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Task A

Task B

Measurements from Geostationary Satellites"

Investigation of Meteorological Data Processing Techniques

The radiance calculation program has been modified for efficient

use in developing multi-channel cloud height determination techniques.
Minor bugs have been eliminated and work is proceeding on
optimization of channels, effects of noise, and sensitivity to
temperature profile uncertainties.

Preliminary tests of an earth edge detection algorithm have
been made in an attempt to correct ATS line start jitter. The
technique uses a threshold detection scheme which is relatively
‘insensitive to line to line variations of noise in the data.

A fixed threshold is added to the mean noise present in the
space view. The earth edge location is then determined by
locating the first in a sequence of five samples in a row which
all exceed the threshold. We are currently varying the threshold
to determine the optimal range which is not significantly
affected by either noise on the low side or cloud brightness
variations on the high side.

e

Sun Glitter
Work is proceeding on geometrical aspects of the problem. Complete
results are not yet available.

Correction should be made to monthly report for October which
indicated that ATS-III images were being used in this study.
Instead, this study is concerned with developing techmiques for
analysis of sun glitter information frow low orbit satellites.
Data being used are from NIMBUS and ITOS.
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Task D Cloud Growth Rate

An analysis on the distribution of ATS brightness elements as
a function of time in a mid-latitude storm complex has since

been completed. With McIDAS presently in commission, we hope
to make rapid progress in this task next month.

Task E 'Comparative Studies in Satellite Stability

Part IV of the results of this study is attached. This
paper accurately reports the portion of the work performed
by Mr. Das during the first quarter of the current contract.
It was noted in the quarterly report submitted last month
that this segment of Mr. Das' study would be included with
this monthly report since it was not possible to complete
necessary reviews of this work in time for the quarterly
report. Three more segments of Mr. Das' study remain to be
completed, and he is proceeding on this work.

Task G Rainfall Measurements by RAKE Radar

As noted in earlier reports, work on this task has
been terminated.

TOH/jz
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Enclosure: Part IV, Motion Analysis and Control
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PART IV

MOTION ANALYSIS AND CONTROL
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Nomenclature

Notation not defined here is defined in the previous reports.
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g(t)

Fl(t)’ Fz(t)

X i=20,1,2,...
Yy i=0,1,2,...
Ypio i=20,1,2,...
€|

e

=]

Maximum value

Identity matrix

Matrix for the body B, defined by Eq. (4.3)

Matrices for the body B, defined by Egqs. (4.4) and
(4.5)

Angular displacements of the body A relative to
the body B

Matrix for the body A, defined by Eq.
ll

Il

(4.8)

Matrices for the body A, defined by Eqs. (4.16)
and (4.17)
Matrices and vector for the body A, defined in

Eq. (4.22)

Matrices and vector for the body B, defined in

Eq. (4.24)

Initial value of 8

Vector valued function, defined in Eq. (4.26)

Vector valued functions, defined in Eq. (4.32)

Components of (4.42)

Wy defined in Eq.

Components of defined in Eq. (4.43)

EA’

Components of defined in Eq. (4.44)

EB’

of the extermal torques
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£(w,, 8

E)‘B’
[Bi]’ i= 1-7

Yo 1= 0,1,2,...

¥ i=0,1,2,...
6,(£), ,(t)

M,, 1 =0,1,2,...

i’
*
x,(t)

P(t)

» Uys Yo

Nonlinear terms of Eq. (4.35), defined in Eq. (4.46)

Matrices, defined in Eq. (4.46a)
Vectors, defined in Eq. (4.48)

Vectors, defined in Eq. (4.53)

Fundamental matrices, defined in Eq. (4.54)

[, |l

Vector valued function, defined in Eq. (4.60)

[0,(0), &, (621"

Vector valued multiplier, defined in Eq. (4.65)

137



1. Introduction

In our previous report the long-time solution series for w was
assumed as .
2
W= Wyt Ewy +EwR ... (3.11)

where Wy was found to be given by the equation

z(g)o,t) = 0 (3.20)
and Wis &y, etc. were obtained as functions of Y- The vector y is a
function of the controlling torques also. In the following analysis the
explicit expressions for y for each of the bodies A and B will first

be obtained. Then with a suitable control policy, the control torques

will be optimized and expressed as functions of 90'

