll and yéw limit cycles
for a 90 percent probability density band width;

e) an estimaté of‘the stiffness requirement and the number gmd po-
sitions of _the ahtennae and other 'flexible elements for a givén maximum-
error limit;

f) comparison of the error limits for 3-axes stabilized,A spinning and

dual-spin configurations for the same base-line configurations,

Nomenclature

CM , = Vehicle center of mass

A,B,C = Satellite sub-assemblies

mi, i=5=20 = Point masses (scalar) '
m, i=1-4 = Rigid bodies having inertia tensors.
gl,gz, a, = Orthogonal unit vectors fixed in A,
b;,b,, b, = Orthogonal unit vectors fixed in B,

m,,m,,m, = Inertially fixed orthogonal unit vectors

||M” . = Total vehicle mass'(‘scalar)
0 ' = Nominal location of center of mass in B

o . = Inertially fixed point

Q = Reference point, fixed in B
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R, R ' = Position vector and B-basis maxtrix of Q relative
to O
X X » : = Inertial position of the center of mass and inertial-

basis matrix

G, C = Vector and B-basis matrix for CM motion in B

Wp, Wp ‘ | = Inertial angular velocity vector and B-basis matrix
for B

AQA’ ©y _ = Inertial angular velocity vector and A-basis =

matrix for A -

¥ %2 X
A", A, A = Coordinate measure numbers in A-basis
X, X, x3
B ,B, B = Coordinate measure numbers in B-basis
yi’ 1 yi, 29 yi’ 3 = Displacements of masses mi in B-basis
(i =1,-20)
i1 Yiz2 Vi | .
A7, A7, A" = Displacements of masses m, in A-basis
(i=1to 20)
ei, v ei, X ei, 3 (i = 1-4) = Rotations of rigid bodies m,, mz, m, and m4 in
B-basis
ei 1 9i 2 ei 3 -
A7 ;A?7;A? (i=1-4) = Rotations of rigid bodies m

12 M M3

and m4 in A-basis

s ]
i

Vector and inertial-basis matrix of force on

vehicle
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n, (i=1-8)
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F, (i=1-20)
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Vectbr and B-basis matrig of force on m,

(i =1-20)

Vect;)_r and B-basis matrix of torque on vehicle
Vector and B-basis matri){ of torque on mass mi
(i=1-4) |

Vehiclé angular moméntum about CM

Angular momentum of masses mi (i =1-4)
about its bwn c.m,, Pi (i=1-4)

Position of - mi (nominal)

Mass center‘ of m,

Position vector and B-basis matrix of Qi

relative to Q

Position vectof and A-basis matrix of Qi

relative to Q

Inertial acceleration of masses ‘m, /
Transformation matrix of direction cosines which

transforms the inertial basis to B-basis

Inertial time derivative of vector
Time derivative of vector in ref. frame B
Skew symmetric matrix operator defined by eq, (3).

Displacements of beams no. 1 - 8 in B-basis

Displacements of beams no, 1 - 8 in A-basis
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Displacements of cylindricél shell B in B-basis

Displacements of cy_lindrical shell A in B-basis
Displacements of shell B in A-basis

Displacements of shell A in A-basis

Displacements of plates no. 1 to 4 in B-basis

Displacements of plates no, 1 to 4 in A-basis

Mass per unit length of beams, i=1-4

‘Mass per unit area of shells A and B

Mass per unit area of platesno, 1 - 4

Mass centre shift for beam, plate and shell

‘deformation in B-basis

Mass center shift for beam, plate and shell deforma-

4

tion in A-basis

» Local orthogonal coordinates for axes for beams,

and fixed to B

Local orthogonal coordinate axes for beams and fixed

to A

Beam elastic deformation in pi-axis in B

Beam elastic deformation in pbimaxis in A
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Transformation matrix for p.-axes to B-basis

Transformation for Api—axes to A-basis
Inertia force on the element of beam no, i (1-4) in B-basis

' th .
Inertia force on the element of the i -beam in p-

basis, i,e. local coordinates

’ th
Position vectors of i~ beam element from the
reference end in local, B-basis and A-basis
coordinates respectively
o ' .th
B-basis position vector to the reference end of the i
beam
A-basis position vector to the reference end
th

of the i beam
p-basis position vector, transformed from R,
p-basis position vector, transformed from ARi

°B,

i

Tl

Thermal bending moment in the ithl beam

Modulus of elésticity

‘ h . .
Moments of inertia of the it beam in the direction

of 1,

and . . respectively
b 1’ 3
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_ .th . . .
Thermal curvature of the i~ beam in the direction

of p,

1

5 and :i, 3 respectively

H

Thermal bending constant for the ith beam

Characteristic time for heat transfer across the

ith beam

Beam attitude angles w,r, to the sum

, th
Thermal curvature maximum values for i~ beam

. . ' th
Moment of inertia sensor of the i rigid body

in A-basis

. | b
Moment of inertia sensor of the it rigid body in

' B-basis

Stiffness cf the ith plate.

t

Mod, of elasticity of the i B plate.

: .th
Thickness of the i plate.

. . .th
Poisson's ratio of the i ~ plate,
Differential temperature distribution of the_ith plate.

th

Thermal coeff, of expansion for the i plate.

