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Cover Picture

Two tropical weather phenomena of great Interest to meteorologists
are prominent In this picture. Hurricane Anna (17 July 1969) revolves
in growing intensity at the right, but the two cloud clusters in the
center of the picture are the subjects of particular interest in Dr.
Sikdar's paper included in this report. Perhaps cloud clusters are less
spectacular than hurricanes,but in the long run it is probably more im-
portant to understand their dynamics if we are to understand the meteor-
ology of the tropics better than we do now. Most of the Sun's energy
received by the Earth is absorbed in the tropics and cloud clusters ap-
pear to be a key factor in the major atmospheric process of energy re-
distribution. Since our temperate zone weather is a by-product of the
energy redistribution process, the study of cloud clusters is a matter
of importance.
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Preface

Quantitative exploitation of meteorological data from geosynchronous
satellites is starting to move from the laboratory to operational prac-
tice. The papers in this report Investigate several aspects of the data
applications portion of the total meteorological satellite system.

The first two papers are concerned with measurements taken from geo-
synchronous satellite data as indicators of atmospheric physical pro-
cesses. Professor Stremler reports in the third paper on the results of
a preliminary study of a method to detect and measure rainfall from geo-
synchronous orbit. While the concept does not appear feasible at this
time, the study did indicate that relatively modest technological ad-
vances could provide the necessary capability in the future. The fourth
paper documents the first half of a two-year effort to construct a
broadly applicable model of geosynchronous orbit satellite attitude and
pointing control systems. When completed, it is hoped that this model
will assist systems designers and data users in minimizing and correct-
ing geometric inaccuracies in satellite data.

I join with the authors in expressing sincere appreciation to the
members of the Space Science and Engineering Center who have assisted in
the work reported here, and in thanking the members of the National Aero-
nautics and Space Administration who have provided the necessary sponsor-
ship of our efforts.

Verner E. Suomi
Principal Investigator
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TROPOSPHERIC WIND SHEAR AND THE RELATED SEVERE STORM CIRCULATIONS-

A VIEW FROM A GEOSTATIONARY ALTITUDE

B. Auvlne and D. N. Sikdar

ABSTRACT:

Three severe storm complexes are investigated by means of sat-
ellite data to reveal salient differences in circulation features,
namely volume flux and anvil divergence. Two of these complexes
grew in strongly sheared environments, the third in a nearly shear-
less one.

The analyses indicate hardly any significant differences in
the storm severity, growth features or circulation characteristics,
except that in the strong sheared environment multiple cells in a
squall-line configuration were embedded within a cloud complex
while in the weak-shear environment only single "supercell" storms
seemed to be favored. A possible reason for this difference may
be due to the downward flux of momentum associated with the pres-
ence of a high level jet.

1. Introduction

Meteorological literature has concentrated most of its attention on
shear-related storms. Numerous case studies (e.g. Miller, 1959; Browning
and Donaldson, 1963) have pointed to shear as an important factor in se-
vere storm formation. Indeed, many severe storm analysts regard vertical
wind shear as a virtual prerequisite to severe storm formation (Fawbush
et al., 1951; Endlich and Mancuso, 1968).

Numerical models of convection have had varying results when shear
is included in the system. Asai (1968) has indicated that shear will sup-
press shallow convection. Others have suggested that shear under the
proper conditions can lead to the formation of significant and even self-
perpetrating convection (Jih Ping and Li-Shoo, 1964; Takeda, 1971).
Takeda in particular suggests that whereas steady-state storms may be
achieved with shear as a mechanism involved in creating or releasing
instability in a synoptic situation, there is also a class of storms
which can grow, provided the ambient shear is very weak and the atmos-
phere is sufficiently statically unstable. It is in such situations, we
believe, that the moisture front may play a role. Carlson and Ludlum
(1968) describe the moisture front as a mechanism capable of releasing
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Figure 1. Isopleths of dewpoint (°F) In the Texas-Oklahoma area at OOOOZ,
May 12, 1970. The moisture front can be seen cutting across
Western Texas and Oklahoma from NE to SW.



instability in a violent way and have documented several cases in which
synoptic conditions were similar to the case presented in this paper.

The purpose of this paper is to compare some of the ATS-III observed
severe storm circulation features such as volume flux, anvil divergence
and precipitation efficiency in a weak-shear environment (Lubbock storm
of May 11, 1970) to the same features found in environments with strong
upper tropospheric wind shear (In particular the cases of April 19 and 23,
1968, and already discussed by Sikdar et al., 1970). Also briefly dis-
cussed Is the structure of the Lubbock storm using time lapse radar data
(WSR 57) taken from Amarillo, Texas.

2. Synoptic Features Related to Three Severe Storms Situations

On May 11, 1970, Lubbock, Texas was struck by two tornadoes, the
second of which was violently destructive. The synoptic conditions that
day indicated a westward moving moisture front (Figure 1) along which a
number of convective cloud masses had their origin. This moisture front
consisted essentially of moist Gulf air flowing in to meet dry desert air,
with little contrast in temperature between the two air masses. While it
has already been documented that such moisture discontinuities in the Gulf
region can be associated with severe convective activity (Bradbury, 1969),
the May 11 storms are notable for being spawned in a subtropical environ-
ment essentially lacking in large vertical wind shear (although Reuss,
1961, reports the existence of a giant cumulonimbus cell growing in a
nearly calm atmosphere).

The situation in regard to low and high level winds on May 12 (00 Z)
can be seen in Figures 2a,2b while Figure 3a presents an east-west cross-
section of isentropes, mixing ratios and isotachs through the convection
area. Similar conditions prevailed 12 hours prior to the storms. At 850 mb
one can easily see the flow of air northward from the Gulf. It is notable,
however, that in the moist airflow from Amarillo (AMA) to Topeka (TOP), a
region of relatively no shear exists as can be seen by comparing the low
and high level wind speeds. At both AMA and TOP the wind vectors remain
relatively constant from 30 kts at the surface to similar wind speeds at
higher levels. Further to the south at Midland, Texas (MAF), a significant
shear is,however, present, due evidently to the influence of the subtropical
jet over north Mexico. What is significant in this May 11 case is the fact
that severe weather is not associated with this strongly sheared regime
where vertical differential advection could be expected to encourage
convection, but with the moderate- to low-shear area further north. At
the time of these synoptic charts, vigorous convection was to be found at
Lubbock (about midway between MAF and AMA) northeastwards to the east of
AMA and again in northeast Kansas. Thus, while the shear at Midland of
about 1.7 x ID"3 sec-1 is somewhat below that prescribed by Marwitz (1972)
for supercell storms (2.5 to 4.0 x 10~3 sec~l), values at Lubbock likely
averaged 0.9 x 10~3 sec"1 with even smaller values to the north of Lubbock
and in Kansas.

One may also note in the 200 mb map that the region of severe
weather may be said to be in a "diffluence" region between the polar jet
over Nevada and the subtropical jet over northern Mexico. A similar sit-
uation is to be found in other severe storm situations, as, for instance,
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April 23, 1968. The sudden decrease in wind speeds west of northern
Texas would seem to require a subsidence region in this same area and,
indeed, the area to the west of the moisture front is perfectly clear on
the ATS cloud photographs. How this subsidence is in fact related, if at
all, to the formation of convection is not known.

Included for comparison are the cross sections of April 19 and 23,
1968 (Figure 3b to 3e), two days when strong shear was prominent in its
association with severe weather. Note that for these two days momentum
appears to be transported downwards in the area of convection (the area
identified by the vertical transport of moist air above the inversion,
and the surface weather reports). As opposed to the May 12 storm where
only two isolated tornadic storms were reported, April 19 and 23 produced
severe weather over an area of several states. The increase of low level
wind speeds has been related among other factors to severe weather devel-
opment in midlatitude frontal zones by Johnson and Sechrist (1970) and
Nlnomiya (1971). The May 11 case serves as a reminder by its weak shear
that, despite recent emphasis on the role of the jet stream, strong shear
in the region of convection is not a necessary condition for severe
weather.

The cross-sections also reveal three different surface mechanisms
associated with the storm outbreaks. While April 19 has a dry front, and
April 23 a cold front, May 11 features the previously mentioned moisture
front. The contrast of the two air masses associated with this front
leads to conditions of high instability with dry air having a steep lapse
rate overlying moist Gulf air. However, an inversion between the air
masses discourages convection. The moist air, moving westward, has
covered areas to Amarillo, Texas (AHA) with mixing ratios up to 12 g/kg.
At Amarillo and roughly in a north-south line, the storms broke out late
in the day of May 11. The Lubbock storms themselves had developed and
were near maturity by OOZ, May 12, and are responsible for the upward
transport of moisture at Amarillo seen on the OOZ cross-section. We may
conclude, then, that while upper tropospheric wind shear may enhance
growth of severe storms, some such storms nevertheless can develop with-
out such winds, given the right conditions of instability.

3. Data Analysis Techniques

The first Lubbock tornado struck an hour and a half after darkness
had fallen. The cloud photographs of storm growth from ATS-III satellite
are available, until 0100 GMT on May 12, both for the Lubbock tornadic
storm and the several smaller storms around it. The elements in each of
these photographs—five In number spaced 20 minutes apart—have been re-
corded in terms of brightness levels on digital tapes. Mesoscale convec-
tion systems which are difficult to analyze on photographic Images be-
cause of their limited dynamic range can easily be treated on digital
contour displays. Such a display gives a detailed and enlarged portrait
of each cloud, particularly of cumulonimbi and of their associated anvils,
provided it is properly brightness normalized for sun-satellite-cloud
geometry. The brightness of a cloud mass on a satellite photograph de-
pends on many variables including solar zenith angle, satellite zenith or
viewing angle, the relative azimuth between the sun and satellite measured
from the view spot, satellite characteristics, and the picture processing

11
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technique. Unfortunately, to date we have no unique brightness normal-
ization technique available. As pointed out by Martin and Suomi (1971),
the cloud brightness largely depends on solar zenith angle, and a uniform
thick cirrus canopy atop a deep convection system can be treated as a
quasi-Lambertian reflector. Although the solar zenith angle in the case
of the Lubbock storm of May 11, 1971, is large, we have assumed the
visually evident uniform cirrus canopy is such a reflector. The bright-
ness data analyzed in this paper have therefore been corrected for sun
angle change only, and it is hypothesized that the time-change in the
cumulonimbus brightness field can be attributed for the most part to
cloud evolution process, and that the brightest portion of the growing
cloud would correspond to active portions of the complex that had pene-
trated to a significant depth of the troposphere and to the areas of
precipitation (Slkdar, 1972). Four such brightness contour displays along
with corresponding satellite photographs are presented in Figure 4. The
clouds are arbitrarily numbered from 5 to 12. The dotted areas in the con-
tour displays are the transposed radar echoes observed from Amarlllo, Tex-
as. In most cases a given cloud seems to be associated with only one pre-
cipitation echo. Cloud #7 is the tornado-producing cloud. A particular
feature of this cloud not evident in similar studies of the April 19 and
23 storms is a clearly defined tower penetrating the tropopause on the
southwest side of the cloud as evidenced by the protruded bright spot
with its shadow stretching to the north. A simple geometrical computa-
tion using the length of this shadow and the zenith angle of the sun
yields a height of about 6 km above the cirrus layer, an observation
in close agreement with that of Roach (1967).

As for the determination of volume flux atop a severe storm, we have
assumed following Newton (1966) that "essentially all the air originating
in the updraft remains in the upper troposphere, spreading out mainly in
the anvil plume downshear but appreciably also in the upshear side." In
a great plain thunderstorm the cirrus shield appears several kilometers
thick; however, only the top portion, say one kilometer, probably con-
tains the air originating in the subcloud layer and in the remaining part
the anvil air probably originates essentially from the strongly entrained
air around the updraft. Fujita and Byers (1962) show an anvil thickness
of 1.5 kilometers from photogrammetric measurements of a severe storm, and
Ludlum (1966) quotes 1.0 kilometer anvil thickness for moderate cumulo-
nimbus clouds. In view of these observations and the fact that not all
of the anvil is part of the outflow layer, an assumption of 1.0 kilometer
thickness for the layer of outflow seems more appropriate. In any case,
our desire here is to provide an approximate estimate of the actual
volume outflow in individual storm complexes.

Assuming that evaporation at the anvil edge is small (Darkow, 1963)
and relatively constant for a 15-minute interval period, one may use time
changes in anvil expansion as a legitimate tool for measuring the volume
flux in a storm or group of storms (Sikdar et al., 1970). The anvil area
expansion can be easily determined following normalized isopleths of
brightness field appropriate for cirrus shield on time-lapse digital
displays, and then volume fluxes obtained with 1.0 kilometer thickness
outflow layer.

The anvil divergence can be determined from the expression

16



where A is the cirrus shield area and t is time. The magnitude of
divergence gives a measure of the storm's severity. The volume flux can
be related to anvil divergence by the expression

^ - A-[VH-U]-AZ (2)

where AZ = 1.0 kilometer (assumed thickness of cirrus shield).

4. Results: The Circulation Features as Observed from ATS-III

Shown in Figure 5 is a plot of volume flux versus time for the May 11
storm. Numbers on the curves correspond to the numbered clouds in Figure
4. Note that the volume flux is not constant for all the clouds but shows
a tendency to fluctuate. One cannot, therefore, characterize these storms
as steady-state, at least for variations on the scale of 20 minutes.
Similar fluctuations can be observed in the volume fluxes for April 19
(Sikdar et al., 1970). As one might expect, the tornado storm #7 has the
largest value of volume flux. Although the latter observations could not
be presented for lack of good quality digital tapes, the measurements
obtained from enlarged photographs indicate that the volume flux of cloud
#7 Increased to a maximum of 1.5 km'/sec at around 0018 GMT, and there-
after remained more or less steady until the last picture taken at 0051
GMT. The next largest storm in terms of volume flux, cloud #8, was also
associated with considerable radar echo activity—more so than any of the
other neighboring clouds besides #7.

Figure 6 gives a plot of anvil divergence as a function of time.
While the anvil divergence magnitude atop a severe storm is a direct
measure of the storm intensity (Sikdar et al., 1970), it is not correct
to assume that all parts of a storm cloud are equally divergent. As will
be seen from Eq. (1), the computed divergence will depend on the size of
the area included in the measurement, i.e. on the scale chosen, even if
the rate of area change may remain constant. The decline of anvil di-
vergence magnitudes with time shown in Figure 6 is consistent with the
findings of Auvine and Anderson (1972), namely that we are dealing with
a highly divergent core region surrounded by a region of nondivergent
flow resembling the behavior of a point source. The anvil divergence of
cloud #7 in Figure 6 is an order of magnitude higher than that of an
ordinary thunderstorm, in agreement with Sikdar et al. (1970). One may
conclude from these measurements that a severe storm growth need not al-
ways be coupled directly to the presence of upper tropospheric wind shear.

Table 1 provides a comparison of the computed volume flux and anvil
divergence of storm #7 with those observed on April 19 and 23 in sheared
environment. The average volume flux on May 11, 1970, was somewhat
smaller in magnitude although the anvil divergence was significantly
higher. Referring back to Eq. (2), one can visualize that the volume
fluxes determined from area measurements depend on scale size of the
clouds. The average cloud size of cloud #7 as shown in Table 1 was at
least an order of magnitude smaller than those of April's two cases.
Furthermore, as evidenced from the radar echo distributions, the May 11

17
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storm #7 had only one solid echo while those on April 19 and 23 had
several in them indicating the presence of multiple point sources con-
tributing to the average volume fluxes. Nevertheless, the volume fluxes
and divergences of these three storm systems appear to have the same order
of magnitude.

On the basis of these growth parameters, one cannot distinguish be-
tween shear-associated and shearless storms: a shearless environment is
capable of producing storms as intense as any found in the midlatitude
frontal zones.

Severe storms have generally been found to have higher precipitation
efficiencies than smaller and more ordinary storms. To see if the Lub-
bock storm conformed to this expectation, we computed the precipitation
efficiency using the mass flux at 0048Z on May 12 obtained from the last
two photographs. The volume flux at this time had become fairly constant.
It was assumed that the precipitation output in this storm also remained
approximately constant during the time Lubbock, Texas, recorded precipi-
tation (0053Z to 0415Z). Using this precipitation record, an inflow
layer into the storm based on an LCL of 11,000 ft, an average mixing ratio
for this layer of 9.25 g/kg, and a standard atmospheric density of .5 x
10~3 gcm~3 at the top of the storm, one obtains a precipitation effi-
ciency of 51%. This compares to values of 10% for light thunderstorm
(Braham, 1952), to values of 50% (Newton, 1966; Auer and Mauritz, 1968)
and 60% (Fankhauser, 1971) for severe storms.

Table 1

May 11

April

April

, 1970

19, 1968

23, 1968

Average
cloud size
(102km2)

0.15

1.5

2.5

dV/dt
(kmVsec)

1.2

3.2

4.6

Anvil
divergence
(sec-1)

1.0 x 10~3

3.0 x 10~4

5.0 x io~4

Average for mod.
thunderstorms

0.2 or less

5. Some Comments on the Growth and Structure of the Lubbock Storm

We have shown that from the viewpoint of the ATS satellite, the
Lubbock thunderstorm is, in regard to mass flux, quantitatively similar
to shear-induced thunderstorms. We may still ask, however, whether this
storm is qualitatively different from its midlatitude counterparts. In
other words, is the structure and growth of this storm similar to that
of the typical Colorado and South Dakota hailstorm (documented by Dennis
et al., 1970), or to the severe storms found in the plains states to the
east (Browning, 1963; Newton, 1966, etc.), or is it unlike either of
these?
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Some light can be shed on this question by looking at the Amarillo
radar photograhs. Figure 7 reveals two interesting features of the storms
associated with or close to the Lubbock tornado. After 0300, Echo I, the
Lubbock tornado cloud shows definite signs of rotary motion as the axis
of the storm moves from a NE-SW to a N-S orientation. During the same
period a nearby echo, Echo II, demonstrates what appears to be a meso-
low structure such as that found by Fujita (1958) in his examination of
tornadic mesoscale systems in Illinois.

Earlier—between the occurrence of the two tornadoes—Echo I also is
subject to a convergence of echoes which had grown up to the rear of the
storm. As the storm is moving approximately northward, and the echoes
converge in the south, growth seems to be taking place to the rear of the
storm, the same growth mechanism described by Dennis et al. (1970) for
South Dakota hailstorms.

On the basis of this admittedly meager evidence, there is reason to
believe that the Lubbock storm resembles in growth and structure the two
types of storms cited above, both of which are known to exist in sheared
environments. A difference in starting mechanism and environmental wind
conditions may not necessarily affect the structure of a severe storm
formed.

6. Concluding Remarks

In this paper we have demonstrated that in regard to the nature of
severe storm growth, namely the rapid expansion of cirrus shield in ad-
vance of the tornado occurrences, the Lubbock storm closely resembles the
two severe storms of April 19 and 23, 1968 (Sikdar et al., 1970) and that
the magnitudes of anvil divergences and mass fluxes are comparable. In
addition, several structural characteristics cited by investigators re-
lating to shear affected storms seem to apply to the Lubbock storm as
well. These characteristics include the rotating cells and the growth
of the cells by means of feeder clouds to the rear of the storm. Such
observations, however, are not conclusive and further study will be
needed to determine the exact nature of circulations in nearly shearless
storms in contrast with what has been learned of severe storms experi-
enced in midlatitude frontal zones.

The difference in starting mechanism in the subcloud layer and en-
vironmental wind conditions as discussed in Section 2 may not necessarily
affect the growth rate of a single isolated severe storm cell. However,
such factors may be importantly related to the occurrences of widespread
multiple convection cells as seen in the storm complexes of April 19 and
23, and their nonoccurrence on May 11. Whereas in the former cases the
presence of a jet stream in the region of convection allows for the
formation of a large region of synoptic scale instability and the subse-
quent formation of a large, severe, multi-storm complex, the lack of such
a condition in the Lubbock region allowed only the formation of one
large "super-cell."

That the presence of wind shear in some way favors the formation of
larger or more Intense storm complexes is Illustrated in Figure 8 where
cirrus shield area expansion rate is plotted against the maximum wind

23
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In cloud layers (850-200 mb) in the vicinity of these three storms. Of
course, the most intense outbreak of severe storms is associated with high
wind shear while the isolated May 11 storm has hardly any. The mechanism
of interaction between the severe storm growth and the environmental wind
shear is not yet clearly understood; it may be a result of a "chimney ef-
fect" where the flow past the top of the rising updraft air tends to in-
crease the rate of mass transport through the storm. The transport of
environmental momentum downward as evidenced in Figure 3 may also encour-
age the formation of a large area of severe convection. Time lapse infor-
mation from ATS on the evolution of such severe storm complexes on a
shorter time-scale should hopefully reflect on the multi-cell growth
mechanism in the near future.
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ON SOME KINEMATIC PROPERTIES OF THE TROPICAL ATMOSPHERE

AS DERIVED FROM CLOUD MOTION VECTORS

D. N. Sikdar

ABSTRACT:

Using the WINDCO system (Smith and Phillips 1972), vectors of
small cloud movement were obtained from ATS-III picture sequences
for the period 26-28 July 1969 in the tropical Atlantic. These
were analyzed for various kinematic properties such as cloud tra-
jectories, divergence, relative vorticity and specific kinetic
energy. Among the significant findings are the following:

1. A significant latitudinal wind shear exists north and south
of the ITCZ, especially in the zonal component.

2. Cloud clusters are found in the general areas of converg-
ence (-D) and positive relative vorticity (C)•

3. The vorticity magnitudes appear to be scale-dependent while the
divergences are not, at least in the scale 100-600 nautical miles
on a side.

A. The grid point values of C and D in large nephsysterns
are approximately related by the empirical equation C = -1.5 D
Implying that the low level divergence decreases with the increase
of relative vorticity in an active cloud cluster; however, for
some cloud clusters this relationship is missing.

5. Specific kinetic energy fields for the three days investi-
gated show regions of maxima at the locations of strong zonal
wind shear.

It may be concluded from this preliminary investigation that the
WINDCO data are very useful for examining various scales of tropical
circulations, especially in the data-void regions, and has good
potential for input to a global numerical prediction model.



1. Introduction

A recent technological development (WINUCO: an electronic animation
system for obtaining accurate cloud motion) at the Space Science and En-
gineering Center (SSEC), University of Wisconsin—Madison, has made pos-
sible the measurement of cloud displacements to an accuracy of less than
3 knots, a primary requirement of the Global Atmospheric Research Pro-
gram (GARP). Attempts are in progress to employ these data to improve
understanding of atmospheric circulations, especially in the data-void
tropical oceanic regions.

The visible sensors of the geostationary satellites ATS-I and 111
have limited resolution in the vertical. However, from a comparison of
conventional wind data with small cloud motion vectors, Hasler (1971)
found the best fit level for low cloud trajectories to be around 950 mb,
which approximately corresponds to the base of tropical cumuli. For the
950 mb level, 68X of the direction differences were less than 30°.
Fujita et al. (1969) also stated 950 mb as the best fit level while
Hubert and Whitney (1972) and Serebreny et al. (1969) arrive at 950-
850 mb from their comparisons.

Future geostationary meteorological satellites equipped with infra-
red sensors will greatly reduce the present uncertainties of cloud height
determination of large and thick clouds, but for moving thin cirrus
shields the uncertainties due mainly to emissivity and transmissivity
will remain. In this connection it should be mentioned that a prelim-
inary investigation in progress at this Center suggests a reasonable
correlation between the cloud brightness and thickness (Park 1972). If
this is so, one should be able to assign a cloud displacement to a level
depending on the integrated cloud brightness. Fending establishment of
such a relationship, we will proceed with the hypothesis that small
clouds in ATS-III images are at the trade cumulus level.

The need to Identify small clouds on a series of successive pictures
at intervals of 23 minutes imposes some restrictions on the data selec-
tion scheme. Nevertheless, our experiences are that the numbers of even
such restricted cloud displacement vectors are enough to give adequate
two-dimensional coverage of kinematic parameters such as stream function,
vorticity and divergences. Of course, one should keep in mind that such
data on occasions may be very few in areas dominated by subsidence as,
for example, in the subtropical oceanic highs and ridges.

The purpose of this paper is to demonstrate the potential of WINDCO-
derived cloud motion vectors for synoptic and dynamical analyses of
tropical weather systems in the absence of upper air data.

2. Data Selection and the Analysis Technique

During the development and testing phase of WINDCO, cloud displace-
ment vectors were generated for three days—26, 27 and 28 July 1969—
from Phase IV of BOMEX. These data were quality controlled and access-
ible, and therefore were selected for analysis of various kinematic
properties.
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1338Z
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Figure la. Satellite photos showing cloud cluster activity in the
western Atlantic on 26 July 1969.
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Figure Ib. Same as la except for 27 July 1969.
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Figure Ic. Same as la except for 28 July 1969.
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The WINDCO system measures cloud motions by tracking clouds over two
digital pictures and applying a two-dimensional cross-correlation analy-
sis. A precise alignment of ATS picture sequences is crucial to the ac-
curate measurement of these cloud displacements. The second important
step involves finding the coordinates of each selected cloud tracer on
the digital pictures, the primary criteria being that the cloud tracer
should be found in all the pictures in the selected sequence and its lo-
cation should not be near the limb. For details the reader is referred
to Smith and Phillips (1972).