2. The Form of y(w,,t) for the Body B.
For the body B, xﬂgo,t) is the vector EBB(QB,t). The Eqs. (2.115)

and (2.115a) gives 553 as

-1

Mpy = Ay = Ap(Apy *+ Ppy) (Ag, + Pyy) (4.1)
In the above equation, the values of ABl and AB4 are substituted from
Eq. (2.11la), so that

T T- T -1, T-
MB3 = LBA4 (LBAlLB)[LBAlLB + PBl] [LBA4 + PB4] 4.2)

. - *
The elements of LB’ Al and PBl are constants. Let [SB] be defined by
* T- T -1
[6B] = (LBAlLB)[LBAlLB + PBl] (4.3)

From Part I, the vector 54, a term of Eq. (1.116), can be expressed in the

form
Ay = DO lup + Bylop,luy + [85318 + 185,18 (4.4)

The vector £B4 is given by Eq. (2.104) in the form
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P

— * :
—Ba“(T hp)

Tp = hp) - [Tpluy + [hpluy = GlTluy - (65510 - [85,18 + Iy (4.5)

In these equations, g% stands for the angular velocity components of @4

of the body B. Substituting Eqs. (4.3), (4.4) and (4.5) in Eq. (4.2), we
get

Mp3 = (I - G;N‘E{[Gm]éa + EU,13[6132]913 * [‘533]é + (85,18}
* * o . ~ ~ .
- (8501Q@y - hy) - [Tpluy + [Ryluy - BylTpluy - (85518 - (05618 + Tl

Therefore, as

we have
0 = L - SpMLis,] + (6111130, - [61h 0
+ (@ - S LI1I8,,) + [65106,138
# 401 - §OILITIS,,] + [65116,,136 - [8,1(T} - By)
+ (1 - 5;) (L6 (8, 1w, + [dg]ﬁB[IB]g)_B - [5;]333 ) (4.6)

In Eq. (4.6), IEB is a highly nonlinear vector. This vector equation has

only three nonzero scalar equations. This can readily be seen from Eq.

(4.1), which is

. -1,-1
Mpg = Ag, = [(gy + PyydAg] "4y, + By))
= A, -[1+e. A7, +2 )
24 B1°B1’ “Bp4 T gy
- T - -1 -1,2
= Ay, - [T - Py A + (P A "'](AB“} Poy)
or
o -1 -1
Mp3 = = By * Ppyhpy (T + Pyyhpy) By, + Pyy) 4.7)
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As P, is a (3 X 1) vector and [P

B4

also a (3 X 1) vector.

] is a (3 X n) matrix, so M5 is

Bl 3

3. The Form of zﬁgb,t) for the Body A

*
For the body A, ~X(wo’t)- is the vector M, (w,,t). Let [§A] be

A3 A
defined by
* - T"‘y 3 T“’ "'1
[GA] . (LAAlLA)[LAAlLA + PAl] (4.8)
Then
= T_' - * T“'
M3 Lyd, - [6,1[L,a, + B, ] (4.9)

At
It has been found that EAA and é4 involves the contact torques

Ico and the contact forces Fice

Eqs. (1.104) and (1.106) involve the transformation matrices QAB and Q;;

The expressions for these given by

which are nonlinear functions of tﬁe angular velocities. To keep Eq.
(4.9) free of QAB and @;;, the vectors EAC and EAC are now reformu-—
lated directly in the A-based coordinates.

The stiffness matrices Ti’ i = 1-12, introduced in Eq. (1.96), are
independent of the base vectors. We also note that if 8 is a relative
angular position vector of the A-based coordinates with respect to the
B-based coordinates, then -6 is the relative angular position vector of

B-based coordinates with respect to the A-based coordinates. Therefore

corresponding to Eq. (1.96), we have

C ¢

atBC a8 T T -T a—B
T2 T3¢ 78 9t e

= B S T -7 —A
T T, Ty T . 10 M1 T2 :

(4.10)
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where aEBC’ aIBC and aEB are the vectors EBC’ IBC and EB’ respec-

tively, expressed in the A-based coordinates. Hence

Epe =7 a7 TImGEp) T - o
- [T7(a£B) + Tg(gq) - ng_]
or
F =(-—l—-“r-'f)c +(—]-'-—T-T)C +(T@+Té) (4.11)
=AC Yy, 17 2= Ty 7 e =" 9= '
where
[l
Y, = o—— (4.12)

