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APPENDIX A
POWER SPECTRAL CALCULATIONS USING

THE DISCRETE FOURIER TRANSFORM (DFT)

In this appendix we outline the procedurc for determining the power
spectral density\Vis#heg an approximation technique invoiving the Discrete
Fourier Transform(DFT).

The Fourier Transform of a given function y(x) is given by:

Y(w) =f y(x)e-ijdx (A-1)

- 00

where x 1is spatial distance (or time) and w 1is radian frequency measured

in radiens per spatial distance (or time). The energy content of y(x) can

be measured in either spatial distance or frequeuncy and the equality of these
Cor ¥y nplie

two computations is given by Parseval's theorem (cee,-et®., Lathi, 1968,

Ch. 2):
f[y(x)lzdx=-21—ﬂf [Y () [2dw . (A-2)

Each integration iﬁ Eq. A-2 is in terms of energy so that the quantity
IY(w) |2 is in terms of energy per unit of frequency (l”energy spectral
density'").

Next/consider a function z(x) of finite average power., The Fourier

transform of a segment of z(x) from -A to A is:

A i -
ZA(w) =f z(x)e—wadx (A-3)
53 C'oy car")

In effecty we multiply the function =z(x) by a rectangular g:ati_ng'\function

nw w '
wCiose—earl e, +Tery a function with value 1 from -A to +A and zero

R
elsewhere, awd hen“ﬁtlake_ the transform of the result&%e energy



relations of Eq. A-2 become: *b)p

A 1 o V4
f |z (x)|2dx = E‘%f IZA(uu)lzdw ./ (A-4)
—-A -

Dividing both sides of Eq. A-4 by the interval and taking the limit as the
interval becomes large‘((’this smoot out possible fluctuations from end

effects‘>q'we obtain the following relation for the average power:

©

_lim 1

_ 1 1 1im 1
avg A~ = 2A A

|z(x) |2dx = — IZAQ0)|2dw. (A-5)
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%
Provided that an interchange in operations:%S\mﬂid here , the rightieeed

side of Eq. A-5 can be rewritten as:
_ L frim L 2\
Pavg T 2m _m<;+w ZAIZA(M)I )dw (e

The result of the integration is average power ,se—thst Now the integrand
in Eq. A-6 can be identified as the power spectral density (often referred to

a§tzgwer spectrum) of z(x) which we designate by Sz(w):

o lim 1 2 ' -
Sz(m) = s ZAIZAQu)l ) (A 7}
The above reasoning can be extended to apply to random processes.

Given a process {z(x)}, the power spectral density is defined as (Papoulis,

1965):

S (0) = lim 1

= Are 2R E;|ZA@)|2 (A-8)

%
This discussion is heuristic and not intended to be exhaustive; it is suf-
ficient for describing the operations performed in this report.



where E{.} designates an expected value operation over the ensemble. It
is our purpose to estimate Sz(w) as accurately as possible given a finite
record length of discrete points. To do this, we use the Discrete Fourier
Transform (DFT).

Itgig—wef%ﬁnﬂﬂﬂfTﬂﬁﬁ;iii:spectrum ZA(w) can be very closely ap-
proximated by'the discrete version of Eq. A-3 (McGillem and Cooper, 1973):

Nil 2A, ~3(27/N) 2k

Z(k2) = z(% 7$De Q = 27/2A. (A-9)
0

L

We have divided the interval (-A,A) into N equal segments and assignedff
2A 2A . .

z(-A) = z(0 759 and z(+A) = z(N 7?9' To maintain equal areas we also

require:

ZAQD) = (2A)Z(kQ). (A-10)
w =k '

The values of the DFT are proportional to the sampled version of the true
Fourier transform ZA(w) at the N sample points.
We approximate the expectation operation of the transform by averaging

M adjacent samples of the spectrum:

E[|z, @) |?] =

M
Loz k) |2 (A-11)
w=kSl =l

1
M.
i

inorde’”
The value of M is judiciously chosen_se~that the M sample spectra represent

adjacent samples which are indistinguishable as far as the aperture of the
optics in the satellite is concerned. We further assume that the value of
A is sufficiently large so that the limit in Eq. A-8 can be approximated,

Then, for a fixed A, we have:
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Sz(w) = 2A
=k

==
I~

' izi(ksz) |2. (A-12)
1 3

Implicit in the use of the DFT is the assumption that the true spectrum
is bandlimited. This assumption is sufficient to guarantee that the samples
of z(x) fully represent the data. Hence ,after the power spectrum has been
computed, the results must be examined to verify the bandlimited criterion.
This is discussed in Appendix B.
een multiplied by a rect-

As W noted earlier,the data/ ha ,in effcc?

angular window function. Viewing these effects in the frequency domain, it

is seen that the restriction of the data to a finite length tends to broaden

the spectral estimate. This is a direct consequence of the finite record
Obtain

length. It is important therefore,t”to-bm'e better frequency resolu-

/

tion in the spectral estimate than is eventually required. ¥For a rectangular
window, the theoretical frequency resolution obtainable is the inverse of the
window length., The picture data we have used from Apollo VI is approximately

81 n. mi. per line_giving a maximum theoretical frequency resolution of 0.0124

!

cycles per n. mi. Actual frequency resolution is somewhat poorer than this
as a result of windowing and smoothing.

Abrupt discontinuities in the data’arising from windowing the data with

a rectangular function,may result in a high error variance in the spectral

estimate. Results of these discontinuities can be suppressed to some extent
by tapering the ends of the data window over the interval (-A, +A) rather
thaﬁezglng the rectangular window described above. 1In fact, tapered windows

\\‘
are often employed instead o(iffflfgﬁtangular ones (Otnes & Enochson, 1972) .~

Choice of a good window can yield an improved dynamic range and lower error

variance in the spectral estimate at the expense of a decrease in frequency

Thue U dua

resolution. An optimum window for all purposes does not exist se=e—resTdt




gl

these trade~offs and #mMype of data to be handled.
We include the following exénples to demonstrate several points. Since
Eq. A-9 and subsequent computations are implemented on a digital computer,
which must of necessity operate with finite word lengths to perform all of
its functions, the first item of interest i§ the effect of round-off errors

\
maehomsrs
in th,e\a'rff:hmetic operations ,af-the-mactific” The second point is the

»
: k1S
sensitivity of Eq. A-9 to monochromatic signals, i~es, pure sine or cosine
waves and the frequency resolution attainable. Finally; we are interested
in the effects of different window functions both on pureb, sinusoidal and

typicalb) random signals.

In the accompanying figures we will always be plotting:

log |z (ko) |2 k=0, 1, ..., N-1

where: a1
N-1 .
20) = ] w(E) (cos 2T £r)e” (2 ¥N) Lk
£2=0

N=512,

There are four forms of the window function used here:

WR(IL gNé) =1 Rectangular (A-14)
28y _ 2T (o - -
WHN(JL —ﬁ-) = 0.5(1 - cos N (2-1)) Hanning (A-15)
26, 2T ., ; B
WHM(Q N) = (0.54 0.46 cos N (2-1)) Hamming (A-16)
2A, _ 1} . 2-1-(N/2) _|2-1-(N/2) 2-1-(N/2)
wp (& ) = Tfsin m =37 b N/2 cos N/2

(Papoulis, 1973) (A-17)



We have selected eight purely sinusoidal test frequencies. Half &&=
J®» vepresent functions which contain integgy number of cycles in a sample
of width ZAQUheeeas‘Ehe remaining half ha&ggéractional number§ of cycles in
the range sample width. Power spectral plots using these sinusoidal test
frequencies are shown in Figure A-1l. Because the plots are drawn to take
advantage of the maximum dynamic range of the plotter, there is no uniform
scaling among the ordinates of the figures. Furthermore, it must be emphasized
that the ordinate axis represents the logarithm of the values. The maximum
value of each figure occurs at the point(s) nearest the frequency of the
input signal. However, the magnitude of sidelobes and their widths differ
depending on the type of window function. It is also possible to observe
the round-off noise generated by the operations in the computer., This is
most easily seen in the graphs of signals with an integer number of cycles
present.

From these graphs)it can be seen that the use of the Hanning, Hamming,
and Papoulis window functions do suppress the effects of discontinuities at
the ends of the records at the expense of frequency resolution, The Papoulis

e

window was developed for processing random-type data (Papoulis, 1973) Zad is
) windg ws.
not as well suited for purely sinusoidal signals as the other two Because

the sample lines of picture data appear quite random on a scan-by-scan basis,
we have used the Papoulis window in the computation of spectral plots in
. o
this report. Tho Qblimcseert iU RonmmSt 10 N tire-spertrri-prots—tw
AT T G et T CUMp et ettt T LT O W o,
Spectral plots using a sample line from typical picture data and differing

choice of window functions are shown in Figure A-2.



FIGURE A.l1. POWER SPECTRAL PLOTS OF SELECTED SINUSOIDAL TEST FREQUENCIES

Notes:

1) A 512-point discrete Fourier transform was used and
therefore all spectra are aliased about the 256 data
point in the transforms.

2) TheAvertical scale is logarithmic and is adjusted to
each plot.

3) The selected test frequency and the particular choice of

data window is specified on each plot.
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FIGURE A.2. DPOWER SPECTRAL PLOTS OF A SAMPLE LINE OF APOLLO VI PICTURE DATA

Notes:

1) A 512-point discrete Fourier transform was used and
therefore all spectra are aliased about the 256 data

point in the transforms.

2) The vertical scale is logarithmic (S, 6 = 10 log p 18

dB 10 5

3) The particular choice of data window is specified on

each plot.
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APPENDIX B
OPTICAL SPECTRA AND DATA SAMPLING RESTRICTIONS

In analyzing continuous data using sampled values, it is necessary that

ust¥
\ the data be band—limited.s?gii; nogfkg%l%aast/;ave spectral components at

. Treat dae Jvwat A0 e/
higher frequencies;, compared to the frequencies of interest.

WiHhour hese Spietral a—o{v}ﬁw
hﬁ'!ﬂ!g el tho case.~sTbstantial aliasing {see Appendix D) may occur,

destroying the accuracy of the desired data. Because the pictoral data of

interest is not band-limited until one approaches the resolution limits of

the film and camera, the question becomes how close should adjacent samples

be to provide an acceptable margin at the frequencies of interest while at the

same time keeping the samples independent and free from film irregularities.
-~

In‘ﬂTﬂET“O help answer this question, we have obtained power spectra of

selected portions of ten Apollo VI transparencies using the transparencies in

an optical spectrum analyzer. qusfron these resultulj!é_ﬁiiifzsﬁthat indepen-

dent samples taken at a rate of 20 samples/mm on 70 mm film is sufficient for

our purposes. This appendix briefly describes this procedure.

The method of finding the two-dimensional Fourier transform of a modulated
transparency is wellwknown (Goodman, 1968) and is illustrated in Figure B.1.
The exposure of a film in the back focal plane of the lens produces a second
transparency whose transmittance is proportional to the squared magnitude of
the two-dimensional Fourier transform. Aside from a scaling constant, this
is then the two-dimensional power spectrum (see Equation A.7) of the scene
modulated on the first transpafency.

The optical spectra shown here were made using the excellent optical

facilities of Professor Howard J. Pincus at the Department of Geological



Figure B.l. Optical System Used to Generate Two-Dimensional Power Spectral Plots
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Sciences, University of Wisconsin-Milwaukee. The picture transparencies used
were 35 mm. (24 x 36 mm area) with the longer axis equal to the 57 mm width of
the Apollo VI transparency on the 70 mm film, Both the 70 mm and the 35 mm
black-and-while transparencies were copied from third-generation NASA color
transparencies using Panatomic X high resolution film. The optical aperture

was restricted to one-fourth the picture area.and;;he corresponding two-
dimensional power spectra for the designated quarter are shown in Figure B.2.