The cloud displacement vectors produced by WINDCO were first resolved
into u and v components and averaged in an area of 2.5° x 2.5°. This
procedure gave a matrix of uniform field of u and v in the latitude
band 10° - 30°N and longitude band 50° - 90°W. Approximately 150 vectors
were obtained on the 26th and 28th with over 400 vectors on the 27th in
the area bounded by 5°S - 40°N and 10° - 100°W. The time intervals be-
tween picture pairs on the 26th and 28th were 26 minutes in all four cases
but on the 27th the first interval was 49 minutes and the second 38
minutes. Doubtful data, namely, wind vectors with speed greater than
30 m/s or direction opposed to smoothed stream line flow (+ 20°), were
considered to be mistracks of clouds or at different heights than the
majority of the winds and therefore were excluded from the analyses.
The number of such rejected vectors was hardly 5-6%.

A contour analysis of u and v components derived from cloud dis-
placement vectors revealed the horizontal gradient field from which basic
meteorological parameters such as divergence and relative vorticity fields
were constructed as a function of time. In addition, the cloud displace-
ment vectors were averaged to study their latitudinal and longitudinal
variations. Also produced from the u and v fields were specific
kinetic energy fields as a function of time.

3. Satellite Time-Lapse Pictures and Cloud Motion Vectors

A Satellite View of the Cloud Clusters on 26, 27 and 28 July 1969

A cloud cluster identified as A in Figure la at 57°W, 15°N in the
western Atlantic was the only active cluster in the selected grid zone
on 26 July 1969. Associated cloudiness appears to extend southwestward
over South America. The cluster moved westward to the 63°W meridian on
27 July, implying a speed of = 5°/day and became disorganized as it
passed to the east of Cuba on 28 July. Initial westward movement be-
came northwestward on 28 July. The cloud cluster B located at 54°W,
15°N in Figure Ib was just entering the grid zone in Figure la and was
apparently linked to the dominant cyclonic circulation to its east-
southeast at 35°W,10°N (tropical storm Anna). A wide field of stratocumulus
clouds is seen to the north of this latter system extending to latitudes
as high as 25°N. The cloud cluster B can be followed to the location
62°W, 15°N on 28 July (Figure Ic) thereby indicating an apparent speed
of 8° of longitude per day, which is faster than cluster A on 26-27 July.
The implication that the trade-circulation was stronger on the 27th in
the easter part of the zone than on the 26th is confirmed by the fields
of cloud motion vectors discussed below.
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Circulation Features as Revealed From the Cloud Trajectories

Figures 2a, b and c present the corrected cloud motion vectors obtain-
ed from WINDCO. One can see from these diagrams that the data density is
high, much higher than once can expect from land based rawin network.
For comparison the streamline flow charts at 3000 ft obtained from the
WHO Regional Center at Miami are presented in Figures 3a, b and c. The
subjectivity introduced in the analysis of widely spaced rawin, aircraft
and ship data in these charts is evident. A comparison of Figures 2 and
3 reveals in general an agreement between 3000 ft level streamlines and
the low cloud trajectories presented.

Cloud trajectories on the 26th indicate a cyclonic circulation
centered near 47°W, 11"N. Two dominant subtropical antlcyclonic vortices
are located at around 50°W and 80°W. Cloud motions were generally from
east to southeast in the eastern half of the box; in the western sector
they were light to variable. A pronounced latitudinal wind shear can be
seen in the Caribbean Sea area to the north of the 1TCZ at 12°N but to
the west of the active cloud band.

On 27 July (Figure 2b), there appears a change in the circulation
regime; northerly to northeasterly flow seems to dominate south of 12°N.
A quasi-steady northeasterly flow is found in the eastern half of the
extended grid box while winds appear light and variable in the western
Atlantic. Two cyclonic vortices, one at 15°N, 25°W and the other at 10°N,
40°W, are evident on this chart. The anticyclonic vortex observed north
of Cuba on the 26th moved a few degrees westward. A weak trough aligned

40°N

30° •

IOO°W 90° 80° 70° 60° 50° 40°

10° -CZ

12 Z 26 JULY 69
30OO1 WIND

Figure 3a. Conventional wind analysis at 3000 ft level in the area shown
in Figure 2a for 26 July 1969.
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Figure 3c. Same as 3a except for 28 July 1969.

northwest-southeast Is located in the general area extending 15°N through
5°N along the 67 °W meridian. An eastward moving midlatitude cold front
extending as low as 27°N in the western Atlantic was captured by expand-
ing the data coverage northward. With only data from conventional sys-
tems over the ocean, it is not uncommon to miss such a midlatitude trough.
Strong latitudinal wind shear persists in the Caribbean Sea east of
Panama.

By 28 July the wave to the north of the ITCZ moved to the 72"W meri-
dian. The anticyclonic vortices to the northeast and northwest also
moved westward a few degrees. A new cyclonic circulation is seen
centered approximately around 7°N, 78°W.

The details in these wind fields offer a possibility of testing the
"easterly wave" concept (Palmer, 1952; Riehl, 1954), which holds that
wave perturbations of the easterly trade flow are associated with
disturbed, showery weather of the kind to be expected under a cloud clus-
ter and that this disturbed weather typically occurs on the upwind side
of the wave trough. To examine whether the cloud clusters are related
to any such wind perturbations, the low cloud trajectories were carefully
scanned and approximate locations of the clusters circled. Offhand, one
can hardly identify any clear-cut wind discontinuity in the cloud cluster
area except on a few occasions; for example, at the location of cluster
"A" in Figure 2b where a very weak amplitude wave is indicated. In con-
trast to this, one would find an area of weak convergence near cloud
cluster "B" marked by relatively stronger wind in the upwind than in the
downwind from the cluster. In general, however, one finds a stronger
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trade flow north of a cloud cluster location than to the south and that
all clusters may not be associated with wave troughs.

These cloud trajectory charts clearly demonstrate superiority in data
density over the oceanic regime where, in spite of the uncertainties in-
volved in the estimation of cloud heights, an analyst is able to follow
the cloud-cluster-scale circulation more closely than otherwise would be
possible. In most areas the data density satisfies the two-degree hori-
zontal grid mesh spacing considered necessary for a global numerical
model.

4. Mean Zonal and Meridional Winds

From the isotach analyses of zonal and meridional components of cloud
motion vectors, means as a function of time, latitude and longitude are
constructed (see Figures 4a,b,c). The number of observations used in
finding the means are indicated against each data point. A significant
zonal wind shear north and south of the ITCZ at 12°N is apparent in these
diagrams especially on the 26th and the 27th. Although not very pro-
nounced, the meridional components exhibit confluence to the south of the
ITCZ, and particularly so on the 27th and 28th of July.

The longitudinal distributions of mean u and v fields show pat-
terns seemingly influenced by the location of vortices. In the zonal
profiles the low magnitude between 70° - 75°W and also around 85 - 90°W
meridians may be related to a col region between the two anticyclonic
vortices. Interestingly the locations of these regions of low zonal
wind speed are constant on the three days investigated in spite of slow
westward movement of the anticyclonic cells. While the zonal winds ex-
hibited more or less the same pattern, the meridional wind distribution
significantly changed; namely, the bump Indicating southerly flow of
3-4 mps at around 63°W on 26 July (Figure 3a) became weaker on subse-
quent days and shifted westward to approximately 72°W on 28 July. In
the vicinity of cloud clusters the average zonal shear was found
- 7 x 10~6 sec"1 (cyclonic) and the average meridional shear was around
3 x 1CT6 sec-1 (cyclonic).

5. Divergence and Relative Vorticlty Fields Related to Cloud Population

Divergence Fields

Figures 5a,b,c are low level divergence fields produced from cloud
motion fields upon which are superimposed clouds from ATS photos. The
major areas of convergence are found located near the cloud cluster in
agreement with what Hasler (1971) has found. The magnitudes of con-
vergence ranged from 3 x 10" 5 sec"1 to 9.0 x 10"5 sec"1 depending on
the intensity of cluster activity. In intense growing storms the magni-
tudes may be as high as 10~̂  sec"1 (in 2° x 2° zone) which is about two orders
of magnitude higher than the value 10~6 sec"1 frequently quoted of large scale
motions. The divergence magnitudes in the clear environment ranged
between 0.2 - 5.0 x 10" 5 sec"1 on the average. There are occasions
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when clouds are present In the areas of no significant convergence field.
This may be attributed to inactivity within the cloud clusters at the
time of observation; some might simply have been composed of debris left
over from previous convection. To test this suggestion one could check
the cirrus expansion rate atop a cluster using Sikdar's (1969) technique.

While editing and smoothing is necessary because some signal noise
is unavoidable, the extent to which this can be done without concealing
desired meteorological information is yet an unanswered question. Space-
smoothing is effectively done by the choice of grid size. It is generally
accepted that meteorological parameters like divergence and vorticity
fields are scale dependent. To test the validity of this concept we
have plotted in Figure 6 divergences obtained from movieloop technique
after Hasler (1971) averaged in 5° x 5° and 10° x 10° (latitude x longi-
tude) grid spacing for the same area and date against those obtained
from the WINDCO system (spacing 2.5° x2.5° on the 26th and 28th while
2° x 2° on the 27th). The absence of any large scatter probably suggests
that the low level divergence or convergence around a tropical cluster
hardly depends on the scale size in the range 100 to 600 nautical miles
on a side; in other words, B and C scales are effectively coupled to
large scale motions. In interpreting these data one should realize,
however, that some discrepancies will be obvious because of the differ-
ences in the technique and also because the same cloud may not have been
followed as a tracer by the two techniques. Even so, the independently
derived wind fields exhibited excellent agreement (Hasler, 1971).

Relative Vorticity Fields

Figures 7a,b,c show clouds superimposed on relative vorticity fields
for the three days investigated. Patterns are complex and occasionally
difficult to interpret. In general the large clouds are located westward
or downstream in the regions of large positive relative vorticity with a
vorticity maximum often located to the west of the cloud cluster. The
large positive values to the east and northeast of the cloud cluster are
probably related to wind shear.

Figure 8 is a scatter diagram illustrating the effect of scale size
on the averaged relative vorticity fields. A wide scatter probably
means that the relative vorticity field is more difficult to predict from
large-scale motions than the divergence field and is scale dependent. A
spatial analysis of components 3u/3y and 3u/3x (not presented here)
reveals that a major contribution to relative vorticity field in the
cluster area comes from the shear in the zonal flow, i.e., - 3u/3y .
The ratio of the zonal to the meridional shear ranges from 2:1 to 5:1 de-
pending on the intensity of cloud activity. While in the vicinity of a
cloud cluster the shear is cyclonic; the clear environment exhibits
predominantly anticyclonic wind shear.

Relationship Between Divergence and Vorticity Fields

In this section we look for relationships between the divergence and
vorticity fields related to the location of a cloud cluster. Of the
three days presented, the 27th has the best data coverage and two active
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Figure lOa. Scatter diagram for relative vorticity ver«us divergence
for clouds #1, 3, 4 in Figure 9.
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clusters in the central North Atlantic, with an Intense cyclonic circula-
tion near the ITCZ in the eastern North Atlantic. Therefore, only the
analysis for the 27th is presented.

Figure 9 indicates the locations of maxima of relative vorticy (£)
and of divergence (D) related to the cloud cluster. One clearly finds
In this diagram that the locations of t, and -D are separated

max max
by a considerable distance. In the case of intense cyclonic circula-
tion (Anna), however, both ̂ aax (cyclonic) and -D̂ ^ (convergence) are

located near the storm's circulation center; this may imply a different
flow pattern than is typically associated with a cloud cluster.

Although the locations of t and -D and the cloud cluster
max max

do not exactly coincide, the cloud cluster growth is closely dependent
on the convergence, for the latter becomes a dynamic necessity for the
air to rise to the cirrus outflow layers through convective towers
embedded in active cloud clusters. Charney and Eliassen (1964),
Ooyama (1964) had proposed CISK (Conditional Instability of the Second
Kind) as an important mechanism for the intensification of cloud clusters
and tropical storms. If CISK is the mechanism of convergence, one would
expect a clear-cut relationship between the grid point values of £ and
D obtained from this analysis, and the intensity of cluster activity.
We assumed here that the small clouds used as tracers of air motion are
tied to the boundary layer dynamics.

Figures lOa and b are scatter diagrams, presenting grid point values
of C and D inside and near the cloud edges. The diagram reveals in
general that in the cloud cluster vicinity, the divergence or convergence
usually do not exceed 2.5 x 10~5 sec~l and the relative vorticity is pre-
dominantly anticyclonic; the cloud cluster area is characterized by
positive relative vorticity and negative divergence and the grid-point
values of t, and D inside an Intense cyclonic circulation (for example,
cloud #1 in Figure 9) are located in the same domain. The magnitudes
are, however, significantly higher than in an ordinary cluster, and the
relative vorticity is dominant. An approximate relationship
C - -1.5D emerges from the scatter diagram implying a decrease of low
level divergence with increasing relative vorticity in the ratio 1:-0.67.

7. Specific Kinetic Energy

Figures lla, b, c present specific kinetic energy fields defined by
4(u2 + v2) for 26, 27 and 28 July, respectively. No specific conclusions
can be drawn from such an analysis except that one finds consistency in
the location of specific kinetic energy generation sources on the three
successive days investigated. The maxima are approximately where hori-
zonal wind shears have the highest values, i.e., at the southern
periphery of the anticyclonic vortex in the western as well as in the
eastern North Atlantic (Figures 2a,b,c). Two dominant source regions are
noted during this study period: one centered around 17°N, 60°W and the
other around 1S°N, 80°W. On extended charts of the 27th, another source
region is around 12°N, 40°W on the ITCZ west of Africa.
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One can hardly Infer on the kinetic energy production and destruction
from this simple approach, but future possibilities exist in exploiting
the data from three-dimensional viewpoint (SMS) when one should be able

34 3d>
to compute -u •%*• and ~v g (f • geopotential), both as a function of

latitude-longitude and time.

8. Concluding Remarks

In this sample study of the one-layer model, we have seen that the
low level cloud trajectories obtained from the WINDO system exhibit pat-
terns comparable to streamlines at lower tropospheric levels (3000 ft).

In the u and v fields analyzed from these data we do see signifi-
cant changes in large-scale motion field on a time scale of a few hours.
Assuming the wind finding technique to be working proficiently, this
short time change may be attributed to cloud evolution processes or real
changes in the horizontal wind field, for the cloud targets selected as
tracers may not be individual cumuli but small clusters and patches.
Also seen in the u and v fields is a significant latitudinal wind
shear north and south of the ITCZ, especially in the zonal wind.
Meridional components also exhibit shear south of 15°N.

Superimposing divergence and vortlcity fields on the cloud field,
one gets the general impression that the cloud clusters are in the
areas of convergence and positive relative vorticity. The vorticity
magnitudes appear to be scale-dependent while the divergences are not,
at least in the scale 100-600 nautical miles on a side. The grid point
values of C and D are found approximately related by the equation
C • -1.5D, implying that the low level divergence generally decreases
with increasing relative vorticity in an active cloud cluster; however,
for some clouds such a relationship is missing. One may conclude from
this sample study that the CISK mechanism may be valid for large tropical
nephsystems with intense convective activity in them—but may not be true
for all tropical cloud clusters.

Finally, the specific kinetic energy patterns consistently show two
dominant source regions to the north of the ITCZ during the study period
which are possibly related to zonal wind shear.
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THE FEASIBILITY OF THE APPLICATION OF A GEOSTATIONARY SATELLITE

RAKE SYSTEM TO MEASUREMENTS OF RAINFALL

F. G. Stremler

This is a report on a feasibility study of the use of a RAKE radar
system in a geostationary earth satellite to measure rainfall budgets for
large, normally inaccessible regions of the earth's surface. A subcon-
tract report of the Collins Radio Company is appended as a major portion
of this study [1]. Professor Birkemeier of the Department of Electrical
Engineering has been very successful in applying RAKE techniques to tropo-
scatter measurements [2], and his comments and advice have also been
valuable in this study.

Major problems confronting the use of a RAKE radar system to synchro-
nous meteorological coverage are:

(1) a doppler spectrum, arising from rainfall, that is not sharply
defined (i.e., large variance);

(2) an unfavorable signal-to-clutter ratio resulting from the rela-
tively small returned radar power from rainfall in the presence
of a strong return from the earth; and

(3) lack of a suitable satellite for a RAKE experiment as a result
of the high power and frequencies.

These are discussed here with particular reference to the Collins report.

Because of the distribution of drop sizes in precipitation, a radar
pointing vertically will observe a doppler spread resulting from a dis-
tribution of fall velocities. Measurements and data in the literature
on doppler spectra from rainfall are very meager. Calculations made by
Collins (see their Figure A-6) show that the standard deviation of fall
velocities is about 2 m/sec and is fairly independent of rain intensity.
Calculations using a Marshall-Palmer distribution for drop size [3] and
measurements of fall velocities versus drop size found in Medhurst [4]
yield very similar results, with slightly smaller variance. Lhermite
as quoted by Nathanson [5], states that the standard deviation of fall
velocities is approximately 1.0 m/sec; Nathanson also adds a turbulence
factor of about 0.7 m/sec. These references and a limited set of
measurements reported by Nathanson and Davidson [5] reveal that the
assumption of a standard deviation of 2 m/sec, as used by Collins, is
certainly not unreasonable though perhaps a little pessimistic. The
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outcome of this is that even If the earth return were not present, the
minimum doppler bandwidth arising from rainfall is on the order of
400 cm/sec or Bj - 2v/X - 800/X Hz where X is in cm. An earlier
estimate of performance by Collins [6] was based on the possibility of
using a doppler bandwidth Bd = 1 Hz resulting in significantly better
receiver sensitivities.

It is assumed that the tropics is the region of interest for RAKE
rainfall measurements. In this region the source of heavy rainfall is
primarily from cumulonimbus clouds, and the water content and charac-
teristics of such clouds are fairly well known [7],[8]. Representative
numbers chosen in the Collins report to compute signal attenuations are
not extreme and appear to be reasonable for a 95% probability-of-
detection performance [9]. Expected radar signal return levels calcu-
lated on the basis of a transmitted power of 100 watts and the attenua-
tions used by Collins are shown in Figure 1 together with receiver noise
levels corresponding to a 1 Hz and a 800/X Hz doppler bandwidth. As the
transmitted power levels are changed, the returned power levels move on
the graph but the receiver noise thresholds remain fixed. Conclusions
are that about ISO watts are needed to detect a rainfall rate of 10 mra/hr
over a region 50 km in diameter at A = 2 cm using a 10 m antenna
(ideal) (also see Figure A-10 in the Collins report). As a more practi-
cal case, 1 kw is required at a wavelength of 4 cm if the antenna gain is
limited to 50 dB. These numbers are determined by adding the required dB
to raise the rainfall return power curves in Figure 1 to match the re-
ceiver noise levels.

To complicate matters, a very large earth return arrives at the re-
ceiver a few microseconds after the rainfall return. This received power
level (PTE) *s large compared to the earth return, as illustrated in
Figure 1. There are several options open to suppress this strong ground
clutter return. The first method assumes that the doppler of the satel-
lite with respect to the earth can be removed and that the earth return
can then be separated from the rainfall return on the basis of doppler
shift. This is the assumption used in the Collins report.

Doppler clutter return for land masses will be very low while doppler
returns from waves will vary with sea state, but will rarely exceed
2 m/sec [10]. Therefore, the doppler spectra from the earth return and
the rainfall return are nonoverlapping and can be separated by filtering.
Assuming a 40 dB attenuation on this basis, the remainder of the attenua-
tion required (on the order of 50 dB) must be picked up using the proper
signal design. Collins used the clutter rejection capabilities of a RAKE
signal long enough to fill the time delay to the earth and return.

Several alternatives can be considered In the earth return problem.
One method is to use short coherent code words spaced just far enough
apart so that the earth return is received between words. Another possi-
bility is to employ frequency agility instead of time agility in separat-
ing the rainfall returns from the earth returns. Answers to how these
signal changes affect RAKE system performance are not presently known [11]
and furnish an impetus to new research in signal design in this area.
These methods, while perhaps promising better clutter rejection, increase
the complexity of the satellite RAKE system and should be studied in depth
before dependence on them is assumed.
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A third area of investigation is the availability of existing or
planned satellites on which a RAKE rainfall detection experiment could be
attempted. The Collins report cites the status of the ATS-G. Availabil-
ity of a suitable satellite or pair of satellites is generally precluded
for one or more of the following reasons [12]: 1) Radio frequencies above
6 GHz are not currently used in satellites (except ATS); 2) few satel-
lites, if any, could meet the power and/or bandwidth requirements needed;
3) satellite communication systems frequencies are chosen so that no fre-
quency used on the downlink of one satellite is used on the uplink of
another. Some military satellites might have the capability to try such
an experiment but data have not been available on this.

In conclusion, the Collins report has correctly defined the problem
and estimated the feasibility of the RAKE radar rainfall measurement
based on available theory and data from the literature. This study points
out several main problems in the implementation of such a system and areas
for further work and investigation:

(1) Can the doppler dependence on rainfall rate be checked with
experimental data?

(2) Given these data, can rainfall rates be reliably made using
doppler estimators?

(3) Can suppression of earth return clutter be Improved using dif-
ferent signal design techniques?

(4) Can a satellite be found to try the experiment without excessive
changes in the satellite?
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APPENDIX

The Feasibility of the Application of a Geostationary Satellite RAKE
System to Measurements of Rainfall*

1. Introduction

Preliminary analysis has suggested the use of the unique radar mapping
capabilities of a RAKE system incorporated into a geostationary satellite
implementation, as graphically Illustrated in Figure A-l, to obtain mea-
sures of rainfall budget for the relatively large, but normally inaccess-
ible, tropic regions of the earth.

The geostationary satellite RAKE approach to measurement of rainfall
budget involves the transmission of a probing signal consisting of a
microwave frequency carrier, biphase modulated by a bilevel pseudorandom
noise sequence, from the satellite toward the earth with vertical or near-
vertical incidence to the earth's surface. Portions of the transmitted
signal are reflected from rain at various altitudes and from the earth's
surface to return to the satellite as a signal similar to the transmitted
signal but dispersed in both time and frequency dimensions. The satellite
directs this dispersed signal to the RAKE receiver wherein the signal Is
cross-correlated with appropriately delayed replicas of the transmitted
signal to effectively separate the received signal into a series of time
delay Increments. Since the desired rain return signal, which corresponds
to rain observed in a given altitude region, differs in delay from rain

Prepared by R. H. Pool, T. L. Hise and A. R. Hamilton; Collins Radio
Company, Cedar Rapids, Iowa, August 1972.
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returns of other altitude regions and from the earth return, the desired
rain return signal can ideally be Isolated from the others through the
RAKE receiver cross-correlation process. The recovered rain return sig-
nal can then be spectrally processed to obtain a doppler frequency spec-
trum that relates to the distribution of rainfall velocity within the
observed altitude region. From the relationship of rainfall velocity
and raindrop radii distributions and a knowledge of the antenna beam-
filling factor of the observed rainfall region, perhaps determined op-
tically, the rain return signal power and its frequency distribution can
be employed to obtain a measure of rainfall rate. Subsequent time inte-
gration of rainfall rate will allow a value for total rainfall to be
determined.

This report relates the procedures followed and the results obtained
during the performance of an in-depth analysis of the above described
geostationary satellite RAKE system concept to determine the feasibility
of its application to measurement of rainfall budget. Consideration is
given to optimization of the system concept, determination of a "best"
technique for implementation and the possibilities of implementing the
system on the basis of planned geostationary satellite configurations.

2. System Analysis and Optimization

In this section the basic equations, parameters and parameter relation-
ships defining the geostationary satellite RAKE system are presented.
These are then applied to the problems of optimization of the system con-
cept on a theoretical basis without regard to a specific form of system
implementation, although practical limitations and constraints are in-
cluded in the optimization procedures.

2.1 Basic Equations and Parameters

Two equations relating the signal power returned to the satellite from
rain and the earth's surface form the basis for determination of system
feasibility. These two equations involve relationships of the many
meteorological and radio parameters that define the characteristics of
the radio propagation path and terminal equipment.

The first of these equations, basically from Battan [1], defines the
total average signal power returned to the satellite from spherical water
particles contained in an observation region above the earth's surface
having a volume determined by the area illuminated by the antenna and a
height h.

^ fr kdr u

where



ParR - Average rain return signal power (watts)

F * Transmitted power (watts)

A - Apertural area of satellite antenna (cm2)

6 - Antenna azimuth bearawidth (radians)

<t> - Antenna elevation beamwidth (radians)

h • Height of rain observation zone (cm)

<|i - Beam-filling factor (Z/100)

F - Correction factor (see L. J. Battan, 1959)

|K|2 • Complex index of refraction (see L. J. Battan, 1959)

X - Wavelength of transmitted center frequency (cm)

Z - Reflectivity factor (cm'/cm3)

r - Range (one-way, satellite-to-reflector distance) (cm)

k ™ Propagation attenuation rate, one-way (dB/km) • k + k + k
(gases, k ; clouds, k ; precipitation, k ) 8 c

L - Equipment losses, one-way (dB)

The second equation, based upon work by Beckmann and Spizzichlno [2],
defines the received power reflected from a diffuse scattering sea sur-
face.

P - -̂ -E - cot2Bo exp[-tan2d/tan28o] (2-2)
36X2r2

where Prg is the received earth return power, a is the angle of signal
incidence to the earth's surface measured from vertical, and Bo is the
mean slope of the sea surface irregularities. The remaining parameters
are as previously defined.