Il

We also have

T =~ o - 6T AB)(a—BC)
or )
T [—l—(T-i—"r"r)-(T+rT)]C
=AC Y, 4 aaml 57 a"ABR 27°3a
(T FooT) - ( )18,
Yl 10 a AB 7 ll a AB 8
+ [T + r 3]8 + [T ABT9]G (4.13)
In this equation,
afAB T aTB " fa : (4.14)

The vectors Iy and r, are defined in Figure 8 of Part I. Then the

equation of motion of the body A corresponding to Eq. (2.104) is given by

1 ~ ~
[Py;1a, + {B,[p 1 - I v, (Tyo + afap™? ~ (Ty ¥+ ,FapTs)
F R G T, - TIG LN, + [T+ ¥ T) - o (1, + FT)
ACTY; 7 87 TaTAA AB™2 Y, 4 aABl
1 nd ~
RAC(Yl T )]G LA-qA TEA + [T6 + (RAC + arAB)T3]_6_
+ {112 + (RAC + arAB)TQ]_Q_ IAQA - hA + hAg_)A RN (4.15)
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Equation (4.15) has the same form as Eq. (2.110) which is
[P ] a7t [P ] + [P ] 9, = {EAA}

With this formulation, we can express 5& and P, as

A, = [8, 1w, +T,[8,,]u +[6,,18 + [5,,18
—. * . . ?{ ~
Byy = @y~ By - [T + IR e - 601,00,

- [GAS] [ 6]6 + TEA

Substituting Eqs. (4.16) and (4.17) in Eq. (4.9), the equation

y(wy,t) = 0

for the body A becomes
0 = (- 818, ] + [8)[L,1}8, - [8,1Ku
* .
+ [8,108,.118
* 7 * *_ % .
+ {(x - 6,)[L,116,,1 + [6,1[6,,1}8 - [6,1(T, - b))
* T, ~ *_ . *
+ (1 - 6)[L,18,[6,,]w, + [6,10,[T,]0, - [6,]T

Now, W g% and 8 are connected by the relations

_A’
R A
and
" Do+ B+ 200 + (0, + BE)6
W, = W, +8 We8 + (wB+waB)_

Substituting Eqs. (4.19) and (4.20) in Eq. (4.18), we get

SAli"-B + 8 le + {28 le +5,,+5,,+ SAsmB‘SAz [GAZ_B]

S5 T - S fTu 10 + {5 (b, + OLBL) + 5,00, + S
+ S WL, = 6, [T, wpli0 + 18, (wp + Wpllp) + 8, 0y + 8,

~t ~ * o~
+ S,5Wp0ao - 5[6A2 B]“’ + GA B0 B = 8, (1,051,180
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~S
~

. . 3 %% . i .
+ S, wp + [5,588,,8 +6,61,6] + {5,686, ,1.8
T016. B+ BT T + 6 (30110
+ 5,510p816,08 + 0,81, wp8 + 0, w8110
(s [B0]6 @6 +6 [50]1.00.0}
+ 15,5 [050]0, )08 + 8, [wpO]T, by
{s &.6 SETw}-[6]u = 0 4.21
+ 18,500 oWy + 8, BT, Wb = [0,]u, = (4.21)
where
- * T * )
Syy = {@a - § )L, 18,, + SA[IA]} 3
*o
Sp2 T T (SAhA
= { sy LT1s .+ 6°s
Sp3 = W(I = 8)[L,18,4 A°AS
(4.22)
_ * T %
Spy = {a - GA)[LA]6A4 + 6A6A6
X T
= T . & 1.7
SAS (-‘- 'A)i.LAJ
- T R +T
0 0T AT 2T 2ga J
4. Equations for 6
Equation (4.6) is rewritten as
* L ] N
Spilp * Spol *+ Spaly * Spu8 + Sy5upl0p,]uy
55w §&lu. = 0 4.2
+ [ B]wB[IB]gB - | glig = (4.23)
where
S.. = (I - 8)[Li][6..] + [&) '
_ * T *
- 5* nd
Sp3 = ~ [ B]hb
r (4.24)
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= sy lys 8106
Sgy = (1 - B)[LB][ B4] + [ B][ B6]
- * o T
Sas (- 53) [LB]
* .
vp = Iy~ Byt Igy

