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Investigation of Meteorological Data Processing Techniques

Since much of our work depends upon the efforts of graduate
students, there is always a reduction of level of effort
over the end-of-semester, holiday season. The work will
pick up during January.

The earth-edge determination algorithm results have been
compared with navigation derived from landmarks. It was
found that apparent E-W landmark "motion," i.e., navigation
inaccuracy, corresponded closely to the apparent motion of
the earth edge at the landmark latitude within one to two
ATS data samples--(1.35 RMS) which is less than one IFOV.
These results are very encouraging and indicate that our
algorithm may be successful in correcting line start jitter.
We are developing an implementation scheme which may remove
this persistent error source.

Sun Glitter

This work was suspended during December because of final
examination conflict.

Cloud Growth Rate

Some progress has been made in the ATS III data analysis
since the last report. However, estimation of cirrus shield
thickness directly from the cloud brightness data seems
difficult because such a relationship not only depends on
sun-satellite-cloud geometry, but also on cloud particle

composition (water droplets or ice crystals) and their spatial
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Cloud Growth Rate (Continued)

distribution. An attempt is being made to develop a model which
will relate these parameters for a homogeneous plane cloud composed
of either water droplets or ice crystals for a given size
distribution. This model may help explain some of the unresolved
satellite observed severe storm characteristics. A graduate student
is working on this problem.

Comparative Studies in Satellite Stability

Part V of the results of this study is attached. With completion
of this portion of the analysis, work will now proceed rapidly in
coding the satellite stability model for the 1108 Computer.
Approximately two months will be required to complete the computer
model. Mr. Das has developed an approach which will permit the
model to be run on the 1108 without compromise to the model's
generality yet without excessive computer time being required.

Enclosure: PART V. Random Analysis of the Prediction Problem
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PART V

RANDOM ANALYSIS OF THE PREDICTION PROBLEM
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Nomenclature

A (0

9, (), 8,(t)
90> 435> dijk
A1k

by (8), ¥, (0)

Yp; (0

Ppy (B

Py (0

Pyy (6

Expectation matrix for gq [Eq. (5.5)]
Angular velocity sensor data

Mean value of z

Expectation matrix for zq [Eq. (5.9)]

Mean values of u,s Yp and w

Expectation matrices for [Eqs. (5.12) and

UpsYp
(5.13)]

Transformed error variables [Eqs. (5.14) throuéh
(5.17)]

Expectation matrix for wB(O) [Eq; (5.18)]
Lagrangian vector multipliers [Eq. (5.24)]

Fundamental matrices of Eq. (5.58)
Components of g [Eq. (5.89)]
Components of Ai [Eqs. (5.87), (5.88), (5.112)]

Fundamental matrices of Eq. (5.90)
Angular error for the body B [Eq. (5.127)]

Expectation matrix for _yBi]Eq. (5.129)1]
Angular error for the body A [Eq. (5.131)]

Expectation matrix for yAi [Eq. (5.132)]
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1. Introduction

A purely deterministic analysis has been made in the previous parts
of this work. Now the effects of random forcing and control torques and
measurement errors will be considered.

It has been derived in Eq. (4.46) that the angular velocity w_ is

_.B

given by an equation of the form

- *
Q_B-l'A_t_p_B = f (w,wB, Uys __B,g, t) (5.1)
) *
where Up, Uy are functions of external and control torques and 8 is

the initial value of the rotation of the body A relative to B. Equation

(5.1) gives Wy in the form
*

f (w 0), w “B(O), uA’ __Ba 6, t) (5.2)

JF

Since, in eq. (5.2), the values of u,> u, are not exactly known, these
are to be considered as random variables with certain means and variances.
The initial values, éB(O) and QB(O) are also random quantities because

a) these are measured by instruments with inherent error, and

‘ b) the generalized position coordinates of the measuring instruments

are also random variables. Thus, from Eq. (5.2), it is seen that EB is
a random variable.

The position coordinates 95 of the structural elements of the
satellite are random variables because these are associated with w_ by

Eqs. (1.116) and (1.117) in the form

_Ei + B _(:1_ = f (3_9 _(1, _‘{{A, t) (5.3)

Integrating Eq. (5.3), we obtain q in the form

a = £,13(0), g(0), uy, u,, t] (5.4)
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From Eq. (5.4), it is seen that indeterminacy in the functions q(t)
is also introduced through the quantities éﬂO) and q(0) which cannot
be measured. |

These considerations show that the predicted angular positions of
the Earth Viewing Modules on the satellite will also be random quantities.
In this part of our analysis the method of obtaining the most likely
estimates of these angular positions and the associated probability dis—‘
tribution functions is explained. The necessary theory will be briefly
presented here. References [1] and [2] may be consulted for more detailed

treatment.