These two equations will be used in various forms throughout the re-
mainder of the report. The need for the rain return power equation is
perhaps obvious. The earth return power equation enters into the prob-
lem due to the finite clutter rejection capability of the RAKE system.
If the earth return power exceeds the rain return power by an excessive
amount, the correlation processes of the RAKE receiver and the spectral
processing that follows may not be capable of adequately isolating the
two signals. The sea surface return, much stronger than the ground
return, provides for a worstcase, but certainly reasonable, situation.
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2.2 Parameter Relationships

The progression toward system optimization and finally the determin-
ation of system feasibility on a theoretical basis requires a knowledge
of the parameter relationships presented in the following paragraphs.
Since the basic power return equations expressed in the previous para-
graph 2.1 are functions of such a large number of variables, it is neces-
sary to develop these parameter relationships in order to reduce the num-
ber of variables involved in the basic equations. Also, reasonable con-
stant values will be chosen for certain parameters. Further, the range
of certain variables will be restricted, from practical considerations,
to provide additional simplification relative to the totally general case.
After optimization is completed, it will be possible to evaluate the ef-
fects of variations In the restricted variables as perturbations rather
than true variables.

2.2.1—Pseudorandom Sequence Clock Frequency. Starting with a given
value for the height of the rain observation region h, the effective
transmission bandwidth W can be determined as

W - ̂  (2-3)

where c is the magnitude of the free-space propagation velocity. Us-
ing the definition of W provided by Berkowitz [3], W is found to also
be approximately equal to the pseudorandom sequence generator clock fre-
quency fc if the actual RAKE transmitted signal bandwidth is 2fc.
With fc set equal to W, then fc is defined as a function of h by
Eq. (2-3).

2.2.2—Correlation Time. The RAKE receiver correlation process re-
quires a correlation bandwidth Wc that is sufficiently wide to pass all
expected doppler frequency shifts of the rain return signal. If equiva-
lent low-pass, in-phase and quadrature-phase correlator outputs are em-
ployed to reduce the data sampling rate to a minimum, then

"c - 2lfd,J (2-A)

where f<im is the maximum doppler frequency, positive or negative, ob-
served at the correlator outputs. A correlation time Tc Is defined as

T
C ' f ' iffTT •

 (2'5)c ' dm1

The repetition period of the pseudorandom sequence is TO; therefore, the
product WT - fcTo defines the length of the sequence in terms of the
number of clock periods or so-called "chips" involved in generating one
complete sequence. Similarly, WTC Is the number of chips involved in
the RAKE correlation process.

2.2.3—Clutter Rejection. The rain return signal from a selected al-
titude region above the earth's surface is recovered through the correla-
tion process. However, the returns from other rain regions and the very
strong return from the earth's surface, although at differing time delays,
are not totally rejected in the correlation process and therefore appear
at reduced levels as a part of the desired output. The degree to which
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the undesired, or clutter, signal powers can be reduced is dependent
upon a clutter rejection factor WT that is related to both WTo and
WTC. Lindholm [4] develops an equation describing the second moment of
the clutter level of the pseudorandom sequence correlation process for
the case where WTC <_ WTo. These results were employed to develop an
equation for HX of the form

WTo - WT +1
WT - -

again for the region where WT <_ WT0. This latter equation indicates a

best clutter rejection factor value of (1/WTo)2 is obtained when WT

•WTo. As WT becomes increasingly greater than WTo, it appears that

W tends to follow an envelope somewhat similar in form to sin2x/x2

with minimum values of (1/WTo)2 rather than zero, asymptotically ap-

proaching a constant value of (1/WTo)2. Best clutter rejection is ob-

tained with TO - T ; therefore TO, the repetition period of the pseudo-

random sequence, is defined by Eq. (2-5).

The pseudorandom sequence parameters f and TO as defined by Eqs.

(2-3) and (2-5), respectively, can be combined to determine the sequence
length as

fcT0 - WTo - ,.uu I (2-7)

and the best clutter rejection factor

W_ - -^- - —S=- • (2-8)
(fcTo)

2 f2

In order for the bilevel pseudorandom sequence to be developed as a maxi-
mal length shift-register sequence [4], it is necessary that

fcTo • 2
n-l, where n is a positive integer. It may be necessary to

slightly adjust either fc or TO, preferably fc, to satisfy this lat-
ter equality. It should also be noted that TO must be maintained at a
greater value than the maximum delay range of the signal returns (on the
order of 200 microseconds) to prevent time ambiguity problems.

2.2.4—Transmission Duty Cycle. For a satellite RAKE system involv-
ing a single satellite and a common transmit-receive antenna, it will be
necessary to alternately gate the transmit and receive functions. The
maximum usable transmit period is equal to the satellite-to-earth round
trip delay Tr where

T
r ' T

 (2"9)
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which Is approximately 250 milliseconds. A 50Z duty cycle will provide
a receive period or measured interval of length Tr. Spectral processing
resolution will be limited to l/Tr corresponding, in this case, to about
4 Hz. For the satellite RAKE system, Tr can always be greater than the
correlation time Tc; therefore, the transmitter and receiver pseudorandom
sequence generators can operate continuously with no dependence upon the
transmission duty cycle.

2.2.5—Doppler Frequency Shift. In the previous equations of this
section, the only parameter relating to rainfall is f<jm, the maximum
doppler frequency shift. Raindrops moving toward or away from the satel-
lite with velocity V will cause a carrier frequency shift according to

the equation

-2V
T (2-10)

where X is the wavelength of the transmitted carrier frequency. Godard
ops is
Figure A-2order of nine meters per second,

shows the relationship of |f, |

Using this value for
to X.

1000

•§

100
1 2 3 4 5 6 7 8 9 1 0

A(CM)

Figure A-2. Maximum doppler frequency shift as a function of wavelength.
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Eccentricities of the geostationary satellite orbit can also cause a
doppler frequency shift to all returning signals. ATS-5, for example,
has a maximum earth radial velocity on the order of 41 meters per second
corresponding to an 820 Hz frequency shift for a 10 cm wavelength signal.
Considering that any geostationary satellite orbit will have some eccen-
tricity, satellite-caused doppler shifts must be expected and the satel-
lite RAKE system implemented accordingly. Since the satellite doppler
shifts the earth return and rain return signals by essentially the same
amount, it is reasonable to assume that the effects of satellite doppler
can be removed from the desired rain return by tracking the earth return
signal.

2.2.6 — Antenna Beam Width and Beam Filling Factor. The 3 dB beam
width of a parabolic reflector antenna is a function of both the reflec-
tor diameter Da and signal wavelength X as shown by the following
equation [6]:

6 = <(> = 1.24 x 10"2 ^- (2-11)
a

where 6 Is the antenna 3 dB beam width expressed In radians, with X
and D expressed in centimeters and meters, respectively.

The diameter S in kilometers of the area of the earth's surface il-
luminated by the antenna beam width is

S = 2r tan 6/2 (2-12)

where r is the satellite-to-earth range in kilometers. With r equal
to 3.59 x 10" km, Eqs. (2-11) and (2-12) result in

S = 4.45 x 102 ̂ - . (2-13)
a

The beam-filling factor 4> is dependent upon the relative areas of the
rainfall region and the antenna beam projection at or near the earth's
surface. The area of the rainfall region of concern [7] will typically
have diameters in the range of 20 to 50 km. If the rainfall region has
an effective diameter in kilometers of Dr, then, with Eq. (2-13), the
beam-filling factor is defined as

, D2D2

if) = 5.05 x 10~° -̂ -3. ; D < S
~

ij) = 1; Dr > S . (2-14)

In defining fy through Eq. (2-14), it has been assumed that some inde-
pendent means is available to align the antenna such that the rainfall
region is fully included within the antenna beam. Figures A-3a, 3b, 3c,
respectively, illustrate the antenna angular beam width 6, antenna
earth coverage diameter S, and beam-filling factor i|>, as functions of
wavelength and antenna reflector diameter. It should be emphasized that
ijj cannot exceed unity.
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2.2.7—Atmospheric Attenuation. The equations for P and P
• raR

(Eqs. (2-1) and (2-2)), each contain an expression for
atmospheric attenuation of the form

Afl = 10-°'2/0
kdr (2-15)

where k, expressed in dimensions of dB/km, is some function of the path
characteristics and wavelength with r being the path length. Three
sources of attenuation are significant in the wavelength range being con-
sidered (1 cm <^ A <_ 10 cm). These sources are as follows:

a. Attenuation by atmospheric oxygen and water vapor absorption.
b. Attenuation in clouds by water droplets less than 100 microns in

diameter.
c. Attenuation due to scattering by raindrops.

The integral expression of Eq. (2-15) can be represented as a sum of inte-
grals for each source of attenuation. In equation form,

r r r r
7 kdr = / k dr + / k dr + / k drJo 'o g 'o c 'o P

= a + a + a (2-16)
g c p

where k , k , and k are the attenuation rate factors for gases,

clouds and precipitation, respectively, and a , a , and a represent
their respective attenuation values in dB. 8 p

The absorption by gases is essentially independent of meteorological
conditions depending only upon wavelength and path length. The curve of
Figure A-4,labeled (Xg, shows the attenuation of atmospheric gases as a
function of wavelengtn for a vertical path through the atmosphere. These
values were computed for a uniform atmosphere 8 km thick with uniform
characteristics throughout. These values closely correspond to values
given by Hogg [8] although calculated on different bases.

Attenuation within clouds is caused by water droplets with radii of
100 microns or less. The amount of attenuation is dependent upon the
liquid water content of the cloud. The curve of Figure A-4, labeled ac,
was obtained using data from Bean and Dutton [9], p. 291. The assumed
meteorological conditions for this calculation are graphically illustrated
by Figure A-5. This figure also shows the typical conditions assumed
throughout this report except where otherwise stated.

The attenuation due to rain is a function of rainfall rate. The
values for rain attenuation shown in Figure A-4 as Op are from data for
an average rainfall rate of 25 mm/h [9], and assumes a 1 km thickness of
rain above the observation region.
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Figure A-4. One-way signal attenuation.
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Figure A-5. Storm cloud model for signal attenuation calculations.

77



1.0

8
V (m/SEC)

Figure A-6. Relative power return versus raindrop terminal velocity.
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2.2.8 — Rain Doppler Spectrum Estimate. In order to determine a

value for P , the minimum detectable received signal power, it is

necessary to have some estimate of the doppler spectrum of the rain re-
turn signal. Each raindrop will have a radar cross-section o propor-

tional to D', where Dd is the drop diameter. The total reflected

power on a relative basis can then be expressed as

Pr = Cl JS^ (2-17)

where N is the total number of drops in the observation region. By
grouping the drops into intervals according to their diameter, Eq. (2-17)
can be written as

Pr ' C* /d

where Pj is the percentage of the total number of drops that fall into
the jth interval of diameter and m is the number of intervals.

Figure A-6 illustrates the relative rain-power distribution as a func-
tion of raindrops terminal fall velocity. This figure is a plot of Eq.
(2-18) with Pj data obtained from Table 1. Ca was chosen to give powers
proportional to Rl-6 (R = rainfall rate in mm/h) as in the equation for
P . In addition, drop velocities were derived from drop diameter using

the relationship [10]

Vd = 13vfî  • (2-19)

It is apparent from Figure A-6 that the half-power response points corre-
spond to a three- to four-meters per second spread, regardless of the
rainfall rate. Designating this velocity spread value as AV, the
equivalent doppler frequency spread (or doppler bandwidth) can be
obtained from

Assuming the four meters per second velocity spread value,

B, - M° (2.21)

with A expressed in centimeters.

2.2.9 — RAKE Receiver Sensitivity. The minimum detectable received
power is a function of both the effective noise temperature of the sys-
tem receiver, TsyB, and the rain doppler spread or bandwidth B<j, where
B is defined by Eqs. (2-20) and (2-21), and
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Table 1

Raindrop Size Distributions*
(Percent of volume contained drops of size D.)

Drop Size
(Dd mm)

.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

2.5

7.3
27.8
32.8
19.0
7.9
3.3
1.1
0.6
0.2

Rainfall Rate R (mm/hr)
25

1.7
17.6
18.4
23.9
19.9
12.8
8.2
3.5
2.1
1.1
0.5
0.2

100

1.0
4.6
7.6
11.7
13.9
17.7
16.4
11.9
7.7
3.6
2.2
1.2
1.0
0.3

From Radio Meteorology, Bean and Dutton NBS Monograph 92, 1966,
p. 296.

Tsys ' "TA + TL(1-<» + Tl + ? G^T (2-22>
* m=2 m-1

with

a •= Transmission line loss between antenna and receiver

T, = Effective antenna temperature

T = Transmission line temperature
14

T, = Effective noise temperature of the first stage amplifier

T = Effective noise temperature of the mth stage amplifier

G , = Gain of the (m-l)st stage amplifier,
m—1

For the satellite RAKE application, TA and TL are both reasonably
assumed equal to 290°K and only the first two amplifier stages are con-
sidered such that

T2
sys " 1 GI

The minimum detectable received power Prm is assumed to be equal to the
noise power of the receiver system within the detection bandwidth. The
receiver noise power is determined by the equation
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Pn = kTsysAf (2"24)

where

k = Boltzmann's constant «• 1.38 x 10 joules/°K

T » Effective receiver noise temperature (°K)

Af = Noise bandwidth (Hz)

Curves of Prm = Pn are shown in Figure A-7 for various bandwidths,
B = Af as a function of wavelength or frequency, considering the noise
temperatures of receiver front-end devices tht are practical for satel-
lite use.* The curve of Figure A-7 for B = Bd represents the minimum

detectable rain return power, P . For the frequency range from 3 to
raivm

18 GHz, field-effect transistor (FET) or tunnel diode preamplifiers are
employed. Above 18 GHz, mixer type front-ends are used. More sophisti-
cated preamplifiers, such as parametric amplifiers and masers, can pro-
vide lower receiver noise temperatures; however, these devices are not
considered suitable for satellite applications at this time.

2.2.10—Empirical Correction Factor. The correction factor F used
in the basic rain return equation is based on data from Battan [1], p. 60.
A linear relationship with X was assumed in the plot shown in Figure A-8.
This correction factor is purely an empirical relationship and is based on
the discrepancies between observed and calculated rain return powers.

2.2.11—Reflectivity Factor and Rainfall Rate. The reflectivity fac-
tor Z is equal to the sum of the reflectivity of each drop throughout
the rainfall volume, as discussed in paragraph 2.2.8. Data have been col-
lected on the relationship between Z and the rainfall rate R. Battan
[1], p. 56, gives 23 different relationships for various types of rainfall
and locations. The representative equation that best fits these data and
that will be used throughout this study is:

Z = 2 x 10~10 R1'60 (2-25)

where Z has dimensions of cm /cm3 with R in mm/hr.

2.3 Optimization Procedures

Two criteria for optimization were considered. It was first assumed
that the system performance would be limited by the presence of an earth
return signal of sufficient strength to obscure the rain return signal.
Earth return-to-rain return power ratios of up to the order of 90 dB can
be expected. Assuming the RAKE correlation process can reduce the power
level of the earth return by at least 40 dB, the first criterion was based

Receiver noise figures ranging in value from 4.5 dB at X = 10 cm to
12 dB at X = 1 cm were assumed. These variations with X are reflected
in the graphs in Figure A-7.
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Figure A-8. Correction Factor F versus X.

upon the capabilities of the receiver (after correlation) and spectral
processing to separate the desired rain return from the reduced earth re-
turn for a rain return-to-reduced earth return power ratio Rj of -50 dB
or 10-5.

The earth return power PrE will be reduced by the clutter rejection
factor Wi; therefore the desired rain return-to-reduced earth power ratio
will be

raR
w PWTm rE

(2-26)

Starting with basic Eqs. (2-1) and (2-2) for ?raR and PrE> respectively,

and using Eq. (2-8) for W and appropriate substitutions of Eqs.

(2-7), (2-10), (2-14) and (2-25), an equation defining the minimum de-
tectable rainfall rate for the constraints imposed by Eq. (2-26) can be
derived as
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R, [ co tBoexp( - t ana / t an8o) ]
0.625

(2-27)

This latter equation is plotted in Figure A-9(a) as a function of X for

R = 10~5, Bo =5°, a = 0°, |K|Z = 0.92, h = 105 cm, D = 50 km and

Da " 10 m with the atmospheric attenuation and F factors as shown in
Figures A-4 and A-8, respectively.

Now, by substituting R^n of Eq. (2-27) into the rain return Eq.
(2-1) and through use of the relationships defined by Eqs. (2-11) and
(2-25) plus the previously undefined relationship between antenna aper-
tural area and antenna reflector diameter,

A = 7.85 x 103 D2 , (2-28)
P a

an equation defining the minimum transmitter power required to observe
the previously related minimum detectable rainfall rates is derived as

6.6 x 1010 X2r2 10°'2L(P )
raR (2-29)

o exp(-tan2a/tan28o)]

where (P ) is the minimum detectable rain return power in band-
raR min

width B, shown in Figure A-7. Equation (2-29) is shown plotted in

Figure A-9(b) as a function of X for antenna diameters of 10 m and 20 m,
L = 2.5 dB and r = 3.59 x 109 cm with the remaining parameter values as
employed in determining R .

The second criterion for optimization was simply to determine the
transmitter power required so that the rain return power, P , would

exceed the receiver threshold sensitivity, (P ) , for a constant
min

value of rainfall rate R. In this case, starting with Eq. (2-1) for

p , substituting the relationships defined by Eqs. (2-11), (2-14),

(2-25), and (2-28), letting P = (P ) and solving for P ,
J-SR rflij _, __ t

0.483

P = vr (2-30)
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Pt from Eq. (2-30) Is plotted in Figure A-10 as a function of \ for
rainfall rates of 10, 30 and 100 mm/hr with r = 3.59 x 109 cm, Da = 10m,
Dr • 50 km, |K|

2 = 0.92, h = 10* cm and L ° 2.5 dB. Attenuation fac-
tor (P ) and F are, respectively, as defined in Figures A-4, A-7

raR mln
and A-8.

2.4 Discussion of Optimization Results

The curve of Figure A-9(a) indicates that for a rain return-to-reduced
earth return ratio of 10"̂  and with the other assumed conditions, an ab-
solute detectable rainfall rate theoretically occurs at a wavelength of
approximately 2 cm, or 15 GHz. However, to observe the slightly
more than 0.2 mm/hr value of rainfall rate at that wavelength requires a
transmitted power of more than three kilowatts when using a 20-meter
diameter antenna reflector. Higher values of rainfall rate can be ob-
served using lower transmitted powers. However, lower rainfall rates can-
not be observed if higher transmitted powers are employed because of the
rain return-to-reduced earth return ratio limitation. One obvious way to
reduce the transmitted power requirement would be to increase the antenna
diameter beyond 20 meters. Antenna size cannot be Increased without limit,
however, because the earth coverage area decreases as antenna size In-
creases. Too small a coverage area increases the problems of obtaining
integrated rainfall rate data. Also, since antenna diameter really im-
plies antenna gain there is a practical limit to antenna gain due to the
precision with which the parabolic reflector can be constructed. A
further discussion of practical limitations is presented in paragraph 2.5.

The curves of Figure A-10 indicate that optimization on the basis of
receiver sensitivity is the more realistic approach. Again, the minimum
transmitted power required is theoretically obtained at a wavelength of
about 2 cm regardless of rainfall rate if the rainfall rate is above the
minimum Indicated in Figure A-9. In order to observe a rainfall rate of
10 mm/hr using a 10-meter antenna, a transmitted power at 2 cm of 100
watts is required. For a 20-meter antenna, the transmitted power is
reduced to about 7 watts.

2.5 Practical Limitations

In the previous discussions the values of antenna gain, as related to
antenna diameter, and transmitter power have been allowed to vary essen-
tially without limit. The results obtained on this basis tend to indi-
cate the geostationary satellite RAKE concept for measuring rainfall rate
is theoretically feasible, assuming a reasonable interpretation of the
rainfall doppler spectrum is possible. Before the concept can be con-
sidered feasible on a more practical basis, however, it is necessary to
consider the effects of antenna gain and transmitted power limitations
imposed by present and near future state-of-the-art technology.

The satellite antenna gain that can be obtained is limited by the
precision with which the parabolic reflector can be constructed and as-
sembled in space. Earth antennas have been constructed that have 70 dB
and more of gain in the 3 to 15 GHz range. However, the antennas for the
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lower frequencies are several hundred feet in diameter and at the higher
frequencies are precision ground solid reflectors. It is known that
satellite antennas with gains up to 54 dB are under consideration for some
future space stations, but these are on the order of IS ft in diameter
and are not folded for launch. For the present and immediate future a
50 dB antenna gain for the 3 to 15 GHz range seems to be a reasonable
limit. In the near future, antenna gains of 60 dB may be possible in
satellite applications. It is also considered that for both the pres-
ent and near future, satellite antenna diameters will be limited to about
20 meters, particularly for wavelengths in the 2 to 5 cm range.

The most desirable method of power amplification is solid state be-
cause of its ruggedness, high reliability, low weight and high efficiency.
However, the present state of microwave semiconductors limits the power
generation to about 200 watts at 1 GHz and 40% efficiency, declining to
about 30 watts at 4 GHz and 10% efficiency.

The second choice for power generation would be traveling wave tubes
(TWT's) because of their moderate ruggedness and weight. However, their
efficiency is only 20-25% and the gain is low requiring more preamplifica-
tion. TWT's that generate 10 kW at 1 GHz and up to 1. kW at 10 GHz are
available. However, any over several hundred watts require water cooling
which becomes impractical for anything but a very large satellite.

Very high powers, 100 kW and above, can be generated by klystrons in
the 1 to 10 GHz range. However, the klystron is the least rugged of the
devices and has about 30% efficiency. As with the TWT, water cooling is
required for powers above several hundred watts.

For the present, a TWT limited to about 250 watts of power appears to
be the best choice for a transmitter power amplifier. As satellite avail-
able primary power and weight capacities increase, transmitter output
power can also increase. In the near future, transmitter powers on the
order of 2.5 kW should be possible.

To best illustrate the effects of the limitations on antenna gain and
transmitter power as discussed above, the following equation defining
rainfall rate was developed:

(2-31)

where G is the numerical antenna power gain and all other parameters
are as previously defined. Equation (2-31) has been employed to deter-
mine the two curves of rainfall rate versus wavelength illustrated by
Figure A-ll. These two curves show what is considered to be the pres-
ent and near future capabilities of a practical satellite RAKE system.

Figure A-ll indicates that the current state-of-the-art does not per-
mit detection of rainfall rates below about 150 mm/hr. This is not
considered suitable. However, with anticipated improvements in antenna
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gain and transmitted power capabilities, measurement of rainfall rates in
the more desirable 10 to 25 ram/hr range will become possible. Both curves
of Figure A-ll indicate wavelengths between 2 and 6 cm offer the greatest
capability.

3. Techniques for Implementation-

The following discussion covers methods of hardware implementation of
the RAKE system to obtain the theoretical performance indicated in Sec-
tion 2. It will consider system problems in the implementation of the
hardware necessary to obtain the data, and will not dwell on circuit de-
sign. Three approaches to the data collection will be considered. In
the first, all of the RAKE equipment is in the satellite with the correla-
tion data telemetered to a ground control station. In the second, the
RAKE equipment is in a ground station with only a transponder in the sat-
ellite. The third approach uses separate satellites for the RAKE trans-
mitter and receiver to obtain antenna isolation and thereby eliminate the
need for transmit-receive signal gating.

3.1 All Measurement Equipment in the Satellite

The first approach to be considered is to place all of the data col-
lection equipment in the satellite. Commands from the ground would be
used to Initiate the experiment and aim the antenna at the desired ground
location. The detected return from the rain would be telemetered back to
ground station for further analysis.

Figure A-12 is a block diagram of the RAKE hardware that would be in
the satellite. A single parabolic antenna would be used by both the RAKE
transmitter and receiver. The use of separate antennas to transmit and
receive does not. seem practical when considering a satellite perhaps the
size of ATS-F. It is of more importance to share as large an antenna as
practical rather than have separate but smaller antennas. Since it is
not possible to obtain sufficient isolation between a transmitter and
receiver sharing the same frequency band, the transmitter must be turned
off while receiving. The two-way propagation delay from the satellite to
earth is approximately 250 milliseconds. Thus a cycle of transmitting
for 250 milliseconds and receiving for 250 milliseconds would be reason-
able. Shorter cycles could be used but they do not offer any advantages.
Depending upon frequency, some form of circulator would be used to
direct the transmitter power to the antenna and the receive power to the
receiver.

The transmitter frequency would be a multiple of a stable crystal os-
cillator with the pseudorandom sequence modulated on the signal. The
degree of modulation would be such that after multiplication the modula-
tion would be + 90 degrees. If the pseudorandom sequence were perfectly
balanced, there would be no carrier remaining for exactly +_ 90 degrees
modulation.

Since the satellite can have a vertical component of velocity there
will be a doppler on both the return from the earth and from the rain due
to the satellite motion. To remove this doppler from the measurement,
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the receiver local oscillator Is phase-locked to the earth return. As
shown for the earth return channel in Figure A-12, the received signal is
mixed with the local oscillator which has been modulated with a replica of
the transmitted pseudorandom sequence. When the two sequences are in
synchronism, the carrier Is regenerated and amplified. The phase detec-
tor and VCO complete the loop and maintain the local oscillator in syn-
chronism with the earth return regardless of satellite velocity.

The vertical velocity of the satellite also causes a doppler shift in
the clock frequency of the received pseudorandom sequence. Compensation
must be made for this received clock frequency shift in order for the se-
quence generated at the receiver to stay in synchronism with the received
sequence. This can be done by making the clock frequency a fraction of
the carrier frequency. If at the transmitter the clock is I/Nth of the
carrier, the doppler on the clock in the received signal will be I/Nth of
the doppler on the carrier of the received signal. When the locally gen-
erated carrier at the receiver is phase-locked to the received carrier,
the carrier can be divided by N to obtain a clock for the receiver se-
quence which is in phase with the doppler-shlfted received clock. This
technique for generating sequence clocks is shown in Figure A-12.