Thermal constants for the ith plate.

Attitude of the sun from the plate nominal normal vector,
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gB, r’ .gB, o’ -gB,3

sTB, 1 sFB, 2 §B

b4

3

sp’ "sB °'B o

17

Flexﬁral attitude change of plate ele-_ment from

the nominal normal,

Radial, tengential and axial deformation of an
element of shell B, |

Inertial force components'per unit area of shell B
in b-basis,

Thickness of shell B,

Polar cylindrical coordinates for shell B,

Nominal radius of shell B,
Poisson's ratios for shell B,
Modulus of elasticity for shell B,
Identity matrix,

Differential temperature distribution of shell B,

Attitude of the sun from the nominal normal of the

shell element,

Flexural change of attitude of shell B element
from the nominal normal,

Thermal constants for shell B,



18

- Tlexible Appendage Equations of Motion; -

A) Equation of motion of particles m;, i=17, 18, 19, 20.

The equations of motion for a particle are

E = mi'Ngi : | ' O AQ)

Now a = the inertial second derivative of the sum of the displacement
N _

vectors (X+C +R + r, + Y—i) . Vectors C and y, are assumed to be con
tinuous and small, such that the terms containing square and higher powers
of these and their derivatives are neglected.. The vector X establishes the
trajectory of the vehicle mass center (See Figure 2).

-Equation (1) in the B-basis is given by

F!= m.[N
1 1

o oy oo 2 [-] N
+
X+ C+ yi+ ZQ_BX(C Yi) + EBX(C +R+ri+ yi)
twpx{eX(C+R+r +y)} - A(2)

where N("4") = differentiation in the interial frame, with time,

0 —V3 v2
Now defining ¥ = | v, 0 v, | A(3)
- 0
_ T . o
where v = [Vl’ Vo v3] , then vy Xw = vw,

.. Equation (2) becomes
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Fi:mi[®x+c Ty, 20 ( ~.-C+_yi)+wB(C+R+ri+yi)+ww[C+R+ri+yi]]

B
CA4)
Aa) Expression for C (Shift of mass center)
1 —20 4 £ | *
4 o ,
+ 2, [ [ ep x;aA] A(5)
k=1 i '
1 20 :
“ Tl Z m.y, +e . (say) (5a) .
i=1
.» Equation (2) becomes:
. LR L .
os . e ~ _ - Q +
Fl 1[®X el ”Ml J:/l m -y, + ZwB(el ”M Jz\l mJ j + Yl) 1
~ ] 20 ' 20
+dples = T ), my +R4T 4y + GO (e E YR Y]
j:l ::
A(6)

. This is the guiding equation in B-basis for masses

m m m m and m m m

170 M18° M1g90. Moo 130 ™M1ar M5 Mg e




20

B. Equation of motion for beams no, 1, 2. 3, 4

In the local coordinate frame By let B be along the axis of the beam
. H

' _ ' B
as shown. The transformation matrix to the b-frame is given by By where -

b1 P g ° b, By ° b3
B _ o b o b > b B(1)
T IS T S | M2 72 M2 73
B 3 ° b B3 ° b, By 30 Py
B | ' . .
by is a constant for the configuration,
AN O | B2) —> G = [wPI0]
L ' i Tty Ay
B, B
and Sil"-i’ 1 - [p‘i ][Si ] B(3) ’

B .
where si and si are the position vectors of the beam element from one

' B
end in local and B-basis coordinates respectively, Let dm = o N dsi =
B

Pp * dSi .
1

the elemental mass =

—

The inertia force on the beam element, PB , ‘in B-basis is given by
i . .

~

B 2 °s .0 ~ 2 o -] B
'dsi[@>f+c+”i+2“'[c+”i]+“’B[C+R+Si + ]

F = B

p
b Bi Bi

+ w W C'+R+Si +ni]]

BB[

.. In local coordinates, the force is given by
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.. B o o Bo® L R e L N & L 2146 [CaR + 8B
pri“[“i]' Fp = dme [Qx+c+ni+2w8{é + 1+ 8[C +R + 57+ m ]
+w.w [C +R +SB+n]]
BB it T
B s Be: B, B~ B s
= dm[pi X + by C+ B + 2”1 wBC + Zpi wp Ty
o o, . B LB B B~
S.” 4 ., ani+}.Li waBC

B° - B © o
: +pi wBC-i-p.i wRi+p.i wp S, i
e w wBRi + pinwBSi oy waBni]’

where Ri = B-basis position vector to the reference end of the beam,

20 P - ~
1 ! 5‘ m.Yj +kZ: f kande + ff psAgAdA
=1 0

Now e = - L
IV B = .
~ 4
t [ ogptpgant 2 [[e) x, dA]
m=1 m
and let C = - "MH " Pp f ni<:ls+e2 (say)
: ' 10
p
B £
i B,T -~ -
= - “M“ [p.l] (]; qldS-i—ez.
B e "B 5 pr A= B.T
o pri:dm[”i®X+ Ky € T MUl ot () {qidSMl (b )G
p .
B £ -
: BTf El.ds+ez +2pBwB(piB)Tal