2. Maximal Probabilistic Formulation

It has been mentioned above that it is nof possible to obtain the
probability distributions of the initial values ﬂB(o) and éB(O). To
begin the analysis, these distributions will be assumed to be gaussian
with zero mean and known variances. So the function P is considered

0

to be known, where
P, = E([q(0)'[g(0)]}. | .5)

Here E denotes statistical expectation. Estimates of P0 will be
refined by an iteration process after obtaining Eq. (5.4).

Let El(t) be the data transmitted by sensors on the satellite for
calculating the initial angular velocities of the satellite. Let <21(t)
and 32[3(0)] be the errors associated with Ei(t) due to the inherent
errors of the sensor data transmission and the motion of sensors

respectively. Then

2(8) =z (t) + v (0) +v,[q(0)] (5.6)
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where l;i(t) is the correct data that would have been obtained with a

perfect sensor mounted on an absolutely rigid satellite. It is assumed

that -Xi(t) is gaussian with zero mean and known variance. As Yy is
of the form
. ) . "
Vz’i - Cij qj ), (5-7)

S0 .XZLS(O)] is also gaussian with zero mean and known variance. Let

the E%(O), the mean values of HB(O)’ be given by the relation

2 () = hyle(0), 1. (5.8)

Let us also assume that the error signals (X_l + XQ) at different times
are not correlated. So the expectation of Qzl + VZ) are obtained in

the form

E{lz) (£) ~ 2;(0)] [2;(0) - 2 (D]} = R (1)6(e-1) (5.9)

The distribution of Xl is known. With the assumed distribution of

q(0), the distribution of v

9 is given by Eq. (5.7). Hence, Rl(t)

is calculated from Eq. (5.9).
Let Eg(t) and Eé(t) be the theoretical torque functions given

by equations of the form

u, () = g, (w,, t) (5.10)

and

_EB(t) = gplug, t). S (5.11)

But due to uncertainties in the external torques and mechanical imper-

fections, there will be some error associated with E% and Eé. These

errors are assumed to be gaussian with zero means and known variances,
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and uncorrelated at different instants of time. So the functions UA

and UB are assumed to be known, when these are given by

]

E([y, () -~ 5, (O)] [1,(0) - 5, (01"} = 0,081  (5.12)

B{lup(£) = wp(0)] [uy(0) - w017} = Up(0)-8¢-1)  (5.13)

Let 0 <t < T be the domain of this analysis. Let tl’ t2’ t3 etc.

be intermediate points of the interval (0,T), such that

< < < . < =
0 tl t2 N tN T

and

t, - t = At for all i.

Let pji’ j =0-3, be defined by

Poi = Y3(0) = ©.(0) (5.14)
t,
1 —

Py = /I, -5, (0]ld | (5.15)
t,
i-1
ty

Pos = [ a0 - 5 (]ae (5.16)
i-1
t,
1 -

pay = [ [z () -z (t)]dt (5.17)
t,
i-1

With these definitions, pji become gaussian with zero means. From Eq.

(5.14), we have

E{[05(0) - B,(0)] [u,(0) - 5 (0)]")

EL L2y (0)1-h [z, )1} by "Mz, (0)1-h7 'z (0177

= R (5.18)
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where R is a known function of Rl(t) introduced in Eq. (5.9).

0

From Egs. (5.15 through (5.17), we also have
t,
| T 6..[ 8
Elpy;0y3] = ij£ U () de = U, (e;)0e. 0, (5.19)
i-1
Elp,.p,1] = U_(t )66, (5.20)
2i72j B i ij :
Elp,.p,0] = R, (t,)0t.5, .. (5.21)
3i"3j 171 ij :
Multiplying together all the individual probability densities of pji
i=1-N, j=0-3, the joint probability density, P, of pji
over the whole interval (0,T) is obtained as
N T T
[_1 -1 -1
Po= Ppexp ]_'2{.2 [Pyg Uy (€9)0y5 +Pyy g (EdPyy
i= :
+on. Rt e, 1 + 0, R %o o (5.22)
3i "1'7i‘T31 0i o "01

where PO is the appropriate normalizing constant.