A calibration grid with frequency spacings at multiples of 2.5samples/mm is also
shown.

In the plots of Figure B.2, the magnitude of the power spectra is in the
intensity. Exposures were made at 1/4, 1/2, and 1 second and the prints shown
are at the 1/2 second exposure time. Contours of miminum discernible exposure
for the three exposure times are shown in Figure A.3 for four very different
cases...The highest frequencies etroun are less than lOsamples/mm eﬂﬂ'¥au5 we feel

that a sampling rate of 30/mm is adequat¥;;:7;;rm £1hn€:£;:fffé:gzgggzéi.

Translated to the 70 mm format, this is equivalent to a sampling rate of

QU5

w
30 x 36/57 = 18.95/mm. Usdag an active area of 56 x 56 mm on the 70 mm film

to allow a 1/2 mm margin.{é!“gvoid edge effects».’this is equivalent to
18.95 x 56 = 1061 samples per line. We have used 1024 samples per line throughout
this report giving a data sampling frequency of 18.3 samples/mm.

The SMS sampling frequency is set at 500 kHz. Tﬁe primary effects of

aliasing in SMS then occur in the vicinity of 250 kHz % the half-sampling

)

frequency. At the subsatellite point, this SMS sampling frequency corresponds

to) %%% = 2.47 cycles per n,mi. The spatial scaling for Apollo VI is about

81 n.,mi. for the 57 mm frame width so that the equivalent SMS sampling frequency



on the 70 mm film is:

500 _ 81 _ )
500~ 57 3.52 cycles/mm,

Thus, our Apollo VI data sampling frequency,gompared to the SMS sampling

frequency,is: 18.3/3.52 = 5.2, yielding a good margin.
/



Figure B.2. Optical Power Spectra of Selected Portions of Apollo VI Transparencies

Notes:
1) Scale factors and exposure held constant.

2) An equivalent aperture size 18 x 27 mm (referred to 70 mm
film with an actual area of 57 x 57 mm) was used to restrict
the scanning area. The position of this aperture is
designated by quarters on the plots; e.g., ULQ refers
to upper left quarter, etc.

3) Calibration grid generated using equally-spaced lines at
0.40 mm spacings in both dimensions.

4) Recorded on Panatomic X (35 mm) £film at 1/2 second exposure.

5) TIllumination supplied by He-Ne laser (A = 6348A).



Calibration Pattern, 2.5 lines/mm. Apollo AS6-2-877 ULQ

Apollo AS6-2-877 URQ Apollo AS6-2-934 URQ



Apollo AS6-2-948 Apollo AS6-2-1064 URQ

Apollo AS6-2-1429 LRQ Apollo AS6-2-1430 Central




Apollo AS6-2-1467 LLQ

Apollo AS6-2-1468 LRQ

Apollo AS6-2-1469 LLQ Apollo AS6-2-1484 Central




Figure B.3. Contours of Minimum Discernible Exposure in Four Selected Power

Spectral Plots.

Notes:
1) Contours are for exposures of 1/4, 1/2, 1 secocnd.

2) Circle for 10/mm on 35 mm film is shown.
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APPENDIX C

GEOMETRICAL SCALING AND DISTORTION EFFECTS

In this appendix we develop the geometrical relations between the earth
coordinates and the satellite coordinates and the rate of change (frequency)
between them. .The derivation is restricted to the case of a spin stabilized
geostationary satellite.

The earth coordinate system is measured in terms of a longitude angle
@ and a latitude angle ¢. The satellite coordinate system is measured in
terms of a spin scan angle B and a mirror tilt angle o. The VISSR channel
measures a scene in terms of a, B .and—‘his can be used to furnish an estim-

ety :
ate of what th Cene Loadmem—wmc in 0, ¢. However, £ 1is constant so that
unequal amounts of time are spent in different parts of the hemisphere. This
results.in a nonuniform spatial resolution. The two items of interest here,
then, ebkiLe coordinate mapping from a, B into ¢, 8, and the frequency con-

version facter from one system to the other.

C.1l. Conversion of the Earth Coordinate System to the Satellite Coordinate

System.

atelli teM

he radius of the earth, aad-het R, be the distance between the observed

Let R be the distance between Q‘entem of the earth and th

point on the surface of a spherical earth and the satellite., The geometry
is shown in Figure C.1.
If P 1is a point on the surface of the earth of longitude and latitude

angles § and ¢, and P' is its projection on the WE plane, then we can

write:



FIGURE C.1.

EARTH-SATELLITE GEOMETRY
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OP = r (C-1a)

PP’

rsing (C-1b)

I

opP' rcosd ‘ (C-1c)

From the geometry of the problem, we can express SP in terms of 6 and

¢ (from AOSP'):
EE'Z = r2cos? ¢+R%2-2Rrcos bcose (C-2)
But since ASPP' is a right-angled triangle

2 = PPI24EP2

= R2+r2—2chos¢cose (C-3)

Also, because the angle between SP and its projection SP' is the tilting

angle o, we can write:

: _ rsin¢ "
sino <p (c-4)
Substituting Equation C-3 into Equation C-4 , we get:
. rsing '
sina = (C-5)

YR2412-2Rrcos dcos 6

To find £ din terms of 6 and ¢ we consider rosp', £0OSP' is
equal to B  because it is the projection of QO'SP( which is also B), on

the WE plane. It is obvious that:

rcosdpsinb

tang = R-rcos¢cos®d

(C~6)



w W

Thus, for any point on the surface of the earth ®&# known longitude and
latitude angles, we can determine the corresponding co—ordinétcs a and B
of this point by using Equations C-5 and C-6.

A belief in reciprocity would encourage us to look for emether .
of™equations that would give the latitude and longitude of a point on the
surface of the earth, knowing its coordinates a and 8.

If we substitute Equations € —12 and C-{3 in Equation € -i6 we can

express SP in terms of a and B:

SP = R1 = RcosdcosB - VQZ—stinza—choszasinZB

Also, we can write:

SP' = SPcosa

PP' = SPsinc
But we know that

PP' = rsin¢
Hence,

R_sina
sing = —
T

ConsideﬁQB ASOP’;’ it can be easily found that:

SP'sinB
tanb = —

R-SP'cosB

RlcosasinB
tanf =

R—RlcosacosB



C.2. Calculation of SMS Field of View and Frequency Scaling Conversion Factor

In this section, we show the conversion necessary to find the actual
field of vision along the surface of the earth as viewed by the SMS. We will
et
approximate the variation in the field of view, e the same as the variation
in the velocity as the satellite scans the surface of the earth (R. Parent).

The item of intergst is the relative scanning velocity factor_at any point on
v d-voned a

Jwp W T
the surfac¥in terms of the co-ordinate system a and B defined at the

catellite point, where. a is the tilting angley and B 1is the satellite scan
angle (refer to Figure C-2). The problem is two-dimensionalg 'dﬁwever, it is
not restricted to the plane passing through the center of the earth and per-
pendicular to the satellite spin axis, but to a plane that makes an angle a

with the former plane.

Figure C,2,



' ’
This plane intersects the earth in a circle of center 0 . Let R be

!
the distance between 0 and the center of the satellite, r’ the radius of
. N 7 S L ' s
the circle 0  amd O HVthe projection of 0 on the line joining the observed
point P on the surface of the earch and the satellite,.

For a constant angular rate B, the phase velocity along the earth's

surface is:

vp = v/cos Y, (C-7)

where v is the tangential velocity:
v = BRr.. (C-8)

The relative increase in the phase velocity vp over that at the satellite

subpoint, vp , 1s then:

0
vp Rl
P: = =
v - (R-1)cosy’ (€-9)
Pg
where
— Jr'2_R"2c102
R1 = R cosB - ¥r “-R “sin”B (C-10)
and

cosY' = vr'2-R' 2gin?g (C-11)

/

Figure C,3.



!
From the geometry of Figure C.3, we can express the parameters R and

, _
r in terms of R, r,and o,the tilting angle. We can write:

r = /}z—stinza - (C-12)
and
14
R = Rcoso (C-13)

I 1
Substituting the values of r and R in Equations C~10 and C-1I1, the cor-

rection factor can be expressed as:

I' = RcosccosB - V%Z—stin2a—R2coszasinzB

(C-14)

(R—r)‘/vrz-stinza—choszasinZB
r2-R%sin?a

Using Equations C~5 and C-6 in C-14 we can find a frequency conversion factor

{
giving the increase in surface scanning velocity as a function of 6, ¢,
This is shown in Figure 3.2. As noted, this graph also gives the relative
increase - in the field of view in the scan direction.

The apparent instantaneous frequency £f. viewed from the satellite is
Molvied Wy

proportional to the satellite spin rate &imes the phase velocity correction

factor T:

£, = f B (R-1)T. (C-15)

Because the satellite spin rate is a comstant,

B = 100 rpm = 10.47 rad/sec.,

we can conveniently normalize everything to the satellite subpoint:

p



B(R-1) = (10.47)(19,360) = 0.202 n.mi./p-sec.

Thus the frequency conversion is:

fl = 0.202 T'f (C-16)
where:

f1 = apparent instantaneous frequency in MHz

f = spatial frequency in cycles per nautical mile

I' = phase velocity correct;on factor.

C.3. Geometrical Mapping From Satellite to Earth Coordinate System

The satellite measures coordinates in the o, B frame of reference.
The scene is measured in the 0, ¢ frame of reference. The mapping between
the two is quite linear for small angles from the subsatellite point,buéuﬁg;
become quite nonlinear for larger angles. This mapping can be portrayed by
tracing the locii of constant o and constant B in the 6, ¢ coordinate
system.

From Equation C-6 we find the equation of the curves of constant § to

be:

B -1 tanB ‘
¢ = £o3 € (cosbtanf+sind) (G-12)

wvhere € = r/R = 0.151, and provided that:

sin0
tanB f'l—scose . (C-18)

Similarly, the equation of the curves of constant o is found from

Equation C-5 to be:



1 £ 1 sinzh\

6 = cos 1+ - —— (C-19)
capmg g2 sinzc)
provided that:
sinZa < e2sing . (C-20)
— (14+e2-2ecos )

Curves of constant « and constant B are shown in Figure C.4.



FIGURE C.4. MAPPING FROM EARTH COORDINATES TO SATELLITE COORDINATES
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Appendix D

A Measure of the Effective Bandwidth Due to Aliasing Errors

The purpose of this appendix is to motivate a measure of the effects of
aliasing caused by under-sampling a signal. We begin by discussing the concept
of sampling a'deterministic signal. After the effects of aliasing ormbieesse

e piavdd
have been illumiaeéeé‘we will extend the results to stechastic processes.

Suppose that we wish to sample a waveform f(t) every T seconds. The

resulting sampled version fs(t) may be represented as:
£ .(t) = £(t) g(t) (D-1)

The function g(t) is a periodic function with period T. For examp19 it could
be a typical gate function)as is shown in figure D-1.
Ea-ﬁaée;TEO determine Fs(w), the spectrum of fs(t), we expand g(t) in a

Tourier series:

oo jnwst
g(t) = z c e (b--2)
-jnw t

where ¢ -d fT g(t) e S dte

n T 0
and wg = %E P

com this seri sf“é readily obtain the Fourier transform of g(t
N—
oo
Glw) = 2 ) c 8w ) . (D-3)

e 0O

Because multiplication of two signals in the time domain corresponds to convolu-

tion in the frequency domain, we have:

Fs(w) = ~%; F(w) * G(w) {+m F(y) G(y-w) dy . (D-4)



g{t)

T

GATE  FUNCTION
FIGURE D-1

2T



Note that F(w) is the transform of the waveform £(t) before sampling. However
using the form of the transform of g(t) and proceceding formally (which can be

justified rigorously),we arrive at the following results

0O

oo
Fs(w) <. f F(y) é(y—wﬂnws) dy

)
n=-cw y==x
“+oo

2 cn F(w+nws) . (D-5)

=00

The function F(w+nws) is just the original spectrum of f(t) shifted to (or
translated about) the frequency nw e Hence/the spectrum of the sampled waveform
is a composite of shifted and weighted versions of the original spectrum. The
weighting of each shifted version is determined by the line-spectrum of g(t).