{B2a)
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P .
B T B~ i BT/ — - B~ ~
Fpg e Solig) gy + oy wegl Tl ) ; q,ds + e, ]+ pogepR,
b o ol Bls -G | uy Sgpley ) )] B(3)
i B B s 1 B B‘
B, = . B.T
= = Y. 4
tet wR = [ MR, 0 Rp= (k) (R | B(4)
let piB W(p?) be denoted by w and
‘B B.T ok B(3)
By w %(pi )" be denoted by w where w is any matrix,

Equation (35 can be written as

o~

bFHi—dmp Ble% + & 2+sze2+w(e +R)+wco(e +R)))
PB .

pBi £ *a i sk I
+qi-mg qids+2mqu—2mwB£ qids+wB qi

°B. °B. .. 4
o X o o FW i >:<>‘!<f d
T ° I]MIlfqu+“’B Sitk 1 teg Tl % o H°°
+w Si- 11]
or . F = dm HB{@">°<+S + 20,8 +£(e +R) + aw (e, +R)}
bu, i 2 g2 TUp T2 T T¥gR 2 T
2 2
47 * d %* ok I ]
+ 5 + 2w dt-i-(w +wB) qi+kaqu
dt L io0

B(6)



23

where k = -

B(a). Thermo-elastic considerations on the beams

The thermal oscillations of the outstretched booms cause considerable
changes in the attitudes of the spacecraft., The thermal curvature of the |
boém will be assumed to bear a linear relation to the local heat input. This
| assumption is made with success by Y. Y. Yu [23] and Etkin [24].

The effect of heat transfer across the beam is given by the following

equation. The inertia force on the beam

. . " — 9 q. 9 Mg,
= F = [Emr L)l emy Jam = Ber ) —E 4 =2 ldm
Hi 2 D ) i, 2 77 es, 8s;
2 —
a4qi 3 ° MTi 2 |,
and bF = E(in 2)- 4 + 2’ dm B(7) and (8)
i, 3 ’ as, 98, '
— i i
= - ). ;E
where MT_ E(in, 3) T B(9)
i, 2 i, 2
= -— . x
and MT, E(in’ 2) T . B(10)
i, 3 i, 3
Also H%T' 2 %Ti 2
—de o ho K, cos(a, ,+6, _)
ot T i i, 2 i, 2
. aqi ) ‘
, - — B .
where ei, 5 asi _ _ _ B(l1)
x
| ’ Tis %Ti 3
. L .
and ———*‘—at = ——"—T + Ki cos (a/i, 5t ei’ 3),



24

o094 4 "
= —= B(12
where ei, 3 55, (12)
1
. Solutions of (B 11 and 12) are taken from Yu [23] and, for small 6 , and
’ )
ei’ 3 are given by
. . 2
* 91, 9 q,
% =% i, 2. i,2 .
T . — - o B(13
e Tyarcosly p* 55 7 85, ot ) (13)
* aq azq '
and Z = - i, 2 i,2
‘ = B(l4
- Ts T3 08l 3% s 85,0t ) (14)
Equations (13) and (14) are approximated by
S — 3q, BZCI. . '
¥ C o= SE* cos o, . - (—-—1’—2- - 2y, sin a, B(15)
T, T, i, 2 38, 8s. ot i, 2
i, 2 i, 2]_ i i .
2
x| %3 99, ] '
= - 3 * ‘. i ) B 16
> Zp |cose 3 - (Tg ps, ) “1,3J (16)
i, 3 i, 3 1_ 2 i i
B(b), Final guiding equations for the beams -
2 ]
- 09
AB asiz
— 4 ’ . 3 4
129, * 9%, 29,
E(b1, ,) -* cos a, , - = > .
. | . > =3 _
L3 as? Ti 2 b2 587 as>at [ 51P% 2
B i . . 1. 1
B(bl, 2) —‘—Z-‘ -%T cos @, ;= ( ; T 3\ sina,
b 28, i3 b 85 CERE i,
_ - "
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%3 B e 00 0
B 0 by [eX + > + 2w 8%
0 J
Iy : ~ o~ A
+ ooB(e2 + Ri) + wB t.oB(e2 + Ri)] . B(17)

In this equ.ation the gravity gradient torque on the beam is not consideréd,
as that would make this equation nonlinear. The gravity gradient torque
is assumed constant for small deflections of the beam, and is so will

be considered directly in- the vehicle equation of motion, These equations
ére simultaneous linear fouﬂh order integral equations of the Fredholm
type. The kernel for a physical object can be separated into the spatial
and time dependent functions, The solution technique will be shown in

a later chapter,.



26

C. Equations of Motion for Rigid Bodies ml and mz ,

A rigid body of finite dimensions has six degrees of freedom. . So to
" describe the motions of the bodies m, (i = 1,2), both the force and the

torque equations are to be considered,

The force equation is formally the same as the equation (A6) derived

for point masses.