To obtain the most likely estimates of the variables involved, the
density P has to be maximized. For P to be maximum, the érgument of
the exponential inside the braces has to be minimum. So replacing the
summations by integrals and using Egqs. (5.14) through (5.17), the function

J to'be minimized is obtained as
I = lug(® = 501" Ry uy (0)-uy (0)]
. .
[— T -1 —
+£ I[g_l(t)-g_l(t)] Ry (0) [z (£)-2, (8)]

A NOEWONENOIINOENG}

+ Lug (£)-uy ()1 UB‘1<t>[gB(t>—£B(t>]} dt (5.23)
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To minimize J, Egs. (5.1), (5.8), (5.10) and (5.11) have to be used
as constraints. This means that the functional to be minimized is

J + Jl) ~where Jl is given by

%
J. = 2f {Al[w +Aw fl(w &%, Yy Ups 6, t)]

1
)

+12[g 8pd + 250y gB]} dt + 2. [zl—h (5.24)

13

In Eq. (5.24), Ai’ i = 1-4, are Lagrangian vector multipliers. Now,
applying variational methods, the following set of equations are obtained,

which are to be solved simultaneously:

*

—.@B + A-(I—)-B = f]_(—&-)-B’ EB’ Uy Ypo 6,1t (5.1)
z () = hylep(0), t] (5.8)
u, (€)= g, (0, t) (5.10)
uy(t) = gplen, t) | (5.11)
0,(0) = B.(0) + RyIATA, (0) + A,] (5.25)

3 | T
v, (8) = B (£) +U, ™ ) A (0) (5.26)
T
(t) = u,(t) +U (ﬁ—i i2—1) A, (E) (5.27)
g g B ‘pu, dt -’ &1 .
g 2y
T T
of of of
- L. . 1 4 1
}1(t) = A-—7) 0 + fa;;‘“ qt ] A
dup wg
T T
98 %8g
+ F&E‘) A, t CEQ“) A3 (5.28)
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u, () = u,(t) +U,(c).2,
up(t) = up(t) + Up(e) Ay
2y (1) = oz (6) +R(E) A,
A@ = Ay

The above sets of equations are reduced as follows:

(5.29)

(5.30)

(5.31)

(5.32)

Let El(t) be the values of 'QB(O) as obtained from the sensor

data.- Therefore

hl[gB(O), t] = 9—3(0)

Hence comparing Eqs. (5.9) and (5.18), we get

RO = Rl(O)

(5.33)

(5.34)

So this means that we can disregard the constraint equations (5.8) and

(5.31) and also set
A
From Egqs. (5.26) and (5.29), we get

= (—L

Similarly, from Egs. (5.27) and (5.30), we get

T
=3 QEB dt ad —1
__B

Substituting Eqs. (5.35) and (5.36) in Eq. (5.28), we get

T .
X - (A - 3%29 Y. - [Efl._ d (aﬁi) + (EéiAfﬁég
-1 « 7 =1 QQB dt . du, duw

QQB 393 —A 3B

(5.35)

(5.36)
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T
3
a4 %5 %% _
tag T Ty T 0
B aEB -B

From Egs. (5.10), (5.11), (5.26) and (5.27), Eq. (5.1) becomes

. i o, "
EB + AE‘B-fl{EB’ _“AB, [_S_A"'U( ))‘],
T
of of
L4 4 * _
[5B+UB8u dt'.a-)->‘~:L]’-e—’t}"0
ug

The boundary conditions for 51 are given by

: T
Lm o= At am .

and

-1 7. -1 —
Ry (A7) [gB(O) - wa(0)]

it

2, (0)

(5.37)

(5.38)

(5.32)

(5.39)

Solving 11 from Eqs. (5.37) and the boundary conditions (5.32) and

(5.39), and then substituting that value in Eq. (5.38), E@

solved.

will be
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3. Solutions for Al and g%(t)

To solve for 51, Eq. (5.1) is expressed as

. . . *
EJ.B + AEB - fl(QB, EB’ w, g > t) . (5.40)
where
= 1 1
w o= ) (e
i

The functions w, are given by Eqs. (4.53) and (4.67). Then Eq. (5.37)

reduces to

- of, T, f of, Oof, dw T :
Al—(A-—'.i)Al-[—-l-—d— L, 1 ]x (5.41)

i
o

g% ow,

Since iﬂt) is a "bang-bang" control, we have

= 0 for 0 <t <T.