If the spectrum of f(t) is strictly limited between the frequencies of
—wS/Z and +ws/2)then the sum in equation (D-5) is trivial. This situation is
depicted in figure D-2. Howeverlin generallthere can bée a large number of terms
in the series of equation (D-5) for each fixed w. An%i?me there is more than
one term in this series we say that aliasing has occurred. The expression“fold—

by gg;;;;;;g o

over 'is ! used because a copy of the original spectrum appears to be
folded back or forward over other copies of the original spectrum. The relative
weighting of the individual interfering’ shifted version of the spectrum is

determined by the nature of g(t) which is equivalent to specifying the values

[
of the Fourier coefficients. When all coefficients are unity, the sampler is
called an impulse sampler) e ,
+oo
g(t) = ) &(t-kT) .

= GO

Figure D-3 shows a situation in which the original spectrum is limited

between the frequencies of -w_ and 4+w_. The cross-hatched areas indicate

(=]



NSNS

STRICTLY  BANDLIMITED CASE
NO ALIASING
FIGURE D-2



frequencies which are distorted due to more than one term being present in the
/

. . Wy
series of equation (D-5), 4= aliasing has occurred. This is the case in the

SMS system and we now proceed to determine a measure of this distortion. We

note that only the coefficients c_, and c affect the distortion included in

1 +1

the portion of the spectrum centered about zero.

As can'be seen by consulting either Appendix A or (Papouli§)1965) the
effects of aliasing a stochastic process {y(t)} are reflected in the aliasing
of portions of its power-spectral density Sy(m). In fact,in direct analogy
with the previous development ,w@=tr=wE=t™t the power-spectral density of the
sampled version of y(t), SYs(w)‘ igcg:;en by

oo
Sys(w) = z lcnlz Sy(u+nu_).s) . (D-6)

n=-co
Hence ,all previous comments about band-limited signals apply to the case of

band-limited processes. Since we may assume that S (w) is bandlimited to the
y

band from —0g to wgs We are concerned with an aliasing situation in which only
the fold-over from adjacent bands of frequencies need be considered. A typical

situation is depicted in figure (D-4). Since the sampling function g(t) is

real,we have a Hermitian symmetry among the coefficients? sy ¢, = cfn.

We would like to choose some measure of theu aistortion et () Qliasing)
‘11u~3
Touarxde—tirtTond we will first define an effective hﬁgdwidth of a stochastic
process so that we can compare the cffective bandwidth of original waveforms
with that of the version which contains aliasing.
Tonsdir th

z w) is the power-spectral density of the process {Z(t)}.

Sz(m) is a real, eveg')nonnegative function of w (Papoulis, 1965). If it were

normalized, it would resemble a probability density function. Let Sz(w) be

this normalized function.
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D-8

= S (w) :
S (w) = ——= (D-7)
- f+c Sz(w) dw

00

We will define the effective bandwidth of this process as the variance of g (w)]

zsomctimes called the radius of gyration."

don -~
v2 = | wZSz(w) dw (D-8)

43?} = S ( wzf the equa-

tion dves representy the second moment about the center of oraVLLy\féhe variance).

Note thatlsince S (w) is an even function of w,

The use of the variance as a measure of the effective spread of the—rmrmewal.a

!
variabféé(gaﬁgil—known and widely used in all branches of science and engineering.
X"
There is an added bonus in using this definition}\ the uncertainty prin-

V\mﬂk\ph}& ay
ciple. This states that the variance y2 thwes a factor determined from the /y/f5£/

transform of VSz(w) must always be greater than m/2. L
W Y "{"ﬂ
Y2 a? > w/2 (p-9)
o
f 72 |r('r)l2 dt \
a2 = = (p-10) A
[T ]2 ar v
—00 5 uj’tbl/\— }j(
1 e +j ' 1
r(0) = 5= [ /5, e du @-11)
= N V)
" \”".LM/'L
The quantity a2 measures the spread of the inverse transform of VSz(w). There-
w,’}
fore'as we attempt to reduce the effective bandwidth of the process, the ef- t“d

fective time-spread of its corresponding transform must increase so that inequal-
tiy (D-9) is fulfilled. Thus}there is a trade—off between the frequency-domain
and the time-domain. For further discussion qg this topic see the references
(Brown, 1963), (Franks, 1969), and (Papoulis, 1962).

Suppose now that Sy(m) represents the power-spectral density of the input
to a sampler and that this spectrum is bandlimited to the range from g to +ws

The effective bandwidth of the input is:



D-9

f S w2 s (w) dw
Yy

0
.Y2 = > = o (D"‘]Z)
f S g (w) dw
0 ¥
We have ?f course,used the evenness of w? and Sy(w). If aliasing has been in-

troduced by the sampler, the effective bandwidth of the center part of the
8*5(ﬁag\n which

spectrum depends off #row the folded part of the spectrum is added. A typical

center lobe of an aliased spectrum is shown in figure N-4. We will define ¢

as the effective phase of the folded spectrum., A wore! cose is achieved when

Fruyn
¢ = m. Then the effective bandwidth of tﬁéegéf?35%25 center lobe orte—emece

Ercm'is:
Pa
2 2 ; -
{ w [Sy(w) + Icll cos ¢ Sy(w ws)] dw
2" = -
8 . (D-13)
f & S (w) dw
0 y ms
where wo = 5‘

This quantity measures the variance of the central part of the spectrum. If
the effective phase of the aliasing is between n/2 and 3w/2, the effective
bandwidth as defined by B2 is less than the original given by y2. The |c1|2
term results from the nature of the sampling waveform g(t). A worst case

assumption is given by |C1|2 cos ¢ = -1. This is the case we will treat here.

Hence we will use:

Wy Yo
| w? Sy(w) dw = [ 7 (w-w,)? 8 (whwy) du
g2 = 2 2 0 . (D-14)
w
0
S d
g y(w) ©

This is easily derived from equation (D-13) using the evenness of Sy(u) and
the definition of Wy
Since the input to the sampler is the output of the filter, we may relate

S (¢) to the power-spectral density of the input Sx(w) by the well®known for-
¥

mula (Papoulis, 1965): R 2%

S (0 = S i) 1 '11‘) 2 . D"]l‘))
RORESNO) [0 (i) (



Finally, since our picture data is in the form of a sampler and since the sam-
pling rate for this data is clearly high enough, we may state the discrete
versions of the expressions for the effective bandwidth. We use discrete fre-

quency variables’
2K

Y k2 Sy(k) .
k=1
¥ (D-16)
) Sy (k)
=

K = half of the sampling frequency

K K
) k2S5 (k) - ) (k-K)2 S_(kHK)
2 - k=1 4 k=1 ’ ' (D-17)
g = 2K
) 5, ()

k=1
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\y \Y \w 10Di R THE PHOTOMULTIPLIER TUBE

e noise genevated in a photomultiplicr (p.m.) tube is studied'an&lg—
vl

v»le model the p.m. tube[for =re—prrpose=e dcsigning an optimum

i

quantizer 1“Fsuwgested.

In a p.m., tube, the photocathode emits electrons which are then accelerated

332 ' =l
and multiplied by a series of electrodegfknown as "dynodes" se=esriel suitable
o them ~
voltages are appliedy (Figures E~1 and LE-2). The incident light intensity

on the photocathode directly determines the photoemission current, the;eJNuku;thﬁUs{

Inert 1S oy oxcellent approximation ak)a linear relationship between the light intensity

and the photo current over a wide range of light intensities.

Q& will ngw Considec.
€he case Whe¥0 light of a constant intensity is incident on the photo-

|¢,v\
cathode | ramaniddorod, For constant voltages at the dymodes, we would expect

that the current W= J(ircctly proportionzal to the light intensity wilil
also be a constant quantity. Variation of the light intensity will produce

corresponding variation in the current. ﬁhhough it is said that the incident

5*3“‘“‘ t Vwc‘k
light is of constant intensity, thi®®is not strictly true when oretews—tits
M\@r 03 -~
STt rom—a-mtTTO0s copic point © T“Vfcw. When ewe sayg that light of a

we
particular intensity is incident on a photocathode, eome=t3 refers$mg to the

number of photons (packets or quanta of energy, each being equal to hv,

v = frequency of light) which strike the photocathode. The larger the number

-—t

of photons e, the larger the current . 50 by the term, "constant intensity'y

wt : .
one referg to the average number of photens. But the number of photons strik-

. . . 1+ .
ing the photocathode is not a constant quantity.bwet fluctuates about a quie-
J

Ts warage 'S carled
o B e

scent quantity which is the "average" over a long period ame ¥

"constant light intensity" Hence, there is a corresponding change in the
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number of photoelectrons emitted from the photocathode. T].ws-;_{he emission

of electrons is actually random in form s Mre electrons are emitted at

one instant, fewer the next, with the average number per unit time the same

" : what o ik
over a long period of time as shown below in Figure E-3.

Ip.c

FIGURE E-3



) . . . ' wh e i
The situvation described above is ewwewedessw the same as thy“’Mﬁt prevails
in a vacuum diode operating in the temperature limited region at a fixed cathode
temperature and a fixed data voltage. The one difference is thas in the case of
photoemission, the fluctuations in the current are due to fluctuations in the
number of striking photons, with no heating of the cathode. Hen-ee—,-The analysis
carried out for the shot noise (Schwartz, 1959 and Davenport and Root, 1958)} in
NP

a temperature limited diode i erfectly valid for thre noise due to light

intensity fluctuations. Hence (Schwartz, 1959),

22 _ ; _ E-1
1% oise (r.m.s. noise) 26AfID.C. ( .)
Af = Noise equivalent bandwidth

ID c = Average photocurrent

-Ba't;u an actual situation)such as that in S.M.S. s 'stems/ the light
intensity incident on the photocathode is not a constant quantity,k varies

i S GOt . : s
with time, the operating Curren t ,Ch-riasm—e i S ———,, /T 3
given time, the current fluctuates about the average operating current I, asd— Thain

sé cquation (E-1) can be used to describe the noise with I being)in this

3
\
\

case the average operating current. Intuitively,it is obvious that

e A

intensity and s the operating point varﬁ, the r.m.s. value of the noise also

varies with the operating current. @

Hence '{)4“)})‘/‘/0
i2 . = 2eMI W (E-2)
noise

QD
where T is the time varying photocurrent. v

Let the stochastic process X(t) depo ‘W@@nt and N(it), the noise.

Assuming that the photocurrent and the
\

D.C.

) as the light

oise of- p.m. tube are members of



ergodicMPapoulis, 1965, Ch. & >rgodicity in the mean and the auto-

correlation are assumed), we can write pe”

E[N2] = 2eAfX _ (E-3)

Further, the time average of the noise can be assumed to be zero. S,

E(N) = 0 (E-4)

Hence,
05 = E(N2) = N2 = 2eAfX
or
o§ = 2eAfX (E-5)

Thus'(E—5)giVGS the variance of the fluctuation noise at the output of
the first stage of the p.m. tube ‘yithout considering secondary emissionil

EXPRESSION FOR THE R.M.S. VALUE OF THE NOISE AT THE OUTPUT OF AN N-STACE

SECONDARY EMISSION MULTIPLIER PHOTO TUBE:

The p.m. tube shown in Figures E-1 and E-2 consists of a photocathode fol-
lowed by n dynodes and an anode to form an N-stage secondary emission current
multiplier. A simple sketch of the p.m. tube is shown (Figure E-4) as an
aid in deriving the aqu!Lhmntioned expression. The current amplification due
to secondary emission at a dynode is equal to "G" and it is assumed to be the

same for each dynode.