The design of .the rain return channel presents special problems caused
by the large earth return signal. Paragraph 2.3 of this report has indi-
cated that the earth return power can be 90 dB greater than that of the
rain return. Any portion of the receiver handling both signals simul-
taneously must be linear over the 90 dB range to prevent intermodulation
and harmonic distortion. Otherwise the ability to select a small rain
signal out of the clutter will be greatly reduced impairing the success
of the measurement.

For this reason the correlation of the return signal with the local
pseudorandom sequence is performed in the first mixer before any amplica-
tion to obtain some rejection of the earth return immediately. The mixer
can be designated to be linear over this range of signals as long as the
total signal power is not greater than about -30 dBm.

The bandwidth of the IF amplifier after the mixer must only be wide
enough to pass the doppler spectrum of the rain return which is within
^ f(jm from the center frequency of the return. The doppler f,j is
caused only by the rain since the satellite doppler has been removed by
phase-locking on the earth return. The spectrum of the signal in the IF
is anticipated to be essentially as shown in Figure A-13. The earth re-
turn has been reduced to a residual carrier and line spectrum, while the
rain return Is offset by the rain doppler. Section 2 has shown that the
residual carrier portion of the earth return can be rejected by

(rr— )2, or about 40 dB, by the correlation process. After selecting only
w 1 o

the return at + f<j, the earth return is still about 50 dB above the rain
return. A rejection filter in the center of the IF band can further re-
duce the earth return so that the linearity requirement in the remaining
portion of the receiver is minimal.

Two phase detectors in quadrature are used for the final detection of
the rain return. The final filters are each f,j wide to pass the rain
but ac coupled to reject the remaining earth return at dc.
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Figure A-13. IF spectrum.

The same pseudorandom sequence generator is used in the earth and
rain channels but is delayed for the earth channel by the propagation time
corresponding to the altitude above the earth of the rain segment being
examined. Once the earth loop is phase-locked, the altitude of the rain
segment examined can be selected by changing the relative delay of the
sequence applied to the rain channel. This can be controlled by the com-
mand link from the ground.

The problem of acquisition of the earth return requires two steps:
first, locking on the carrier and then on the pseudorandom sequence. Suf-
ficient carrier power must initially be left in the transmitted signal to
obtain phase lock. Then the sequence can be stepped until sync is ob-
tained. After complete acquisition, the residual carrier power in the
transmitter can be reduced.

Table 2 shows the expected losses for a telemetry link from the sat-
ellite to the ground station. It was assumed that a 30-foot steerable
parabolic antenna on the ground can be used for the link. For the lower
frequencies considered in the table, little antenna gain can be obtained
in the satellite antenna without using a very large array or a parabolic
reflector. Thus a dipole antenna was considered appropriate for the
lower frequencies. Since it is linearly polarized it will be necessary
to use a circularly polarized ground antenna. This results in a 3 dB
additional loss.

For the midfrequencies a helical antenna can be used. This antenna
provides increased gain over the dipole and eliminates the polarization
loss. A helical antenna length of 3X/2 is typical of the size.

For the higher frequencies, a horn antenna can be used. For this
application the gain of the horn antenna is limited so that the 3 dB
beamwidth will be on the horizon even when the satellite is tilted to
point to the opposite horizon. The horn antenna is also linearly polar-
ized.
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Table 2

Transmission Loss — Telemetry Signal

Freq
MHz

100
200
500

1,000
2,000
5,000
10,000

Iso tropic
loss
(dB)

165
171
179
185
191
199
205

30- ft
ground
antenna
gain
(dB)

17
23
31
37
43
51
57

Satellite Polariza-
antenna tlon
gain loss
(dB) (dB)

Dipole - 2 3
Dipole - 2 3
Helical - 10 -
Helical - 10
Helical - 10
Parabola - 14 3
Parabola - 14 3

Beam
edge
loss
(dB)

_

-
1
1
1
3
3

Total
trans-
mission
loss
(dB)

149
149
139
139
139
140
140

Table 3

Telemetry Power Requirement

fd
(Hz)

100
300
1000

40 x fd

(dB)

36
41
46

Trans
loss
(dB)

-139
-139
-139

S/N
(dB)

+10
+10
+10

P PER Hz

(dBW)

-200
-200
-200

PT
(dBW)

-15
-10
- 5

Table 2 shows that the selection of telemetry frequency is not criti-
cal above 500 MHz. Thus the selection can be made based upon other fac-
tors such as the availability of equipment.

The bit rate for the data will depend upon the doppler frequency.
Assuming a sample rate of twice the doppler (Nyquist rate) and an analog-
to-digital converter of 10 bits, the two channels require 40 fd bits per
second.

The data can best be transmitted using coherent phase modulation.
For a 10~6 bit error rate, a 10 dB signal-to-noise ratio in a bandwidth
of 1 bit rate is required. Assuming a 7 dB receiver noise figure, Table
3 shows the required transmitter power. The values are small enough so
that no problems should be encountered in supplying the required power.
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3.2 Satellite Transponder

The second approach to be considered Is to have the RAKE transmitter
and receiver on the ground and a transponder In the satellite. The sat-
ellite equipment for this approach Is shown pictorially in Figure A-14.

While this approach greatly simplifies the satellite hardware, it has
one problem that disqualifies it from further consideration. This is the
fact that the earth return is on the order of 90 dB above the desired
rain return, and linear amplification is required until correlation is
performed. Obtaining a high-power amplifier with this characteristic is
not feasible. In addition, the satellite power for relaying the signal
to the ground station is beyond practical limits. For example, assuming
a 300 Hz rain doppler and a 7 dB noise figure, the required satellite
power is:

Noise power per Hz = -200 dBW

Bandwidth (S = N) - 25 dB

Required signal power -175 dBW

Loss (Table 2) = -139 dB

Trans signal power = - 36 dBW

Earth return to signal ratio 90 dB

Total transceiver power + 54 dBW,

or 600,000 watts

This approach will not be considered further.

3.3 Two-Satellite Configuration

The third approach to be considered is to have the RAKE transmitter
in one satellite and the receiver in a second satellite. The division of
equipment is obvious from Figure A-12. The advantage of this arrangement
over the single satellite is that transmission can be continuous rather
than have a 50% duty cycle. Continuous transmission will allow greater
resolution in the frequency analysis of the rain return. For example, a
sample 250 milliseconds long limits resolution to approximately 4 Hz.
However, the cost of obtaining the improved resolution is almost double
the single satellite approach and does not appear to be justifiable.

4. Implementation in Planned Geostationary Satellites

In reviewing planned satellites in which the RAKE system might be
implemented, the primary characteristics required were as follows:

(a) Geostationary orbit,
(b) Low orbit eccentricity,
(c) Antenna with a gain of 50 dB or better at 3 cm wavelength,
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(d) Attitude stabilized so antenna pointing of about ± 0.15 degree
(1 dB width) can be maintained,

(e) Space available for the RAKE system.

Inquiries were made to Goddard Space Flight Center, Comsat Corpora-
tion, and several private contractors to see what satellites presently
being planned would be available and would come close to meeting the pri-
mary requirements. The only nonmilitary satellites approaching the re-
quirements appear to be ATS-F and ATS-G. To our knowledge the design of
ATS-F which is to be launched in 1974 has been frozen and is no longer
open to new experiments. ATS-G design is still open, but some persons
have expressed doubt that it would ever be built.

The antenna planned for ATS-G is a 10 meter parabola with a peak gain
of about 49 dB at 6 GHz, and a decreasing gain above this frequency. The
peak available primary power is about 450 watts so the transmitted power
obtainable would be about 125 watts. Thus, if ATS-G were used, the values
of present state-of-the-art rainfall detection shown in Figure A-ll would
have to be increased slightly to conform with the power and antenna gain
available. With a transmitter frequency of 6 GHz and a transmitter power
of 125 watts, the minimum detectable rainfall is about 225 mm/hr.

The ATS-G satellite has a ground-to-satellite control system for atti-
tude control and experiment control that appears to be adequate for the
RAKE program. It also has a telemetry communication system that would be
adequate. The RAKE transmitter, receiver and correlation equipment would
have to be developed especially for the satellite as their present trans-
mitters and receivers are not adequate.

5. Conclusions

The results of the system analysis and optimization indicate that the
measurement of rain doppler spectrum is feasible using the geostationary
satellite RAKE concept. A major problem does appear to exist, not in ob-
taining the rain doppler spectrum, but rather in interpretation of this
spectrum in terms of rainfall rate. Figure A-6 offers a clear illustra-
tion of the potential problem. In this figure the doppler spectrum sig-
natures for the three rainfall rates differ little in either frequency
value or frequency spread. They do differ more widely in level. How-
ever, level variations are related to both rainfall rate and beam-filling
factor. It was considered necessary to indicate the presence of this po-
tential problem, although no solution to the problem was pursued during
the course of this study.

State-of-the-art limitations to satellite antenna gains and trans-
mitter powers do limit the practicality of employing the geostationary
satellite RAKE concept to obtain rain doppler spectra at the present time.
The future shows good promise for the concept, however, as satellite
antenna gains and transmitter powers are increased.

The portion of the study pertaining to methods of implementing the
satellite RAKE system has resulted in a clearly defined "best" method.
This method of implementation requires that all RAKE equipment be incor-
porated into a single satellite with only control signals and RAKE
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correlator output data linked to the ground based terminal. ATS-G appears
to be the only nonmilitary satellite to be placed In orbit at some near
future date that has capabilities approaching those required for satellite
RAKE implementation. However, an ATS-G implementation would not be suit-
able unless greater transmitter powers can be made available.

If the problem of interpreting rain doppler spectra in terms of rain-
fall rate can be circumvented, the future capabilities of the satellite
RAKE system to measure rainfall rate would appear to be assured.
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POINTING ERROR ANALYSIS OF GEOSYNCHRONOUS SATELLITES

Aniruddha Das and T. C. Huang

FOREWORD

Introduction

The two principal problems in unmanned satellite dynamics are:
1) stability of the satellite; and 2) precise determination of the orienta-
tion of the different sensors mounted on the satellite. In the following
analysis the latter problem is treated.

To recognize the problem, we have to note the following facts. A sat-
ellite usually has two sets of sensors. The first set, the Star Tracking
Sensors (STS), looks at some preassigned stars and sends down the signal
for the angular positions of the stars relative to the sensors. From these
data, the attitude angles of the satellite are calculated. The second set
looks at the Earth and is called the Earth Viewing Modules (EVM). For
scientific purposes, it is obviously necessary to know the location of the
point on the Earth at which the EVM was looking when the data were sensed.
So far, the practice has been to calculate the attitude angles of the EVM
from the attitude angles of the STS. This would have been satisfactory
if both sets of sensors were part of the same rigid body, but in reality
the flexible elements on which these sensors are mounted lead to errors
in the EVM attitude angle determination.

Another problem is that the data are sensed by both the STS and EVM at
discrete time intervals. Also, the sensing time and frequency are not
necessarily synchronous for the two sets of sensors, so for correct corre-
lation of data it is necessary to know the motion of the EVM during the
interval between two sets of data transmitted by the STS. To do this, an
accurate dynamic model of the satellite is required which takes into ac-
count the flexibilities, energy dissipative sources and environmental torques
influencing the motion.

Now, trying to solve the dynamic equations which involve the angular
velocities of the satellite u leads to further complications. To obtain
these angular velocities as a function of time in an interval, say 0 <^ t <_ T,
the magnitudes of u have to be known at one point in the interval, say at
t = 0. These initial values of u have to be obtained from the data sent
by the STS. These data are inaccurate, however, as the exact STS angular
positions are not known. To calculate the displacement of the STS, OJ and
the initial values of the coordinates of the STS qo have to be known.
Since there is no way to measure qo, one can only obtain the most probable
values of to from a set of assumed values of qo to start with and
then use Improved values of qo in successive iteration processes.
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The environmental and controlling torques are associated with torque
noises. Another source of error Is the presence of electrical noise In the
data transmitted by the sensors. The presence of these noises makes every
variable In the problem a random variable.

The solution of the dynamic problem requires the solution of the asso-
ciated control problem. In addition, an optimal control system has to be
formulated to meet the objectives of accurate prediction of the attitude
angles of the satellite.

Literature Review

Most of the early work in satellite dynamics was done to analyze the
stability of the motion, and it has thrown a considerable amount of light
on this problem.

The "major axis" rule for the stability of freely spinning vehicles was
first published by Fllkington [1], Bracewell and Gariott [2], and Perkel
[3], Host of the existing spin-stabilized satellites were designed with
this criterion. Quantitative determination of the influence of energy
dissipation by dampers on the motion of bodies spinning about their major
axes is shown by Thomson and Reiter [4], and Likins [5], [6]. The dual-
spin concept was first developed by A. J. lorillo [7], who also considered
simple damper models in both bodies. They were closely followed by Karymov
[8], Rossi et al. [9], Likins [10], Likins and Mingorl [11], Mingori [12],
and Pringle [13].

The usual technique used by these authors was to linearize the rigid
body Euler equations and then to apply the Routh-Hurwitz criterion. Mingorl
[12] compared the linear predictions with Floquet theory. Likins and Min-
gori [11] obtained a Liapunov function for linear systems. Pringle [13]
derived his theorem based on Liapunov's direct method for a lumped mass
system, after linearization. An interesting method was shown by Flatley
[14], [15]. He used the angular velocities from a rigid body assumption
to solve a simple spring-mass-damper model, and obtained results very close
to Mingori's Floquet analysis for a similar system.

The most significant contributions to the problem of obtaining the mode
shapes for a flexible satellite are from Likins and his associates [16],
[17], [18], [19], [20]. They considered distributed mass systems by lumped
mass approximation in [16], [18] and [19], and completely linearized the
systems with distributed mass mode functions in [17] and [20]. The forcing
and controlling torques were not considered. In their formulation, they
did not obtain any equations free of the spatial coordinates.

Their approach was fully deterministic, and the problem of nondefinite
initial conditions was not considered. Kane and Robe [21] considered two
symmetric rigid bodies connected by a flexible beam. A rigid satellite
with two torsion pendulums was considered by Bainum and others [22]. Flex-
ible coupling of two rigid spinning bodies was also treated by Cretcher and
Mingorl [23] and Wenglarz [24]. In a comprehensive report prepared by
Avco Systems Division for Goddard Space Flight Center, Maryland [25], the

100



problem of sensor noise for the angular velocities of a rigid satellite
with spring-mass systems was considered. The dependence of the error on
the sensor oscillations was not taken into account. Various problems of
control were considered in [26] for simple linear systems.

The major area of thermally induced flutter of a general flexible satel-
lite has not been considered thus far. The case of long beams only has
been considered in Etkin and Hughes [27]. With the exception of [25] and
Zach [29], the system analyses mentioned so far have left out the effect of
environmental torques. The torques acting on a rigid satellite are con-
sidered in [25]. Zach [29] used a simple torque model for gravity-gradient
satellites. In addition, Dobrotin [30] and Tidwell [31] made the only
realistic torque models, published so far, without going into the dynamic
system. The solution for the vibrations of a fixed base, elastic, distrib-
uted-mass structural system, involving shells, plates, beams, rigid bodies
and point masses, has been developed by Huang and others [32], [33], [34],
and [35]. The present analysis, which also considers translational and
rotational motion of such complex structures, will be an extension of that
series of work.

We have reviewed the literature dealing only with the general area of
satellite dynamics. References related to the methods of analysis will be
made when needed.

The Scope of this Study

In the present analysis the basic configuration of a dual-spin satel-
lite has been made. This can be modified to a spinning or a three-axes
stabilized satellite. The dynamic model includes elastic shells, plates,
beams, rigid bodies and point masses. The effects of thermal stresses,
large angular velocities and the effect of the motion to the center of mass
due to vehicle deformation are included. In this formulation, the spatial
dependences are maintained linear while the time dependences are nonlinear.

The analysis proceeds with the following plan. We start with appro-
priate partial differential equations for the beams, plates and shells in
global coordinates fixed to the satellite. These are then transformed into
local coordinates fixed to the nominal positions of each of the elements.
Based on the linear theory the solution spaces of the distributed mass ele-
ments are chosen; this is done by choosing a finite series of terms of
known spatial functions multiplied by unknown time-dependent coefficients
qi. Then, using Galerkin's method, the spatial functions are integrated
out of the partial differential equations. This leads to a matrix of
ordinary linear second order differential equations in terms of the unknown
coefficients of the spatial functions. The coefficient matrices of all but
the second derivatives in these equations remain nonlinear functions of the
angular velocities ^ of the satellite. The angular momentum equations
for the whole satellite are then obtained, which involve both the sets
q^ and u>^ . From all these equations, the unknowns q^ are eliminated
leading to nonlinear equations in to^ only. These equations turn out to
be singularly perturbed equations and are scaled out to obtain short-time
and long-time equations for the angular velocities u^. It is found that
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the long-time equations, on being drastically simplified, lead to the
usual rigid body equations of motion of satellites. The short-time equa-
tions lead to hitherto unknown equations for the transient response of
flexible satellites. Solution of this equation requires complete informa-
tion of the controlling torques for the satellite, so a time-optimal control
policy is then assumed and a suitable optimum control system is then formu-
lated. A linearized solution of the system is then subjected to statisti-
cal analysis for getting the probability distribution functions of the
required variables. The mean values then are to be obtained from the non-
linear equations by a numerical procedure.

The primary advantage of the method outlined is that irrespective of
the number of flexible elements in the dynamic model , we will always have
to solve only three nonlinear ordinary differential equations in three un-
known variables. Also the boundary conditions for the q± are satisfied
before solving the problems by suitably reducing the number of independent
elements in the set

Objectives

The objective of this analysis is to estimate the pointing error of
different satellites. For a three-axes stabilized satellite, a very pre-
cise determination of instantaneous attitude angles is possible. However,
its motion at a subsequent time and the corresponding control is very un-
certain. A spinning satellite provides a very stable platform in space,
but the attitude measurement is uncertain because of the structural flexi-
bility.

In this study one or more of the rigid bodies will be the model of
the attitude determination sensors. The rest of the rigid bodies will be
the EVM's. Then, for a particular design, this analysis will provide:

a) the extremes of the attitude error between the different sensors;

b) a probabilistic time history of the magnitude of the error for
the transient zone after every control torque pulse;

c) a computer program to plot out the pitch, roll and yaw limit
cycles for a 90% probability density bandwidth;

d) an estimate of the stiffness requirement of the flexible elements
for a given maximum error limit; and

e) comparison of all these for spinning, nonspinning and dual-spin
satellites.
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nomenclature

CM » Center of mass of the satellite

A, B, C = Satellite subassemblies

m.; (i <• 1 - 4) = Masses of rigid bodies having moments of inertia

ffl.; (i • 5 - 20) = Point masses (scalar)

£1. £2. £3 = Orthogonal unit vectors, fixed in the body A

5.1. tz> b_3 " Orthogonal unit vectors, fixed in the body B

»_i, n_2, nj = Inertially fixed orthogonal unit vectors

||M|| - Total mass of the satellite (scalar)

0 = Nominal location of the center of mass of the body B

0' = Origin of the inertially fixed coordinate axes

Q = Reference point, fixed in the body B

II, R = Position vector of Q relative to 0, and its B-based

matrix

X , X^ = Position vector of center of mass of the body B and

Its matrix, both based in the inertlally fixed axes

C_, C_ » Displacement vector of the center of mass of the body
•T5 B

B and its B-based matrix

(i) , 0) = Angular velocity vector of the body A and its A-based

matrix

dig, OL, = Angular velocity vector of the body B and its B-based

matrix

v.; (1=1- 20) = Displacement vector of the masses m^ in B-based

coordinates

j.\ (1=1- 20) = Displacement vector of the masses m^ in A-based

coordinates
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6 , , 6. 9 , 6, «
 a Rotations of the rigid bodies in B-based coordinates

1,1 I9i itJ

(1=1-4)

A6i i » A^J i • A6< i * Rotations of the rigid bodies In A-based coordinates
& Ij-J- A 3.}̂  A *»J

(1=1-4)

JP, F = Force vector on satellite and its matrix, both based

in the inertlally fixed axes

||M||A and ||H|L = Total masses of the bodies A and B, respectively

P̂ , F. (1 = 1-20) "• Force vector on m. and its B-based matrix

£, T - Torque vector on the satellite and Its B-based matrix

T., I (1 • 1-4) = Torque vector on the rigid bodies and Its B-based

matrix

51 - Angular momentum vector of the satellite about CM

H^ (i = 1-4) = Angular momentum vector of the rigid bodies about their

centers of mass

Q. (1 - 1-20) = Nominal position of m.

P. (i = 1-4) *> Center of mass of m.

t_̂ , r. = Position vector of Q^ relative to Q and its B-

based matrix

a. •* Acceleration of masses m. in the inertially fixed

axes

6 = Matrix for transformation from inertially fixed axes

to B-based coordinates

"(") = Inertial time derivative

(") = Time derivative in body fixed coordinates

( ) = Skew symmetric matrix operator

rK (1 = 1-8) = Displacement vector of beams in B-based coordinates
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X. (i » 1-4) - Displacement vector of plates in B-based coordinates

£ = Displacement vector of shell B in B-based coordinates

, p. (1 «« 1-8) = Mass per unit length of beams

p (i - 1-4) «• Mass per unit area of plates

p , p » Mass per unit area of shells A and B

V< i » i t > ^ t " Local orthogonal coordinate axes for beams , and fixed
1,J. 1,4 lyj

(i • 1-4) w.r.t. the B-based coordinates

y. » Matrix for transformation of v .-axes to the B-based

coordinates

-F- (i » 1-4) • Inertia force on the i beam element in B-basedb-B±
coordinates

•n fc»_

b— U., (i ° 1-4) " Inertia force on the i beam element in local

coordinates

, q. = Elastic deformation vector of the i beam in local

coordinates

s. , .8. , _s. = Position vectors of the i beam element from the
— 1 A l D X

reference end in local, A-based and B-based- coordinates,

respectively

-R. , R^ = Position vector to the reference end of the i beam

in B-based and local coordinates, respectively

P

\ =

,VL, and , M_ = Thermal bending moments of the i beam
b\,2 b\,3

. E. • Modulus of elasticity for the i beam
D l

. I. . and , I. , = Moments of inertia of the i beam about local
D iff- o 1,O

coordinate axes
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K and <„ = Thermal curvatures of the 1 beam about local
Ti,2 Ti,3

coordinate axes

, k «= Thermal bending constant for the 1 beam

, T t= Characteristic time for heat transfer across the 1
b i

beam

o^ 2 and o^ = Attitude angles of the i beam w.r.t. the Sun

K and K = Maximum values of the thermal curvatures of the i
Ti,2 Ti,3

beam

I, „ •= Mass moment of inertia matrix of the 1 rigid body In

B-based coordinates

DI = Stiffness of the 1th plate

E , h , H = Modulus of elasticity, thickness and Foisson's ratiop i p i p i

of the 1th plate

Ti > ai = Temperature distribution and thermal coefficient of

expansion of the i plate

k. , T^ , T = Thermal constants for the i plate

6. = Attitude of the Sun from the plate nominal normal vector

*
6, = Flexural change of attitude of plate element from

the nominal normal vector

£n • So o > 5B = Radial, tangential and axial deformation of an
D,T D,O O,Z

element of shell B In B-based coordinates

F , , Fn , , F,, - = Inertial force components per unit area of shell Bs jj,j. s a,/ s B,J

in B-based coordinates

h = Thickness of shell B
8 B

a£ = Nominal radius of shell B and plates 1 and 2

107



BUB , BEB = Poisson's ratio and the modulus of elasticity of

shell B

T_ *> Temperature distribution of shell B
8 o

B_ " Attitude of the Sun from the nominal normal of an

element of shell B

*
BB - Flexural change of attitude of the normal of an

element of shell B

k-D « Tn > TT> n ° Thermal constants for the shell B8 T J 8 0 8 B , U

••=* • Identity matrix

GB, a£ = Defined by Eq. (1.10)

p., q. ,, .q. . • Defined by Eq. (1.3)ri' M.,1 j'i.k

Xo = a scalar, first zero of J0(x)

Xj, Xi = scalars,. second zeros of Jj (x) and J2(x),

respectively

{^ }, [ X, ] i IbA. fc], = Defined by Eq. (1.23)

J = 1-3

K, 4, j = 1,2 = Thermal curvatures of the i plate

if = k « Tp"l,0 p i pi

M_ , j = 1,2 = Thermal bending moments of the i plate

R. ° Position vector of the i plate element in B-based

coordinates .

= (3 x 3) square matrix of zeros except for

V! = LaplacIan operator, defined by Eq. (1.27)

[T] , i - 1-12 = (3x3) square matrices, defined by Eqs. (1.107)
through (1.115)
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ri,6 = Plane polar coordinates fixed in the body B

r

v . j = 1-11 • Defined by Eq. (1.34)
i>J

a, j = 1-15 = Defined by Eq. (1.35)
i»J

w(z) = Mapping, defined by Eq. (1.36)

[\iJi J " 4-6, • Matrices, defined by Eq. (1.39)

B

[y ] » Matrix for transformation from rectangular to

<SFB}

cylindrical coordinates

R_ = Position vector of an element of shell B in B-based

coordinates

foil] = ( 3 x 3 ) square matrix of zeros except for

[^]1§1-1

<„„ , < _ o Thermal curvature of the shell B in tangential
S otv 9 DtZ

and axial directions

8*8,0 " SKB ' STB

T = Shell thermal parameter, defined by Eq. (1.49)

QL *> Thermal coefficient of expansion of shell B

a,B = Angles, defined in Fig. 6

b±, 1 • 1-11 = Coordinates, defined by Eq. (1.58)

tVj], i = 7-9, = Shell parameters, defined in Eq. (1.60)
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Rigid body coordinates, defined by Eq. (1.77)

P2 1' j = 7~10

P^ , j = 11-14

T±. 1 = 1,2

i;, i-1,2

[X ], i = 10-12,

Plate reaction forces on m.