$%>|I§ﬁ

Now using Eq. (4.46a) as the explicit form of Eq. (5.40), Eq. (5.41) becomes

. 3 of 3T
Ty T3 T vy = (T3 | d =, _ =]
Bidy = Bpdy +B3Ay = e )T € [dt( T I RS

From Eq. (4.46a), the form of Eq. (5.38) is obtained as

* t *
B Wy + Bywy + Bow, - B, {4 BS(T—t)[SBlw

Bl * Byly + By Wy + Spawpl(m)dt)

._B

t * - = - *—
+ [B, fo Bg(T-t) 8y u (T)dT + Beuy + Bouy - S,u, ]

t * of of
+e'{B, | B (T-t) 6. [V, (— - &= — )TA J(Dar
4 ‘975 BB aEB dt ™ —1 '

=B

of 5F 5f

d £ 4 % 4 £ 4
Be ar [Up( ot oo ) A+ B7[UB("; Tdr
B U ) Up

of
= \T
+ — ) Al
&y (= 4G T, a0} = 6"
—A



Equations (5.42) and (5.43) are rewritten as
T" _ Te T _ ' .
Bidy = Body F B3y = €llgy +gy)] (5.44)

and

. t . v
By, + Bowy + Bowy - B4{f° By (T-t) (S50 + S,uw) (Ddt)

t
- * .
= ' -
+uw(t) +BF 0 = e[ jo g3(t, DA (DAT + g, A + g Ay — £]  (5.45)
where
- _ t % : - s*=
u(t) = B, Jo By (T-t) 8pu ()T + BSPB(t) + Boug (¢) - S,u, (t) (5.46)

and gi(g%, Wos U,y EB) are appropriately defined. Equations (5.44) and

(5.45) will now be solved by the perturbation procedure sketched out in the

deterministic case.

We begin the solution with the series

wp o= oxhFe'xl 4 (D) + (e)7xL + .o (5.47)
_ 2 3

L A P R G L WA CO & WA (5.48)

w o= wa €'+ €)%+ (e, + (5.49)

W= gy e W, gt .

and Taylor's expansions of g; and f about the point 26, where Xi ,

i=20,1,2,..., are given by

-~ - T

= I[x}, 2}, 3, 1. (5.50)

1
u u_,
=i’ —Ai’ —Bi

v!
—i
Substituting these series in Eqs. (5.44) and (5.45), and separating the
coefficients of (€')0, (E')l, (E')z, etc., we obtain the following equa-
tions:
T

s _gT T
B1d10 7 Bodyo T Bhyo = O (5.51)

t
7] o v o _ o1 '
BL§O + B2xO + BEXO BA{L BS(T t)(SleC + SBEXO)(T)dT}

- *
+u, +BF0 = 0 | (5.52)



T Ts T R nt N
1*11 By * B3dyy = 81 (Vg t 82Vl (5.33)
t
v _ '
B X) + Ble + Byx] - B, j Bg (T~ t)[sBl 1+ Spaxpl(DdT
— t I
= ' { . ' -
tw, = fo [83(zo,t,T)Alo(T)]dT + g, (v Mg g5 (vy) Ay - £, ) (5.54)
TA BTi + BTA = g (v')i + (v )A + Vg, (v) )V
B2 212 312 1997041 T 82 10’310
] 1
+ 232(20)21510 | (5.55)
t
bl | 1] — -
BjX) + B,x) + Byx} - B, jo B (T t)[Slez + 8 x0 (DT W,

t
[ Tayugsts DAy g (D + Tgg(vh, £, (DT + g, (rp)h

A . Ty 1) R ’
+ g5 wddyy + V8, (pdvidy g + Vas(wodvyAyg = Y £ (Xo) (5.56)

Equations for higher powers of €' can be obtained similarly. The homo-

geneous equations for Egs. (5.51), (5.53) and (5.55) are given by

Ts T '
3151 BoA;; t B3ili = 0 (5.57)

Similarly, the homogeneous equations for g& are

B X! + B,xi + Byx} = 0 (5.58)

The homogeneous system (5.58) is identical to that of Eq. (4.46a). So,
as was done before, ¢l(t) and ¢2(t) are taken to be the fundamental
matrices of Eq. (5.58). It is also seen that Eq. (5.52) is identical to
Eq. (4.50). But 56 differs from x,, as obtained i; Eq. (4.54) due to
the initiai conditions.

Now, comparing Eqs. (5.51) and (5.58), we see that &10(t) is given by

Ao® = 9,(B)a;y + &, (-Bay, | (5.59)



where a, and 2,y are constant vectors. Also, we use Eq. (4.54) to

obtain the solution of Eq. (5.52) as

t *
x (1) = 4 ()b + 9, (Db, - [ ¢, (=B, {F ()8
T . t _
& By (s=T) [Sy,x0(0) + S,.x0(0)]ds}dr - L 9, (E=T)w (T)dT (5.60)
where th and 920 vare constant vectors.