: . 20 20
oo 1 Qo ao o 1 ©
Fi = mi[®3f+ e1 - m jz:l ij] + y1 + ZwB(e1 - m Z_,l m]y] + Yl)
~ L 20 ' . 20
o ~ I~ _ N
+ wB(elf ” M‘ I szl mjyj + ‘R + .I‘i + Yi) + waB(el “M ” jglmjyj +R+ri+ Yi)]
(i=1,2). (1)

The absolute angular velocity rwi of the rigid bodies are given by
rw, = w, + éi . (C2)

.. As derived by Likins and Gale (1),

/\/
R SN
B i, jk “B i,k “B'"i
. . .« o - (rl . - .
o T gt O F U g ep T I gt wp) wplil gy - wp)

~ . B
.1l
Teg Tk

Slei ; (i=1,2). (C3)
Equations (Cl) and (C2) are the guiding nequations for the rigid bc_>dies

m1 and m2
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D, Eguation for Thermal and Flexural Motion for Plates no. 1 and 2

The load-syste-m on the plates is shown in Fig. 4..

As in the equations for the'beams, the general solution for the plates
under inertial and thermal loads will be found.fix"st. These solutions wi-li
then be coupled to the sélutions for the attached rigid bodies and shells
thrOugh_ suitable continuity conditions.

- To keep the governing equations in deflections linear, the extensions

of the plate will be considered to be decoupled fro}n the flexural motion,
The coordinate system for each plate is stationary and parallel with réspect
to the b-basis and have the origins located at the nominal center of the plates.

The axis X, passes through the mass center of the attached rigid body m

B | 1
The elastic forces acting perpendicular to the nominal plate surface

on the elemental mass of sides d xl and d x_. =

B B ¢
— 4 4 4
9% 3 9 X; 2 9 X 3
= D —_— 3 2 —= + * d x. -d x
p 4 " 2 2 2 1 2
1_8X1 E)x1 axz_ é)x.2 B B
B B B B

, 3
(pEy) (phi)

where 'Dp = the stiffness of the plate =

. 2.’
i | 121 - je)
_ .th
pEi = Mod. of elasticity of the i plate
v ' .th
ﬁhi = thickness of the i~ plate
. . . .th :
p, = Poisson'sratio of the i plate.
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Let pTi be- the differencé _Of _temperatux;é between the two favces of -the
ith plate at any point. For a thin plate, a linear temperature distribution
across the thickness of the plate can be assumed, Also, the plates are
as.sumed homogeneous, so that the thermal bending moments at a point are
‘equal in two orthogonal directions,

- So the thermoelastic forces perpendicular to the plate

o
P

i 2
= —D (1+ p)+V T-.dx -dx
. i

phy Py P P Bl p?

2 2

where‘VZ: 32+ 82.
axl ax2
B B

Then the guiding equation for the plate becomes, considering only X; 3 =X3
b

,ozi(l +: ;.Li) 5

4 B D
D * v X, + D v T, =
P; ! 8y p; p1

oo oo 4 pp' oo oo
- Py [OX + &, - jzz)l Mfij dA +

p ' P
’ ~ s pJ e ° :J ~ o~ : P; '
+20p8; - ), Tar /S Xj dhtx; ) (op+egwpl(e; - El I MJ” S xyan +

j=1
+R+ri+yi)]»El (D1
where _
4 ppi - .
= - TS dA B
c = ey 2 (Tl /Sy | (b2)

j=1
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A model of the variation of pTi along the mid-plane of the plate, i.e.

in the x,, x_ plane is obtained as follows, It is a first order time de-

BlB

pendent model made in a way similar to that used for the beam.

Let ﬁp be the attitude of the sun from the nominal normal of the plate,

i

e

Then for small deflections, let p; be the rotation of the plate surface

. i
normal due to flexure of the iﬂ1 plate,

i, pi +
. e + = K cos + .
at p (B, + Pp)

. i i i
i

Then the solution of (D3) is given by

T =k 7 _cosB_ -k T sin[ (B -7_B
4p1 pipi Py pipi i i i

Keeping only the first power of -rp , the solution becomes

_ i
T = _T. cos + * -T ¥
i, 0 [Bpi P, piépi]

where pT, = k' + 7 = the maximum value of pTi

LO By By

p, b, P, b,

(

D3)

(D4)

. . .th
~In this analysis, kp and Tt are thermodynamic constants for the i

i Py
plate, For small values of

X oX 82x | 82x
—1=3and 13; BQ\ =( 1‘3+ 1’3) and

9 X 9 X P, 9 X,ot 9 X, ot
B 1 B 2 i B 1 B 2
_ - axi' 3 2 axi 3 2 —1/2 . :
p. = i + [ T . Hence, on further linearization
P. 0 X 0 X ’ )
i B 1 B 2 _
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So equations (Dl) arid (D5) together govérn the thermoelastic flexure of

the plates.

E. Equation of Motion for Shell B

.T~he shell B is assumed to be a uniform, thin, isotropic, circular
cylindrical shell, For the elastic analysis, the linear equai.:i.ons of Vlasov
(25) will be used, The analysis of thermal effects follows that made by
Kraus (26).