Plate reaction forces on m.

Diagonal elements of [ I. .,]
r i, JK

Inertia torque vector on m.

Resistive torque vector on m^

Point mass parameters, defined by Eq. (1.70)

k1§2, i = 13-16

[X±], i = 13-15,

tX±], i = 16-18,

r , 1 I *V[̂ 1, <rq >

*o» *̂

AB

Constants for the springs connecting m, to plate No. 1

Constants for the dampers connecting m. to plate No. 2

Spring-mass-damper system parameters, defined by

Eq. (1.76)

Rigid body parameters, defined by Eq. (1.93)

Lengths of the rigid bodies in the b_. and b,

dlrections , respectively

Rotations of the body B relative to the inertially

fixed coordinates

Rotations of the body A relative to the body B

Matrix for transforming vectors in the A-based

coordinates to the B-based coordinates

Contact force and torque vectors exerted by the body

C on the body B in B-based coordinates
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F.̂ > T.f- s Contact force and torque vectors exerted by the
—AC. -~A»-

body C on the body A in A-based coordinates

b̂ AC' b̂ AC = -AC' -AC 6xPressed in B-based coordinates

IMIA
Y * —a

H«lt

n «» Ratio of the viscous and elastic moduli! of the

body C (Eq. (1.111))

E ,1 ,S. " The modulus of elasticity, moment of inertia of the

cross-section and the length of the body C

E = The modulus of viscosity of the body C
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1. Expressions for the Displacement of the Center of Mass

The expressions for the displacement of the center of mass are required

for obtaining the equations for each individual structural element. But

these expressions can only be obtained after the deformations of the indi-

vidual elements are known. However, it becomes easier to grasp the analysis

that follows when these expressions in general form are available.

The basic assumed configuration of the satellite is shown in Figure 1.

It consists of two composite bodies A and B, each containing point masses,

rigid bodies, beams, plates and shells. These two bodies are connected by

a flexible connector C. The shift of the CM is shown by the vector C^ in

Figure 2. Let us consider the body B and find C_. , the shift of its center
— D

of mass in terms of the displacements of its elements. The case for the

body A can be obtained in an analogous manner. The mass of C is negligible.

Using the B-based coordinates, it is easily seen that

+ ? bYV + I " P
pk Zk" + // S'B

J K

where i = 1,2, and 13-20; j = 1-4; k = 1,2. The integrals are taken over

the lengths or areas of the elements as applicable. The length of the beam

is i. To evaluate the beam integrals from the beam displacements in local

coordinates, we set

3i = [y?]T-b*l (1.2)

in Eq. (1.1). The local coordinate system for .the beams is a right-handed

system of Cartesian coordinates, with its origin at the clamped end and

jj. , axis along the length of the beam. For each beam the three components

of .a, are set up as follows:
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bqi,2

bqi,3

B,T

3q1.2<t>

+ 2'l,3<t>*8 * 3«»i.

(1.3)

Here obviously B, — ep>i-(e1"*-!) - £]

and B

(1.4)

(1.5)

The sum of the beam integrals is obtained by evaluating [p.] for each

beam and then using Eqs. (1.4).

The rigid bodies and the point masses in the spring-mass-damper systems

are assumed to move only in the direction of b̂  (see Fig. 1). The masses

at the ends of the beams can move in all directions. The shell is assumed

to deform only radially. The plates are assumed to deform only laterally.

So we can rewrite Eq. (1.1) as:
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(m17'y17,2̂ 18'y18,

(m!7 ̂ .â lS y!8,

^19, 2lhn2o'y20,2+ spB

d6dz'>

(1.6)

We have taken the shell displacements later on as

b (t).(f. (9,z,) , (1.7)

where (̂S.zi) are purely spatial functions. Similarly, the plate displace-

ments have been taken as

15 ^
X, = la, Atl'ty, ,(r,6) + I x, ̂O'*, .(r.S); j ° 1 and 7-11. (1.8)

-1- £=i
 Ai* J->J j J-iJ -"-jj

15 ^
X, = I a, .(t)'* (r,6) + J x, /O-*. .(r,6); J = 1 and 7-18 . (1.9)
* i=l *'*• '••'• t *ij *>3

Equations (1.3) to (1.7) will become clear when we come to the individual

analyses of the beams, plates and shells later. It is evident from Eq. (1.6)

that when the integrations there are carried out, C becomes a linear
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combination of only the time-dependent functions In (1.3), (1.7), (1.8),

(1.9) and the (̂t), 1 = 1,2 and 13-20.

Now, let SU) be the (110 x l) column vector of all the time-

dependent functions y^ , b9t • ̂^ . a2>1 » X1>t , X2>1 and b± men-

tioned so far. These generalized position coordinates 3̂  define the

deformations and displacements of the spacecraft. Then we can write C~fl

explicitly as

% = [GB]-<£ d.io)

where [Gfi] is a (3 x UQ) matrix of known constants. The detailed forms

of [Gg] and £g will be given in Appendix 1.

V

2. Beams

(a) Inertia Forces

Referring to Figures 2 and 3, the equations for the inertia forces on a

beam element are first obtained. We follow Likins [10] in doing this.

Let dm. be the mass of a beam element in body B.

" dmi • bpi ' d(BSi) ' U-11)

Let the position of the element with respect to the CM of body B be given

by (Cg + gRj + ̂  + jii) . Then the inertia force is given by

where X^ locates the CM of the body B in inertially fixed coordinates.

Let £ and aj be two vectors given in matrix form by

V = [Vi, V2, V3]
T and 01= [ut , w2,a)3]

T. If we define
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then V x

0 -Vs V2

V3 0 -Vi

_-V2 Vi 0

Vto = -3V = -uj x v. Therefore

(1.12)

As mentioned before, the axes of the local coordinate frame p., corresponding

to the i beam, are p ,, p and p ,. This is a right-handed systemi,x i,z i,j

with V. , being always along the axis of the beam pointing away from the
ij-1-

CM. p. , is always parallel to the bs axis. The origin is always
1>J

at the clamped end of the beam.
•p

So [Vjli the transformation matrix for converting B-based vectors into

y-based vectors, is given by

P1>2-b,

If î are t̂ 16 beam displacements in local coordinates, then

bSi - [UiMLt

8i = Iyi]*(B2l) *

Then in local coordinates, the Eq. (1.12) becomes

b ' - ̂ <b - î1^ + ̂ iS + b%

(1.13)

(1.2a)

125
(1.15)



Let us define

(u?)-oX-(u?)T = <o*. (1.16)

a.** • (1.17)

and

Then Eq. (1.15) becomes

-
1 (1.18)

+ 2(0* .bq± + [V*(£B + VB)Gfi]q* + (U* + "**)(Ri + 8t + bqi)l •

(b) Thermoelastic Forces

The thermal oscillations of the outstretched beams can cause considerable

changes in the attitudes of the spacecraft. This problem was first success-

fully modelled by Etkin [27] and later on by Yu [28]. Here we follow the

method of Yu, and assume that the thermal curvature of the beam is linearly

proportional to the local heat input from the sun.

Let K and K be the thermal curvatures about the y. ~ and
Ti,2 Ti,3 i>2

P. , axes. Then we have the relation from Yu [28] as

for the v, , direction and a similar relation for the V. , direction.
1,4 i,j

Eq. (1.19) has the series solution (see Appendix 2)

V , - bki * bTilcos ai>2 - <
e* - bTi&i + bTi§ - •

i, *.

where 62 - ̂ _ ̂ ^
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If we set . k. • T . e K_ , then for small values of , T , we get
D l O l T . A 0 1

1,£

\ 9 = \ ,[C°S "i'2 " °^7 ̂ '2 ~ ^ ' ̂  bqi,2)8ln ai,2]
l y Z l y Z 1 1

(1.20)

and a similar equation about the U. . axis. Then the thermal moment on the
i»-3

beam, H_ Is given by

The thermoelastic shear force gradient on the beam Is

ChB1)-Cbi1 3) - - ( K T )b A b ±l3 3s Tl,2

(c) Elastic Forces and the Equation of Motion

If . f_ is the elastic force gradient along the beam, then the equation
D i£

of motion is given by

3

As"

The beams are assumed to be axially rigid, so

bfE,l ° 0>

and

so the final governing equations become
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<bV • - bTi

..*

(1.22)

(d) Galerkin's Method

The solution Is approached through Galerkin's method. The solution vec-

tor is assumed to be a finite sum of known space-dependent functions multiplied

by unknown time-dependent functions. To keep the dimension of the reduced

problem small, the solution is taken to be an exponential flexure term

superposed on rigid body rotation and translation terms. Thus

jbqi,2

U,3

2*1,2™'* + 3"i,2 (t)

When Eq. (1.3) is substituted into Eqs. (1.22), the left-hand side becomes
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V

The resulting equations become free of the partial differential operators.

Each equation is then multiplied by 1, epls and s, successively, and integrated

between (0,i), This gives us nine equations in seven unknowns. We reject the

two equations generated from the first row equation by epis and 1. This

leaves seven equations in seven unknowns for each beam. These equations also
*

involve the other 103 unknowns in the vector <u. Another 103 equations will

be generated from the other structural elements. The vector 0XR is ex-
*

pressed later as a function of £_.

If we form a (7 x 1) vector for each beam, given by

{b%} = [qi,l'lqi,2- 2qi,2> 3qi,2« lqi,3» 2qi,3' 3qi,3]

then the generated equations for each beam will be of the form

+ XlGBqB + X2GBqB + X3GBqB = {bAi4} » (1'23)

where LAjil is a constant square matrix. Also, X^ is a constant. All

other quantities are functions of OL and <^ . The reduction of Eqs. (1.22)

to Eqs. (1.23) in the cases of the four beams (Figure 1) is shown in Appendix

3.

The gravity gradient and other environmental torques are not considered

to be acting on the beams. They are included in the equations for the
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composite bodies as concentrated torques. The continuity conditions at the

free ends will be used in the equations of motion of the tip-masses. The

conditions for the shell-beam junctions will be obtained later.

3. Plates

(a) Load System

The load system on the plates is shown in Figures 1 and 4. As in the case

of the beams, the general equations of motion for the plates under inertial and

thermal loads will be derived first. These will be reduced to time-dependent,

second-order, ordinary differential equations by using Galerkin's method.

The continuity conditions at the junctions to the sprlng-mass-damper systems

and to the rigid bodies will be used in the equations of motion of those sys-

tems. The conditions at the shell-plate connections will be defined later.

(b) Inertia Forces

To keep the governing equations linear in the space coordinates, the in-

plane deformations are considered to be negligible. The lateral deformation of

the i plate, Xj» is parallel to the axis b_ . This makes the introduction

of a local coordinate frame unnecessary.

[ b o o
Let «J2, be the matrix 0 0 0 | Then the inertia force on a

[p o

plate element is given by

„*
pFi

d.23)

where R. is the position coordinate of the element of area da in B-based

coordinates. Equation (1.23) is only a scalar equation.
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(c) Thermoelastic Forces

The distribution of the thermal bending moments over the surface of the

plate is assumed to be first-order, time-dependent. This model is obtained in

a way similar to that used in the beam. The plates are assumed to be thin and

homogeneous, so that a linear temperature distribution across the thickness

of the plate can be assumed. This assumption also makes the thermal bending

moments and curvatures at any point on the plate in two orthogonal directions

equal.

Let K . and K be the thermal curvature of the plate parallel

to the plane formed by axes b, and b-. Also, let K. «• K. , + K. _—1 —2 pip i,l p 1,2

be defined as the average curvature of the 1 plate. Then K. is an in-

variant of the plate with respect to a rotation of coordinates in the plane

of the plate. Now let K . be given by

0 K. 1

where

g = the angle between the plate nominal normal and the sun vector

6. ., = the rotation of the plate surface normal, due to flexure, along

ii-
The solution of this equation (see Appendix 2) is given by

p'i.l - <pki * pTi)[c°8 p6! - Vi. - '

Keeping only the first power of T., the solution takes the form
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P
Ki,i

Similarly we have the solution along b__ as

pKi,2 • pKl,0t
c°8 pei - </i,2 - pTi • p6l,2>8ln

 PV C1

where

K . „ = k. • T. = the maximum value of K. ,
P 1.0 P i P i P i,l

K. , = a constant.
P i,2

Let x^ and x2 be the distances in the directions b, and b. . Then

.* 3Xi * 3X±
pBi,l 3^T ' p̂ i,2 = '5x7

and

3Xi 3X

^ = + K) - u Ki,ocos p6i - pKi.o

If M_ and M_ are the bending moments along the b, and b,
p ^.l p ^,2 L ~*

axes, respectively, then

and

p\>2 ' pVP
Ki,2 + p^i ' pKi.l] '

It is assumed that the thermal twisting moments in the plate are absent.

Thus the equation of motion is obtained as

**• ^ *2 . M >
\ ,) = - q

where q is the plate loading, M . , M and M „ are the usual

elastic bending and twisting moments of the plate. The above equation can be

written as
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- pDi

where

and D± and u^ are the stiffness and Poisson's ratio of the plate, re-

spectively. So from (1.23), (1.26) and (1.27), we obtain

PV

In Eq. (1.28), QXB is the inertial acceleration of the body B in B-based

coordinates. As was done in the case of beams, SX is replaced by

where F_- is the contact force between the bodies B and C. F is ex-iic BC

pressed in turn as

( T7 -

Equation (1.29) will be explained in detail later.

(d) Galerkin's Functions for Plate Nos. 1 and 4

Before applying Galerkin's method to Eq. (1.28), it is first transformed

into plane polar coordinates. Let
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xj = ri cos6 and X2 = TI sin6

where 0 < i\ < a .
•~ — B

Now, with

3rf n 3ri rf 392

= cos6 • - - — sin6 • 36— •ri

we have

air - i8ine' w

-^- = (sia6 + cos6) (^- + — —
3x2 3ri r>

So the left-hand side of Eq. (1.28) is transformed into

10- T± sin B^sinS + coseH-j^Y + ̂ -^m^] • (1-30)

2
V

2
Now let a r = n, so that 0 <_ r <_ 1, and 0 <_ 6 <_ 2n. Then Vf = — V

v - + +
3r2 r 3r r2 362

Expression (1.30) becomes

sin pBl}(.lne + cos6) ( +

81n pei}(8lne + Cos6) & + 7
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Since ^ is a vector [0, 0, Xj]1, î***̂  •= 0 = -J 301̂ • Also

- (tu? , + (d? 0)x_, . Let RJ be the vector
Of*- O^i J, p 1

[a«r cos6, anr sin6, R,] . Then
o . a 1

•

So the right-hand side of Eq. (1.28) becomes

Equating the expressions (1.31) and (1.32), the equation for the plates is

obtained as

ui)pKi,o sin P
(sine + cose) (i + r ̂)
J

8ln

+ Hâ .a ' 'B,2)aBr cose

8ln6 - K.1 + ,̂2̂ ]

T - T + (1.33)
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'^I-V^B-P1
V

Now the choice of the Galerkin's functions must be made so that the solu-

tion matches the load system and satisfies the boundary conditions. As there

are four spring-mass-damper systems and a central junction on the plates

(numbers 1 and 4) , the solution should contain five terms which are singular

at the connecting points. This has to be done because the loads are taken to

be concentrated forces. We also apply the boundary condition that the space-

dependent solutions be zero on the boundary r = 1 of the plates. It is also

assumed that the nature of the solution is close to the free vibration mode

for thin plates. Therefore the solution is taken to be

Xi = xi,l(t) + xi,2(r't) + Xi^

+ Xlj5(r,t)cos 26 + x± g(r,t)sin 26 r2log r

X1>9(t)*1)9(r,6)

The functions ^ .(r,6) are basically the static point load solutions for

plates.

xi,2» X1>3. X1>4' Xi>5
 and X1>6

 are chosen ln the following way:

Xi(3(r,t) = tij

Xi)4(r,t) = a^

ai,9(r~1)r2 (1-35)
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Xi>2(r,t) = ai>13J0(X0r) + a1§14<r-l)r
2 + (̂r-D

Here Jo(x), Ji(x) and Ji(x) are the ordinary Bessel functions.

Ac, AI and Az are the first zero of Jo(x), and the second zeros of Ji(x)

and JzW, respectively. Apart from a quadratic term in r, the coefficient

of x, -jM is the solution to the problem of a plate with a steady concen-

trated force at the center.

(e) Coefficient of ^ g(t)

The functional form of 1)1 4(r,6), which have coefficients X, it
i»J ^->J

j = 8-11, are similar. The expression for ifi. „ is derived here. The
it°

forms of ty. g> <l». ,Q and ij> can be obtained in a similar manner.

Let <K g be the mode corresponding to the spring-mass-damper system

containing m . Let z = r exp(16) represent the points in a complex

plane. Let a = (a. , + iou ) be the coordinate of the load point on the
o o t J. v,z

plate number 1, corresponding to m̂ ,. The plate geometry is the unit circle

r = 1. Let the function w ** w(z) map this unit circle onto another unit

circle w = 1 and the point z =• a to w • 0. This mapping is given by

z - afi
w = 3-2 (1.36)

l-a#

when CXR
 a (cift , - iot. .) = the complex conjugate of a. Then the solution

to the problem of a circular plate with a concentrated load at z = o in the

z-plane corresponds to the problem of a circular plate with a concentrated

load at its center in the w-plane. The problem then reduces to choosing a

biharmouic function 1(1. Q(w) which i) will be zero at w « 1, ii) will have
i,8

a logarithmic singularity at w = 0, iii) will not be harmonic, iv) will tend

to r2 log r as cCg •*• 0, and v) will be real valued. It can be noted here

that
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V2 S 4 • -2— and V" = 16 —2 •
3z35 3z23z2

This leads us to choose the required function from the list of functions

1(1̂  given below.

i))i = (z-a )(z-a )log(ww)
8 8

* _ _ _ -
1(12 = (z-a )w log w + (z-a Jw log w

1(13 = Re[(z-a)(z-a)log w]
8 8

ijii, = Re[(z-a ) (z-a )log w]
8 8

* _
ips = Re [(z-a )w log w]

o

i|i( = Re[(z-a.)w log w]

where

l-a gz

It can be shown (Appendix 4) that tyi is the most suitable choice. Thus

1(1. R(r,6) = (z-a )<z-5 )log(w) • (1.37)
i,o o o

Let Im[aJ » 0. Then a_ = a. = a real number. Therefore
o o o

[ z-aa z-aQ")
8- 8- or

l-agz l-agzJ

/ r2-2a r cos6 + a2N
IP = (r2- 2a r cos9 + a2)log ( § S (1.38)i>8 8 8 {i-2«?™* + «¥;

(f) Final Equations for Plates 1 and 4

Equations (1.34), (1.35) and (1.38) are substituted into Eq. (1.33).

The resulting equation is then successively multiplied by the 21 spatial

functions introduced in Eqs. (1.34), (1.35) and (1.38), and then integrated
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between the limits of 0 £ 6 £ 2rr, 0 £ r .< 1. This leads to a. set of 21

second-order ordinary differential equations of the form

..* •* *
+ A^GBqB + *5

G
B"1B

 + *6GBqB = Ai4 ' (!-39)

*iIn this equation, i q.> is a (21 x l) vector consisting of the unknown

time-dependent plate functions. The detailed form of Eq. (1.39) is shown

in Appendix 5.

The plates 1 and 4 have similar equations with the same number of un-

known time-dependent functions { q.}.

(g) Equations for Plates 2 and 3

The basic equation for the plates 2 and 3 are also given by Eq. (1.33),

but the load conditions are different because there are two rigid bodies

attached to each of these plates along with the spring-mass-damper systems.

While the central load is absent in these plates, each rigid body is assumed

to be fixed at four points of the plates, so four concentrated load functions

for each rigid body are added to the assumed plate displacements. The form

of these functions is similar to that of ty. „. Therefore the solution to1,8

the plates 2 and 3 is taken to be

Xi = Xi l(t) + Xi 2(r>t) + Xi a*1'')0086 + X± 4(r,t)sin6
(1.40)

12
+ Xj_ 5(r,t)cos 26 + Xj 6(r,t)sin 26 + J Xi fr^t)^ 6+<(r»e) •

The functions \. . , j = 2 - 6, are given by Eq. (1.35), and the functions

^ ., J = 7 - 18, are given by Eq. (1,38) where ctg is replaced by the
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corresponding coordinates of the load points.

The final equations for the plates 2 and 3 are also similar to Eq.

(1.39), but in these cases the generalized coordinates { q.} is a (28 * 1)

vector. The detailed form of these equations is given in Appendix 6.

4. Shells

The analysis for the shells A and B are similar. Only the procedure

for the shell B is given here.

The shell B is assumed to be a uniform, thin, isotropic, circular

cylindrical shell. For the elastic analysis, the linear equations of Vlasov

[36] are used. The analysis of the thermal effects follows that made by

Kraus [37]. The orientation of the coordinate axes is shown in Figure 5.

(a) Inertia Forces

TLet _F_ = [ F,, ,, FD ,, F_ ,] be the inertia force vector on a
S—B S B,l S D,Z S D,J

shell element in the B-based rectangular coordinates.

Let ^ = [S
F
B r» S

F
B e« S

FB zj be the lnertla force vector on the

shell element of area dA, in the B-based cylindrical coordinates.

Proceeding as in the case of beams and plates, we have

(1.41)

where

R = position vector of the undeformed shell element in B-based

coordinates,

Tt. = [£ 1, £ ., ? ,] " displacement vector of the shell element

in rectangular B-based coordinates, and

d = p • dA .m sKB
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Let gp = [Cg r> ?B g, ?B ]* be the displacement vector of the shell ele-

ment in B-based cylindrical coordinates, and

~ cos6 sin6 0

-sine cos6 0

_ 0 0 1

Then

and

Let

{SFB>

and

Then

**•V-

? + 2

In this analysis, it is assumed that

So

(1.42)
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and

** r

"•B.r^B

With

we have

[aBcos6, aBsin6,

"B,r

Tl 0 0 "T
0 0 0

j_0 0 0 J

where

Let

results obtained above, F is given bys B ,r

l > f 2 '

8FB,r -dm{?B>r - [<^>3 + (ursine -c

cos8-fi + 8in6-£2}

' Then> using the

(1.43)

(b) Thermoelastic Forces

The distribution of the thermal bending moments over the surface of

the shell is obtained in the way used for plates. The shell is assumed to

be thin, homogeneous and isotropic, so a linear temperature distribution

across the thickness of the shell can be assumed. This assumption also
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makes the thermal bending moments and curvatures at any point on the shell

in two orthogonal directions equal.

Let K_ Q and K be the thermal curvatures of the shell in thes B,o s B,z

tangential and axial directions. Then

'-&•• w
where

Bn = the angle between the shell nominal normal and the sun vector at
s B

any point,

B ,, = the rotation of the shell surface normal due to flexure in the tan-s B,U

gential direction.

n before, keeping o

Eq. (1.44) takes the form

As shown before, keeping only the first power of T , the solution to

SKB,0[COS S6B - (s6B,e

Similarly

where

&„ = the rotation of the shell surface normal due to flexure in thes B,z

axial direction.

Now from Eq. (2.27) of Kraus [37],

*• AB - A <* -

Let C n + *?( h.) be defined as the cylindrical surfaces of the shell. It
^ £• S a

is assumed that the temperature distribution across the thickness of the
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shell be given by T (6,z,C). Then, combining Eqs. (2.28) and (5.6) of
fi

Kraus [37], we have

a*?.. E • CL /T (S.z.CKdC .
B sB s B ' B

Let aTB1 be defined such that

B\ = 12" 'sEB ' s0* ' shB * STB1 ' (1'48

From Eqs. (1.47) and (1.48), we obtain

sTBl - 2(T (SKB,6 + s'B,z> * »•*»

This result will be used to derive the equation of motion of the shell.

(c) Equation of Motion

Let

Vl " Z

where z is the distance along the b^ -axis. We also define

a2 a2V2 = -L_ + J_ .
3z? 362

The equation for the radial displacement of the shell, obtained by com-

bining Eq. (13.2), Part 2, of Vlasov [36] and Eqs. (6. lid) and (6.13c) of

Kraus [37], is given by

2 2

* " - -*SF V. ' - '•' - ••hS'"--I« U-
where q is the shell radial loading. In this analysis, q consists of

only inertia loadtng given by
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- qdA = F .s B,r

Therefore from Eqs. (1.51) and (1.43), we have

I[K,1 - "B,2>c°8 28 + ̂W1" 2*W\.r - 8V*?B,r

325B
16(-+ 5B,r>] - *"«S.l - ">B,2>8in 26 - 2(dB,A,2COS

3 + flCOs8 + f28ln6 ' (1'52)

Now, from Figure 6, it Is seen that

cos 80B • sinB cosOiig 3t + 6 + a) (1.53)

where a is the angle between the plane containing b_i and b$ and the

plane containing b_3 and the sun vector, at t » 0. For simplicity, a

is taken to be zero.

Then, from Eq. (1.46) and Eq. (1.53), we have

V§(.KB..> * - SKB,

- sTB

. .3« + 8) + 8to .

Similarly

08(Ut + 8) + 8ln
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Hence, from Eq. (1.49), we obtain

VVB,1> - - *%

+ 6) + . sin(o> t + 6) (1 -
6

3 3

Now substituting Eqs. (1.52) and (1.54) in Eq. (1.50), we obtain the equa-

tion of motion of the shell as

,2 .2

(V
3zt362 B>r

+ f icosS + fzslnel + y^- (1 + U)h 2UB)sh
28inB[cos(«)B 3t + 8)
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(d) Galerkin's Functions

The Galerkin's functions for the shell are chosen so that the solution

remains compatible with the load conditions. The shell loading consists of

i) the moments applied at the plate-shell junctions,

ii) concentrated forces and moments applied at the beam-shell junctions,

and

iii) the inertia and the thermal forces.