To solve Egs. (5.53) and (5.54), we use the following identities:

él(t) = - [¢2(t)131133 (5.61)

by (t) = B'BI9, (1818, - BTB.0, (1) (5.62)
Then from Eqs. (5.59), (5.61) and (5.62), Eq. (5.53) is expressed as

T Ts

- = ! - -
BiAjy ~ BAyp B33--11 8, (g)®; (-t)a; ) - &; (v )Bl B3¢y (- t)B3 1220
, -1 -1 \
8 (0g) 0, (FEIBy By + 188 By + 8yl (vg)p(mt)ay, (5.63)

The formal solution of Eq. (5.63) is given by

t
A (®) = 9 (tay; + 9,0, + [ ¢ (=) g, (vy)9; (-Day

- ' -1 _ -1 ' _ -1
81 (Wp)By By (FIB3TBia,, + gy (V) 9, (-TIBy "Baay g

1

+ [g,B; B, + g,1 ()¢, (-Da,,Hdt (5.64)

The integral in Eq. (5.64) will produce secular terms. To eliminate those,
we apply the condition
T
-1 -1 _ -1
J 020e=1) {80 (-0)agy = 8,81 Bydy (CEIBSTBya,sg + g6, (-6)B  Byay

l

o+ (g8 By + 8,10, (-O)aypka = 0 (5.65)
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where T1 is such that

T o
Det[& ¢, (=T ;) ¢; (-t)dt] = 0 (5.66)

Equation (5.65) is of the form

220 = Koygs Byp)2yg (5.67)
So from Eq. (5.59) the true solution for Aio is given by
Aot = [9,(-t) + 9, (-t)kyla; (5.68)
From Eq. (5.60), we obtain
! =
x50 = ¢ (Ob, | (5.69)
" — It
x,(0) = ¢,(0)b,, | . (5.70)

and thus

*

x! = 6)

t
Zg = (0 95 Bygs Bygs

Now the formal solution of Eq. (5.54) is given by

t T
2 (8) = 0, (Dby; + 0y (0)by) + [ 6y (=D {] g3(by .y, T8N o (ay4,8)ds

T
B, L Bs(s-T)[S x'(0) + S

B1%1 g1 (0)1ds + g, (b

21072 20’T)A10( 100

To eliminate the secular terms from Eq. (5.71), we impose the condition

!

t
Jy 821 (] [e3(by 5205t DA (810, D1AT + g, (by 0y A (@) )
* 850,090,020 @105 ~ £(bygoby0,t) = wy (bygibyg, ) IdE = 0
(5.72)

where Tl is given by Eq. (5.66). Equation (5.72) is of the form

b = Kl(a

20 0@30sB10) (5.73)
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Substituting the value of b

20 from Eq. (5.73) into Eq. (5.60), the solu-

tion of gb(t) is obtained as

x(®) = x6(), 6)(t), a0, byoh8 s t] (5.74)

Proceeding in this way with Eqs. (5.55) and (5.56), we obtain

k

2y, = k(b

117311 (5.75)

b

b, ) (5.76)

kjaygs 2375 Bygs Byg

In solving Eqs. (5.55) and (5.56), we assume zero initial conditions for
* ' o' . .
A12’ &12, %, and Xy » SO that no new variables are introduced.
This iteration procedure is stopped after obtaining three term approxi-
) w. Py
mations for Ai and Y The constants 210 agd a;, are obtalnedbfrom
the following boundary conditions given by Egs. (5.39) and (5.6) :

Ao = RSEEH B Iy, () + v,(q(0),0)] (5.77)

A0 = 0 = a; |  (5.78)

The time interval (0,T) for the optimal estimates to be valid is obtained

from Eq. (5.32) as

oM = By HTA | (5.79)
We also set
221 =0 (5.80)
so as to obtain Eil as a function of the known constants 20 and 910

from Eq. (5.76).
Combining the results of the preceding analysis, we obtain the most likely
estimates of

w_ = w(al

Yp Ugs Pps t) (5.81)

0’ 2100 Rg» Rys Ups Ups
Setting
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we immediately obtain the solution of Eq. (4.46) giving the mean value

w of W as

—B —B |
W = _QB(O’ .1110’ 0, 0, 0, 0, 0, t) (5.82)
Let Q be defined as
- _ = =T
Q(t) = E{[wy - wpllwy = w1} (5.83)

The function Q will be calculated from the known expressions (5.81) and

(5.82).