InO refers to the r.m.s. value of the noise generated in the cathode.

Tnl“ the r.m.s. noise at the output of the first stage}including the effect
: .

of secondary emission from the first dynodeg Ini‘s‘the r.m.s. noise at the

output of the ith stage, and so on. 1 dis the average cathode current and

I the average output current.

0’
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Figure E-4
—— nt
12 = 2eTAf-G" G__-1) (E-6)
nn G-1
Ly .= c"1 (E-7)

In the expression

2 = @272
Inl G InO

/— )2
the quantity (E Ii

) is the mean square value of the fluctuation noise

+ 2e(GI)Af

0
due to theincident current GY IiO' andrthe quantity 2e(GI)Af idis the mean-—

square value of the fluctuation noise about the average current GI due to the

random emission from the first dynode.



From equation (E-6)

e n+l
o) _ Il (G —l)

Inn 2eTAfG o1

. nt1 X

Since G >> 1, we can write the above as
- nt1l
~ £

Inn 2elAf (G-1) (E-8)

Thus the mean-square value of the noise at the output of the p.m. tube

is given by (E-8) and this noise fluctuates about Iy = 61
PROBABILITY DENSITY FUNCTION OF THE NOISE
AT THE OUTPUT OF THE P.M. TUBE
Recalling that the p.m. tube noise is shot-noise (Schwartz, 1959 and
Davenport and Root, 1958),it can be expected that the total output current
of the p.m. tube follows a normal probability density funétion. The total
cathode current in &he p.m. tube can be assumed to be the sum of a large number
of iﬁdependent and overlapping current pulses d;e to individual photons. Be-

cause of the random occurrence of these pulses, the total current fluctuates

about a specific value)which is the effective averagijdver a very long period.
18
The total currente—bedag the sum of a large number of independent random vari-

ables (current pulses)rcan be expected to follow a normal densitxlin view of
the cenfral limit theorem (Papoulis, 1965, Ch. éz’under certain broad conditions.
Experimental results totally support this conclusion.
Hence, the probability density function of the total current is given by,
(iT—I)2
£, ( — exp|- — (E-9)

i ) =
Total Total vY2mao, 202
ip L




where I 1is the average current, oj , the standard deviation of the total

- T
currentdé?; a random variable.

>
ﬁvéwrhe noise In (again a random variable) is given by
I =1I-I (E-10)

The conditional probability density function of the noise assuming the signal

) )
is given by,
£ (il ) = £ (i +I)
In nly s LT n
i2
£ G ) =t g | — 8 (E-11)
n Tlr=i Y21 o, Zoi
i T
because o, = 0,
i i
T n
or
'| i (E-12)
f . (n ) = — exp |- E-12
= 2
n X=x /E7TON1 2ON,
where Gﬁ‘ = 2eAfX with X corresponding to the varieble operating current I.
Thus ,it may be observed that the variance of the noise is proportional to the

1

operating current X.
Equation (E-12) gives the conditional probability density function of the
noise at the output of the first stage of the p.m. tube, ﬁwithout considering
secondary emission from the first dynodé’. It is a simple matter to deduce
that, becgébe the system is linear (Papoulis, 1965, Ch. 12), the conditional
probability density function of the noise at the output of the p.m. tube is also
Ho wived, jhz

. . . 1 . 5 2
normal with zero mean’-ba€~wITh*a—varlancebgivcu by equation (E-8) where I%
: nn

is the variance of the noise.



\hus,the output of the p.m. tube can be written as

~

Y=06X+N

where N 1is normal with the variance given

It may be worthwhile to mention that an increase in the gain of the first
dynode (for example, G1 = 2G2 = 2(33 = . . . 2Gn = 2G) over those of the rest

can be shown to result in a small improvement of the peak-to-peak signal to

pof

So far, only the noise due to the fluctuations in the number of incident

r.m.s. noise current.

photons'or equivalently )in the intensity of the incident light has been con-
!

ovhcg_

sidered. However, there are sememwmesg factors which contribute noise, e

ALt TTr—rTr—tre——us_iccusced abewe= Ticure (E~5) (Amos and Wang, 1969) shows

i I 1 . & b"‘\w
a "model" of the p.m. tube including theffvartous—Tmdise components, ¢+STUSYed

Tedw

? It is inevitable thal | i e,
bue=—mtm o cxtrancous and undC\yé\Lruble light from the background of the p.m.
A\l
Tuh \HvW, eontriiovt O
tube is incident on the photocathode. W&mmnﬁ%m
1igtﬁnwmwgnﬂmr with that dueto-the
li%u\,\,uoit.v g et 0w T iTCL oL 1nteérect amd-hence L Cowto another

noise component. Again, the noise due to background intensity fluctuations

obeys the shot-noise (Schwartz, 1959 and Davenport and Root, ].958).m1he
mean-square value givemy

C2n+l

7 = OxAf M =14
1“]) zZeni Tb G- ! ( 1 )
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where Ib is the "average background" photocurrent about which the noise
143 .Q/W is
fluctuates. Because of &= orighb it [ ] VTS e (1T Ficult to
34”%
account for and'serwill be omitted.

™ :
2) Dewe=errrenht (Lnos and Wang, l96?}&k Another noise component in a

p.m. tube is due to wieee=rE=RNCOTI®» the '"dark current”. When a p.m. tube is

operated in gom%%eﬁg,darkness, electrons are still emitted from the photocathode

. \ 1o s .
<E:;),jlnaxnn_7ﬂg__h____

Ue to agencies other than incident light. The resulting "dark current" is
amplified by the multiplier system and sets a limit to the lowest intensity of
light that can be detected directly. With most photocathodesltherijﬁic emis—
sion appears to be responsible for the largest component of the dark current.
At ambient temperatures, the thermal dark current It obeys Richardson's

law approximately as

I, = 1.20 x 10272 exp —iﬂif¥¥—~ yﬁjamp. cm 2 (E -15)

where T is the absolute temperature in K and ¢t is the thermal work
function for the cathode material. It is clear from Equation (E-15) that cool-~
ing the photocathode Will hekcmbtrmsmeeetr=rf rcduci@g. the thermal component of
the dark current. For all normal cathodes except the AgOCS(s—l) type, ie————
fositmddean the thermal component of the dark current may be virtually
eliminated by cooling to —40°C.ﬁnd-do significant improvement is obtained &hj
e
cooling t emperatures, etow—tirtst But fthe photocathode of the S.M.S. p.m.
W“‘
tubeM® not cooled to such low temperatures.
Again the mean-square value of the short-noise due to dark current
(principally thermionic emission current) is given by

S 2nt+
C n+l

2 ~ AfT P R .
IZ | = 2eMT, + v (E~16)




The final model for the p.m. tube is shown below.

1
£ (n/ ) - exp [~ —]
N M=m 2 1 62 26
n
G2n+1
2 > — = "
Gn 2eAf o1 X
n+1
2 =
0n 2eAf o1 M
Figure E-6

Finally, the term "pulse height distribution" (Bay and Prapp, 1964) used
in connection with p.m, tubes needs some explanation. In a multiplier photo-
tube, each photoelectron undergoes cascade amplification within the tube and
arrives at the anode as a pulse of many (say 10!%) electrons. If all the photo-
electrons were multiplied equally, they would contribute to the signal cur-
rent equally. 1In actual practice, however, the amount of multiplication is
very different from'one photoelectron to another, so that the stream of pulses
at the anode includes a very broad range of amplitudes. Some contribute =g

oA aath aa

wmrehazs> ten times tO~the—phebocuspemt~easdo others. Since the pulses are not

of equal size, it is evident that the SNR of a multiplier phototube will be
lower when used in combination with an ordinary current measuring system which
introduces measurement noise, than when used in a system that counts only the
pulses with equal weight regardless of their sizes. This is the fundamental

differcnce between pulse counting techniques and current measuring techniques.



APPENDIX F

A\
R : "
b Optimum Quantizer

optimvm

WeVdevelop the meTesszgry conditions ef}gﬁé parameters of a quantizer te-
ho—opsimem=8f| the basis of overall mean-square error. It is not clear what
criterion was used in the design of the present SMS quantizer. The performance
of the present quantizer is equivalent to optimally quantiéing the noise from

o

the photomultiplier tube}wh:LH‘TE only statistically dependent on the VISSR
data. Our results, while not complete through the actual numerical solution
of the equations, indicate that the design is not as simﬁle as the reasoning
which produced the present quantizer would suggest. An adjunct of the develop-
ment of the necessary equations is that the quéntizer parameters are sensitive
to the statistical distribution of the input data.

A simple block diagram of the S.M.S. system (one visible channel) is shown

below:

e e ;
[ | CAMERA | SAPLER  quan-

SIGNAL | PMI ' ELECTRONICS - ) FILTER -— — -~ - — TIZER “TO ENCODER
S A N SRR

Figure F-1



The optical signal at the input to the PMT is converted to electrical

/‘]signal by the PMT at its output. During this process, a noise is also added

X

/to the signal. The-p:ingiggl_sggggggnﬁ—e&?lhis noise is due to the signal
[ e N
g%tselﬂ arrd égr a given signal, <+t has a normal conditional probability density

function, with a zero mean and a variance proportional to the signal itself.

It is now assumed that any other noise generated after the PMT output M&H(ﬂ bﬁ-fov‘

the input to tpe quantizer is very small compared to the noise due to the

aH&S;ésg?I%di:££;ﬁlglﬁzﬂ‘
signal, be omitted in the following analysis. S?)

Ninsn
for the purpose of designing an optimum quantizer such that the mean-square

error between the output of the quantizer and the signal is minimum, the follow-

ing model is assumed.

-~

PMI OUTPUT = x‘,_;E' v Y s QuANTIZER . Z

NOISE = N

Figure F-2

The PMT output signal is equal to the PMT input signal multiplied by
the PMT total gain.,
As mentioned before, the criterion or performance index)whiah-io minimized

while choosing the quantizer levels, is the mean-square error between Z and Xy L+~

P
aad. is defined by:
A

€2 = E[(Z-X)z] = E%E((Z—X)2|N=n>f (F-1)

The following notations are adopted throughout this appendix:



1) Capital letters indicate random variables.
2) Small letters indicate the variables assumed by the random variables,
3) fX(X) represents the probability density function of X.
4) fN(an=x) represents the conditional probability density function of
N, given X=x.
5) E( ) denotes the expected value of a random variable.
6) fXN(x,n) denotes the joint probability density function of X and N.
If we denote the quantizer thresholds by the set of real numbers, {yi}?ii )

and the corresponding output levels by the set {z J% -1 We may proceed to develop

the necessary equations for these quantities to yield a minimum mean-square error.

b
E{(Z-—X)2|N=n} =f (=%)° £ (x|N=n) dx (F-2)
=D
k *i41
a f(z gl £ (x|N=n)dx
1
k Yit1™

2 "
igl f;n (zi—x) fX(x[N—n)dx

The above equations imply that, for a fixed noise n, there is & one-to-one map-

)

ping between the xi'sjani-tHE'yi's}and L zi's. Otherwise, for a given

X=x, there is no unique Y=y because of the addition of noise.
The overall mean-square error is given by:

— 1+l
o =f 2 f . —x) g (6o dxf dn (F-3)

To minimize the mean-square error, a necessary set of conditions axe |3

=z ;
e - g (F-4)

2y,
Y3

and



2(e?)
9z,
3

=0 forj=1,2,3, ... k (F-4)

The first set of these equations yield§:

@

e 2 _ . 2 ks i i
ﬁ£_m[(yj n zj—l) (Yj n zj) ] fXN(yj n,n)dn 0 (F-5)
i=2,3, ... k

: = ;
is assumed to be zero and—su—aggu is the correspon-

ding noise. Further, fXN(O,n) = Zero.)

