THE SCHWERDTFEGER LiBRAR
1225 W. Dayion Stree!
Hadison, WI 53706

VISSR ATMOSPHERIC SOUNDER

Monthly Progress Report No. 6
For the Period 1 Feb. 1974 to 28 Feb. 1974

Contract No. NAS5-21965

For National Aeronautics and Space Administration
Goddard Space Flight Center
Glen Dale Road
Greenbelt, Maryland 20771

by

V. E. Suomi, Principal Investigator
L. A. Sromovsky, Co-Investigator

The University of Wisconsin
Space Science and Engineering Center
1225 West Dayton Street
Madison, Wisconsin 53706



IT.

III.

TABLE OF CONTENTS

Introduction

Comparison of UW and SBRC Calculations of
Improvement Factors

UW Method

SBRC Method

Digital Averaging as a Frequency Filter
Direct Derivation of the Low Pass Filter
Approximation

SN
. o ®

Revised Spin Budget Calculations



I. Introduction

Work during the past month has been directed at reviving and improving
the SMS-VAS simulator program and at improving spin budget calculations.
In the first area revised instrument specs and improved methods for spatial
weighting function calculations are being incorporated. Details of this
effort will be reported on later. In the second area an effort has been
made to resolve the differences between University of Wisconsin and
Santa Barbara Research Center spin budget estimates and to update University

of Wisconsin estimates with revised transmission estimates.

IT. Comparison of UW and SBRC Calculations of Improvement Factors

1. UW Method

The error is the mean of a set of N samples of detector output is
reduced below that of a single sample. However, since detector noise is
not completely uncorrelated the reduction is less than N_i/z. The exact
value of the noise reduction is expressed as the ratio oy/o where oy is
the standard deviation of the means of N samples and o is the standard

deviation of single samples. It is straightforward to show that this

ratio is related to the auto covariance function C(t) through the relation
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t, = the time of the i~ sample,
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(1) =_[P(f) cos(2nfr) T(£) df,

T(f) = power transfer function of the electronic filter, and
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detector noise power spectral density at frequency f.
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Calculation of C(1) using equation (3) is greatly simplified by expanding

the filter function as a series of bandpass filters, i.e.

~
T(£) kgl Wka(f), where
% 15 = o f<fl,k or f>f2,k
£
k 1 fl,kSLSfZ,k

Specific values for W, and f » £ can be found in previous reports.
k 1,k*> "2,k

The detector noise power spectral density is assumed to have the form

' f
P(f) =K (1 +f—°)

where fc is the crossover frequency at which g-r and 1/f noise components

are equal.

Inserting (8) and (6) into 3 yields
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Thus C(t)/0? is independent of the constant K.

2. SBRC Method

The SBRC Method is an approximation which assumes that the effects of
digitally averaging sequential samples can be simulated by an appropriate
low pass filter. If o is the linear angular geometrical resolution of the
detector, o the angular spacing between consecutive samples, and o, = Na

M

the angular distance covered by N consecutive samples, the equivalent low

pass filter cutoff is assumed to be

£, =2 ¢
M Na 3DB Oy 3DB’

where f3DB is the upper half power point of T(f).
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Given fM the ratio of variances is calculated to be

=GRy 5

where M refers to the mean of successive samples,

£
- f - M
(Af)y = £~f, + £_ In P (13)
fapB
(Af ) = fyppfp + £, In £ ° (14)

and where fL is the effective low frequency cutoff of the DC restore

filter.

Two problems with this approach are: (1) a digital average is poorly

represented by a low pass filter,.and (2) equation (11) is not a good

estimate of fM.

3. Digital Averaging as a Frequency Filter

Let the noise signal at frequency f and time t be represented by

e(f,t,¢) = A(f) cos (2mWft +¢) : _ (15)
where the phase ¢ is a random number uniformly distributed over the
interval o £ ¢ < 2w. The time average of this error signal over the

interval T is

. T '
BOE ) = %f e(f,t,6) dt = 31(2 lesulZate + §Y—sdn 3] (16)
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for each phase ¢. The average noise power is obtained by averaging

e(f,9)2 over ¢, i.e.

™

nft

Zrey2 - Lo 2. _ AZ(£) N
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Expanding cos 2mft yields the expreszsion ’
lg(f)z - ~A (£) [SlnﬂfT]' (18)



Since P(f) = %Az(f) we can rewrite (18) as

=62 = p(5) [sm“ﬁ] :

- 9 '
where e(f) is the noise power spectral density of signals averaged
over the time interval t. For T = o, E{f)z = P(f). The total noise

power in a mean over the time T is given by

o2 =f T(5)a(f)” af = fT(f)P(f) [S:T‘flfft] df
. (0]