4., Deterministic and Random Solutions for q

a) Particular solutions
We now consider Eqs. (2.112) and (2.113) which are repeated here without

the subscripts A and B, as

A+ AZ(_Ug,t)_cl +A,(0,000 = A (0,0 (5.84)
Particular solutions for g are given in Eq. (2.116b) which is

g, = le(go_,t)ms(g,t) (5.85)
where MA and gs are defined in Eq. (2.116). Using the deterministic
and random solutions of W given in Egs. (5.82) and (5.83), the correspond-

ing deterministic and random solutions for Sp are obtained from Eq. (5.85).

b) Homogeneous solutions
The homogeneous solutions for g are the solutions of
A+ Ay(u,0)g + Ag(w,t)g = O . (5.86)

This linear equation with time-dependent coefficients could be solved
analytically if A2 and A3 were periodic. But, in general, the roots of
the characteristic equation of Eq. (5.58) will be of the form (Oj i.iog),
j =1,2,3. This makes g%, and hence A2
Eq. (5.86) is solvgd as follows:

and A3, nonperiodic. So,



The coefficient A2 is expressed as

Ay(W,t) = Ay Ay Ay F Ay g A ANy F A,
FByyy +Ays F Ayt oens ~(5.87)
where
o.t o.t o,t
R S o 2, I
Apg1 T & Apyys Bppp T e Bypoi Aagg Ar133
cht 202t 203t
- v, - v - v,
Ajgy T € T Byggs Mg e Ayas Ajgpg = e Ayggs
. ) e(ol+02)tA' o, ) e(02+03)tA' . ) e(03+01)tA‘ .
224 2245 Bo25 2255 2926 2265
etc.
Similarly, A3(9,t) is expressed as
Az(u,t) = Agy t+ Ay, Ay, FApL . (5.88)

where A,.,. are defined analogously. Ai,, are periodic functions of 0o ,
3ij ij i

i=1,2,3. A20 and A30 are constants. Let g be expressed as the sum

9 = 99t 4y T T3y Yo T3ty T Ay T

(5.89)

Olt Uzt o.t
' . = v, = v .
9315 327 € 9523 4337 ¢ Y333
201t 20t 20t

- LI - 2 r . _ 3 r .
Q1 €  dp33 d9p T € 3 37 ¢ dp33

= €

(O'1+02)t ' (02+03)t | (o3+ol)t '

= . = v, = .
= e 9943 dp5 T ¢ 9355 3¢ T € 4763

424

etc.

The expressions for AZ’ A3 and q given by Egs. (5.87), (5.88) and (5.89)

are now substituted into Eq. (5.86). From the resulting equation, the coef-



.

gt o,t
. 1
ficients of e , € , etc. are separated and set equal to zero. This

procedure gives the following equations:

Algb + Azoéé + A9y = O (5.90)
Ay + Ayodiy * A9y = T Agady T Agndy (5.91)
Ay * 5éo§12 A3, T = Agp80 ~ Agpadg (5.92)
Al A0 A0y T - Agpdy T Aypdy (5.93)
Mgy + Ay0dg) A3l T 7 Agprdy T Ag;dy T Agpadyn T Asppdyn (5499
Alﬁgz + Aol *Aggdyy T < Aggpdy T Azpply T Agpadyy T Agpady,  (5-99)
Adyy * Aggdps + Aggdys = T Apgadg < Agpgdy ~ Aypadig < Agpgdyy (5096
Ay * Ayodas * Asodas = = Agoad = A0 T Aradyz ~ Aspidis

= Aypdyy " Agpodyy (5.97)
Aydys + Aygdas * Ayglys = = Aypsdy = Agpsdy = Appolyg < Ay

= Ay13855 = A58y, (5.98)
Ardye *+ Apodag * A3pSps = = Apoedo T A36dp  A211813 T Asnidis

= Ajpadys - Aypadyy (5.99)

o,

Equations corresponding to the cubic and higher order terms in e * are
neglected. It is seen that 99 is the basic solution which governs all the
other terms. Let wl and ¥, be the fundamental matrices of Eq. (5.90).