To accommodate the loading i), the solution must include some exponen-

tial functions of zi. To accommodate the loading ii), the solution must

contain the delta functions 6(zi-p , 6 - 6 ), where zi = p. and

6 = 6 . are the coordinates of the junction of the i beam and the shell.

The forces in iii) are taken into consideration by the equation of motion

itself. The flexural displacements must be equal to zero at the boundaries

zi = -p' and zi = +p" of the shell.

Now, two expressions for 6(x-Q, given by Eqs. (4.7), (4.43) of

Stakgold [38] are

cos..... 1 r 2 nTCx
6(x-5) = j + I j cos —

n=l

(1-56)
V 2 nirx . mr£

" 1. I sin T 8in i
n=l

where St, is the domain of the one-dimensional delta function.

Since

6[zi, 6; PI, 61] = 6(z1-P±)6(e-ei) (1.57)

the form of the solution of the shell problem should be given by
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5B,r = bl(t) + (zi+P'Hzi-P")[b2(t)ep2Z1 + b3(t)e
p3Z1 + ...]

+ I I tb' (t)si"mTrP+P sin ""(P*") cos n8l cos n6]
m-1 n=l *ta'n Hi Hi

sin S sin Sl sin P92 sin P9]

I I [bĵ  (t) sin *«"•+*•> sin
m=l q=l '"

nnr(p'+Z3) mTT(p'+zi)
— - — T - cos

+ 1 Ib^ r(t) sin sin l sin r8, sin r9]
m-1 r=l 3+m'r *' S'1

(1.58)

where S.i is the length of the shell. The last four infinite sums corre-

spond to the four shell-beam junctions. Here 61 =0, 62 = ff/2, 89 = TT

and 6i» = 3 j . Thus the cosine series is used for 6(6-61) and 6(6-62).

The right-hand side of Eq. (1.58) is then truncated to keep only the first

and the second harmonic terms, and so the assumed solution is finally given

by

5B,r = bl(t) + (zi+P'Xzi-P"Hb2(t>ePZZ1 + b3(t)e
p3Zl]

b,(t)sin
 Z1 cos6 + bs(t) sin l cos6

+ b6(t) Sin il Sin9 + b?(t) sin
 1 sine

*•!

+ bs(t) sin n(P'+Zl> cos 26 + b,(t) sin 2lr(P*+Zl) cos 26
X.1 X-l

+ bio(t) sin i Sin 26 + bii(t) sin
 2lr(P^+z>) sin 26 . (1.59)

The coefficients p2 and pa correspond to the free vibration modes of

the shell.
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Equation (1.59) is now substituted in Eq. (1.55) and the Galerkin's

method is applied. This gives eleven time-dependent equations of the form:

+ [X9]{q*> = {^} • (1.60)

*i
The vector igqB> is the (11 x i) vector with b.̂ , i = 1 - 11, as its

elements. The details of Eq. (1.60) are in Appendix 6.

5. Beam-end Masses

(a) Inertia forces

The expressions for the beam-end masses of the body B are derived here.

Similar expressions can be obtained when the body A is considered. These

masses are assumed to be point objects.

Let F. = [Fi j, ?i 2, F± 3] be the inertia forces on the i1 mass

along the bean local coordinate axes.

Let 2^ ke the displacement vector of the i mass in B-based coordi-

nates. Then, as before,

+ (UB + <SBS)B)(CB + y± + R± + r±)] . (1.61)

Here (R.+r ) is the position vector of tn. iu the B-based coordinates

in the undeformed state. Also, as noted before, QjL and C are expressed

in terms of the generalized position vector {q.,}.
D

(b) Elastic Forces

Let FJ! = [F^ 1, F^ 2, F^ 3J
T be the elastic forces on the ith mass

along the bean local coordinate axes. Then
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F! i = (Radial force exerted by the shell on the beam at the corre-

sponding junction point) + (the total inertia force of the

beam) (1.62)

F ' 2 = Transverse shear force along VUj exerted by the i beam on

the tip-mass

F .' o = Transverse shear force along y,, exerted by the i beam oni, j j

the tip-mass.

An expression for the shell outward load q is obtained from Eq. (6.lie),

Kraus [37]. The expression is

8 B V^E + £ = 8 B 1. n _ JL-JL Q + u ) . (vU
2 T

,. 2 S.r + S.r . , qi 12 u + sV sV ŝ .l
3B s B 8 B

where q. is the outward load on the shell at the junction with the i

beam. The above equation is rewritten as

>EB ' shB _vV 4- S B S B f + SB SB . B_B r,2. „ .
i. B r 9 v B r i ^s Bl'

B (1"sPB)aB 12(1-S
WB) aB JZ1=Pi

~ 9=6.

(1.63)

Now the expressions for £,„ and T_, are substituted in Eq. (1.63)
B,r s cl

and evaluated at (P-î j) to 8ive <!.. in tne form

11 12 . ^
qi = E c

± ̂ 4 + I c± ̂ i + fi(
t) ' <1'64)

i j=l 1'J J j=12 lj3 j i

All c . are constants. The details are in Appendix 7.

th *The total inertia force of the i beam, ^ , is given by

Ri

(1.65)
1 O JD U -L.
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where

1 0 0~|
0 0 0 .
0 0 0

The transverse shear forces along V~ and jJ, are given by

r . « — v. Et. / ^K 1 2 "l 1^4 V • v-»- . w ' y

Then Fj is obtained from Eqs. (1.62), (1.64), (1.65), (1.66) and (1.67).

(c) Equations of Motion

The equations of motion of the beam-end masses are obtained by setting

(1.68)

Rewriting Eq. (1.68), we have

F, + Ft = 0 .—i —i

Gfiq* + y±

- <b i , 3 P e

(1.69)
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There are three equations In Eq. (1.69) for the three variables y. , , y .i,x i

and y ,. The four beam-end masses will be described by 12 equations
i»J

which will be of the form

+ [XllHq*} + [Xl2]{qB> - (^h (1.70)

Here {y } is the (12 x 1) vector of the displacements of the four beam-

end masses. The details are given in Appendix 8.

6. Spring-mass-damper Systems

The masses in the spring-mass-damper systems are assumed to move only

along the b_ -axis, so the displacement vector in B-based coordinates is

given by

li - [0, 0, y±]
T . (1.71)

Let

= |0 0 0 I . (1.72)
[6 o o I
10 0 0 I
Ip o i J

Then the inertia force on the masses is given by

G/B)

fflEj (1.73)

Let k. , be the stiffness of the spring connecting the mass m. to thei,J- i

plate No. 1, and k „ be the coefficient of the damper connecting m to
lf *. j-

the plate no. 2. Then the equation of motion of m is given by

Fi
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where a Is the position coordinates, in the plane of the plates, of the

mass m̂  Substituting Eqs. (1.71), (1.72), and (1.73) In (1.74), we obtain

the equation of motion of m. as

.l + <"B,2)Ri,3 + [-° 3](I + 2UB dT + "B

Equation (1.75) is a scalar equation. For each of the bodies A and B,

a system of four such equations are obtained, corresponding to the four

spring-mass-damper systems in each body. Let

{dq*} = [yiryu>yi5'yi6]I

be the (4 x i) vector representing the motion of the spring-mass-damper

systems. Then the four equations of each body is obtained in the form

+ tX13]4 + IX14]? + [X15]qB - {dV * (1'76)

Details of Eq. (1.76) are given in Appendix 9.

7. Rigid Bodies

The force and moment equations for the rigid bodies are now derived.

As before, the required equations are derived for the rigid bodies in the

body B only. The corresponding derivations for the body A are similar. The

positions of rigid bodies are shown in Fig. 7.

153



(a) Force Equations

The rigid bodies are assumed to be so constrained as to have a transla-

tion only along the b__-axis and to have two rotations about the b_- and b_2~

axes. So the motion of the rigid bodies with masses m, and m_ are

described by

{rq*} = ly±, e1>r ei>2]T, 1 • 1,2. U.77)

The mass m. is fixed to the plate no. 2 at the four points with position

coordinates a , 1 = 7- 10, in the plane of the plate. Similarly, a ,

i = 11 - 14 are the junction points of m. with the plate no. 2. Let the

reaction forces of the plate on m. at the points a . , 1 = 7 - 10, be given

by Pj7!, Pj8,, P^l and P211̂ ' resPectively- The reaction forces on

the mass m2 are given as t^' ̂ jp '
 V^ and ^^ '

Summing the inertia forces and the reaction forces to zero the force

equation of motion for m. is obtained as

= o . d.78)

The plate reactions are obtained from the singular components of the

assumed plate solution. The total shear force on a small circle of radius

e at a distance r . from the center of the plate due to the function

X2,j(Z " aj)(5 " «j>lo8<w) (1-37)

on the mass m, , is given by
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(j) 22 2

where

r2 = ci^ . (1.80)

Equation (1.79) is derived in detail in Appendix 4.

Substitution of Eq. (1.79) in Eq. (1.78) gives

10
- 24 pD27re

2 [ I rj
2(l-rj

2)x2j.)] • 0 . (1.81)

The equation for y. is similarly obtained as

14
- 24 D,ire2[ | r2 U-r2)x, J = 0 • (1.82)

P *• j.j^ J J •'•J

In these equations, [J? 3] is given by

[0 0 0~|
0 0 0 .
0 0 ij

(b) The Moment Equations

Let [ I.] be the inertia dyadic of the rigid body m. about its cen-

troidal axes, and T. be the inertia torque. Then—i

1. - - r̂ LMaD + Sj] (1.83)
where

{^} = lQ
i 1* °i 2'i,x i,̂
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Equation (1.83) is rewritten as

r1!

V -

It is assumed that [ I ] Is of the form

r1! 1 ° °

0 rlt 2 0

0 0 rl±

Then Eq. (1.85) reduces to

(1.86)

1.2

(1.87)

Let T! 1 and T' , be the reaction torques exerted by the plate on
i.j.1. I,/

the rigid body in. about the centroidal axes parallel to b, and b.,

respectively. Then, from Figure 7, we have

and

l,2 r2,l r2,l r2,l >*r
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Similarly,

T- . i(P(11) + P(12> - P(13)L2,l 2U2,2 * r2,2 r2,2

and

, = (p (14) . (12) _ (13) . (1 91)
T2,2 2(P2,2 + P2,2 P2,2 P2,2 )Sr U-S1)

Then the moment equations of the rigid bodies nos. 1 and 2 are given by

IT1.1' Tl,2« T2,l' T2,2>T + ITi,r Ti,2' T2,l' T2,2]T = ° * (1'92)

Let {rq*} = [yr Q̂ ^̂ , 91>2> y2> 9^, 62̂ ]
T be the vector which

defines the motion of the two rigid bodies. Then, combining Eqs. (1.81),

(1.82) and (1.92), an equation of the form

is obtained. Details of this equation are shown in Appendix 10.

8. Transformation Matrices

The angular positions of the body B defined by three successive rota-

tions of coordinate axes are shown in Figure 9.

X,, 2J2 and X., are the inertially fixed coordinate axes. The B-based

coordinate axes b,, b0 and b- coincide originally with Xn, X, and X,,
~± Z 3 i. f. J

respectively. First, a rotation by an angle i|i- about X. brings the axes

b. in the positions shown by D,. Second, a rotation by an angle i|i, about

D_2 takes the axes b. into the positions shown by E.. Finally, a rotation

by an angle t|u about E., takes the B-based coordinates to the general

position shown by b. in Figure 9.

Now, the matrix 0 transforms vectors based in the inertially fixed

coordinates to the B-based coordinates. So 3 is given by:
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"cos 4>- cos ty. 0

-sin >l>- cos ty. 0j j

0 0 1

cos i)>, 0 -sin <(C/ i

0 1 0

sin ty^ 0 cos \l>2

1 0 0

0 cos ^ sin ^

0 -sin i|> cos t.

(coŝ sinip- +

(1.94)

The rotation coordinates of the body A are defined relative to the body

B, in Figure 10. First, a rotation by an angle 6 about b^ brings a^

in the position shown by F^. Then, a rotation by an angle Q^ about F_2

brings the axes a. in the position shown by G.. Finally, a rotation by

an angle 6» about £„ brings the A-based coordinates in the general posi-

tion shown by a, in Figure 10.

Let 6 _ be the matrix that transforms vectors in the A-based coordi-
AB

nates to B-based coordinates. Then 6.- is also given by Eq. (1.94), but

in which the angles i|» , and 3̂ are replaced by 6^ 62 and

Now, taking 9- and 6 small but keeping 9_ arbitrary, 0,^ is given

by

~cos60 -e2cos8

-sin9, cosB, (1.95)
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9. Contact Forces and Torques

The expressions for the contact forces and torques between the bodies

6 and C will be derived. The body C is assumed to have negligible mass,

so the forces and torques between the bodies A and C will be equal and oppo-

site to those between the bodies B and C. We now refer to Figure 8 for the

following analysis.

Let F^ and T. be the contact force and torque vectors, respec-
~"™fi\* ~~Av

tively, applied by the body C on the body A, and are expressed in the A-

based coordinates. Let F^ and T^ be the force and torque vectors ap-
DC QC

plied by the body C on the body B and are expressed in the B-based coordinates.

Let C and £ be the shift of the center of mass of the body B in B-based

coordinates and that of the body A in A-based coordinates. The vectors

r and r , defined in Figure 8, are expressed in A-based and B-based

coordinates, respectively. In this section, the terms ,F.~, ,!.-,» ,C. etc.
D— AC D — AC D~"A

will mean the vectors F.r, T.,,, C expressed in the B-based coordinates.
~™A\* ~ALi A

Let 6j, 6- and 8. be the relative angular positions of the body A

with respect to the body B. It is assumed that 6 and 6. are small, and

6. is large. It is also assumed that the slopes of the body C at the end

of A with respect to the end B along the axes b_ and b_ are given by Q.

and -6^, respectively.

Now, let -P.- and .jr.- be expressed astr~AC -

where

Tl T2 T3

T4 T5 T6 10 ll 12_
(1.96)

(1.97)
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IBC ' - a'98)

Then

and

where

From Eqs. (1.96) and (1.98), we have

^BC - - 'VbV + V V + V3 - 'VbV + VV + VJ • (1'100)

Now let ||n|| and 1|ML be the total masses of the bodies A and B. Then

because of the force-free environment of the satellite, we have

Therefore

A - - (1-101)
where

T .!!**.n«it
Therefore, froo Eqs. (1.100) and (1.101),

(T T7 -

Similarly

736

(1.104)
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In the above equation, 0 transforms vectors in the A-based coordinates

to vectors in the B-based coordinates. The neglected term is due to small

angular accelerations. From Eqs. (1.96), (1.99) and (1.101),

- [T6 + *ABT3]i - [T12+

and

* [elX - ̂5)0AB̂  + Ie«(T10 - ̂T11)0AB4 + 0^<^e + T12§)'

(1.106)

Now let the body C be taken to be a uniform shaft having E and I\* u

as its modulus of elasticity and the area moment of inertia of the cross-

section, respectively. Let &_ be the length of the shaft. It is nowLI

assumed that the displacements of the shaft at the ends A and 6 are equal

to C and C , respectively. It is also assumed that the rotations of

the shaft at the ends A and B, about the axes b, and b., are the same

as those of the bodies A and B, respectively. Then

161



[Tl]

12Vc
(1.107)

[T2] - - [Tl] (1.108)

[T3]

0
6Vc
.
c

0

6Vc
t
0

0

0

0

0

(1.109)

f T8 " nT2 and T9 = nT3 (1.110)

where A is the cross-sectional area of the shaft, and
\j

•> - rEc
(1.111)

The symbol E stands for the modulus of viscosity of the shaft material.

'6Vc

St.2

(1.112)

[T5] = - [Tl,] (1.113)
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[T6] - (1.114)

[TIO] [TU] = r,[T5], [T12] -

Substituting the expression for 6 and the Eqs. (1.107) through (1.115)

in Eqs. (1.103) through (1.106), the values of the contact forces and

torques are obtained.

10. The Assembled Equations

In this Fart 1, the equations of motion of the different structural ele-

ments have been obtained. The derivations are shown for the body B. A simi-

lar set of equations can be obtained for the body A.

The configuration shown in Figure 1 has been described by 110 general-

ized time-dependent position coordinates. Accordingly, a total of 110

equations are generated for the body B. This set of equations in matrix

notation has the form

{A\(o),w,t)} . (1.116)

. (1.117)

,, ,,

Similarly, the equations for the body A take the form

[Aj'Kq*} + [A;(a>,J),t)Hi*} -f [A,(u,i,t)]{q*}

Jn these equations, [Sj] and [AJ] are (110 x 110) square matrices of con-

stants. These final forms of the equations will be used in the next part

of this work.
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11. Error Bounds of the Solutions

The complete analysis of this report is based primarily on the assumed

solutions of the partial differential equations for the beams, plates and

shells. These solutions obviously are not exact. The Galerkin's method

only minimizes the error corresponding to the assumed form of the solution.

A scheme is now devised to estimate this error based on the assumed solu-

tion.

In each of the cases of beams, plates and shells, the solution u is

sought for an equation of the form

Au = yu -I- f (1.118)

where A is a linear differential operator, y and f are functions inde-

pendent of u. Let v be the error in the assumed solution, which is

given by (u + v). Now, let (u + v) actually satisfy an equation

A(u + v) " y(u + v) + f - A^u + v) (1.119)

where A., also is a linear operator. Then from Eqs. (1.118) and (1.119),

we obtain

Av = yv - A,(u + v),

or

(y - A)v = AX(U + v),

or

v = (I - y A) y A.(u + v).

Now, it is assumed that y A is a contraction operator. Then

v &. (I + Ay~1)y~1A1(u + v)

or

||v|| = || (I + ŷ Aju'̂ u + v)|| . (1.120)

In the Eq. (1.120), A-(u + v) is the quantity obtained by substituting
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the assumed solution In the governing differential equation. Also A and

U are known operators. Then the maximum values of the error v is ob-

tained by taking suitable norms in the Eq. (1.120), over the complete time

and spatial domain of the operators A and v. A very easily calculated

norm is in the space L^, and this norm will be used. Hence, the follow-

ing operations are required:

a) Carry out the complete analysis, and obtain the coefficients of

the Galerkin functions,

b) evaluate the norms in Eq. (1.120),

c) if ||v|| is too high, increase the number of Galerkin1 s functions

and repeat the procedure,

d) if |[v|| Is small, then the assumed solution is satisfactory.
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Nomenclature

(Note: Unless otherwise mentioned, all vectors are In B-based coordi-

nates. For symbols not defined In this list, see "Nomenclature" In Fart I.)

[bLiB] = Continuity matrices, defined In Eq. (2.3)

[LI = Continuity matrix, defined In Eq. (2.12)r D

[ L ] = Continuity matrices, defined in Eq. (2.20)

[ L ] = Continuity matrix, defined In Eq. (2.48)

[L ],[L ] = Continuity matrices, defined in Eqs. (2.73) and (2.73a)

JL = Residual magnetic moment vector

M = Element of £L, defined in Eq. (2.74)

£ » The Earth's magnetic field vector

e, B3 = Elements of JB defined in Eq. (2.75)

= Magnetic torque vector on the body B

= Eddy current torque vector on the body B

Po ° Permeability of the materials in the body B
*
c ° Velocity of light in vacuum

r = Position vector of an element of the body B from the

center of mass

J_ = Volume eddy-current density vector of the body B

c = Static electrical conductivity of the body B —~"

[I.] . = Moment of inertia matrix of the body B
a

IBI, IB2. Ig3 = Diagonal elements of [Ig]

TEBC,i (i=1'2'3) = Elements of Tĝ , defined in Eqs. (2.81-2.83)

170



p = Average density of the elements of the body B

T_, = Solar radiation torque on the body B, in B-based
~£BS

coordinates

-7 2P - 1 x 10 Ibs/ft for a surface normal to the Sun

EO - Reflection coefficient of the body B

ti = Unit outward normal vector to a surface element of

the body B

ju = Unit vector directed from the Sun

aot bo, co • Elements of Jt at t = 0

I • Gravity gradient torque vector on the body B
£ow

d_ = Unit vector towards the center of the Earth

di, di, da • Elements of d_, defined in Eq. (2.92)

U = The Earth's gravitational constant, 1.4082 * 106

ft'/sec2

R = The distance between the center of the Earth and

the body B

H = Angular momentum vector of the body B

r_ = Position vector of a mass element of the body B

h = Angular momentum vector of rigid rotors or reaction
~fl

wheels inside the body B

T = Control torque vector on the body B
~T3

T* , 1 •» 1,2,3 = Elements of T_, defined in Eq. (2.102)
Bi D

T_ » Total torque vector on the body B
—B

[P_.3, 1 » 1-4 = Matrices and vector, defined by Eqs. (2.104) and
Bi

(2.105) for the body B

H = Angular momentum vector of the body A in A-based

coordinates
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h. = Angular momentum vector of rigid rotors and reaction

wheels inside the body A, in A-based coordinates
*
T. = Control torque vector on the body A in A-based

coordinates
* *
T^, 1=1,2,3 = Elements of T^

T^ = Environmental torque vector on the body A in A-based

coordinates

T^ = Total torque vector on the body A in A-based

coordinates

[P..], i = 1-4 = Matrices and vector for the body A corresponding to

[PBi], defined by Eq. (2.110)

[Â .], i = 1-4 = Matrices and vector for the body B, defined by

Eq. (2.112)

[Â ], i = 1-4 = Matrices and vector for the body A defined by

Eq. (2.113)

IM_J], i = 1-5 = Matrices and vectors for the body B defined by

Eqs. (2.115a) and (2.116b)

[M,.], i = 1-5 = Matrices and vectors for the body A corresponding

to [ M l , and defined by Eqs. (2.123) and (2.124).
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1. Introduction

We have obtained only the equations of motion of the individual struc-

tural elements In Part I. Now we shall use the continuity of displacements,

rotations and moments at the junctions to reduce the dimensions of the prob-

lem. By eliminating the generalized position coordinates, equations are ob-

tained involving only the angular velocities.

Equations (1.1) through (1.120), referred to in this Part II, were

given in Part I.

2. Continuity Conditions

In the analysis thus far, only a few of the continuity conditions be-

tween the various elements of the structure have been considered. The re-

maining conditions will be considered now.

(a) End Mass - Beam Junctions

The condition that the sum of the beam-end mass inertia forces and the

beam-end shear forces must be zero has already been introduced in the deri-

vation of the equation of motion of these masses. The remaining conditions to

be imposed are that the deflections of the tip-masses must be equal to the

beam-tip deflections, i.e.,

for the (i,j) pairs given by (17,1), (18,2), (19,3) and (20,A). For ex-

ample, let the case i = 17, j « 1 be considered now.

Here [v?]T is the identity matrix. So for i = 17, j - 1, Eq. (2.1)

becomes

y!7,2 ' lql,2(ePl ~1) + 2ql,2* + 3ql,2 (2'2)

y!7,3 " lql,3(ePl ~i} + 2ql,3A + 3ql,3 '
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Thus, for each beam there is a relation

Vk - [b
liBVbqJ} ' (213)

where [.L ] are constant matrices. More details of this equation forD ID

this and other end masses are given in Appendix 11.

(b) Rigid Body - Plate Junctions

The force and moment continuity conditions between the rigid bodies

and the plates have already been considered in Eqs. (1.81) and (1.87). The

displacement and rotation continuity equations are now obtained.

The displacements (y , 1 = 1,2,3,4) of the centers of mass of the

rigid bodies are taken to be the average of the plate displacements at the

four points at which the rigid bodies are fixed to the plates. For the

plate function which is singular at a Junction point, the function is eval-

uated at a small distance c away from that point. As an example, let

the conditions for the rigid body of mass m. be considered here.