(For j=1, yl=0 because X

. 3(22)
Similarly, setting 3z equal to zero,
N
a(e”) _ _ - n
e _[ .f (zj X) fXN(x,n)dx dn =0 (F-6)
J s Yj'n

ij=1,2,3 ... k

Up to this point, the treatment has been vefy—gener;fgggz;;ut the assump-
tion of any particular joint probability density fXN(x,n). To illustrate the
procedure for obtaining the levels of an optimum quantizer, let it be assumed

that X has a uniform distribution.

%— 0 <x<bDb
fX(X) = (F-7)
0 elsewhere
Equation (F-5) can be written as:
z, +z, - 2(y.,-n)| f_ (y.-n,n) dn =0 F-8
nfm[rl 3 = 205 £ (F-8)

The 'hoise'" due to the signal has a conditional probability density func-

tion (prd-f). (See Appendix E.)



1
fN(n|X=X) = 75 e . exp(-n2|26x)

where (F-9)

E[N|x=x] = 0; o | = E[N?[x=x] = 6x,

§ is a known constant,

Wk €an
As—a check on the equation (F-8) wnﬁe—&utlf-frm&-&m the

¢
nois%‘ the fluctuations about any signal leve} atl‘se very
)

small, then

In this case, the factor z, + 2z, - 2(yv.-n)| = (z. +z, -2 can be taken
: vy e - 2] = e ey yjzj

outside the integral over n as follows:

.(Zj-l + zj - Zyj) _/r fXN(yj,n) dn =~ 0

over a
small
range of n
yielding
z. 172,
yj . —l—§—~l in agreement with (Max, 1962).

Equation (F-8) can be rewritten, using (F-9) and (F-7). as+

. s
J v e - 2opm) peghetlioelia o e
nN=—o j )

By using Bayes Rule (Papoulis, 1965) we have
d - = - F =y - F-11
£y (7;7msm) = fy(y-n) £y (n|x y5m) | (F-11)
9nd

Tnuslthe random variable X takes values between 0 and b. -Hemnce-the argument

of fX (....) takes values between 0 and by -ane in the expressiony x=yj—n, n



s}
3

can only vary so that x is between 0 and b.

So: n = y.-b (corresponding to x
negative
maximum

b)

(F-12)

n =y, (corresponding to x

J %

positive
maximum

Substituting these results in equation (F-10) and performing a change of
variableslsurﬂfuve that part of a set of necessary conditions is given by:
b 2
f ( + z, - 2m) e no_ i) =0 (F-13)
217 *\"28 T "26m) vm

mn=0

j=2, 3, ... k.
After some straightforward but tedious manipulations,whith'involvgﬁthe use of

standard integral tables, we finally arrive at one set of necessary equations.

(y.-b)?2
exp <- el y.-b 2y,
25b i l+2+—L

_ 2 _
21tz = B e y. - V25b 8 (F-14)
erfc :%E_
=2, 3, k
Hees .
whetre the complimentary error function x is defined by:
NN N
erfc (x) = 2 Jy Voo X < > ) do
Now the second set of equations becomé,from equation (F—62}
— o Yi41”
2
2(e%) = (z.-x) exp (—n2[25x) g% dn =0 (F-15)
3 2. 4 A VX
J n=-« Yj n



This may be rewritten as

oo
(" - sz') dn = 0 i=1,2, ... k (F-16)
n=-m
where
Y., -0
1' fJH e {'nz} d= (F-17)
- }(p —_— —_— —
g .1 28xy Jx
i
Ji+17" 2
LU =n A5
I -f VX exp {——26x} dx (F-18)
yyn

\\Since I' and I" involve "error" functions with arguments as functions'of n,
the above integral can be evaluated only by doing a numerical double integrationm,
with the limits of the inner integrall a function of n. To avoid this difficul-
ty and to arrive at an analytical expression relating the z,'s, yj's and the

] . . . . - -
yj+1 s, the following approximations are madezover the interval [yj n, yj+l nj.

For low levels of x, the function exP(EE;) varies or increases somewhat

faster than it does at higher levels. At higher levels, it varies very slowly,
as it approaches 1 asymptotically.
The function :%i decreases faster at low levels (quite fast for very small
x .

values of x) than it does at higher levels. At higher levels, it varies slowlyy

as it asymptotically approaches zero.

2
; n F
Hence/over the range (yj—n, yj+l—n), the function exp 26x) increases,
=4 d h d ) —n?) hed by these ch Fur=
- ecreases/an se the product ey expl 555 ] is smoothe y these anges. =

the&s.@nly at very low levels are their variations significant.

2 2
Next, we consider the product /x_exp (—- Eg—x) . Both vx and exp (— —2-:;—)2)

2
. . . - n
ar¥es increas#wg over the indicated range. /§-1ncreases faster than exp <; Eﬁ;;)'

<§E;“\\\- But vx itself increases enty- slowly over the whole range of x and -



£ T
.80 its variation over an interval [y,—n, yj+l—n] will be relatively small. ‘So-fhe

2) W
product Vx eXP\~ S5% can“be expected to vary only slightly over any range
[yj—n, yj+1—n .
Hence, for both the functions, Vx exp(—n2|26x) and ;%_exp(—nZIZGX), we can
X

approximate in the integral with

y.-n +y. .-n
x = -1 > JEL (mean value) (F-19)
Hence, —n2
y.+y., . =2n
E R O T B I o)
2 2, Jeeo 2 3| bv2ms yiFy. ;720 i+ 73
2
=0 (F-20)
j=1, 2, 3, k

Using the fact that the thresholds are distinct and performing extensive

manipulations, equation (F-20) can be reduced to:

+ * +
_ (yj y1'+l o b>2 (y]' y]-+l _ ) yj y1°+l a b
e géb 2 + (1L 4+ 2V/cd V7 erfe 2
V26D : Ysb
y.ty.
z. _J_zjil_ - b
= /33:%= 2/ erfe (F-21)
¢ /b N
Yy
where c =-%g and d = (;%Tjiﬂ> 28
Finally solving for the output levels of the quantizer
1 (yj:y.+1 ) )2 (y.+>2'.+l ) b)
T—exp| - y.ty.
7 = 6] Y — Yerb +14 —%ﬂf—l (F-22)
J Yi Yiv1 w
2
erfc
Véb



This set of equationi)coupled with those in equations (F—léb represents the
necessary conditions for selecting the threshold levels {yj} and the output
levels {zj}.

We will briefly outline a numerical technique for solving for the unknown

levels. Assume that Yy =0. Then one item in equations (F-22) relates zq and

y24—uﬂﬂ 11kew1se/one of the equations (F-14) relates z15 zz,and Yoo
-Scfif we eam pick some z;, we can generate y, from (F-22), end Uglng this
5

Y,s We can find z, from (F-14). Thus, we can, step by step, find all the yi's

2

and the zi's. .
\S
One procedure will-be to pick z; first, generate all the zi's and yi'sland

then calculate the mean-square error. Then the value of z, may be changed and

ai|lﬂpkhe corresponding m*s. error can be found-eutT If this is greater than

&ilthe previous e®e, then another z. on the other side of the original z, may be

1 1

N
tried and the m-.s. error can be computed again. This iterative procedure is

Unil
repeated TITT we get a set of yi's and zi's corresponding to the minimum mean-
square error.

However, to use this approach,we must compute the mean-square error. This

is given by:

n=e +
k 2
7 oz 32— (:H_.E e
; et f (29" Tams %P zsx)/; = e

Employing the same approximations which lead to equation (F—l9% we may arrive

at the following complicated expression for e2.



¥ty
— Ek: _lz_Jil' e WL
g2 = (yj+1- j) Zz,exp(—Z/c—d)erfc ———— > ==
g ' /sb e

j=1

Ir .+§7 A 17 .+3, .

_ 5, exp(=2/cd) 2 2
J 1/(:3 28b v28b
+
<y. y.+l - b)
+ endeayd s seke 2
/&b
2 3/2
o . B Vi Y541 .
+ exp (-27/cd) . 2 2
/Zg 26b 25b
+
(Y. Z.H ) b)z (y.-;y._l_l ) b\) . frety )
] 1373+ 1
T 3erp 260 / 2 +( 2 25)
28b
<ZitZiil - b) y.ty.
+ Vrerfe - 3 + 3 b Bk -5 S 8
/g 2 2 28
& 2
<y' y.+1>
+ 2 —4—22— (F-24)
1)
Py
where for each j, 2V/cd = —ligltl .

The procedure described previously can be used to get the quantizer levels
corresponding to the minimum mean-square error.

Similarly;other probability density functions}such as Rayleighg norma%/

obtantl

can be assumed for fx(x) and the quantizer levels are again get by using
the above procedure. It may be difficult to evaluate equation (F-3) and
(F-5). In such cases, numerical integration may be employed. Also)the
sensitivity of the quantizer levels to differentep-iI!‘€>probability density
functions may be studied. The merit of this procedure lies in the fact that

a chosen performance index (mean-square error) is minimized while obtaining

the quantizer levels and thresholds.



APPENDIX G

AUTOCORRELATION PLOTS

The autocorrelation function is the inverse Fourier transform
of the power spectral demsity. It is useful in some data analysis using

second-order statistics and is included for reference here. Essentially

w Yook
WHEEPNES  OMemismbe—take the inverse Fourier transform of the power spectra

presented in Chapter 2. For convenience, the plots are normalized so

that: R(0) = 1.



FIGURE G.1. PLOTS OF THE NORMALIZED

AUTOCORRELATION OF SELECTED PORTTIONS OF APOLLO VI PHOTOGRAPHS
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UNSMOOTH POWER SPECTRAL PLOTS

APPENDIX H

3 The plots shown were generated using a 512-point FFT routine in
the UNIVAC 1108 with a rectangular data wiadow and no data smoothing.
The average value was also removed.

The computer-generated plots follow the same order: (1) the
(logarithimic) power spectral plot of the first sample line; (2) the
autocorrelation function of the first sample line; (3) the (logarithimic)
power spectral plot of the fifth sample line; (4) the log of the
average power spectrum of five consecutive lines; (5) the average auto-
correclation function of five consecutive lines. Averaging over five
lines decreases the spectral randommess in the measurement and is

essentially averaging over a scan of 5 x .079 = 0.395. n.mi. in width.



FIGURE H.1. UNSMOOTHED POWER SPECTRAL

PLOTS OF APOLLO VI PHOTOGRAPHS
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B(R-1) = (10.47)(19,360) = 0.202 n.mi./p-sec.

Thus the frequency conversion is:

fl = 0.202 T'f (C-16)
where:

f1 = apparent instantaneous frequency in MHz

f = spatial frequency in cycles per nautical mile

I' = phase velocity correct;on factor.

C.3. Geometrical Mapping From Satellite to Earth Coordinate System

The satellite measures coordinates in the o, B frame of reference.
The scene is measured in the 0, ¢ frame of reference. The mapping between
the two is quite linear for small angles from the subsatellite point,buéuﬁg;
become quite nonlinear for larger angles. This mapping can be portrayed by
tracing the locii of constant o and constant B in the 6, ¢ coordinate
system.

From Equation C-6 we find the equation of the curves of constant § to

be:

B -1 tanB ‘
¢ = £o3 € (cosbtanf+sind) (G-12)

wvhere € = r/R = 0.151, and provided that:

sin0
tanB f'l—scose . (C-18)

Similarly, the equation of the curves of constant o is found from

Equation C-5 to be:



1 £ 1 sinzh\

6 = cos 1+ - —— (C-19)
capmg g2 sinzc)
provided that:
sinZa < e2sing . (C-20)
— (14+e2-2ecos )

Curves of constant « and constant B are shown in Figure C.4.