7

Now 6 is formally solved from Eq. (4.23) as

8 = exp[- t]{e +f exp[S_oS_, Tlg(T)dt} (4.25)

BZ B4 B2 B4

*
where 6 is the initial value of 6, and

* .
B(E) = Opup = Spily = Spaly = Sy Wp0p,Wn - ‘SB“’BIB—B (4.26)

Taking zero initial value of §, we get

-1 .
6 = expl[- SB2 B4t] f exp[SBZ BAT]g(T)dT (4.27)

Differentiating Eq. (4.23), we get

g8 + 55,8 = g (4.28)

Since Q_ remains approximately constant during the motion, we can take

g(t) = a comstant = §5.,6(0) . (4.29)

Equation (4.29) will be used only where the error will not be magnified
in the remaining analysis.

Integrating Eq. (4.25) by parts, we obtain

l

BZ B4t]{8 + [ fexp[S

6 = exp - Tldt]g(t)

B2 B4

t .
- sB4e(o> J at j exp[SB2 Bap]dp}o (4.30)
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Now

Sp4,1,1 SB4,1,2

Sps,2,1  Smu,2,2 0 0 | =0

S84,3,10 - Sm4,3,2 0] | %O |0

Hence, with the approximation of Eq. (4.29), we get

g = H“&f+%®m@) (4.31)

where

-1
g2 Spstl
and (4.32)

t
NOES exp[s;§SB4(T-t)]dr

Fl(t) = exp[- S

From Eq. (4.23) we get

. _ _.1 . »
9 = -lsgy] "S5 g * Spy + Spsplaoly
%o * -1
+ GBwBIB-Ui - GBEB] - [SBZ] SBlﬁ (4.33)
Here 6 4s given by Eq. (4.23).
Differentiating Eq. (4.25), we get
.o _1 .. . . 3
8 = -Ispyl "[Spy8p + Spauy + Spsepdpoly + SpsWpOpoly
ke * . %o -1 .
+ GBwBIBQ-B + GBwBIBgB - (‘SBBB] - [SBZ] SBQ_G_ (4.34)

Here _é__ is given by Eq. (4.33).

5. Equation for _u_)_B

The variables §, _é_ and @ are now eliminated from Eq. (4.21) to

(XY

obtain an equation in Yy only. The values of 6, 1’3_ and © are taken

from Eqs. (4.25), (4.33) and (4.34), respectively. Thus the equation for
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‘—”—B is
s s is & +[s.s1s S . +(S..+6S.. - ysThid
A1°B2 Bl—ﬁ A1582583 ~ Sa1 a2 ¥ 523 7 Sa1 B2 Sp4?5821%
+ [(S,,+S,..,-S sls ) 1 S, ,Jw + [28 W +5Ss .06
A2 T °a3 T SA1°B2°B4 A2'%% A1%s T Sas5"BCa2
- ( Spotg) + 6 BT, - A(IA~B)]S (SB1~B + Sp3%
%6 + &8 1 5 S . +
+ Spstpp,tp + STty - Spup) (S, + Sy
- 5.5 ks s (s T8 +6wI
21582584 35%8°82% BE§
{ -1 T8 (5 o
- {125, 8 + 5, + 8,5 = 8,185,985, + 8, 5W8,, = 5,5(8,,6)
+ Opgly - (I )]SBZ g T Sy (Wg + wpip) 5,1
+ T8 . W ‘ + ST
* Su4 t Sps900% T ( S o%p) + ST, 0y
} —~—
- 8, (IAEB)M 6 - {(SBZ Bl—B) + (532 53%p)

/"‘\//"\__//‘\*J

1% 21
+ (SBZ 55U 0paty) + (Sp8WEIpue) = (Sp585up)
/\,_/ - l ~
(SBZ e 18,5 (855 (S 8y + Spauy + SpoWpdy g

L * ~
+ SpipIpwy - Spuy + 85, 0) - W6}

-1
- ¢, {(532 Bl—B) + (SpySpaty) + (SBZ 5598 52%)

/\_/

-1 % -1 .
+ (5, 0pWpTpup) - (8 B2%pug) * (SBZ S50 11, 85 (S8

+ S + § + 6 I 6* + )
Sp3%% SBS“% gty * SpBIguy - Sgup + S, 0)