The four junction points of rigid body No. 1 and the plate No. 2 have

their position coordinates in the plane of the plate given by 07, as,

as, and die. Then, referring to Fig. 7 and Eqs. (1.35) and (1.40), we

have

yi = 4-1X2(07) + XzCas) + X2(«9) + Xz(oiio)] (2.4)

with

Therefore

r exp(ie ) . (2.5)
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(ri0-l)r?0] + a2j

a2 7[Ji(Xir9) cos99 + Ji(Xino) cosSjo] + a2 8[(r9-l)r9 cos69

(rio-l)rio cos6io] + » [(r9-l)rl cos69 + (rij-l)rio cos9io)

+ a2 1[J2(X2r9)cos 269 + J2(X2rio)cos 28io] + a2 2[(r9-l)r| cos 269

+ (rio-l)rio cos 26io] + a2 3I(r9-l)r| cos 269 + (rio-l)rfo cos 26io]}

10 18
+ T I I X, , *2 1

 (V '4 k=7 j=7 ^'3 ^'J * (2.6)

Similarly,

y2 = X2 x(t) + -^EJ 13[Jo(Xorn) + Jo(X 0 r i 2 )

+ a2 14[(ru-l)rfj + (ri2-l)rf2] + a2>15[(m-l)rifi + (n2-l)r?2]

+ a2 7[Ji(Xirn)cos6ii + Ji(Xiri2)cos6i2]

+ a, 0[(rii-l)rncos6ii + (ri2-l)ri2 cos9i2]2,8

+ a2 9[(m-l)rii cos9u + (rj2-l)rf2 cos6i2]

+ a, 1[J2(X2rn)2 cos6ji + J2(X2r i2)2 cos6i2]

COB 28jl + fr""1* cos

a2 3[(rn-l)r!i cos 26u + (ri2-l)rf2 cos 29i2]}

, 14 18
I I ^ X2 1 *2 1^ ' (2'7)
4 k=ll j=7 ^>:) ^>J K
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The rotational continuity conditions are now obtained for the rigid

body No. 1. Again, referring to Figure 7 and Eqs. (1.35), (1.40) and (1.77),

we have

i
8, , = -27-1x2(09) + X2(<*io) - X2(<x?) - X2(ae)l (2.8)
J., **g

1
ei o = To~[Xz(ae) + X2(as) ~ X2(<*7) - Xz(<*io)J . (2.9)1,2 2Zr

Similarly, for the second rigid body, we have

1

and

2,2 2X,r
 X2 a" + X2 ai- X2 0112 X2 0113

Combining Eqs. (2.6) through (2.11), the displacement and rotation continuity

conditions for the two rigid bodies are obtained as

\ A j r B p 2

where [ L ] is a matrix of constants,r a

(c) Beam-shell Junctions

The in-plane rotation of the shell and therefore the inplane moment

have been assumed to be zero. The force continuity in the radial direction

has already been considered while deriving the equations for the beam-end

masses. The continuity conditions for the shear forces in the transverse

direction of the beams are neglected, as the shell displacements in those

directions are taken to be zero. The remaining continuity conditions for

each beam-shell junction are three displacements, two rotations and two

moments.
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(i) Displacement relations—Referring to Eqs. (1.3) and (1.59), the

displacement relations at the junction point z, «• P. and 6 = 8 are

given by

(2.13)

(2.14)

3qi,2

3qi,3

P2pi (t)eP3pi,qi i " bi(t) + <zi+pl><zrp")lb2(t)e + b3

T(P'+P..) 2ir(p'+p )
+ b, (t) sin — 5 — — cos6. + b.(t) sin - 5 — — cos6.

4 « i 5 * i

ir(p'+p.) 2ir(p'+p.)
b6(t) sin - j— — sin81 + b?(t) sin - — — sin8.l

+ ba(t) sin

+ b10(t) sin

cos 28. + b.(t) sin
1 7

2ir(p'+p )
5 - =- cos 28.
XT-* 1

TT(p'+p )
i sin 26± + bu(t) sin

2ir(p'+P
sin

(2.15)

(li) Rotation relations—The conditions that the slopes of the beams

at the joints are equal to the slopes of the shell there, are

e-e.

2qi,3 +
. ifW]

"» 36 Jzl-Pi
e-e.

from which
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e=e

(ill) Moment relations — The bending moments on the i beam at the

junction are given by

and (2.17)

"3 ' - VWi.X̂ l.a' '

The bending moments on the shell at the junction in the tangential and

axial directions are given by

e=e1
and

9 9 9 «i*T»

12(1 - l6af 3zf 8 B 36 = Jz1=P1 •

6̂  (2.18)

Now, setting

(2.19)

the moment relations are obtained.
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Combining the Eqs. (2.13) through (2.19), the complete shell-beam

junction continuity conditions for the i beam are given by the relation

(2'20)

where [ L ] are constant matrices.
8 lo

(d) Plate-shell Junctions

In this problem the force continuity conditions at the plate-shell

junction are neglected because the plate and shell displacements are assumed

to be zero there. Only the displacement, slope and moment conditions will

be set up. The corresponding equations will be obtained for each harmonic.

(i) Displacement relations — Let the Eqs. (1.34) and (1.59) be used to

obtain the relations for the junction between the plate No. 1 and the

shell B.

As the in-plane plate displacement is zero, so

bx(t) = 0 . (2.21)

Again as the shell axial displacement is zero, so

Xx !<t) • 0 . (2.22)

As all the other terms of the Eqs. (1.34) and (1.59) are zero on the bound-

ary, so the shell and plate displacements are matched at the junction.

Similarly for the boundary condition at the other end of the shell, one must

have

X2>1(t) - 0 . (2.23)

(ii) Rotational relations — At the boundary, it is assumed that the

joint is rigid, and the plate and the shell rotate by equal amounts. There-

fore the relations are

179



and
, 3X^ , aC. II

(2.25)1 3*2l 1 3CB r_-L 2 = -L _gl^
3B 3rjr=l 3B 3zl

To evaluate the Eqs. (2.24) and (2.25), the following result is to be noted:

= 2(1 - ct.a ) (2.26)
=1 J J

where ty = ty (r,6ia.) is the plate displacement function exemplified
1.3 i,j J

by Eq. (1.38).

Equating the terms independent of 6 in Eqs. (2.24) and (2.25), we ob-

tain the relations

15+Xl,7 + 2l(1-rJ)Xl,J

-*i[b2(t)ep2p" + h3(t)ep3p"] (2.27)

and

-A,a2j l3J l (Ao) + .2>14 + a2>15 + 2 ̂  (1 - rpx^

2p' +b3(t)e"p 3 p ' ] • (2.28)

Similarly, equating the coefficients of cos6 in Eqs. (2.24) and '

(2.25), we obtain

a1>7AiJi>(Aj) + a1>g + a1>9 - [̂b* - 2bs] (2.29)

a2 7AlJ(l(Ai) + a2 g + a2 9 = - jj-[b» + 2bs] . (2.30)

Equating the coefficients of sin6, we get

- 2b7] (2.31)

+ 2b7] . (2.32)
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The coefficients of coa 26 are equated to give

- 2bs] (2.33)

2bs] . (2.34)

Similarly, the coefficients of sin 26 generate the relations

a1>5 -f-a1 > 6 - ~it>u - 2bu] (2.35)

) a2 5 + a2 g = - •^•[bio + 2bn] . (2.36)

How from the Eqs. (2.21) and (2.27) through (2.36), the shell displace-

ments are given by

b!(t) - 0 (2.37)

2

(2.38)

.,13

"1.15 * Xli7 + 2 -

(1 -

(2.39)

(2.40)
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86

+ a ) + a + a, „ + a g + a ] (2.41)•411 j., / i, / 1,0 j.,y zf o z,y

(2.42)

b7(t) = - 45-[XiJc(Xi)(a1(10 + a2il()) +a1>u + a1>12 + a2>n + a2>12J

(2.43)

be(t) = n [X2Ji(A2)(a. . - a- .) + a. , + a. _ - a_ - - a- _] (2.44)

bs(t) = - £[*2Ji(X2)(a1(1 + a2>1) + a1>2 + a1>3 + a2>2 - a,,̂ ] (2.45)

b,,(t) = [̂X2Jl(X2)(a1)4 - .2>4) + a1>5 + alj6 - â ,. - a2>6] (2.46)

bii(t) = - fe[Xrf,(X1)(a1>4 + a2>4) + a1>5 + a^ + a^ + a^J (2.47)

Equations (2.37) through (2.47) is rewritten as

{S"B> ' l.VV»*J (2'A8)

where

{pq*> • Ipq* , pq^]
T (2-49)

and t LBJ
 is a constant matrix.

(ill) Moment relations—The moment relations are obtained by summing

to zefo the radial bending moment on the plates and the axial bending mo-

ment on the shell at the shell-plate junctions. Thus the relations become

•a2

3z! s B 36* zi-p"

(2.50)
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and -L Dr^+ u ( i^ +a 'P^Lar 2 V2(r 3r + ,

sEB • s** '*.., , ^B.rl

3zf 8 B 362 Jzi-p'

To evaluate Eqs. (2.50) and (2.51), the following results are to be

used. If ip (r,6,a) are the plate displacement functions, one of which
*i J

is shown In Eq. (1.38), thenll ,2(1 - r2) + 4 - J - (2.52)
J 1 - 2r cos(6-6 ) + r2

1 * X ~ rl
•^- / - J

11
d6 - 1 for 0 < r, < 1 (2.53)

-IT 1 - 2r cos(e-6 ) + r 2 3

, TT (1 - r2)cos8
•X / - J - -d6 = r cos8 (2.54)
Z1T -IT 1 - 2r coe(e-e.j) + r 2 j j

, TT (1 - r2)sln6
"27 / - - Tde • ŝ1116! (2.55)4 i r - IT 1 - 2 r cos(6-e ) + r 2 33

, IT (1 - r2)cos 26
de «, rz C08 26 (2.56)

-IT 1 - 2r cos (6-6.) + r2 J

, IT (1 - r2)sin 26
-f- / J d6 » r2 sin 26 (2.57)
4 -IT 1 - 2r cos(6-e ) + r2 J 3

32i() ~1

T2 ae2 J
= 2(1 - r?) (2.58)

r=l 3

and
W<

(2.26)
lr-1
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The values of X^ X2 and ^ r given by Eqs. (1.34), (1.40) and (1.59)

are now substituted In Eqs. (2.50) and (2.51). Then the terms Independent

of 6 and the coefficients of different harmonics are equated separately.

Equating the terms Independent of 3 In Eq. (2.50), we obtain

11
+ I [2(l-r2)(3+2 u )X, ,])

j=8 3 p '3

p3p"b2 + 2(14p3il1)e
p3p"b3] . (2.59)

Similarly, from Eq. (2.51), we obtain

18

a2,15(6V2)

[2(l-r2)(3 + 2 pP2)X2>.,]}

— ^r £2(1 - P2*i)e~p2p'b2 + 2(1 - p,Ai)e"
p8p *b,] . (2.60)

To obtain the equations for the harmonic components in Eq. (2.50) and

(2.51), these two equations are multiplied successively by cos6, sinO,

cos 26 and sin 26 and integrated with respect to 6 between the limits

(-TT,ir). This operation on Eq. (2.50) generates the following four equations:

pD1{AlJo(A1)(py1 - I)a1>7 + (2 + ̂a^ + (4 + ^^

11
+ 8-1 [(1 - r2)r cosB X, J} = 0 (2.61)

J _Q J J J J- »J
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11
+8 I [(I - r?)r sine Xl ,]> - 0 (2.62)

j=8 J J J J-tJ

11
+ 8 I [(1 - r?)r cos 28 X, J> • 0 (2.63)

j=8 J J J J-.J

11
+ 8 I [(1 - r?)r sin 28 Xl J} = 0. (2.64)

j=8 3 3 3 '3

In a similar way, the following four equations are generated from

Eq. (2.51):

„ 2 ~ U'2.7 + (2 +
 PVal,8 + (4 + pVal,9

18
+8 I [(1 - r2)r2 cose x, J - 0 (2.65)

•1=7 J J J *'J

X lJo(X1)(pp2 - I)a2jlo + (2 + pV2)a2>u + (4 +-pU2>«2f l2

18
+8 I [(1 - r2)r2 sine X, J = 0 (2.66)

j=7 J J J '»J

- l)a + (4 + ny,)a- , + (6 + U,)a,
f - 2>1 P 2 2,2 p 2 2,3

18
+ 8 I [(1 - r2)r2 cos 26^2^] = 0 (2.67)
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(A + U)a + (6

18
(2.68)+ 8.J [(1 - r*)r* sin 28 X ] = 0 .

j=7 •• J J »J

This completes the derivation of the continuity conditions for the Individual

elements.

(e) Remarks on Reduction of Dimensions

We shall determine the effect of the continuity conditions on the total

number of the degrees of freedom in our complex structure.

From Eq. (2.48), it is seen that the shell coordinates can be expressed

as a linear combination of the coordinates of the two plates, i.e.,

{ } • I L * I } ' (2-48)

From Eqs. (2.20) and (2.48), we have

(2'69)

This shows that the beam coordinates can be expressed in terms of the plate

coordinates. The quation (2.12) states that the rigid body coordinates can

also be expressed in terms of the plate coordinates, which are

Iq. q]T - [0; LH> - (2.70)r

From Eqs. (2.3) and (2.69) the coordinates of the beam-end masses can be ex-

pressed In terms of the plate coordinates by the relation

V - [bLlB]CsLiB1[sLB]V*} ' (2>71)

All these relations show that only the spring-mass-damper coordinates

cannot be expressed In terms of the plate coordinates.

When Eqs. (2.38) and (2.39) are substituted Into Eqs. (2.59) and (2.60),

we obtain two relations between the plate coordinates themselves. So
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Eqs. (2.59) through (2.68) and Eqs. (2.22) and (2.23) supply 12 dependence

relations between the 28 + 21 = 49 coordinates for the two plates. This

means that only 49 - 12 = 37 plate coordinates are independent, and the rest

are dependent. These dependence relations are defined by an equation of the

form

{pq*} * tpVV1* (2'72)

where { a} is a (37 x 1) column and [1^1 is a (49 x 37) constant matrix.

Since there are four spring-maes-damper coordinates, the motion of the body B

is defined by the (41 x 1) vector {q_}. So the originally mentioned
D

(110 x l) vector {q_} Is given by
a

{q*} = [LBH
qB} (2.73)

where [L~] is a (110 x 41) constant matrix and is composed of matrices

'pLB]» I.S1' [sLib]' [bLiB] and W"

The equation for the body A is similarly given by

{q*> = [LAHqA> • (2.73a)

3. External Torques

It has been assumed that the external forces on the satellite are negli-

gible. The center of mass of the satellite remains static. But the

existence of external torques cannot be neglected. The basic method of

modelling the external torques follows that shown by Dobrotin, et al.[l]

and Tidwell [2], These torque models are derived for the body B. The

torques for the body A are derived similarly.

(a) Residual Magnetic Torque

The flow of electric current in the electric circuits inside the space-
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craft reacts with the Earth's magnetic field to create this torque on the

spacecraft.

Let >L be the residual magnetic moment vector of the body B in the B-

based coordinates. Let ji be the Earth's magnetic field vector in the B-

based coordinates. The elements of MR and 15 are assumed to be of the form

= [M, M, M]T (2.74)

{B> • [e cos <"Bj3t, -e sin UB 3t, B3]
T . (2.75)

Then the external magnetic torque on the body B is given by

(B3 + e sin UB 3t)

(e cos o) t - B,
Q yj J

-e(sin y3t + cos o)B>3t)

(2.76)

(b) Eddy Current Torque

Eddy currents are induced in a satellite spinning in the Earth's mag-

netic field. These eddy currents in turn react with the surrounding mag-

netic field to create a torque on the satellite. The eddy current torques

on the body B are given by a volume Integral over the body B, as follows:

IEBC U«c

where

Po = the permeability of structural material of the satellite,

c = the speed of light in vacuum,

r = the position vector of a volume element from the center of mass

J_ = the volume eddy current density.

All vectors in Eq. (2.77) are in the B-based coordinates. The vector J_ is,

in turn, given by
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(2.78)

a scalar potential for the body such that V2<)> = 0 and -gj = 0

where a = the static electrical conductivity of the satellite material,

V^ = the operator for spatial gradient,

and $ =

on the bounding surfaces of the satellite.

In this problem the field of <t> is the thin plates ahd shells. Therefore,

<)> is nearly a constant. This reduces Eq. (2.77) to the following form:

2U5CTC

*
2yjac

x 1) x r ] x B}dv

B - (B

(2. x B>1 ~ <B-

x B}dv

[r x (ui x B)]}dv
-c -B

fr /<£ (2.79)

It is now assumed that the moment of inertia matrix of the body B has the

form

~~ ';-, 0 0

o iB2 o

0 0 1

Hence Eq. (2.79) reduces to

B3 -1

(2.80)

EBC,1

(2.81)
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W°-^[e2(V°°2Y3<4

+ (B| 01B>2 + BlMBt3e sinu^t)!^] (2.82)

^C>3 = " ̂ fe I(e2V3c08lV3t ' B|ai^,icon.3t)IBi

+ (e\>3sin
2 o)B>3t + Bsê ŝin̂ t̂)!̂ ] (2.83)

where

T
ÊBC ° [TEBC,1' TEBC,2' TEBC,3] (2-84)

and P is the average density of the structural materials. Using the condi-

tions that (0 . and w „ are small compared to oi_ _ and £ is smallB,l B,2 a,3

compared to B3, the Eqs. (2.81), (2.82) and (2.83) are simplified to

(2.85)

(c) Solar Radiation Torque

The solar radiation torque arises from the asymmetric pressure distribution

developed on the surfaces of the satellite due to the electromagnetic radiation

from the Sun. The formulae used here are taken from Beletsk.il [3].

The radiation torque vector, T^_c, on the body B, is given by the fol-
~iLaO

lowing integrals over the surface of the body B exposed to the Sun.

ÊBS ° Pe{(1 ~ eo)[- X f £c(£'i)ds' + e»t2 / S. x ̂(n-jr)̂ ]} (2.86)

In Eq. (2.86), all vectors are in the B-based coordinates, and
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-7 2p = a constant = 1 x 10 Ibs/ft for a surface normal to the Sun,

eo = the reflection coefficient of the body,

n = the unit outward normal to the surface element,

JT = the unit vector directed from the Sun,

r = the position vector of the surface element from the center—c

of the body B.

In this analysis, it is assumed that the angle of incidence of the solar

radiation is large on the plates, which are also highly reflective. This

assumption allows us to consider that the plate surfaces produce negligible

torque, so the integrals in Eq. (2.86) are taken over the surface of the

shell only.

Let
T

!o = [ao, bo, col

be the direction cosines of the sun-vector at the time t = 0. Then

COS

-sin

sin <0B>3t 0

0

1

ao

bo

CO

"(ao cos u

(-ao sin o

3t + bQ sin tiL 3t)

JL -t + bo COS OL _t)
B,3 B,J

CO

Let the unit outward normal on the shell element be given by

n = [cos9, sin6, 0] .

Then

(2.87)

cos6(aocos u t) + sin8(-aosin u_ 3t 4- b<jc
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Now, using Eq. (2.88) and taking

r̂ . = [aBcos6,

Eq. (2.86) is reduced to the following form:

VjCl-e.)

~{a0[(p")*-(p

B»3

_

-•f Pe-ea-aB[(P")2-(p')2

')2]-£iCoU)B 3t}{-aosinuB 3t + bcc

aot(p") -(p')2iHaocosWB gt + bc

0

l(2a? -i-b?)

"sin B.a''
cos B 3t

0

oso,B)3t}

B,3

_

(2.89)

(d) Gravity-gradient Torques

The gravity-gradient torque vector T^jg, on the body B, in the B-based

coordinates, is given by

^EBG = Jl[a>IBd] (2'90)

where

d - [d1,d2,d3]T

= the unit vector towards the center of the Earth,

U = the Earth's gravitational constant

«= 1-4082 x io6 ft3/sec2,

and

R = the distance of the center of the Earth from the body B.

Then, from Eqs. (2.80) and (2.90), we have

T
-EBG

"
B2

(2.91)

192



Now, let the inertlally fixed reference coordinate axes be set up such

that X, points in the direction perpendicular to the orbital plane and along

the angular momentum vector, X. is along the line joining the centers of

the masses, and X^ Is along the orbital velocity vector. Then in the X-

frame, located on the body B, d_ Is given by

^ - [0, 1, 0]T .

Therefore in the B-based coordinates, d_ is given by

d = e-dx
where 3 is the transformation matrix given by Eq. (1.94).

Carrying out this transformation, we obtain

(2.92)

Substituting the Eqs. (2.92) in Eq. (2.91), and using small angle approxi-

mations for 1(1. and ty~, we obtain

f *l (2.93)

(e) Total Environmental Torque

In this analysis only the above-mentioned environmental torques are con-

sidered. Then the total external torque, 1L.,, on the body B Is obtained
m>

+ T + T
-̂ EBC -4)88

(2.94)
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These torques do not involve the {q_} as the effects of the flexibility on
D

them are Ignored.

4. Moment Equations for the Composite Bodies

The moment equations for the body B are derived now. The corresponding

equations for the body A can be obtained in an identical manner.

(a) Angular Momentum

Let JL be the angular momentum about the center of mass of the body B

in B-based coordinates. Then

N
^B = ^ r * ̂  dit ̂ ĉ dm (2-95)

where r is the position vector of a differential element of mass dm, ex-

pressed in the B-based coordinates, from the actual center of mass of the

body B. Since

Ic = £B +£ (2-96)

we obtain

HB • /(£B + r) x [(^ +£) +<^ x ̂  +r)]dm

where r_ is the B-based position vector of the element from the nominal

center of mass, or

H = /[cfixc^ + c _ x £ + r_x^ + r _ x £ + { . x ( u x c. )

+ c x ( t o x r ) + r x ( o > x c ) + r x (M x r)]dm . (2.97)

Because c. and iL are assumed to be small, and since
—D u

/r dm = - |

Eq. (2.97) is linearized by keeping only the fourth and the last terms. The
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last term can be written as {[IB]U£ + t_J- In this expression h_ is

the angular momenta of rigid rotors or reaction wheels inside the body B.

Thus Eq. (2.97) reduces to

^B = [IB3-B + ̂ B + J- X i dm ' (2-98)

Therefore

+ *B + Ji x * dm

+ ̂ hg + (^ x ( Jr. x £ dm) . (2.99)

Neglecting I , and using the symbols from earlier parts of this analysis,

we get

+ a

// 83 (2'100)

where

j - 1,2 and 13-20, k = 1,2.

Introducing the expressions for TK , X,, and jL obtained before,
~~L T̂C D

Eq. (2.100) is transformed into

Details of Eq. (2.101) are shown in Appendix 11.
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(b) Equations of Motion of the Body B

Let the controlling torque vector T on the body B be expressed as

4 = ITB1' TB2' ̂S1 (2.102)

in B-based coordinates. Then the total torque T_, applied on the body B in
—D

B-based coordinates is given by

IB " ^ B + I E B + ^ B C + ^BC x ^BC' (2.102)

in which T^-, F,,,,, and 1C are shown in Figure 8. In this equation, F.
li(j "" 15 C ^iiC oLr

Is obtained from Eq. (1.103), T__ from Eq. (1.105) and T__ from Eq.
—oU "™E,JJ

(2.94). Therefore

^ Tl - T2)]GBLB% + ^ <T10

§ T7 - V]GBLB% - [T6

i • (2-103)

The equation of rotational motion for the body B is then given by

Nd
^B = dt % '

Hence from Eqs. (2.101) and (2.103), we get

-

Tl

. + ̂  - [T + ( + r)T]l - IT6 BC AB3 - 12 BC AB9

(2-104)
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Equation (2.104) is rewritten as

[PB1]% + fPB2]% + [PB3J% ' {V ' <2'105)

In this equation {Pĝ } is a (3 x 1) vector. The symbols [PBI], t
p
B2^'

[PB3] stand for (3 x 41) matrices. The elements of [PBI] and [PB3] are

constants, but those of [P_,] involve oj .
Df- " "a

(c) Equations of Motion of the Body A

Let H, be the inertial time derivative of the angular momentum vector

of the body A in the A-based coordinates. Then the equation corresponding to

Eq. (2.101) is given by

\ ' VA + ̂VA + *A + \\ + [PAI]<A + ̂AiN • <2'106)

*
Let T, be the controlling torque vector on the body A in the A-based

coordinates, so that

i - [TIl' TA2' <J • (

Also, let T^ and T^ be the external and the total torque, respectively,

on the body A in A-based coordinates. Then, referring to Figure 8, we have

Substituting Eqs. (1.104) and (1.106) in the above equation, we get

I • + I + [6 - YT)e

- YTii)6AB

(2'108)
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Then the moment equations for the body A are given by

T = V . (2.109)
•̂ A -TV

Hence, from Eqs. (2.106) and (2.108), the Eq. (2.109) reduces to a form

given by

More details of Eqs. (2.105) and (2.110) are in Appendix 11.

5. Equations for the Angular Velocities

(a) A Review of Various Equations

The behavior of the complex dynamic system shown in Figure 1 has been

formulated into six sets of equations. These equations are:

_ „ * _ . * _ * _

Jl * + A2 < + ̂ 3 ' - A4 (

q* - LBqB (2.73)

q* = LAqA (2.73.)

PB1«B + PB2<B + PB3<B - PB4 (2'105)

VA + PA2^A + PA3lA " PA4 (2'UO)

These equations are linear in the generalized position coordinates

CN and q , but nonlinear in the angular velocities ov, and 10 . The

analysis so far has been along well-known techniques, but now a completely

new approach will be taken.

(b) Condensation of the Appendage Equations

The general appendage equations (1.116) and (1.117) involve very large

198



matrices. To try to solve these equations would require a great computa-

tional effort. The usual practice [9], [10], [11] is to truncate the co-

ordinate vector by a considerable amount. Instead of gross truncation,

the Eqs. (2.73) and (2.73a) are used now to reduce the dimensions of Eqs. (1.116)

and (1.117) in the following analysis.

Equation (2.73) is first substituted into Eq. (1.116) to obtain

A4 '

Now if £ is an (m * 1) vector and if q is a (n x 1) vector, with

m > n, then the Eq. (2.111) is a system of m equations in only n inde-

pendent variables. The number of equations is reduced by premultiplylng

Eq. (2.111) by (L_)T. Thus we obtain

I(VT A1LB3% + [(VT A2(V ]% + t(LB)T W]% = VT A4 •

(2. Ilia)

This equation is rewritten as

Similarly, using Eq. (2.73a), Eq. (1.117) is reduced to

AA3qA - AA4 '

(c) Derivation of Angular Velocity Equations

We now eliminate 5̂  from Eqs. (2.105) and (2.112). It is to be noted

that, as P . are rectangular matrices, their inverses do not exist. Hence
£1

P_. of Eq. (2.105) are augmented by adding (n-3) rows of zeroes and then
Dl

added to the square matrices A^. in Eq. (2.112) to form the equation

(AB1 + PBl)qB + (AB2 + PB2)qB + (AB3 + PB3)qB * (AB4 + FB4) ' (
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The matrix (Â  + ?„.) is square with definite inverse.