FIGURE C.4. MAPPING FROM EARTH COORDINATES TO SATELLITE COORDINATES
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Appendix D

A Measure of the Effective Bandwidth Due to Aliasing Errors

The purpose of this appendix is to motivate a measure of the effects of
aliasing caused by under-sampling a signal. We begin by discussing the concept
of sampling a'deterministic signal. After the effects of aliasing ormbieesse

e piavdd
have been illumiaeéeé‘we will extend the results to stechastic processes.

Suppose that we wish to sample a waveform f(t) every T seconds. The

resulting sampled version fs(t) may be represented as:
£ .(t) = £(t) g(t) (D-1)

The function g(t) is a periodic function with period T. For examp19 it could
be a typical gate function)as is shown in figure D-1.
Ea-ﬁaée;TEO determine Fs(w), the spectrum of fs(t), we expand g(t) in a

Tourier series:

oo jnwst
g(t) = z c e (b--2)
-jnw t

where ¢ -d fT g(t) e S dte

n T 0
and wg = %E P

com this seri sf“é readily obtain the Fourier transform of g(t
N—
oo
Glw) = 2 ) c 8w ) . (D-3)

e 0O

Because multiplication of two signals in the time domain corresponds to convolu-

tion in the frequency domain, we have:

Fs(w) = ~%; F(w) * G(w) {+m F(y) G(y-w) dy . (D-4)



g{t)

T

GATE  FUNCTION
FIGURE D-1

2T



Note that F(w) is the transform of the waveform £(t) before sampling. However
using the form of the transform of g(t) and proceceding formally (which can be

justified rigorously),we arrive at the following results

0O

oo
Fs(w) <. f F(y) é(y—wﬂnws) dy

)
n=-cw y==x
“+oo

2 cn F(w+nws) . (D-5)

=00

The function F(w+nws) is just the original spectrum of f(t) shifted to (or
translated about) the frequency nw e Hence/the spectrum of the sampled waveform
is a composite of shifted and weighted versions of the original spectrum. The
weighting of each shifted version is determined by the line-spectrum of g(t).

If the spectrum of f(t) is strictly limited between the frequencies of
—wS/Z and +ws/2)then the sum in equation (D-5) is trivial. This situation is
depicted in figure D-2. Howeverlin generallthere can bée a large number of terms
in the series of equation (D-5) for each fixed w. An%i?me there is more than
one term in this series we say that aliasing has occurred. The expression“fold—

by gg;;;;;;g o

over 'is ! used because a copy of the original spectrum appears to be
folded back or forward over other copies of the original spectrum. The relative
weighting of the individual interfering’ shifted version of the spectrum is

determined by the nature of g(t) which is equivalent to specifying the values

[
of the Fourier coefficients. When all coefficients are unity, the sampler is
called an impulse sampler) e ,
+oo
g(t) = ) &(t-kT) .

= GO

Figure D-3 shows a situation in which the original spectrum is limited

between the frequencies of -w_ and 4+w_. The cross-hatched areas indicate

(=]



NSNS

STRICTLY  BANDLIMITED CASE
NO ALIASING
FIGURE D-2



frequencies which are distorted due to more than one term being present in the
/

. . Wy
series of equation (D-5), 4= aliasing has occurred. This is the case in the

SMS system and we now proceed to determine a measure of this distortion. We

note that only the coefficients c_, and c affect the distortion included in

1 +1

the portion of the spectrum centered about zero.

As can'be seen by consulting either Appendix A or (Papouli§)1965) the
effects of aliasing a stochastic process {y(t)} are reflected in the aliasing
of portions of its power-spectral density Sy(m). In fact,in direct analogy
with the previous development ,w@=tr=wE=t™t the power-spectral density of the
sampled version of y(t), SYs(w)‘ igcg:;en by

oo
Sys(w) = z lcnlz Sy(u+nu_).s) . (D-6)

n=-co
Hence ,all previous comments about band-limited signals apply to the case of

band-limited processes. Since we may assume that S (w) is bandlimited to the
y

band from —0g to wgs We are concerned with an aliasing situation in which only
the fold-over from adjacent bands of frequencies need be considered. A typical

situation is depicted in figure (D-4). Since the sampling function g(t) is

real,we have a Hermitian symmetry among the coefficients? sy ¢, = cfn.

We would like to choose some measure of theu aistortion et () Qliasing)
‘11u~3
Touarxde—tirtTond we will first define an effective hﬁgdwidth of a stochastic
process so that we can compare the cffective bandwidth of original waveforms
with that of the version which contains aliasing.
Tonsdir th

z w) is the power-spectral density of the process {Z(t)}.

Sz(m) is a real, eveg')nonnegative function of w (Papoulis, 1965). If it were

normalized, it would resemble a probability density function. Let Sz(w) be

this normalized function.
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D-8

= S (w) :
S (w) = ——= (D-7)
- f+c Sz(w) dw

00

We will define the effective bandwidth of this process as the variance of g (w)]

zsomctimes called the radius of gyration."

don -~
v2 = | wZSz(w) dw (D-8)

43?} = S ( wzf the equa-

tion dves representy the second moment about the center of oraVLLy\féhe variance).

Note thatlsince S (w) is an even function of w,

The use of the variance as a measure of the effective spread of the—rmrmewal.a

!
variabféé(gaﬁgil—known and widely used in all branches of science and engineering.
X"
There is an added bonus in using this definition}\ the uncertainty prin-

V\mﬂk\ph}& ay
ciple. This states that the variance y2 thwes a factor determined from the /y/f5£/

transform of VSz(w) must always be greater than m/2. L
W Y "{"ﬂ
Y2 a? > w/2 (p-9)
o
f 72 |r('r)l2 dt \
a2 = = (p-10) A
[T ]2 ar v
—00 5 uj’tbl/\— }j(
1 e +j ' 1
r(0) = 5= [ /5, e du @-11)
= N V)
" \”".LM/'L
The quantity a2 measures the spread of the inverse transform of VSz(w). There-
w,’}
fore'as we attempt to reduce the effective bandwidth of the process, the ef- t“d

fective time-spread of its corresponding transform must increase so that inequal-
tiy (D-9) is fulfilled. Thus}there is a trade—off between the frequency-domain
and the time-domain. For further discussion qg this topic see the references
(Brown, 1963), (Franks, 1969), and (Papoulis, 1962).

Suppose now that Sy(m) represents the power-spectral density of the input
to a sampler and that this spectrum is bandlimited to the range from g to +ws

The effective bandwidth of the input is:
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f S w2 s (w) dw
Yy

0
.Y2 = > = o (D"‘]Z)
f S g (w) dw
0 ¥
We have ?f course,used the evenness of w? and Sy(w). If aliasing has been in-

troduced by the sampler, the effective bandwidth of the center part of the
8*5(ﬁag\n which

spectrum depends off #row the folded part of the spectrum is added. A typical

center lobe of an aliased spectrum is shown in figure N-4. We will define ¢

as the effective phase of the folded spectrum., A wore! cose is achieved when

Fruyn
¢ = m. Then the effective bandwidth of tﬁéegéf?35%25 center lobe orte—emece

Ercm'is:
Pa
2 2 ; -
{ w [Sy(w) + Icll cos ¢ Sy(w ws)] dw
2" = -
8 . (D-13)
f & S (w) dw
0 y ms
where wo = 5‘

This quantity measures the variance of the central part of the spectrum. If
the effective phase of the aliasing is between n/2 and 3w/2, the effective
bandwidth as defined by B2 is less than the original given by y2. The |c1|2
term results from the nature of the sampling waveform g(t). A worst case

assumption is given by |C1|2 cos ¢ = -1. This is the case we will treat here.

Hence we will use:

Wy Yo
| w? Sy(w) dw = [ 7 (w-w,)? 8 (whwy) du
g2 = 2 2 0 . (D-14)
w
0
S d
g y(w) ©

This is easily derived from equation (D-13) using the evenness of Sy(u) and
the definition of Wy
Since the input to the sampler is the output of the filter, we may relate

S (¢) to the power-spectral density of the input Sx(w) by the well®known for-
¥

mula (Papoulis, 1965): R 2%

S (0 = S i) 1 '11‘) 2 . D"]l‘))
RORESNO) [0 (i) (



Finally, since our picture data is in the form of a sampler and since the sam-
pling rate for this data is clearly high enough, we may state the discrete
versions of the expressions for the effective bandwidth. We use discrete fre-

quency variables’
2K

Y k2 Sy(k) .
k=1
¥ (D-16)
) Sy (k)
=

K = half of the sampling frequency

K K
) k2S5 (k) - ) (k-K)2 S_(kHK)
2 - k=1 4 k=1 ’ ' (D-17)
g = 2K
) 5, ()

k=1
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e noise genevated in a photomultiplicr (p.m.) tube is studied'an&lg—
vl

v»le model the p.m. tube[for =re—prrpose=e dcsigning an optimum

i

quantizer 1“Fsuwgested.

In a p.m., tube, the photocathode emits electrons which are then accelerated

332 ' =l
and multiplied by a series of electrodegfknown as "dynodes" se=esriel suitable
o them ~
voltages are appliedy (Figures E~1 and LE-2). The incident light intensity

on the photocathode directly determines the photoemission current, the;eJNuku;thﬁUs{

Inert 1S oy oxcellent approximation ak)a linear relationship between the light intensity

and the photo current over a wide range of light intensities.

Q& will ngw Considec.
€he case Whe¥0 light of a constant intensity is incident on the photo-

|¢,v\
cathode | ramaniddorod, For constant voltages at the dymodes, we would expect

that the current W= J(ircctly proportionzal to the light intensity wilil
also be a constant quantity. Variation of the light intensity will produce

corresponding variation in the current. ﬁhhough it is said that the incident

5*3“‘“‘ t Vwc‘k
light is of constant intensity, thi®®is not strictly true when oretews—tits
M\@r 03 -~
STt rom—a-mtTTO0s copic point © T“Vfcw. When ewe sayg that light of a

we
particular intensity is incident on a photocathode, eome=t3 refers$mg to the

number of photons (packets or quanta of energy, each being equal to hv,

v = frequency of light) which strike the photocathode. The larger the number

-—t

of photons e, the larger the current . 50 by the term, "constant intensity'y

wt : .
one referg to the average number of photens. But the number of photons strik-

. . . 1+ .
ing the photocathode is not a constant quantity.bwet fluctuates about a quie-
J

Ts warage 'S carled
o B e

scent quantity which is the "average" over a long period ame ¥

"constant light intensity" Hence, there is a corresponding change in the
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number of photoelectrons emitted from the photocathode. T].ws-;_{he emission

of electrons is actually random in form s Mre electrons are emitted at

one instant, fewer the next, with the average number per unit time the same

" : what o ik
over a long period of time as shown below in Figure E-3.