The orientation of the cylindrical polar coordinates: Xy X4 and X,
' ' B -B B

is shown in Fig, 5. Let gB r be the radial displacement of the shell.
. b

gB and gB 3 are the displacements in the tangential and axial directions.

b

y O

sTB is the temperature distribution on the mid-plane of the shell, The

- distribution of temperature across the thickness.of the shell is assumed to

be linear, with a constant gradient over the mid surface,

Let sPB, 1’ sFB, 5 and SF B, 3 be the inertia forces per unit area
on a shell element along x Xx. and x_ respectively.
. 12 72 3
B B . B

sPB,l
= 8+ E_ +20 (8+E )+2 R

Fa s [0X+8 + £, + 20,(8 ey tplet R gy

sFB, 3

+ wg wB(C + R+ gB-)]ShB- P

. sB (E1)
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In equatiqn (E1), R is the position vector of the plate element from the mass |

center 0 of the spacecraft in the b- ~basis,

Let ¢ ='¢, - LsB [fEen. - (E2)
| Ml »

Let pBr be the transformation matrix for changing the b-basis vectors to

the normal, tangential and axial components.

cos x sin xe 0
B B
. Br . ' ' A
ce M = - sin x cos 0 0 (E3)
: : 0
B
B 0 0 1]
gB,r gB,l_ sFB,r ] { sFB,l
T Br =r ' ’ Br
¢ = = F = =
-+ &g ’8, 6 " fp2 ¢ A B tSFB’ 0 j H ‘L s'B, 2
gB, 3/ gB, 3 SFB, 3 SPB, 3
_ . t : :
where sFB, r and sFB,-e apd sPB, 5 are the radial, tangential and axial

components of the force vector SFB .

~

_"'>r Brav o
S = [pBheK + P E 2ul o @ F ) LB R EY
+“B pOp(C+R+ )by pp
or
=-r . Br o
SPB_[p {@X+e +2wBe4+w(e +R)+w (e + R)}

p

oar_ sB oo T ’ r e r -1 °r_ pSB or
t &g =T vagBdA)JrZ{“B gl g} (G5~ Tm] ff&B dA)
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r':, r.-1 r -1 r
__Psp lff'grdA)]T1 
Tl B~ 1s'B" PsB
T A B P
Settling w(p.B) = wp 3 pBw(pB) o= Sp and “Bw w(uB) ‘— Wpo

>r o T e e o~ Y +03 e, +R)
s B-ShB psB]:pB{®X+e4_+2wBe4+(wB BB 4

s I sB o I * or psB s I
t(Ep - Yd] r[éBdA) + ZwBr(éB “ MM ff £, dA)
e X x* r PsB ro. | ‘
SCNEPMSTEMES rve N, dA)J , . (E4)

As in the case for the plates, to reduce the high-frequency response,

the contributions of £ and gB 3 in the inertia force are neglected,
b

B, 8
So the equationsof motion are given by
2 — 5 5 - 3 ¢
e . g | 2% 9 ¢p Ll 9 ¢p
3 - - 4 -
B, 12a2 ] x35 ) Xyt ) xe ag ) Xy . 9 xe2
B B - B B B
| 3 | |
g 2 9 _ | _
- . (E5)
a 2 0 x3 ‘ :
B 3
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2 ' 5
h o 0
¢ _ s'B g . B
“B,6 2
’ ba 3 %379 X 9 X,*98 x
¢} 3 2
— B B B - B
(2 + 9 63
"B’ : 1 3]
-— - (E6)
a 9 x, 8 X a 9 x
B B 3 B 8] B B 0
4 4
3 ¢ 9 ¢ 9 ¢
14 B B B :
bpr = 2V % " 2 gt 2 T (ED)
aB aB 0 X3 0 x3 9 xe 0 xe
— B B B B |
- and - . :
2 . 2
h : 2 .h 4
4 2 4 S B
——(v +2V + 1)V E (1 - ) 9 - )VZE,
B, r 4 s' B 4 2 :
12 aB ? 12 ag a-rx3 8 x,0 x
B> B~ B
2 4 2
(1-gpug) 865, (1 - ghg) 4 (1- b 4 s'B
+ = V3 F_ 4+ B V(
a4 5 X_4 h -E az s B,r a2 aB
B 3 B "sB B B
B
_ 2
2
Setting S,B = kz, vV =aZV2 X, =a,- X, ; such that
2 B B ? 3 B 3
12 a B B
B
2 2 , '
9% - 22— 2, v -5 ama VP - OV
9 X3 o] XO
B B
then the last equation of motion becomes
. 4 4
2 i) 2)
-Y +2f + B,r 2kg (1 = spp) 4 4 ngB’r
0 X3 0 X, 9 X
— B B - B
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a & (1- p ). ;
. 4 S ) :
(- p)—PL = a Pra+ ps®B T+ B sBgtp .
B- 4 B - s B ) B 2 s B.r
9 X 12 E k 4
-3 sB B
B -
(E8).

- E(A). Equation for sTB

In this case also, the method of modelling sTB is analogous to that
used for the beam and plate,

Le_t BSB be the attituderf the sun from the no‘minal-normal at an arbi-
trary point of the shell. Also, let ﬁ:B v be the rotation of the shell element |

from the normal.

