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INTRODUCTION

This month begins a series of reports describing the improvements
and new results of the VAS computer simulation program. Although
results are still meager at this time, the basic elements of the
simulator have been implemented and debugged. The attached report,
prepared by Dr. H. Revercomb, describes the theory and procedures
used to calculate realistic spatial weighting functions for the
VAS instrument. Other aspects of the simulator will be dealt with in

subsequent reports.

SPATIAL WEIGHTING FUNCTIONS

Introduction:

The spatial weighting functions for use in simulations were
extended to better represent the effect of diffraction. The new functions
are finite over a square 8 mr on a side approximately centered at the
detector IGFOV. This square FOV contributes about 99.75% of the total
detector response for the 11.2p channel. Mathematically the spatial

weighting functions, ¢(x,y), are defined as follows:

I(t) =f de dy ¢(z-x _(t), y—yo(t)) Is(x,y)

where Is(x,y) is the scene radiance as a function of position (x,y) and

-

I(t) is the measured radiance at time t when the detector IGFOV is centered

a (xo, yo). The normalization condition on @ is:



fdxfdy ¢(X,Y) =1

such that Is(x,y) is the scene radiance when the scene is uniform. The
spatial weighting function can be written in terms of the diffraction
function D and the detector output filter impulse response function R

as follows:

.—x'

© X
¢ (x-x_,y) = N :C dx' R (=) D(x—x',y)

Xl

N is the normalization constant. R (x; ) is the fraction of the detector
output at time x/v due to the detector output at time x'/v (v is the speed
of the IGFOV center). D (x-x',y) is the fractional energy entering the
optical system from scene position (x,y) which falls on the detector while
.its IGFOV is centered at (x',y). (It should be noted that the detector
responsivity was assumed to be uniform in the above definition of 9).

In this report we discuss the diffraction function and the approximation
to it used for simulation, and then illustrate the results of numerical
calculations of the diffraction functions and the spatial weighting
functions for bands 1, 5, 7, 8, 10 and 12.

1.0 Asymptotié Behavior of the Diffraction Function and Detector Sensitivity
to Radiation from Outside its IGFOV.

The diffraction function D(x,y) which represents the fraction of the
energy incident on the optical system from position (x,y) of the scene that

is diffracted onto the detector can be written specifically as:

IA dg'dn"T,([£(x)-EM)2 + [n(y)-n'12)
D(x,y) =

d
f Id(r) 27RdR
(o}

(1)



where the integral is taken over the detector area A ;3 £(x) and n(y) are
the projections on the focal plane of the scene position (x,y); and Id(R)
is the diffracted intensity on the focal plane at a distance R from the
geometrical projection of a point source in the scene. The diffracted

intensity is that of an annular aperture and is given by (Born, 1965)

I 2J3_(p) 2J3. (ep)
1,0) = 1oz | ; - €2 iT]% (2)
where p = 2“'% sin r; r is the angular position of the point source.
a = outer aperture radius
A = wavelength of diffracted radiation
€ = obscu;ation ratio (inner aperture radius = a)
Jl = first order Bessel function
I = the intensity at r = 0

From D(x,y) we can determine the fractional energy incident on the

detector from within a circle of angular radius r defined by:

_ .-/]c.ircle D (x,y)dxdy
fdxf dyD(x,)

=L ﬂ D(x,y)dxdy. (3)
d c

ircle

E(r)

E(r) is a measure of the detector response (for uniform detector responsivity)

to radiation from outside of its IGFOV.
1.1 Asymptotic Behavior of D(x,y)

For source points very distant from the center of the detector IGFOV, the

diffraction function becomes radial and can be approximated analytically



by using the asymptotic expansion of the Bessel functions of Equétion 2.
This approximation is useful for determining E(r) for large r.

First consider the.point diffraction pattern expressed by Equation 2.
For our application the argument of the Bessel functions is large for r
larger than the IGFOV of the detector. Using the following representative

parameter values:

side of square IGFOV: .384 mr

A 11.17 q
a: 20.3 cm
r: .2 mr,

we see that

p = 2#% sin r = 2%3 r = 22.8.

Therefore, the Bessel function can be approximated to within a few

percent by:

1/2 3

3,6) 5 G cose- 7 @)

We can see that the oscillations of the point diffraction function as r

is varied are very rapid. If the obscuration ratio were 0 ( it is

actually .4) minima of the diffraction pattern would occur at intervals

of %Z = ,028 mr for A = 11.17u. About 14 minima occur over the area of

the detector. Substituting the approximation of Equation 4 into Equation
2 gives:

I0 8 1

Id(r) = T2 7 p3 [cos? (p- %ﬂ) + ecos? (ep- %ﬂé - 2VE cos(p- %l)cos(ep— %?5]

Since for large 4, the variable p does not change very much over the
detector area and because the cosine functions go through many oscillations

over the detector, the integral of Id(r) over Ad can be approximated by:



I
. o) 1 A3 dte. 1
[ Id(r)da - (1—62)2 Ad ™ (a) ( 2 ) s
d

where r is the angular distance of the point source from the center of
the IGFOV. The factor p-3 was removed from the integral and the cosine
integrals were replaced by their average over integer numbers of cycles.
The fractional error caused by removing p 3 from the integral can be
approximated by %%7 where d is the side of the detector square. The
exact integral oscillates about the approximation of Equation 5 because
of the cosine integral approximation, however, the amplitude is small
and the frequency large so that the average over a small change in r

is well represented by the approximation.