Ip.c

FIGURE E-3
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The situvation described above is ewwewedessw the same as thy“’Mﬁt prevails
in a vacuum diode operating in the temperature limited region at a fixed cathode
temperature and a fixed data voltage. The one difference is thas in the case of
photoemission, the fluctuations in the current are due to fluctuations in the
number of striking photons, with no heating of the cathode. Hen-ee—,-The analysis
carried out for the shot noise (Schwartz, 1959 and Davenport and Root, 1958)} in
NP

a temperature limited diode i erfectly valid for thre noise due to light

intensity fluctuations. Hence (Schwartz, 1959),

22 _ ; _ E-1
1% oise (r.m.s. noise) 26AfID.C. ( .)
Af = Noise equivalent bandwidth

ID c = Average photocurrent

-Ba't;u an actual situation)such as that in S.M.S. s 'stems/ the light
intensity incident on the photocathode is not a constant quantity,k varies

i S GOt . : s
with time, the operating Curren t ,Ch-riasm—e i S ———,, /T 3
given time, the current fluctuates about the average operating current I, asd— Thain

sé cquation (E-1) can be used to describe the noise with I being)in this

3
\
\

case the average operating current. Intuitively,it is obvious that

e A

intensity and s the operating point varﬁ, the r.m.s. value of the noise also

varies with the operating current. @

Hence '{)4“)})‘/‘/0
i2 . = 2eMI W (E-2)
noise

QD
where T is the time varying photocurrent. v

Let the stochastic process X(t) depo ‘W@@nt and N(it), the noise.

Assuming that the photocurrent and the
\

D.C.

) as the light

oise of- p.m. tube are members of



ergodicMPapoulis, 1965, Ch. & >rgodicity in the mean and the auto-

correlation are assumed), we can write pe”

E[N2] = 2eAfX _ (E-3)

Further, the time average of the noise can be assumed to be zero. S,

E(N) = 0 (E-4)

Hence,
05 = E(N2) = N2 = 2eAfX
or
o§ = 2eAfX (E-5)

Thus'(E—5)giVGS the variance of the fluctuation noise at the output of
the first stage of the p.m. tube ‘yithout considering secondary emissionil

EXPRESSION FOR THE R.M.S. VALUE OF THE NOISE AT THE OUTPUT OF AN N-STACE

SECONDARY EMISSION MULTIPLIER PHOTO TUBE:

The p.m. tube shown in Figures E-1 and E-2 consists of a photocathode fol-
lowed by n dynodes and an anode to form an N-stage secondary emission current
multiplier. A simple sketch of the p.m. tube is shown (Figure E-4) as an
aid in deriving the aqu!Lhmntioned expression. The current amplification due
to secondary emission at a dynode is equal to "G" and it is assumed to be the

same for each dynode.

InO refers to the r.m.s. value of the noise generated in the cathode.

Tnl“ the r.m.s. noise at the output of the first stage}including the effect
: .

of secondary emission from the first dynodeg Ini‘s‘the r.m.s. noise at the

output of the ith stage, and so on. 1 dis the average cathode current and

I the average output current.

0’



n0 Yy

n=10 12 = 2eIAf
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Figure E-4
—— nt
12 = 2eTAf-G" G__-1) (E-6)
nn G-1
Ly .= c"1 (E-7)

In the expression

2 = @272
Inl G InO

/— )2
the quantity (E Ii

) is the mean square value of the fluctuation noise

+ 2e(GI)Af

0
due to theincident current GY IiO' andrthe quantity 2e(GI)Af idis the mean-—

square value of the fluctuation noise about the average current GI due to the

random emission from the first dynode.



From equation (E-6)

e n+l
o) _ Il (G —l)

Inn 2eTAfG o1

. nt1 X

Since G >> 1, we can write the above as
- nt1l
~ £

Inn 2elAf (G-1) (E-8)

Thus the mean-square value of the noise at the output of the p.m. tube

is given by (E-8) and this noise fluctuates about Iy = 61
PROBABILITY DENSITY FUNCTION OF THE NOISE
AT THE OUTPUT OF THE P.M. TUBE
Recalling that the p.m. tube noise is shot-noise (Schwartz, 1959 and
Davenport and Root, 1958),it can be expected that the total output current
of the p.m. tube follows a normal probability density funétion. The total
cathode current in &he p.m. tube can be assumed to be the sum of a large number
of iﬁdependent and overlapping current pulses d;e to individual photons. Be-

cause of the random occurrence of these pulses, the total current fluctuates

about a specific value)which is the effective averagijdver a very long period.
18
The total currente—bedag the sum of a large number of independent random vari-

ables (current pulses)rcan be expected to follow a normal densitxlin view of
the cenfral limit theorem (Papoulis, 1965, Ch. éz’under certain broad conditions.
Experimental results totally support this conclusion.
Hence, the probability density function of the total current is given by,
(iT—I)2
£, ( — exp|- — (E-9)

i ) =
Total Total vY2mao, 202
ip L




where I 1is the average current, oj , the standard deviation of the total

- T
currentdé?; a random variable.

>
ﬁvéwrhe noise In (again a random variable) is given by
I =1I-I (E-10)

The conditional probability density function of the noise assuming the signal

) )
is given by,
£ (il ) = £ (i +I)
In nly s LT n
i2
£ G ) =t g | — 8 (E-11)
n Tlr=i Y21 o, Zoi
i T
because o, = 0,
i i
T n
or
'| i (E-12)
f . (n ) = — exp |- E-12
= 2
n X=x /E7TON1 2ON,
where Gﬁ‘ = 2eAfX with X corresponding to the varieble operating current I.
Thus ,it may be observed that the variance of the noise is proportional to the

1

operating current X.
Equation (E-12) gives the conditional probability density function of the
noise at the output of the first stage of the p.m. tube, ﬁwithout considering
secondary emission from the first dynodé’. It is a simple matter to deduce
that, becgébe the system is linear (Papoulis, 1965, Ch. 12), the conditional
probability density function of the noise at the output of the p.m. tube is also
Ho wived, jhz

. . . 1 . 5 2
normal with zero mean’-ba€~wITh*a—varlancebgivcu by equation (E-8) where I%
: nn

is the variance of the noise.



\hus,the output of the p.m. tube can be written as

~

Y=06X+N

where N 1is normal with the variance given

It may be worthwhile to mention that an increase in the gain of the first
dynode (for example, G1 = 2G2 = 2(33 = . . . 2Gn = 2G) over those of the rest

can be shown to result in a small improvement of the peak-to-peak signal to

pof

So far, only the noise due to the fluctuations in the number of incident

r.m.s. noise current.

photons'or equivalently )in the intensity of the incident light has been con-
!

ovhcg_

sidered. However, there are sememwmesg factors which contribute noise, e

ALt TTr—rTr—tre——us_iccusced abewe= Ticure (E~5) (Amos and Wang, 1969) shows

i I 1 . & b"‘\w
a "model" of the p.m. tube including theffvartous—Tmdise components, ¢+STUSYed

Tedw

? It is inevitable thal | i e,
bue=—mtm o cxtrancous and undC\yé\Lruble light from the background of the p.m.
A\l
Tuh \HvW, eontriiovt O
tube is incident on the photocathode. W&mmnﬁ%m
1igtﬁnwmwgnﬂmr with that dueto-the
li%u\,\,uoit.v g et 0w T iTCL oL 1nteérect amd-hence L Cowto another

noise component. Again, the noise due to background intensity fluctuations

obeys the shot-noise (Schwartz, 1959 and Davenport and Root, ].958).m1he
mean-square value givemy

C2n+l

7 = OxAf M =14
1“]) zZeni Tb G- ! ( 1 )
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where Ib is the "average background" photocurrent about which the noise
143 .Q/W is
fluctuates. Because of &= orighb it [ ] VTS e (1T Ficult to
34”%
account for and'serwill be omitted.

™ :
2) Dewe=errrenht (Lnos and Wang, l96?}&k Another noise component in a

p.m. tube is due to wieee=rE=RNCOTI®» the '"dark current”. When a p.m. tube is

operated in gom%%eﬁg,darkness, electrons are still emitted from the photocathode

. \ 1o s .
<E:;),jlnaxnn_7ﬂg__h____

Ue to agencies other than incident light. The resulting "dark current" is
amplified by the multiplier system and sets a limit to the lowest intensity of
light that can be detected directly. With most photocathodesltherijﬁic emis—
sion appears to be responsible for the largest component of the dark current.
At ambient temperatures, the thermal dark current It obeys Richardson's

law approximately as

I, = 1.20 x 10272 exp —iﬂif¥¥—~ yﬁjamp. cm 2 (E -15)

where T is the absolute temperature in K and ¢t is the thermal work
function for the cathode material. It is clear from Equation (E-15) that cool-~
ing the photocathode Will hekcmbtrmsmeeetr=rf rcduci@g. the thermal component of
the dark current. For all normal cathodes except the AgOCS(s—l) type, ie————
fositmddean the thermal component of the dark current may be virtually
eliminated by cooling to —40°C.ﬁnd-do significant improvement is obtained &hj
e
cooling t emperatures, etow—tirtst But fthe photocathode of the S.M.S. p.m.
W“‘
tubeM® not cooled to such low temperatures.
Again the mean-square value of the short-noise due to dark current
(principally thermionic emission current) is given by

S 2nt+
C n+l

2 ~ AfT P R .
IZ | = 2eMT, + v (E~16)




The final model for the p.m. tube is shown below.

1
£ (n/ ) - exp [~ —]
N M=m 2 1 62 26
n
G2n+1
2 > — = "
Gn 2eAf o1 X
n+1
2 =
0n 2eAf o1 M
Figure E-6

Finally, the term "pulse height distribution" (Bay and Prapp, 1964) used
in connection with p.m, tubes needs some explanation. In a multiplier photo-
tube, each photoelectron undergoes cascade amplification within the tube and
arrives at the anode as a pulse of many (say 10!%) electrons. If all the photo-
electrons were multiplied equally, they would contribute to the signal cur-
rent equally. 1In actual practice, however, the amount of multiplication is
very different from'one photoelectron to another, so that the stream of pulses
at the anode includes a very broad range of amplitudes. Some contribute =g

oA aath aa

wmrehazs> ten times tO~the—phebocuspemt~easdo others. Since the pulses are not

of equal size, it is evident that the SNR of a multiplier phototube will be
lower when used in combination with an ordinary current measuring system which
introduces measurement noise, than when used in a system that counts only the
pulses with equal weight regardless of their sizes. This is the fundamental

differcnce between pulse counting techniques and current measuring techniques.



APPENDIX F

A\
R : "
b Optimum Quantizer

optimvm

WeVdevelop the meTesszgry conditions ef}gﬁé parameters of a quantizer te-
ho—opsimem=8f| the basis of overall mean-square error. It is not clear what
criterion was used in the design of the present SMS quantizer. The performance
of the present quantizer is equivalent to optimally quantiéing the noise from

o

the photomultiplier tube}wh:LH‘TE only statistically dependent on the VISSR
data. Our results, while not complete through the actual numerical solution
of the equations, indicate that the design is not as simﬁle as the reasoning
which produced the present quantizer would suggest. An adjunct of the develop-
ment of the necessary equations is that the quéntizer parameters are sensitive
to the statistical distribution of the input data.

A simple block diagram of the S.M.S. system (one visible channel) is shown

below:

e e ;
[ | CAMERA | SAPLER  quan-

SIGNAL | PMI ' ELECTRONICS - ) FILTER -— — -~ - — TIZER “TO ENCODER
S A N SRR

Figure F-1



The optical signal at the input to the PMT is converted to electrical

/‘]signal by the PMT at its output. During this process, a noise is also added

X

/to the signal. The-p:ingiggl_sggggggnﬁ—e&?lhis noise is due to the signal
[ e N
g%tselﬂ arrd égr a given signal, <+t has a normal conditional probability density

function, with a zero mean and a variance proportional to the signal itself.

It is now assumed that any other noise generated after the PMT output M&H(ﬂ bﬁ-fov‘

the input to tpe quantizer is very small compared to the noise due to the

aH&S;ésg?I%di:££;ﬁlglﬁzﬂ‘
signal, be omitted in the following analysis. S?)

Ninsn
for the purpose of designing an optimum quantizer such that the mean-square

error between the output of the quantizer and the signal is minimum, the follow-

ing model is assumed.