Then 49 is given by



9 = Y S0t ¥y Sy (5.100)
where 210 and 320 are constants to be obtained from initial conditions
and the bifurcation equations. The initial conditions of ¢q are lumped on

, so that all the ., 1in Eq. (5.89) have zero initial conditions. Now
4 , 43

we define

Bo1 T Ajp T Aanp t A3 (5.101)
and
A31 T Ajpp tA3pp tAyy (5.102)
so that A21 and A31 are the components of A2 and A3 which are linear
in Yy and é%. Then, adding together Egs. (5.91), (5.92) and (5.93), we
get
- t .
G 7 43 taptayy Tt (DA 8, + Ay 9] (Ddr (5.103)
Hence
tl .
@) = - fowz(t-ﬂ (4,19, + 37941 (D)dT (5.104)
Now, adding together Eqs. (5.91) through (5.99), we get
t .
a-99 = - Lve0l@r a0, + (Aag0g,
T. L]
= Ay [ V() lay,9, + Agy90](s)ds
T L]
= Agy J 0y (1-8)[Ay 90 + Ay g ] (s)dsH(D)dT (5.105)

The above equation gives an explicit solution for ¢ as the functions
Az(g,t) and A3Q£,t) are known from the preceding analysis. It is also
evident that the integrals in Eq. (5.105) generate secular terms which must
be eliminated by imposing a relation between the constants %10 and <20

introduced in Eq. (5.100). To do this, we proceed as follows:



I

Differentiating Eq. (5.100), we get
40 = Y(t)e, o + by(tde,, (5.106)
Substituting the values of 4y and éO from Eqs. (5.100) and (5.106) into

the integrals in Eq. (5.105), we get

t
4= g99- 1 b (=D L8y Ay + (Ag=A 0¥ 1(DdTle, o
. t .
= U 0 (D [a,8,000, + (A=A )0, 1 (DdTle,

t T. ‘ L[]
+ {J'o U, (=T [Ay; jo Uy (T-8) (A Uy + Ay %)) (s)ds

T
A3l'& by (t-8) (A, 9 + ABlwl)(s)ds](T)drlgio

t To °
+ {jo Uy (=D [A,; J’o Uy (1-8) (Ay gy + Ag1¥,) (s)ds

Ayy [0y (1=8) (Ayp 0, + Ay ¥,) ()ds](T)dTle,, (5.107)

Let wz(—t) and wl(t) be orthogonal in an interval [O,Tz] such that
T2 '
Det[ [ 4,(T, - ©)¥,(D)de] = 0 (5.108)

Then the condition for the secular terms to be absent is given by

T
2 t. *
U] 0y (T Layma,000) + (Agmagd¥) - Ay Jy 0o (t=) (Agy by + Agpdy) (D)dT

t
Agy J ¥y (e0 (g by + agpuy) (Datlatle, o
v Tz . t. . .
+ { & Wz(Tz—t)[(Az“Azo)wz + (A3 30)w2 21 4 wz(t—T)(A21¢2 + A3lw2)(T)dT

t
- Ay [ (D) (Mg b, + Ay ) (DdTldt)e, ) = 0 (5.109)
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Equation (5.109) can be expressed as

LS * Loy = O (5.110)

Hence, from Egqs. (5.100) and (5.110), we obtaiﬁ
99 = [¥; - sz;1L11510 (5.111)
From the above analysis, we see that g(t) coincides with go(t) for
t =0, TZ’ 2T2, etc.
The complete solution is obtained by adding the particular solution and
the homogeneous solutions given by Egqs. (5.85) and (5.107). But it may be
computationally unfeasible to calculate the inverse of the functional matrix

Ma(g,t). So we now present an alternative method of obtaining the complete

solution for gq(t).

c) Alternative method for the complete solution

In this method, Eq. (5.84) is considered. The vector §4 is expressed

as
A, (08) = At AL F ALy A A T AL, A,
A0 T A5 T Ay | (5.112)
where
Glt Gzt G3t
- v - v o v,
Apgr T A1 Buio T e Au0s By Te Aggs
2011: 202t 203t
= ! . e ! . = M .
Buop T 0 Bupps Byopp T @ Auons Ag = e T A4S
. ) e(cl+02)tA' . A ) e(02+03)tA' . N ) e(03+01)tA'
Ao 4243 L4925 Auass By A426°

In the above é&., are periodic functions.
1]
Using Eqs. (5.87), (5.88), (5.89) and (5.112) the equations generated

by the coefficients of the exponential functions from Eq. (5.84) are
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Aj9g T Aygdg FAg00 = Ay (5.113)
Apdyy *Az0015 T A30%5 = A415 T A215% T A315% (5.114)
where j = 1,2,3.

for k = 1,2,3. (5.115)

Equations corresponding to Eq. (5.97), (5.98) and (5.99) are similarly ob-

taiﬂed. From Eq. (5.113),

9y = Y (Beyy + ¥, (B)e, ) + I U, (t=1)A, T (5.116)
Defining
Aar = Bpan Y A4 T M43 (5.117)
we get )
t . :
.g.l = fQ wz(t"T) [A4l - AZlqO = A3lq0] (T)drt . (5.118)

which corresponds to Eq. (5.103).