0  sTm K. :
ot + - = ksB cos ((SSB + ﬁsB) . : (E9)
sB . '
Néglecting all terms containing -r»sz » Tap o and other higher powers of
T _, the solution to (E9) is
sB _

. - . sk _ . o % ’ E

s = sTp, 0 ©SIPsp * Bsp = Tsp” Popl (£l0)
where T =k o7 = the maximum value of T

s'B, 0 sB sB sB’

' _ ksB ‘and T.B are thermodynamic constants for the shell B,

als

Now, if B;B is small, then

2 2-1/2
£ (gB,e ) 96p | ) . 36_53_1'
BsB - a _
B aB 0 xe d xS
— B B

and
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| o 2 2 -
A R VL VY LT
sBap B0 5 w8t 8 xpt ag 9t | & xo B 2 x4
Cpe g3 B B

Neglecting ;3:8 in (nl0), but keeping we finally have

Psp

2 2
T = T cos - T T L ° gB‘r +'a gB,r sin
's"B” s'B,0 Psp sB,0 sBfa, 9 x_ ot 8 x ot Psp -

(Bll)
Equations (E5), (E6), (E7), (E8) and (E11) are the required guiding edua—

tions for shell B,

F. Equations of Motion of the Elements of the Body A

The equations of motion of the elements of the body A are obtained in
the a-basis in exactly the same way as that used to describe the motion
of the elements in body B in the b-basis. In this case, all the angular

velocities, transformation matrices etc. will relate to the a-basis. The

final dynamic coupling of the bodies A, B and C is obtained by transforming
the reaction forces and couples between the bodies A and C to the b-basis,
and solving the resulting equations for the complete vehicle in the b-basis.

Let @A be the transformation matrix for changing the inertial basis

to the a-basis.

—

So if NF be the force vector in n-basis corresponding to AF in a-

basis, then

AF=®A-NP orNF:G)A-AF,or
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- — _]_ — .
where BF is the vector in b-basis corresponding to that in g—bésis.
= d =
Let @y _LEA and wg, EB , Where EA and iB are angular

rotation vectors of bases A and B, respectively.

In the application of equation (F1) and the preceding equations of mo-

tion, two important cases can occur, and these are treated as follows:

Case I, The body is nominally inertially nonrotating.

Iet the body A be nominally fixed in the n-basis. Then ﬂ’_A are

small, and the following approximation can be made:
0, = [ - 7, ~(F2) -
where " ' is the identity matrix. A similar argument holds if Yy are

small,

Case II. The body is rotating.

Let the body B rotate with respect to the inertial frame having in-
d ted .
stgntaneous Euler angles denoted by LLJB, 1 L]JB’ 29 l,bB 3

LIJB 3 is the spin angle.

and re the pr sion-and
) liB’Z q;B ;@ precession-a

)

nutation respectively., Then the transformation equation is given as follows:

e
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Eqns. of Motion for the Composite Bodies

To describe the motion of the space vghicle, there are two quite different
approaches. The first method is to write the equations involving the motion
of every movable mass into one complexvéquation. Thebsecond method 1is to
solve the equations of motion of the sub-bodies separately and then accommo-
date the interactions between the bodies as external forces and torques. For
simpler éonfigurations and lumped mass approaches, the first method is
advantageous. But when the bodies perform large relative .rotations, and when
continuous mass distribution is assumed, computational efficiency increases
greatly Vith the second method. In this analysis,vit is the second method

that will be used.
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G. Egn. of Motion for the Body B

Let NfEB be the external forpe in the inertial basis on body B. Also

let NEBC be the reaction force of body C on body B in the inertial basis.
F F .. _ Ns : »
(N.EB f.N BC) = ||M||B.§B _ (G1)

where ||M||B is the mass of the body B alone. XB is the inertial accelera-

tion of the mass centre CMB of the body B.

- ‘NXB =-rﬁ§rrg 'EB + NBC] . ' . . (©)
Eqn. (G2) is the translationél eqn. for body B.

The total torque on the body B = NEEB + NTBC + (NﬁBC p:s NEEC). NEEB is
the external torque applied on the body B, in the inertial basis. NEBC is
the reaction torque applied on the body B By the body C, in the iﬁeftial basis.
NEEC is the inertial position vector of the point of contact of the bodies |
B and C from the mass-centre of the body B.

Let the inertial angular momentum of the body B be NEB.

The rotational eqn. of motion of the body B is

[v'EB + N'BC + (N'BC x N'BC)] = ", = the time rate of
change of NHB in the inertial basis. . (G3)
Let —CB be the shift of . the mass-centre CMB from the hominal mass centre
of théfbody B at OB. Let Py be the position vector of a mass—-element in
body B.

N'B . = S (py-Cp) x (= Cpddm = T, . wy + |M]], . Epxcy

+ J Py X Py dm.

As C_ 1is small, so H, =. IB

B B

- Wy + f EB X,EB dm.

where IB = the inertia dyadic of the body B with respect to OB'
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If there are rigid rotating bodies inside the body B, like reaction wheels

and motors, then
CHp.= I - wp T EB + S ?E b's gg_dm. (G4)

where EB = the relative angular momentum .r. to B of the rotating

wheels etc.

N, . ©
HB H_ 4+ B b ¢ HB
= [IB s wp + Ip . Wy + hy + J Pp ¥ Pg dm]

+oug x [IB . w

g T hg t S Py X Py dm].

.