-~

PMI OUTPUT = x‘,_;E' v Y s QuANTIZER . Z

NOISE = N

Figure F-2

The PMT output signal is equal to the PMT input signal multiplied by
the PMT total gain.,
As mentioned before, the criterion or performance index)whiah-io minimized

while choosing the quantizer levels, is the mean-square error between Z and Xy L+~

P
aad. is defined by:
A

€2 = E[(Z-X)z] = E%E((Z—X)2|N=n>f (F-1)

The following notations are adopted throughout this appendix:



1) Capital letters indicate random variables.
2) Small letters indicate the variables assumed by the random variables,
3) fX(X) represents the probability density function of X.
4) fN(an=x) represents the conditional probability density function of
N, given X=x.
5) E( ) denotes the expected value of a random variable.
6) fXN(x,n) denotes the joint probability density function of X and N.
If we denote the quantizer thresholds by the set of real numbers, {yi}?ii )

and the corresponding output levels by the set {z J% -1 We may proceed to develop

the necessary equations for these quantities to yield a minimum mean-square error.

b
E{(Z-—X)2|N=n} =f (=%)° £ (x|N=n) dx (F-2)
=D
k *i41
a f(z gl £ (x|N=n)dx
1
k Yit1™

2 "
igl f;n (zi—x) fX(x[N—n)dx

The above equations imply that, for a fixed noise n, there is & one-to-one map-

)

ping between the xi'sjani-tHE'yi's}and L zi's. Otherwise, for a given

X=x, there is no unique Y=y because of the addition of noise.
The overall mean-square error is given by:

— 1+l
o =f 2 f . —x) g (6o dxf dn (F-3)

To minimize the mean-square error, a necessary set of conditions axe |3

=z ;
e - g (F-4)

2y,
Y3

and



2(e?)
9z,
3

=0 forj=1,2,3, ... k (F-4)

The first set of these equations yield§:

@

e 2 _ . 2 ks i i
ﬁ£_m[(yj n zj—l) (Yj n zj) ] fXN(yj n,n)dn 0 (F-5)
i=2,3, ... k

: = ;
is assumed to be zero and—su—aggu is the correspon-

ding noise. Further, fXN(O,n) = Zero.)

(For j=1, yl=0 because X

. 3(22)
Similarly, setting 3z equal to zero,
N
a(e”) _ _ - n
e _[ .f (zj X) fXN(x,n)dx dn =0 (F-6)
J s Yj'n

ij=1,2,3 ... k

Up to this point, the treatment has been vefy—gener;fgggz;;ut the assump-
tion of any particular joint probability density fXN(x,n). To illustrate the
procedure for obtaining the levels of an optimum quantizer, let it be assumed

that X has a uniform distribution.

%— 0 <x<bDb
fX(X) = (F-7)
0 elsewhere
Equation (F-5) can be written as:
z, +z, - 2(y.,-n)| f_ (y.-n,n) dn =0 F-8
nfm[rl 3 = 205 £ (F-8)

The 'hoise'" due to the signal has a conditional probability density func-

tion (prd-f). (See Appendix E.)



1
fN(n|X=X) = 75 e . exp(-n2|26x)

where (F-9)

E[N|x=x] = 0; o | = E[N?[x=x] = 6x,

§ is a known constant,

Wk €an
As—a check on the equation (F-8) wnﬁe—&utlf-frm&-&m the

¢
nois%‘ the fluctuations about any signal leve} atl‘se very
)

small, then

In this case, the factor z, + 2z, - 2(yv.-n)| = (z. +z, -2 can be taken
: vy e - 2] = e ey yjzj

outside the integral over n as follows:

.(Zj-l + zj - Zyj) _/r fXN(yj,n) dn =~ 0

over a
small
range of n
yielding
z. 172,
yj . —l—§—~l in agreement with (Max, 1962).

Equation (F-8) can be rewritten, using (F-9) and (F-7). as+

. s
J v e - 2opm) peghetlioelia o e
nN=—o j )

By using Bayes Rule (Papoulis, 1965) we have
d - = - F =y - F-11
£y (7;7msm) = fy(y-n) £y (n|x y5m) | (F-11)
9nd

Tnuslthe random variable X takes values between 0 and b. -Hemnce-the argument

of fX (....) takes values between 0 and by -ane in the expressiony x=yj—n, n



s}
3

can only vary so that x is between 0 and b.

So: n = y.-b (corresponding to x
negative
maximum

b)

(F-12)

n =y, (corresponding to x

J %

positive
maximum

Substituting these results in equation (F-10) and performing a change of
variableslsurﬂfuve that part of a set of necessary conditions is given by:
b 2
f ( + z, - 2m) e no_ i) =0 (F-13)
217 *\"28 T "26m) vm

mn=0

j=2, 3, ... k.
After some straightforward but tedious manipulations,whith'involvgﬁthe use of

standard integral tables, we finally arrive at one set of necessary equations.

(y.-b)?2
exp <- el y.-b 2y,
25b i l+2+—L

_ 2 _
21tz = B e y. - V25b 8 (F-14)
erfc :%E_
=2, 3, k
Hees .
whetre the complimentary error function x is defined by:
NN N
erfc (x) = 2 Jy Voo X < > ) do
Now the second set of equations becomé,from equation (F—62}
— o Yi41”
2
2(e%) = (z.-x) exp (—n2[25x) g% dn =0 (F-15)
3 2. 4 A VX
J n=-« Yj n



This may be rewritten as

oo
(" - sz') dn = 0 i=1,2, ... k (F-16)
n=-m
where
Y., -0
1' fJH e {'nz} d= (F-17)
- }(p —_— —_— —
g .1 28xy Jx
i
Ji+17" 2
LU =n A5
I -f VX exp {——26x} dx (F-18)
yyn

\\Since I' and I" involve "error" functions with arguments as functions'of n,
the above integral can be evaluated only by doing a numerical double integrationm,
with the limits of the inner integrall a function of n. To avoid this difficul-
ty and to arrive at an analytical expression relating the z,'s, yj's and the

] . . . . - -
yj+1 s, the following approximations are madezover the interval [yj n, yj+l nj.

For low levels of x, the function exP(EE;) varies or increases somewhat

faster than it does at higher levels. At higher levels, it varies very slowly,
as it approaches 1 asymptotically.
The function :%i decreases faster at low levels (quite fast for very small
x .

values of x) than it does at higher levels. At higher levels, it varies slowlyy

as it asymptotically approaches zero.

2
; n F
Hence/over the range (yj—n, yj+l—n), the function exp 26x) increases,
=4 d h d ) —n?) hed by these ch Fur=
- ecreases/an se the product ey expl 555 ] is smoothe y these anges. =

the&s.@nly at very low levels are their variations significant.

2 2
Next, we consider the product /x_exp (—- Eg—x) . Both vx and exp (— —2-:;—)2)

2
. . . - n
ar¥es increas#wg over the indicated range. /§-1ncreases faster than exp <; Eﬁ;;)'

<§E;“\\\- But vx itself increases enty- slowly over the whole range of x and -



£ T
.80 its variation over an interval [y,—n, yj+l—n] will be relatively small. ‘So-fhe

2) W
product Vx eXP\~ S5% can“be expected to vary only slightly over any range
[yj—n, yj+1—n .
Hence, for both the functions, Vx exp(—n2|26x) and ;%_exp(—nZIZGX), we can
X

approximate in the integral with

y.-n +y. .-n
x = -1 > JEL (mean value) (F-19)
Hence, —n2
y.+y., . =2n
E R O T B I o)
2 2, Jeeo 2 3| bv2ms yiFy. ;720 i+ 73
2
=0 (F-20)
j=1, 2, 3, k

Using the fact that the thresholds are distinct and performing extensive

manipulations, equation (F-20) can be reduced to:

+ * +
_ (yj y1'+l o b>2 (y]' y]-+l _ ) yj y1°+l a b
e géb 2 + (1L 4+ 2V/cd V7 erfe 2
V26D : Ysb
y.ty.
z. _J_zjil_ - b
= /33:%= 2/ erfe (F-21)
¢ /b N
Yy
where c =-%g and d = (;%Tjiﬂ> 28
Finally solving for the output levels of the quantizer
1 (yj:y.+1 ) )2 (y.+>2'.+l ) b)
T—exp| - y.ty.
7 = 6] Y — Yerb +14 —%ﬂf—l (F-22)
J Yi Yiv1 w
2
erfc
Véb



This set of equationi)coupled with those in equations (F—léb represents the
necessary conditions for selecting the threshold levels {yj} and the output
levels {zj}.

We will briefly outline a numerical technique for solving for the unknown

levels. Assume that Yy =0. Then one item in equations (F-22) relates zq and

y24—uﬂﬂ 11kew1se/one of the equations (F-14) relates z15 zz,and Yoo
-Scfif we eam pick some z;, we can generate y, from (F-22), end Uglng this
5

Y,s We can find z, from (F-14). Thus, we can, step by step, find all the yi's

2

and the zi's. .
\S
One procedure will-be to pick z; first, generate all the zi's and yi'sland

then calculate the mean-square error. Then the value of z, may be changed and

ai|lﬂpkhe corresponding m*s. error can be found-eutT If this is greater than

&ilthe previous e®e, then another z. on the other side of the original z, may be

1 1

N
tried and the m-.s. error can be computed again. This iterative procedure is

Unil
repeated TITT we get a set of yi's and zi's corresponding to the minimum mean-
square error.

However, to use this approach,we must compute the mean-square error. This

is given by:

n=e +
k 2
7 oz 32— (:H_.E e
; et f (29" Tams %P zsx)/; = e

Employing the same approximations which lead to equation (F—l9% we may arrive

at the following complicated expression for e2.



¥ty
— Ek: _lz_Jil' e WL
g2 = (yj+1- j) Zz,exp(—Z/c—d)erfc ———— > ==
g ' /sb e

j=1

Ir .+§7 A 17 .+3, .

_ 5, exp(=2/cd) 2 2
J 1/(:3 28b v28b
+
<y. y.+l - b)
+ endeayd s seke 2
/&b
2 3/2
o . B Vi Y541 .
+ exp (-27/cd) . 2 2
/Zg 26b 25b
+
(Y. Z.H ) b)z (y.-;y._l_l ) b\) . frety )
] 1373+ 1
T 3erp 260 / 2 +( 2 25)
28b
<ZitZiil - b) y.ty.
+ Vrerfe - 3 + 3 b Bk -5 S 8
/g 2 2 28
& 2
<y' y.+1>
+ 2 —4—22— (F-24)
1)
Py
where for each j, 2V/cd = —ligltl .

The procedure described previously can be used to get the quantizer levels
corresponding to the minimum mean-square error.

Similarly;other probability density functions}such as Rayleighg norma%/

obtantl

can be assumed for fx(x) and the quantizer levels are again get by using
the above procedure. It may be difficult to evaluate equation (F-3) and
(F-5). In such cases, numerical integration may be employed. Also)the
sensitivity of the quantizer levels to differentep-iI!‘€>probability density
functions may be studied. The merit of this procedure lies in the fact that

a chosen performance index (mean-square error) is minimized while obtaining

the quantizer levels and thresholds.



APPENDIX G

AUTOCORRELATION PLOTS

The autocorrelation function is the inverse Fourier transform
of the power spectral demsity. It is useful in some data analysis using

second-order statistics and is included for reference here. Essentially

w Yook
WHEEPNES  OMemismbe—take the inverse Fourier transform of the power spectra

presented in Chapter 2. For convenience, the plots are normalized so

that: R(0) = 1.



FIGURE G.1. PLOTS OF THE NORMALIZED

AUTOCORRELATION OF SELECTED PORTTIONS OF APOLLO VI PHOTOGRAPHS



SINIBd H1lHQA

G¢e g2z 0Dz SL1 0SI Szl 001 SL 0s S¢

o

l‘ﬂ'mljillllx<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>