- e+ [SASEE?§35A + 5 g 6)1 152

B 28 Bl“*

B2

*
+ Spaiy + Sy lpdpowy + 63“%13—3 Spup + Sp9)
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—~

~ —~ */A..\J ~
= [8,5(Up8 8,00 + 8, (G OT w81

-1,
+ 81557 (Spsty Bz-“fB + Sgoly 8y, + GBMBIB-@B

+ GBLUBIB—-B) + 5, sUp 6y o0y + GAwBIA—-B

*

+ SA18326B—B GAEA = 0 (4.35)

6. Perturbation Analysis

Before making any attempts to solve Eq. (4.35), we look into the
rigid body motion of a dual-spin system with constant relative spin rate.

The equations for such a system are given by

. _ . - R,
Liwg,1 ¥ (I3 = Iuwy oup 5+ I,3up,0 = €'Fj (4.36)
: - - _. A - tpt :
Tywg,p = (T3 = T)wp 10y 3 = T,q0p 0, e'F, (4.37)
13503 3 = 0 (4.38)
H]
where

I, =1,,+1I for i =1,2,3,
and E'Fi and E'Fé are external torques, and €' is a very small
parameter. With zero initial conditions, the zeroth order solution of

this system 1s given by

4 = 0
Let it be assumed that 12 = Il' Then the first order solutions are
given by
£'F! I,.0 e'F! 1.6
wB 1 = i——rg (cos Ai 3 t-1) +-if—vl sin Ai 3 t (4.39)
’ A393 1 “a393 1
g'F! . 1.0 e'F! 1.6
wB s = T % (1 - cos Ai 3 ) + T % sin Ai 3 t (4.40)
’ A393 1 2393 1
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if
= 142 .
Wy 3 of(e")*] (4.41)
with this analysis in view, we now begin a perturbation analysis of

Eq. (4.35) by assuming Wy in the form

Yy = X th
where
o ] 1y 2 13,
h = s_>51+(e)_}52+(e)_>:3+}... (4.42)

We also take

= t 1y 2 . 1y3

v, Gt Yy F(ED,t (), ... (4.43)
= 4 1y 2 .

ug Upg + E'upy + (€")uy, + (€ ) uB3 (4.44)

8 (g, By, t) = F ()8 + f {exp[s38,, (T = ©)1(8u,

Q A. - ; 3 ) L » Py
Sp1lp ~ Spadp) JAT + €'T; (g, t)

N
&~
.
Fas
wn

N/

where

€'F(wg,t) = - {f exp[sB2 pg (T = ©)1dTH(S, w65, + stBIB)w

and €' will be taken as the maximum value of the external torques. Equa-
tion (4.45) is obtained from Eqs. (4.25) and (4.26) by separating the
linear and nonlinear parts.

Now, separating the linear and nonlinear terms, Eq. (4.35) for Wy

is rewritten as

1

-1 -1
(541582581

1.
Yy + [8,1555553 = Sp1 + (Spp + S = 5515555540551

-1
+ [(Syy + 845 - SAlsstBé)S

-1
= Spplup — [(Sy, *+ 8,4

*

Al B2 B 4]{F (t>6 + j exp[s

BZ B4 BZ B
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-8 W -8 )dT}+S s"1s*,

B1-B  "B3-B A1°B2 BB
+ S 6*
- [(S‘AZ Sp3 ” SAlSBZ 34)3132 B]“ T CATA
+etE(y, W, 8y, ) = 0 (4.46)

where €'f consists of all the remaining nonlinear terms in Eq. (4.35).
Defining Bl’ BZ’ cees B7 as the coefficients of Eq. (4.46), this equa-
tion takes the form

oLt *
B,y + BZQ_B + By, + B, {IOBS(T - ©)[8u,

w_]1(t)dT} + Bu +-‘B w - 8y

S1%% ~ Sp3¥s 628 T B78g T CpAYs

+ €' f(wB, Wos Wys U ) = - B4Fl§_ (4.46a)
Expanding £ﬂg%, We»r Uy EB) about Xys Xgo Wyq and Yo s in a
Taylor's series, we obtain the following expansion:
1
= -+ 1 = | I | .
£,(v) £,(vy) + £ ,j(yo)vj TEE vt (4.47)
where
. T )
vo= [wg, Wp, u,, Ul (4.48)
[+o]
= I ey
i=0
and
vl =y -y,
such that
v, = [x & (4.49)
—i » Xy» Bpy0 Bpy '