Neglecting IB’ we get,

[N'EB + N'BC + (NYBC x N'BC)]

[IB . QB + EB + [ pp X ﬁB dm

+ wp X hB + wp X J Py X Py dm. ] (G5)

Neglecting (yi X §i), and the product of other flexible appendage

displacements, egn. (G5) becomes,

T T

T i .
NTEB + NTBC + (N'BC x N BC) = [Iy - g + hy + 0y x hy]
20 ) 20
+ .z [m (Ri+r.) x §,1 + _z [wB{mi(Ri+ri)x yi}]
i=]1 i=1 )
+ g { r* (R +s2) x A, as.} + g I [ Iz (R +sB) : dé 1
oy Pmi To iU XNy T 2 plPpy Jo (RyTR) XNy CRy

n, .
+pgy JI (Rs+unB)x ELdA + oGS (RS+UnB) x Eyda .

2

o ’ N .
¥ i=§ Poi UTRAXG) x X; pdA) + T o, 0p (I Ri#ng) x X,

BdA) (G6)

Eqn. (G6) is the rotational equation of motion for body B. .Two equations

similar to (G2) and (G6) are also developed for body A.



41

H. Coupling equations for the Bodies A, B and C.

The body C is considered to be a mass-less, extensionally and torsionally
rigid body. But. Cc behaves as a combination of a linear spring and viscous
damper against transverse 1inearAand angular displacementé of one side with
respect to- the other.

Let vl, Vys Vg and Vs be the stiffness and damping constants for transla-
tion and rotation-of the ends of the body C. So the coupling equations are

developed as follows:

[l 1% = el g + 1l %, | ()
F.. . F, . _ . O : ’
N"BC = -N AC = yl(xB—xA) + v, (X5-X,) (H2)
i R S B _ ' \
N"BC = -NAC = vB(wB wA) + v4(wB wA) (H3)
NEB+NEA=(HMHB+HMHA)X (H4)
T T, _ N N.
N'EB + N'EA = "Hp + H, : (H5)
From the equilibrium condition in force-free motion, NFEB = NFEA = 0 and =0.
. F Ny F Ny,
C NBC=]IM||BXB and NAC=||M||AXA ;
| 1l 1 ) e
and XA__HMHAXB )
Also if  N'EB = N'EB" + NTEB | (H7)
and NUEA = NUEA" + NTEA™T | | (H8)

* %
where ( ) 1is the environmental torque and ( ) is the control torque, then

T %% T %%
N EB =LB@B) and NEA = LA(_IQA) ‘ - (H9)

B A

* * '
NTEB and NTEA can be determined explicitly in terms of the vehicle

L, and L, are the specific attitude control system operators.

geometry and angular rotations.
Eqns. (H1) through (H9) are sufficient to describe the dynamic system

completely.
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Models of the Environmental Torques.

Residual Magnetic Torque:’

The residual magnetic torﬁue exists in a spacecraft because of the
interéctionzof the flow of current in the spacecraft electrical circuits,
and the Earth's magnetic field vector B. |

For a geosynchronous satellite, the torque will be time periodic.
The time.period will be equal to the spin-rate of the satellite. The
magnitude of the torque has to be determined from experimental values.

The torque model is

7

EBM =

T _ox . T T %
ERM 51n(¢BBt) and FAM = "EAM 51n(¢ABt) (1)

Approximaté values will be of the order of 5 x 10-6 ft 1bs.

Eddy Current Torque:

The eddy current torque on a body is given by

-> : L > > >
T e.c. = i} J r x (IxH)dv
c .
> 3 . . _
where H = — = the Earth's magnetic field and yo = permeability of aluminium.
-
J . = volume eddy current density.
> ‘ .
r = position vector from the centre of mass.
*
c = speed of light in vacuum.
->
Also, J = —%E (; X ﬁ) X ; + Vd
where 0 = static electrical conductivity
and V2¢ ‘= 0 for the body under consideration with the condition that

%%- = 0 on the boundary.
In this case, the field of - ¢ will be taken as the thin shells and the
plates. This assumption makes the Laplacian a two dimenéional operator.

. Then the boundary condition that the slope is zero makes ¢ = a constant,

so that V¢ = 0.
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3 = A%Ei(;Xﬁ)X ;
’ %e.c. Q: 1 = -j ; X I{(Exﬁ)x ;} X ﬁ]dv
20¢c
=1 s Tx HEDE- E ¢ Ddx Aoy
20c |
=L 1@DEF x GE&HI - @D x @dlav
20¢
- @DIG e - Ehillay
20¢ ' _
_ 1 f e I
= - o [(H-r)“wt (r-H) (r.w)H]dv

> > ' . -> > .
Now for the spacecraft, H,w are constants. Also J r . k dv =20

N . _ ‘ »
where k 1is constant, because the equations are w.r. to the mass centre.

. 1

S Tewe. = - —— [ @ED av (12)

20c

w 22 . .22, 22
= - L xS+ HrS 4 HrS +2HH rr + ... v

X X vy z' z Xy xy -

20¢

w 2 2 2 '
=--Y— i1 +HI_ +HI_+20H I +2BHT _+2HHTI ]
 26e X xx vy yy z 2z Xy xy y .z yz z X zx

Assuming the spacecraft to be nominally symmetric,

-> .
. w 2 2 2
Te.c. = - = [HT 4+ Hylyy +HI ] : (13)

X X%
20c
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3. Torque due to Electromagnetic Radiation:

The equations for the solar torque are obtained from Baletskii 27).