In order to reduce (20) to the form of equation (12) we must approximate

2 2
to sin” x/x~ factor by an equivalent ideal low pass filter. If we choose
the cutoff frequency of this filter fM to yield the same information band-

width as sin2 x/xz, then fM is given by
51nnfr 1
f Mg 1 4 =5

Figure 1 displays an example of (sin rft/nf1)2 for T = 4 x 10-.4
which corresponds to a scan length of 150 Km at the VAS subsatellite
point. Also indicated are equivalent low pass filters calculated by

equation (11) (SBRC) and equation (21) (UW). Note that SBRC and UW

values for fM differ substantially. For the given example we find

_ .384 mr _
£\ spre ~4.190 mr * f3pp = 238 Kiz

(fM) oW = e 1.25 KHz

8 x 10 'sec
where f3DB = 26 KHZ is the upper 3DB frequency of the VAS electronics

filter. Inserting these values of fM into equation (13) yield the

results
(AfN)M SpRc = 7-69 Kz
(Af )M W 6.08 KHz
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where we have assumed the values

fL = 2 Hz, fc = 750 Hz.

Since equation (14) yields

(AfN)s = 33.1 KHz,

we find that, for a linear 150 Km average,

0-2
M
QFTOSBRC = 0.232
2
o
M -
(EE_DUW = 0.184%

. and for a 150 Km x 150 Km average both results are reduced by a factor

of 11 (the number of scan lines which must be averaged) .

in improvement factors of

) = 6.89
M 150 x 150, SBRC
& ' = 7.73

M 150 x 150, UW

This results

where both factors are calculated by means of a low pass filter

approximation to digital averaging.

The next section demonstrates that

this approximation always underestimates the improvement factors.

4. Direct Derivatien ef the Lew Pass Filter Approximation

Recalling the exact expressions

N

2 = -
o 1 jél C (ti tj), and

M

I~ =

1
2 i

=

c(1) =./;g T(£)P(f) cos 2rnft df,
0

we shall approximate the double sum in (32) by the double integral

2 1 ~T AT
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where T is the time corresponding to N sequential samples. Since the

sampling rate is significantly higher than f of T(f), this is a

3DB
good approximation.

Since C(t-t') depends only (t-t') the double integral can be con-

verted to the single integral

2=2 [ cm@a-Da
M : n -3 9n.

T

Inserting (33) into (35) and interchanging the order of integrations

yields

00 L
02 =2 f T(£)P(£) [/ cos2nin (1 - Danlat.
(¢] [¢]

Since the n integration yields

_n _ 1 [1 - cos2mfr]
[c052ﬂfn 1 T)dn I (2nf)2 ’

equation (36) reduces to

(o] . 2
2 o sinmfT
9y [T(f)P(f) [——-——TTfT ] df,

~ which duplicates the result given by equation (20). If we replace T(f)
by its equivalent ideal bandpass filter with cutoff frequencies fl=fc’
f2=f3DB (a reasonably accurate approximation), we can write (38) in the

form

f2
2 _ sinmft,2
oz fP(f) (BT %t
&
2
Since P(f) is a monotonically decreasing function of f and (sin x/x)” is

always positive we conclude that

1 f

2T 2 _
2
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Thus the low pass filter approximation will always yield more variance
for a given average than the exact method, i.e. the exact method always

yields larger improvement factors than the low pass filter approximation.

IIT. Revised Spin Budget Calculations

Relative standard deviations calculated by the exact method are
presented in Table 1 for the averaging areas of interest. (The

improvement factor is the reciprocal of the relative standard deviation

UM/G).'

Table 1: Standard Deviation for Integrating Squares Relative to
Standard Error of a Single Sample

RELATIVE STANDARD

SIZE OF INTEGRATING LINES x SAMPLES £ =D$Z$QEIO§S=10HZ
SQUARE (Km x Km) AVERAGED c c
27.5 x 27.0 2x9 .706 .639
151.2 x 150.0 11 x 50 .119 .066

New transmission values obtained from SBRC, new single sample NEN values and
corresponding values of required spins are presented in Table 2. The spin

requirement is obtained from single sample NEN values, the results of Table 1,

and the required NEN values at stated resolutions.



Table 2.
BAND
(D T
680 .22
692 .27
703 .31
715 = .35
745 .35
760 .35
750 .35
895 .39
1380 .35
1490 .34
2335 <24
2680 .26

Revised Spin Budget Estimates

NEN FOR _
LARGE DETECTOR  AVERAGING NEN @  REQUIRED SPINS
(Ergs/etc.) RESOLUTION  RES. NEN REQUIRED

4.7 150 Km .56 .25 5

2.4 30 Km 1.0 .25 16

2.0 30 Km .84 .25 11

1.4 30 Km .59 .25 6

1.5 30 Km .63 .25 6

£.5 30 Km .63 25 6

1.6 30 Km .67 <35 7

.20 30 Km .08 .25 1

1.8 30 Km .76 .15 26

.53 30 Km .22 .10 5

.05 150 Km .003 .002 2

..006 30 Km .002 .002 1

TOTAL SPINS 92