From Eq. (4.46a), the coefficients of (E')O, e, (8')2 etc. generate

the following equationé:
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t
B.x. + B.x. + B3§0 - B4 & [BS(T - t)(SBl§O + SB3§0)(T)]dT

1%0 T "2%
. |
tEy = T BES | (4.50)
L] t L
BjX, + Byx) + Byx; - B, jo [B5 (T = £)(Spyx; + Spax ) (T)1dT
tw = - £y, (4.51)
L t L]
BjX, + Byx, + Byx, - B, fo [B5(T = £) (Sp %, + §p,%,) (D)]dT
%8, oag 3
tw, = - o o)z - P vyl - ' (Yyluy; - e (vg)upy
3 ~B ZA =B
(4.52)
In these equations,
- - 5 d Y 5 4.53
Wy = By J [Bg(T - ©)8quy, (1T + Beuy, + Byuy, - Su, (4.53)

It is thus seen from Eqs. (4.50) through (4.53), that all the vari-
ables in this problem are given by linear integrodifferential equations.
To solve these equations the functions w, are to be explicitly known

in terms of g%, g% and time.

7. Formal Solutions

Equation (4.50) is now formally solved as follows:

The variables Xy and éO are assumed to remain close to zero, so
that these variables are replaced by their initial values under the inte-
gral sign. If ¢1(t) and ¢2(t) be the fundamental matrices of the
homogeneous system

B X, + Byxy + Byxy = O

such that the homogeneous solution is given by
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x(8) = 9,x(0) + ¢,x,(0),
then the complete solution to the inhomogeneous system is given by
. . t *
xg = ¢ (D% (0) + ¢, (0)x(0) = [ ¢,(t - T)B,[F (D

T t
- foBs(s—-T)(SBl§O(O) + Sp3x (0))ds]dt ~ [ ¢, (t = Dwy (1)dT

(4.54)

In a similar way, Eqs. (4.51) and (4.52) are solved to get
[ ] t T L]
x = ¢, (0)x, (0) + ¢, (t)x, (0) +J'° ¢,(t - 1){B, Jo By (s ~ 1)[Syx, (0)

+ 854%, (0)1ds - w, () - £, vy (M) Mt (4.55)

31
. t T .
x, = 0 (0%, (0) + ¢,()x,(0) + [~ ¢,(t - DB, [ Bs(s - T)[5y;x,(0)

+ SB3§2(0)]ds - [EQ(T) + zéﬁvo)xi](T)}dT (4.56)

Some of the iﬁitial conditions are obtained by setting the secular terms

equal to zero. The functions X3 X etc. will be obtained similarly.

8. Control Torques

It has been mentioned that the angular velocities can be solved when

the control torque functions w;, are known. Instead of choosing v,

arbitrarily, the forms of w, as functions of Wy are mow obtained by

i
an optimum control policy. The necessary theoretical considerations are
briefly mentioned here. Further theoretical details are given in [1] and
[2].

" Let E denote the Banach space of triplets [ul(t), Uz(t), 03(t)]

where ui(t) belong to Ll(O,T). The endpoint T of the time interval
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is considered to be fixed here, and T > 0. The norm of the vector
u(t) = {ui(t)} in E 1is

3 T
lall = 7 [ luy(e)]ac

i=1
*
The dual space E then will consist of all triplets

wo= [w (£), wy(t), wa(t)] with w, (t)

in L_(0,T) such that for every
*
w(t) in E , we have

w = max wi(t)

1
0

IAlA

3
T

IAIA

Then, for every u in E

. .
and w in E , the inner product is defined
as

3
uw = Z f uy (e)w, (e)de .

*
In this problem the wvector wj in E will be used to denote the contrel
torque vectors w, given in Eq. (4.53), and the variables

X, are
=i
assumed to be in the space E.

Let Eq. (4.54) be considered now.