Equation (2.114) is now pre-multiplied by -̂(A-j + P-j) and sub-

tracted from Eq. (2.112) to get

• [AB4 - AB1(AB1 +

The above equation is rewritten as

"BÎ B + ̂ B * "BS ' <2-115a>

Differentiating Eq. (2.11Sa), we obtain

VB + %1 + MB2)^B + «B2^B = »B3 '

In this equation the value of q* Is substituted from Eq. (2.112) to get
o

+ «B2"B " «B3

" («B3 ~

•

Here q_ Is replaced by its value from Eq. (2.115a), and we obtain
D

"B2 -

"B2 -

Equation (2.116) ie rewritten as

• " (2'116a)

-B ' "B4"B5 ' (2'116b)
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Equation (2.116b) is very useful as It gives q explicitly in terms of

the u., and or .
— fi ~A

Equation (2.112) is differentiated once and Eq. (2.115a) Is differen-

tiated twice to obtain

and

V«B + (2«Bi

Substituting Eq. (2.117) into Eq. (2.118), we obtain

+ "B2 -

Substituting the value of q_ from Eq. (2.112) in Eq. (2.119), we get
B

"B2 -

"B2 -

"B2 ' MBlSAB2)AB'AB4] ' (2"120)

Now, substituting Eqs. (2.115a) and (2.116b) into Eq. (2.120) and simplify-

ing, we obtain

[(AB2 -

In deriving Eq. (2.121), it has been assumed that I Ago-' is sma11 compared

to [̂ i] an(^ 1*53]' and so only the terms linear in Â A,,- and

were retained. On further simplification, Eq. (2.121) reduces to
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MB3

(2'122>

The equation (2.122) is the basic differential equation in the angular ve-

locities only. It ia a general equation where the effects of any number

of flexible elements can be taken into account. Beginning with the equa-

tions (2.113) and (2.110), a similar set of equations for the body A can also

be obtained in the forms

qA • M^MA5 (2.123)

and

M
A3

(2'124)

In the next part of this work we will begin with these highly nonlinear

equations and look for special cases and their solutions in transient,

intermediate and long-time ranges.
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Nomenclature

M , i • 1,2,3 = Same as M . or 11 of the previous report

A , i = 1-4 • Same as A . or A^ of the previous report

p i = 1-4 ° Same as P . or P of the previous report
i Al B3.

o^ = Independent set of the generalized position

coordinates (see Part II)

1 = Identity matrix

2 = M3(u),t)

e » The largest element in (A.A"1)

A , B±, = Matrices, defined by Eqs. (3.6) and (3.7),

respectively

d_ = Vector defined in Eq. (3.34)

0) , n - 0,1,2,... = Components of (0, defined in Eq. (3.11)

h = Component of U, defined in Eq. (3.12)

a - i
u = [x,X]

T

v - [d,0]T

f_ - Pu + Qd

p,Q = Matrices, defined in Eqs. (3.30) and (3.31),

respectively

F = Operator, defined by Eqs. (3.32) and (3.33)

u,, u, = Solutions of ia

•R = Cartesian vector space jc x ^
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6 •= Inf |u(t) - ii(0) | for 0 <_ t <_ 1 > 0.

k - A constant, defined in Eqs. (3.36) and (3.39)

M = A constant, defined in Eq. (3. 37)

T = Outer limit for t

0) «• Component of u>, defined by Eq. (3.43)

v = Component of y_, defined by Eq. (3.44)

7 » Gradient operator with respect to 2.

V^ = Gradient operator with respect to u

1 (x,̂ ), &(x,£) " Vectors defined by Eqs. (3.52) and (3.53),

respectively

T = Enlarged time scale, defined in Eqs.(3.56)

and (3.67)
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1. Introduction

In this part of our work we begin to explore the consequences of Eqs.

(2.122) and (2.124) derived earlier. These are very general and highly non-

linear equations. For convenience, Eq. (2.122) together with Eqs. (2.112)

and (2.115a) are repeated here without the subscript B as follows:

(2.122), (3.1)

All + A2i + A3l " *4 (2.112), (3.2)

Mli + M2S. = "3 (2.115a),(3.3)

First, we shall obtain perturbation series solutions for the generalized

forces JT, and tL., valid for different time zones. Then we shall con-

sider some special cases when the structural parameters combine in a way to

simplify these equations to a great extent.

In what follows, the subscripts A and B are dropped from the symbols

MA1* "BI' AA1' ̂ i' PA1* PBi' % and •aB> aS the analysls ls similar for

either of the two bodies A and B.

2. Asymptotic Solutions of M,

a) The Equation

We now look for the asymptotic solutions of the general equations (2.122)

or (2.124) represented by Eq. (3.1). For the present, we assume that the

generalized stiffness matrix A, is large. Noting that M. involves

A , Eq. (3.1) can be represented as

eAyte.Oyj + eByQo.ofj + y± = ed1(o),t) (3.4)

where
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£ = M3(u,t)

e = the largest element in (A..A ),

(3.6)

- P3A~
1)A2M~

1] (3.7)

(3.8)

This shows that A ., B remain quantities of comparable magnitude even

though e is small. The form of the Eq. (3.4) makes it clear that as the

structure becomes increasingly rigid, e tends to zero and the Eq. (3.4)

approaches the equation

y± = 0 . (3.10)

On further simplification, Eq. (3.10) becomes the rigid body equation

for the two bodies A and B.

b) The perturbation series

We begin the process of solving Eq. (3.4) by assuming to in the

following form:

Defining

hi = et°li

we get

h± . (3.13)

Since

2. = X̂ .t) = X + h>
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We now expand y_ ln 8 Taylor's aeries around (ŵ .t).

Defining

*?iV !» •*-J5.yt,3 3ŵ

and

. _!iyi,jk " 3w 3«

we obtain

or

(3.W)

Therefore

.t) + e l . t ) *

Hence

w.t) « (W.t) +

(3.16)

Expanding A ,(w,t) in a Taylor's series about u>g, we obtain
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Similarly,

By <fi>,t) -Bytoj.O+eBy^.O^fc

+ e2!By ,k%.t)«2k + | Bij>k!l%.'><Vu
] + ... (3.18)

We also have

d1(u,t) = d1(u0,t) + edijj(u)

The series given by Eqs. (3.14) through (3.19) will now be used to

generate the perturbed equations from which (0 will be solved. With our

choice of e, it is seen that each expansion series approaches the corre-

sponding nominal value as the satellite becomes increasingly rigid. This

characteristic is in agreement with the physical nature of our problem.

c) The perturbed equations

Substituting Eqs. (3.14) through (3.19) in Eq. (3.4), and separating

0 1 2the coefficients of e ,e ,£ we obtain the following equations: The co-

efficient of e gives

y1(ĵ ),t) = 0 • (3.20)

The coefficients of e give
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From the coefficients of e , we get

= Ay (UQ.OdjCwQ.t) + B^CwQ.Odj^.t) . (3.22)

Now, differentiating Eq. (3.21) with respect to 0), we have

di,j - yi.kAk + yi,j • (3-23)
Differentiating Eq. (3.23) with respect to a>, we obtain

di.Jk - yi,jk * yi,jkJlUU + yi,Jk - (3'2A)

Substituting Eqs. (3.23) and (3.24) in Eq. (3.21), and neglecting

d, (£>o»t) and d (ĵ .t), we get

Then neglecting the cubic term in the above equation,

(3.25)

Then from Eqs. (3.11), (3.21) and (3.25),
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wi " "01 "l"e(1 +f)[yi,j(^o>t)1 dj( ô>t:) (3'26)

where UQ is to be obtained from Eq. (3.20).

3. Convergence Criteria of the Asymptotic Solutions of M_

a) Selection of the time domain

In view of the simplifications made in solving Eq. (3.4), it may be

argued that the obtained solution of that equation is quite different from

the actual solution. To check if such is the case, we proceed in the fol-

lowing way:

Let

y± = x± • (3.27)

Then Eq. (3.4) is given by

£A(to,t)x = ed_ - eB(ô ,t)x - £ . (3.28)

Let the vectors 11 and y_ be defined by

T

and

v = [d,0]T .

Then Eqs. (3.27) and (3.28) are represented by

u = Pu_+Qd = f(ii(t),t) (3.29)

where P and Q are given by

r-A-H - V1!e

LI o J

and

'['

(3.30)

(3.31)
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From Eq. (3.29), the formal solution for u_ is

u(t) = u(0) + /o f(u(t),t)dt (3.32)

or

u(t) = F[u(t)] (3.33)

where the operator F is defined by the Eqs. (3.32) and (3.33).

Now our problem can be stated as follows:

Suppose u (t) is the exact solution of Eq. (3.32) and u»(t) is an

approximate solution, such that both solutions have the same initial value,

i.e.

u(0) = Ul(0) - u2(0).

Then if [F(u ) - F(u)] is small, will [u (t) - u2(t)] be also small?

If the answer is in the affirmative, then we also want to know the condi-

tions under which it is so. It can be proved by applying the Contraction

Mapping theorem [1], that [̂ (t) - u2(t)] is small if F is a contraction

operator. We now obtain the conditions for F to be a contraction operator

in our problem.

Let TR be the 2n-dimensional Cartesian space containing the n-

dimensional vectors jc and y_. Let ti belong to a set U such that

vi 6 u = {u : .u e K, |u(t) - u.(0) | £ 6} (3.34)

for 0 <_ t <_ T > 0

and

||u|| = max |u(t)| (3.35)
te[0,T]

where 6 is a positive constant.

Now it is assumed that there exists a constant k such that

|f(urt) - f(u2,t)| <. kl̂  - u2| (3.36)
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where

and

It is also assumed that there exists a positive constant M such that

|f(u,t)|_<M, u 6 U, t € [0,T] . (3.37)

Now, from Eqs. (3.30), (3.31) and (3.32), we have

û .t) - f(u2,t)| = IP^ - Pu2 + Od̂ .t) - Qd(u2,t)

I 0

Then comparing Eqs. (3.36) and (3.38), we get the constant k as

k «• the greatest eigenvalue of
Vd-B)

I

From Eqs. (3.32), (3.34) and (3.37) we have

|u(t) - u(0)| < /o |f(u,t)|dt _< MT .

From Eqs. (3.32), (3.33) and (3.36), we have

||p<u ) - F(u )|| = max (/ [f(u ,t) - f(u t)]dt|
1 * tefO.T] ° L *

L.

< max / k|u.(t) - u (t)|dt
~ t€[0,T] ° -1 2

(3.38)

(3.39)

(3.40)

(3.41)

Then from Eqs. (3.40) and (3.41), we see that the operation F will be
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a contraction if we choose T such that MT < 5, kT < 1. Therefore

T < min{| , £} • (3.42)

Thus, Eq. (3.42) gives the time interval in which our approximate solutions

will remain close to the exact solution. This also shows that the system

is unstable if k is very large.

b) Truncation of the solution series

An important piece of information we require in this analysis is the

number of terms of the series given in Eq. (3.11) that are necessary for

the solution to be arbitrarily close to the exact one when t f [0,1]. We

now show how to estimate any term of that series from the value of the pre-

ceding sequence.
*

Let the partial sums of the series in Eq. (3.11) be denoted by (0

such that
* n

u - I £*M ' <3-43>

Let y be defined by

£(«*,t) . (3.44)

Then Eq. (3.4) can be expressed as

where V is the gradient operator with respect to y_, or

where V_ is the gradient operator with respect to ta or OL
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Therefore

- eGdfeJ.t) + AfeJ.t) -^ + BfeJ.t) £] ^ . (3.45)

With n = 0, Kq. (3.45) becomes

[ I - e V d *

* e[l + eVdCu.OJd.CU.t) (3.46)2

provided eVd^.t) <_ j . Similarly

[I - eVd̂ .t)]̂ * = ed(u*,t) - e[Vd(u*,t)

+ A(u*,t) -i- + B(o)*,t) ̂ ] i* . (3.47)
dt

Substituting Eq. (3.46) in Eq. (3.47) and dropping the term involving e3

we get

A(aJ,t> J-; + BOoJ.t) £i.
dt

since

d(co*,t) = V d (

Therefore

i* s£ e[I + eVd(u*,t)][7d((̂ ,t)]v.* . (3.48)
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Carrying on this procedure we get

for n >. 1 . (3.49)

This shows that after choosing T, we have to choose n such that the
* *

difference of (y ,, ~ y ) obtained from Eq. (3.49) becomes small forn*rj. n

t £ [0,T].

c) Validity of asymptotic solutions - Jump conditions

We now consider Eqs. (3.27) and (3.28) to obtain another important

characteristic of that system. These two equations are represented by

EX = !*(£,£)

i = £.(x,Z) (3.50)

where e is a small parameter. The property that £ appears with the

highest derivative of the state vector makes it a singularly perturbed

system. In the previous section we have assumed that the system should tend

to a definite limiting mode as E approaches zero. We will now examine

whether or not an asymptotic solution of the system exists.

To understand the problem, we consider the phase velocity vector v_

given by

• • T 1 *

v = [7 f*(x,v_),0]T + [0, £(x,v.)]T • (3.51)

The second vector on the right-hand side of Eq. (3.51) does not depend on
*

E. The first vector becomes infinite as e approaches zero if f (x,y) r

This means that when the phase point ?(*_,%) is not on the surface

L Obi) = 0> tne component :c of the phase velocity away from the surface

is great. At the same time, the component j_ is limited. Such motion is
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maintained until P(x,%) comes very close to the surface f (x,jr) = 0.

After that the variables change with finite velocities. However, for some

jr, the point P(x>.y.) may again move away from this surface and the system

may lose equilibrium. This phenomenon makes the singularly perturbed

systems difficult for analysis.

The equilibrium state of the system is given by the degenerate system

f*(x,2) = 0 (3.52)

£<*>£) = Z ' (3.53)

If the system is at equilibrium, then jt can be solved as

x = x(i) (3.54)

from Eq. (3.52), and then Eq. (3.54) can be substituted into Eq. (3.53) to

yield an explicit solution for .̂

But if the system is not at equilibrium, then it will not be possible

to obtain Eq. (3.54) from Eq. (3.52). This means that the jump condition

is given by the relation ^
3f

det [-j— ] - 0 . (3.55)

Using this relation in our problem, we see from Eq. (3.27)

f_ (x.>2.) = 6A [d_ - BxJ - A ^ .

Hence A

dim [-̂ - ] = 0 for all t .
e * 0 -

But though Eq. (3.55) is satisfied, our system is in equilibrium, as

lim x = lim -| f*(x,i) = lim [A-1(£ - Bx) - - A"1 ]̂
e-»0 e * 0 e+0

= A-1(d - Bx) < oo

since
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llm 2. ' ° •
e •* 0

So it Is seen that the jump condition does not exist in this problem, and

the asymptotic solution is applicable for all time.

A. The Inner Boundary Layer Solution of M

We now consider the governing Eq. (3.4) of our system and its basic

solution given by Eqs. (3.20), (3.21) and (3.25). It is evident that the

asymptotic series has reduced the differential equations to algebraic re-

lations. It has happened because the time scale chosen for these solutions

is unity. This means that these solutions are valid for large values of

time. So, the time scale is now enlarged near t = 0. The boundary layer

solutions thus obtained exhibit marked changes in their nature.

Let T be given by

t = ET for 0 <_ t <_ e • (3.56)

Then, expanding A., (a), t) around t = 0, and 0) = U)-, we get

A ( u , t ) = A t o . O ) + E A ( u , 0 ) T + - A f a . O T 2 + . . . (3.57)

' - (3'58)

(3.59)

Similarly, Bj.iO^t) and d (uj, t) are expanded in Taylor's series around

t = 0 and 0) = U. .

Then, substituting these expansions in Eq. (3.4), and using the

relations
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UJL 1 UJL

df - Id? (3'60)

and

(3.61)
T"

the coefficients of e and e° generate the following equations: ^

dT2

[A(V y)](o)n,0) 0), + 8(0),.,0) -T— y(oin,0) + y(oin,0) = 0. (3.63)
_ * ~~U 2r~J- ~HJ uT —^1 ^^JdT

Hence, for T <_ 1, we have

y(0)..,T) = aT + b (3.64)

and

) X A"1](U.O) [8(0,0)3 + b]T (3.65)

where a,b are constants and

0̂ (0) = 0 .

Thus at the inner boundary layer , U) is given by

a) = u-j + eta, (3.66)

where au is the solution of Eq. (3.64). The constants a and b will

be obtained by matching this solution with the asymptotic solution at

T = 1 .

5. The Outer Boundary Layer Solution

A necessary condition to be satisfied by all boundary layer solutions

is that these solutions must coincide with the large time solutions as T

becomes infinite. It is seen that the basic large time solution for (̂<£,t

is given by

t) = 0 . (3.20)
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The corresponding inner boundary layer solution is given by

£(0̂ ,1) - aT + b . (3.64)

As these two solutions are incompatible as T •* °°, we look for an outer

boundary layer solution with a different time scale.

Let T be given by

t = V'ET f or 0 <^ t <_ Se • (3.67)

With this scale, we have

. (3.69)
dt2 e dT2

The functions A(u),t), B(u,t), ̂ (u,t) and (̂u>,t) we expanded as before

around (0 •> ujg and t » 0. These expansions and the relations (3.68) and

(3.69) are then substituted into Eq. (3.4). Then, collecting the terms con-

taining e° and /e, and equating that to zero, we get

Alj(V0)y'j(!VT) + "^ Bij(JV0)yj(<VT> + vi%'T) ° °- (3-70>

Equating the coefficients of e to zero, we get

[A(V y.)]̂, 0)0̂  + 2̂ (7̂ ]̂  + V[Ai+ v.]̂ , 0)0̂  = d̂ .O) (3.71)

Thus it is seen that with this time scale, the quantities y.(u_,T) and

u, (ô -.T) satisfy the equations for damped oscillations. Setting T = <»

in these solutions leads to the long term solutions. Equations (3.70) and

(3.71) are solved by using 0)(0) Instead of u. in the coefficients of

vj> y.j> ̂ i> H! and ^ •

6. Special Cases

We now consider some special cases of Eq. (3.1).
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a) Case 1: M2 = 0

If for a given set of parameters, the nominal value of MZ ts either

zero or very small compared to ft., then from Eq. (3.3), we have

Mxi = M3 (3.72)

or

i = K̂ K3 • (3.73)

Differentiating Eq. (3.72) and neglecting B^, we get

q = M . (3.74)

Integrating Eq. (3.73) by parts, and neglecting ̂ ~(M. ), we have

1 t
q = M'1 / M,dt . (3.75)

± o j

Substituting q, q, and q from Eqs. (3.74), (3.73) and (3.75) into

Eq. (3.2), we get

t

A,M. M- + A-!!. M_ + A_M. J M.dt "» A. • (3.76)

We now consider the three possible variations of M. when M. is zero.

i) Case 1-1: KL • tt, = 0. In this case the only solution for

(3.1) from Eq. (3.3) is

M3 = 0 . (3.77)

Again,

implies

Pl = P2 • P3 = P4 = ° '

This means that the angular velocities are given by the rigid body motion

of the satellite, and are not influenced by the flexibilities of the

elements.
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11) Case 1-2: MZ - 0 and P2A~ < PjA . In this case

(I + PjA~ )~1(I + PoAo1) * J» where I is the identity matrix. Therefore

M"1 - A"1!! - (I + P1Â
1)~1(I + P2

A21>J~1

" A'1 [I + (I + P1A~
1)~1(I + P̂ "1)

*L̂  Si 3Aj [I - P̂  + P2A~
X] • (3.78)

Then Eq. (3.76) reduces to

A A fT — P A AB A lM + fT — P A AP A 1Mi**o I i ^« A. T rn"n J«Q ' L *• * t "i * 9O ^ Q

+ AgA"1 !̂ - P̂ '1 + P̂ "1] / Mjdt = -| A^ . (3.79)

Now, usually [A.,,] is small. Therefore, Eq. (3.76) becomes

where

N, = / M.dt . (3.81)
J o J

Then using Eq. (3.78), Eq. (3.80) becomes

~\. (3.82)

Then

lii) Case 1-3; M, = 0 and P̂ I1 > PjA"1 . In this case,

(I + P1Â
1)"1(I + PjA'1) > I .

-A'1 (I + P2A2
1)~1(I + P̂ HI - (I + P2A~

1)~1(I +
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M'1 S -A'1 [21 - SPjA"1 + ̂î l • (3-83>

Then Eq. (3.76) reduces to

A1A~
1(2I - SP̂ "1 + SP̂ "1)*̂  + (21 - SPjA"1 + SP̂ 1)̂

1 1 1 s

+ ̂ f) / Mdt = -A . (3.84)

If [A2] is small, then Eq. (3.80) becomes

(3.85)

b) Case 2: MZ # 0 and P3A~ < P̂ A."

If M. j* 0, then the general equation (3.1) is to be considered. A

simplified form of M, is derived now. We have

(I + P̂ 1) < (I + PjÂ 1).

Therefore

or

M~ &. 3A~ [I - PjA~ + P3A~ ] (3.86)

i) Case 2-1: MZ / 0, P^
1 < P̂ 1, Vi^ - 0. From Eq. (3.3), we

have

M
2<!

 = M3 (3.87)

or

q = "o^ ' (3.87a)

Differentiating Eq. (3.15) and neglecting M2, we get

M,q = fi- (3.88)
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and

M2q = M3 • (3.89)

Substituting q, q, q from Eqs. (3.87), (3.88) and (3.89) in Eq. (3.2), we

get

~ AM"1 + AM~Hl = A . (3.90)

Then from Eqs. (3.86) and (3.90), for small AZ> we get

M3

11) Case 2-2; MZ * 0; P^" < PjA"; 1 <

The Eq. (3.86) is substituted In Eq. (3.1) to obtain

(3.92)

This is the required equation for M, in this case.

Ill) Case 2-3; MZ # 0; P^
1 < PjA"1; ffa1 > P]*̂ 1. Here the

form of the reduced equation does not change and Eq. (3.92) remains valid.

c) Case 3: MZ t 0; P̂ "1 > P̂ 1.

In this case,

(I + P3A"1) > (I + P̂ 1) •

Therefore

M"1 = A'1!! - (I + P1A~
1)"1(I + P̂ 1)]"1

= -A^d + P3A3
1)~1(I + P^1)!! + (I + P3A~1)"1(I + PjA'1)

+ (I + P3A3)~2(I + PjA^V + ...]
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-A"1[21 + SP̂ 1 - SPjA"1] , (3.93)

Substituting Eq. (3.93) in Eq. (3.90), the equation for Mj is obtained as

M3 - M2Â
1(2I + SP̂ 1 - 3P3A~

1)M3 =

(3.94)

ii) Case 3-2: MZ ft 0; f^' > P^; P^" < PjA^. The Eq.

(3.93) is substituted in Eq. (3.1) to obtain

[2(P3A~
1 - P1A~

1)A1A~
1]M3 ~ ~

= (P̂ 1 - P3A3
1)A4 . (3.95)

This is the required equation for M, in this case.

iii) Case 3-3: MZ t 0; P̂ "
1 > P̂ 1; P^1 > P̂ 1. In this

case, too, the equation for M. remains the same as Eq. (3.95).

d) Solutions for the special cases

The long-time solution and the boundary layer solutions have been ob-

tained for Eq. (3. A ) which is the general equation for the system. By

redefining the variables jr, A , B and d^, the equations for all the

special cases derived earlier can be brought in the form of Eq. (3.29).

After that the analysis for the special cases is identical to that of the

general case. It is interesting to observe that the basic solutions for

oiQ(t) are not affected by those simplifications except in the cases 1-2

and 1-3.
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7. Stability Criteria of M3

In our present notations, the Eqs. (2.122) and (2.124) are given by

f fP A — P A lA M lM 4- f fP A*" — P A" J A W 1M 4- ML V* i*1-! * Q**o *i O J"o I V O^o o o /"o"*» J"o o4- J. J j J. ^ j £• £ J J £. £ J J

• (P '̂1 - P3A~1)A4 . (3.1)

It is to be noted here that the motion is stable when the angular velocities

0) and Ug are stable. Now M, is a complex differential form Involving

0). and aî . So for the motion to be stable, a necessary but not sufficient
~ A " a

condition is that M, should be bounded.

Examining Eq. (3.1), it is evident that as P., P., A , A. and A,

are bounded, M3 will be bounded if and only if the coefficients of M3 and

M, are positive semidefinite. It is also seen that A. is positive definite

as it is the generalized mass matrix. So this makes the coefficient of M.,

positive-semidefinite. Then the remaining required condition is that

-1 -1 -1[(P2A2 - PjA3 )A2M2 ] must be positive-semidefinite.

Now, M2 is positive if P̂ "1 > P̂ "1 and M2 is negative if

P.Aĵ  < ?3
A
3 • Considering our previous analysis, we see that if P2 and

A2 are basically negative while A., A,, P and P, are positive, the

coefficient of Mj will be positive-definite if the following inequalities

hold:

P̂ " < P3A~ < P̂ " (3.96)

P̂ '1 > P̂ '1 > P̂ '1 . (3.97)

If

MX = o,

then from Eq. (3.18) we see that stability Is ensured if A2 is positive-

semidef inite.
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Again, if

M2 = 0,

then from Eq. (3.4), the stability is also ensured if A» is positive-

semidefinite.

If all the quantities P., P., P,, A.., A. and A. are positive, then

the stability criterion for M, is given by the following inequalities:

P̂ '1 > PjÂ 1 > P2A~
X (3.98)

and

P A" < p A > p A a QQ^^"1 ** JT«A_ ' TnAn . \j,yyj

8. Conclusions

In this report, we have analyzed several characteristics of the system

and obtained solutions for the vector ^ defined by Eq. (3.30). The func-

tion jr is an implicit function of the angular velocities UK or UL . In

the next part of our work we will discuss a few other features of the system

before discussing the solutions for UK or u)_.
—•& —13
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