Proceeding as shown before, we get

t
q = So+f° Uy (=D {(a,-4, ) - (A,- 20)30 (3743404,

T
Ay J Vp(9) 14,19, + Az g1 (s)ds

T
Ay J ¥y (T=8)[4,,9) + Aj g 1(s)ds}(D)dT (5.119)

The bifurcation equation corresponding to Eq. (5.109) is then given by

nglo + LZEZO = LB - (5.120)
where

T,

Ly = [ w(T,-D0@,4,0) = (4,-8,0) }'wz(r -8)A, ods

T

S
- (Ay=Ay)) jwz(r 8)A,(ds + A, jowz(r-s)[An(s)jo U, (s=p)A, odp +



s T s,
+ By () J U, (sp)A,dplds + Ay [ b, (T-8) [4,, (s) [ U, (s~p)A, dp

s
+ A3l(s)f° ¥, (s-p)A, (dplds} (T)dT - (5.121)
Hénce, from Eqs. (5.116) and (5.120), we get
-1 -1 ¢
qp(t) = [¥) - ¥ L Lile, ) + WL Ly + J’o U, (t=T)A, (AT (5.122)
Considering zero initial conditions, Eq. (5.122) becomes

t
B -1
9y (@g,t) = B, (L) Ly (wy) + fowz(t—‘r)é{}od'f (5.123?

Expressing W_  as given by Eq. (5.81) in Eqs. (5.123) and (5.119), we obtain

B

the most likely estimates of
ﬂ(t) = ﬂ(_élO’ P_los RO’ Rl’ UA’ UB’ B’O’ t) (5.124)

Using the exﬁression (5.82) in Eqs. (5.123) and (5.119), we obtain the mean
values of gq(t), given by

0, 0, 0, 0, 0, t) (5.125)

i

a(t) = g(0, by,

Equations (5.124) and (5.125) will now be used to obtain more accurate esti-

mates of Py given by Eq. (5.5).

5. Pointing Error Analysis

a) Error for the body B

Let it be assumed now that the nominal angular velocities of the body

.o .th
B are zero. Let VY be the absolute angular position vector of the i

Bi

Earth Viewing Module of the body B. Let _KBi(t) be the intrinsic error of
the ith EVM. Let Xﬁi(t) be the pointing error of the ith EVM with respect

to the body B due to the flexibilities. The error X4i(t) can be

expressed as
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v, () = ¢ g0 . | (5.126)

*%

where c, are constant matrices for all i. Then, the most likely pointing
error for the ith EVM in the body B is given by
t
by = )y 800 Bygs Ros Rys Uy, Ups Bo, ©)dE
o b R u,, U 5.127
*ey a(80s Bygr Ros Rys Uy Ups Pos £) + vy, (5.127)
The mean error is then given by
t k%
Y. = [ wdt +c, q(t) (5.128)
Vg 4 0 —B id S
where it is assumed that Vi has zero mean. Let PBi be defined by
- - T
Py = EllUg; (©) = Ty (0100, () - T (01} (5.129)

Then PBi(t) will be calculated from Eqs. (5.127) and (5.128) when the sta-

tistical properties of vy; are given. Thus Eqs. (5.127), (5.128) and

(5.129) completely specify the error wBi

b) Error for the body A

Let be the absolute angular position vector of the ith EVM of

L7%

the body A. Let -XBi(t) and X4i(t) be the intrinsic error and the

flexibility error of the ith EVM of the body A. Then
t %
= [wdt+6(t) +v, (t) +c, q(t) (5.130)
The above equation gives the most likely values of yAi' The mean value
is given by
t *k
P,. = [ wdt+ 8(t) +c, q(t) (5.131)
Yas o —B = id ‘

where it is assumed that X4i(t) has zero mean. Hence the variances PAi

will be calculated from
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e L'~

— ’ T
Py, = ElY,,® O, (€) - ¥, ()]} (5.132)

Ai - yAi

This completes the random pointing error analysis for the asymptotic

equations of motion.
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