These are

T = Pe[(-e )T x /T Dds) + € {2/, nx7T @T)ds}]  (T4)
sp .o Si o Si
In these equations
"Pe = constant solar pressure = 1 x 10-7 lbs/ftz, for a surface

normal to the sun.

e, = reflection coefficient

> .

n = unit outward normal to the surface Sl exposed to the sun.
-) 3 . » )

T = unit vector directed from the sun.

_)' . 3

T = position vector from the centre of mass
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Gravity Gradient Torque:

45

The torque on a rigid body caused by the gravity gradient is given by

. o = 4
TG -~ Bur) x (X
R3

>
* r), when

->

TG is expressed in the body fixed basis.

In this equation it is assumed that the Earth is spherical.

Also, U = The Earth's gravitational constant = 1.4082 x 106 ft3/sec.2
; = unit vector in the direction of the Earth's radius vector
R. = The distance from the CM to the centre of the Earth
N :
T = The inertia dyadic of the body.
For the body B, the expression for the gravient gradiént térques
becones
T - _ 3 _ _ 2 2.,
6B 1 = =73 [UpgyTp33)dydy * 1pyp8y 95 = Tpypdydy + Tpp5(dymdy)]
T _ _ 3u _ 2
b2 = n3 [(Ig337Tp19)d1d3 + TIgp3d1d; = Tgypdpdg + I1313(d d3)]
and
T . _3u _ 2
3= ~3 [(py17Tppp0d dy + Igy3dpdy = Tppqdidy + SN
s 3 + ‘
where dl’ dys d3 are the‘ dir cosines of r
For the nominally symmetric body, the torque expressions become
. T _ _ 3u
B l=-73 [(Tg)5Tg337dd5]
T - .3
273 [(Tg337Tgy7dyd3]
(16)
and
T - - 3u
B 3= 23 [(Tgy,- B22)d ]
In terms of the Euler angles, dl’ d2 and d3 are given by the folloﬁing

equations:

(15)
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= o ! - i i
dy = cos Yy, cospy , cosby 5 = singp , sinfy g

= . 1 - o 7 .
d2 .cost’l cos.\bB,2 51n¢B,3 + Slan,z cost,B_ B (7))
d3 = - Slan,l cosll)B,2

where it is assumed that the axis

to the radius vectof of the Earth,

-
n

1

of the inertial basis is parallel
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Control Torque Pulses:

The method’of modelling the ﬁorque pulses depénds on .the frequency
of free rigid body vibration of the spacecraft, as compared to the
angular velocity of the rotor if there'is any. If the two_freguencies
are close, an error based sampled data control system will bevassumed.
The jet torque pﬁlses will then be consideréd to be series of gate-
Afunctiogs having a frequency, which is a multiple of the rotor spin rate.
For the three axes actively controlled spacecraft, the pulsing frequency
will be a parameter of the equations. It will be assumed that linear
superposition of the solutions for individual gate—function—tofques will
hold.

But if the error sampling frequency is large compared to the
spacecraft natural frequency,Athe sampling will be considered to be
continuous and a Fourier's series will be assumed for modelling the

train of torque pulses.
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Conclusions;

The basic featrures of the present analysis in which it claims to bé a
" more Aac.curate model of any particular satellite is the following: -

1) The.hybrid formulation ihvolving modal coordinates, as well as
position and attitude coordinates of rigid elements,

- 2) The cdmplete spacecraft structural flexibilities are considered,
Structural damping can easily be taken into consideration by modeling the '
materials as iinear viscoelastic and changing the elastic’ modulii into the
corresponding complex modulii, The only limiting problem.is the computer
memory. For in.troduction of the compléx modulii will double the number
of coofdinate S.

3) TheA model is alr’eady large and flexible enough to accommodate
a large class of satellites, which are structurally similar,

4) If stiffened plates and shells are used, which most probably is
the baSe, then those stiffened elements will first have to be épnverted
into fegular elements by methods already well known,

5) The model can most easily be extended to nonsynchronous satel-
lites_.

6) The most important mathematical feature is that the solution
bound is much less restricted than that shown by Likins, Kane and others,

The existing models are almost wholly restricted to a rigid rotor with a
constant angular velocity, together with the flexible elements having very
low angular velocities., So their equations are all linear. In this solution,

the angular velocities will be assumed partially unrestricted so that asymptotic
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expansion methods will be used for each >structgral,'element. The first
aftempt at'the asymptotic soiution will be made by 'assuming the angular -
veiocitiés to be of the form w, = )\i + e, sin pit where )‘i Will be a
completeiy unrestr'icted guantity. But €5 will be considered small, This will
require us to generate a néw se;ies of functions comparable to Matheu
functions, After completion of the present work we hope to prepare a
comprehensive tabk for such functions so that :11 future work in dynamics
will be considerably simplified,

Finally, I thank youv all to offer me this project which has given me

quite a few new insights into the problem of modeling flexible bodievs in

motion,
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