The assumed time optimal control

policy is to choose ¥y such that

x, () = 3';0('1?) = 0 (4.57)
and
lwoll <, (4.58)
for the minimum time T.
Equation (4.54) can be expressed asb
x4 (8) = 0 St f ¢, ij = vy, (DT (4.59)
where
- . t *
xy = 0 (0)x(0) + ¢,()x (0) = [ ¢, (t - DBF (DE
T
jo Bo(s - 1) (S5, (0) + Sp,x,(0))dsldt . (4.60)
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Differentiating Eq. (4.59), we obtain
’ . ek t .
x(8) = xy(6) = [ 0,(t - vy, (DT (4.61)

From Eqs. (4.59) and (4.61), the requirements given by Eq. (4.57) become

0 = :_%(T) - 0,500 | e
and
0 = xo(m -(d,.u 4.63)

With the above equations, for a fixed T > 0, the optimum control
*
problem is to find the function w, in E  such that ”20" is minimum
and Eqs. (4.62) and (4.63) are satisfied. If, for each T > 0, the

smallest ||w0” > M_, then the problem has no solution, and the allowable

0!
value of Mo has to be increased.
As ¢2 and &2 are linearly independent, a Cartesian subspace F

L ]
of E can be defined which consists of the eiements of ¢2 and $0.

%
Let w, be the linear functional on F determined by Egs. (4.62) and

_.0
: %
(4.63). From the Hahn-Banach theorem, we know that the functional ¥,

*
can be extended to all E, and hence to E , and the resulting functional

*
will have the same norm as that of EO' Therefore

by >

My = gyl = lluyll = max
0 0 0 pinF |yl
or
*
Uy SYs¥
M, = max:—l—i—‘—o}— (4.65)
5 ”Hl'¢”
where
‘P = [¢2’&32]T (4.65&)
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Let 1t be assumed that for some particular values of the multiplier His

the maximum is obtained in Eq. (4.65). Then from Eq. (4.65), we obtain

T :
mla vl = L p I - 8w (s)ds

T ,
<M, L |1, (T - 8)]ds (4.66)

Since ¥ provides the maximum in Eq. (4.65), the last two quantites in
Eq. (4.66) must be equal. This is possible only if

Eb(t> = M0 sgn {ul'w(T - t)} (4.67)

Equation (4.67) together with Egs. (4.62) and (4.63) provide the functional
. : " _ " s

Yy and it is seen that this is a "bang-bang" control in Moo

The maximization problem of Eq. (4.65) becomes the minimization prob-

lem of Al’ subject to the constraint

Ay =0
where

Ay o= flugevll , (4.68)
aﬁd

Ay = hygd>-1 = 0 (4.69)

Also, from Eqs. (4.62) and (4.63), we have

(hud = @, xp@1* . (4.70)
Thus the problem is to minimize the integral
T
¢ = & { § ] g uliwij(t)l - Wyl }dt (4.71)

where uz is a scalar Lagrangian multiplier. The integrand in Eq.
(4.71) is only a linear function in Hi» SO the minimum is obtained by

the traversality conditions only at t = T, [3]. Hence we solve
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ATy = 0 ' (4.72)
and

uliwij('f) = 0, (j =1,2,3; 1 = 1-6) . (4.73)
Since Y 1is given by Eq. (4.65a) where ¢2 and éz are independent

functions, the Eq. (4.73) is decomposed into

and

b by (T = 05 (§ = 1-3; 1 = 4-6) (4.75)

The six equations of (4.74) and (4.75) and the scalar equation (4.72)

determine the seven variables ”11’ i=1-6 and T.

So far only the Eq. (4.54) has been considered after reducing it to
the form of Eq. (4.59). Since Egqs. (4.55) and (4.56) can also be reduced
to the form of Eq. (4.59), the components ¥ps ¥, etc. will be obtained

by a similar procedure.

Thus, from Eqs. (4.53) and (4.67), we obtain

t
* . *
B, fo By (T - t)GBgBi(T)dT + Beug, + Boug, - GAuAi
= Mi sgn[Ei  Y(T - t)] (4.74)
Here one of the vectors u and u can be chosen arbitrarily.

Al Bi
Thus we consider the body A to be completely uncontrolled. Then from

Eqs. (4.22) and (4.43), we have

u, = 0 | (4.75)
u. o= AT (0 ) (4.76)
_‘Al e' “EA AO .,
u 2w ) 4.77)
Ypo e B, Teaa0’n1 .
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where

= 1 1y 2
BA wAO + € wAl + (") wAz + ... (4.78)

Equation (4.74) is a linear integrodifferential equation and will be

solved by known methods.
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