We have esseﬁtially obtained the asymptotic diffraction function
including its wavélength dependence. Noting that the integral of the
point diffraction pattern over all angles r is proportional to A2 (using
sin r = r) we have from Equation 5:

KA
D(x) = Ad =3

where K is a proportionality constant which is wavelength independent.
1.2 Asymptotic Behavior of E(r) and Energy Circles -

Using the asymptotic diffraction function we can easily determine the
fractional energy incident on the detector from outside a circle with

large angular radius r. That is, we can find 1-E(zx):

8

L-E(x) i— D(r.;)21rr'dr'

d

> R

21K —
r

(5)



TABLE 1.1.

WAVELENGTH
3.73
6.71

11.17
14.71

11.17a

NP

WAVELENGTH DEPENDENCE OF DETECTOR EFFECTIVE IFOV

Fraction
within a

0%
.138

.140

_;143
146

.076

192 mr detector.
«384 mr detector.

e

of total response originating from

circle of indicated radius (mr)

80z

.175

.179

.187

.195

.107

All

907

.187

«195

.219

«240

<148

992

.310

561

- .928

1.222

.928

3.10
5.61
9.28
12.22

9.28

other wavelengths are for a
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99.9%

r = 332 KM

FIGURE 1.2. 11.2u Energy Circles. The 7% wvalues indicate the amount of
detector response originating from inside of a circle of radius
r given in terms of subsatellite distances. The dark square is
the detector IGFOV.



Then for r larger than about 1 mr the angular radius of a circle con-

taining the fraction E(r) of the total detector response is:

A
TEw ()

r=2K

For r smaller than 1 mr the diffractive response was calculated
numerically using Equations 6 and 7 to extend the necessary integrals
to r large. Also the predictions of Equations 6 and 7 were verified
and the constant K was found to have the value 1.32 x 10—4 when x is
measured in microns, r in milliradians, and Ad in (mr)z. The results
are shown in Figure 1.1 and some values are given in Table 1.1. The
numerical results are approximate because the diffraction function was
assumed to be radial. >D(r) was approximated by D(x,y) with y = 0. The

results are shown more dramatically in the form of energy circles on

the earth about.the subsatellite point in Figure 1.2.

2.0 Two-Dimensional Diffraction Function for use in Simulations

-

The diffraction function D(x,y) for a square detector is a two-
dimensional function. In spite of its obvious symmetries (if the
detector responsivity is assumed uniform) numerical calculation of the
total function would require a large amount of computer time. As an
alternative, we have for simulation purposes calculated D(x,y = 0) and
used it, in éonjunction with the results in Section 1.0, to form an
approximation to D(x,y).

We noted in Section 1.0 that as x or y become large the diffraction
function becomes radial, i.e. D(x,y) - D(x2 + yz). To incorporate this
behavior into the approximate D(x,y) we use different functional forms

over the two regions shown in Figure 1.3. 1In the shaded "star" region



the square symmetries of the detector are expressed by letting:
D(x,y) = D(x,0) D(0,y) ‘ (8)
For points outside of the "start", a radial function is constructed
which is continuous with the inside function at the boundaries. As
defined in Figure 1.3 the points (xo,yo) and (yo,xo) lie on the intersection
of a circle centered at the center of the detector IGFOV and passing through
(x,y). For the general case where the detector responsivity is not uniform

a diffraction function of the following form is assumed:

D(x,y) = sin20 D(xo,yo) + coszo D(yo,xo) ¢))
where O is defined in the figure and

D(xo,yo) = D(XO,O) D (O,yo).
If the responsivity is uniform this reduces to the radial function,

D(x,y) = D(xO,O) D_(O,yo). (10)

The side of the square d inside of which the diffraction function is
given by Equation 8 was chosen to be .44 mr fqr the large detector (.4 mr
square) and .22 mr for the small detector (.2 mr square). As mentioned
earlier the diffraction functions were calculated for an 8 x 8 mr square
which includes 99.75% of the detector response for a wavelength of 11.17y.
3. Numerical Results for the Diffraction Functions and the Spatial

Weighting Functions

The diffraction functions for channels'1,5,7,8,10,12 are shown in
Figure 1.4. The semilog plots, which greatly accentuate the large angle
tails, represent a crogé—section of D parallel to the sides of the IGFOV
and passing through its center, (i.e. D(x,0)). The oscillations of the
tails of the functions for the 1§ng wavelength plots are caused by
oscillations of the diffraction pattern fpr a point source. The large

angle behavior of the diffraction functions is consistent with the
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discussion of Section 1.0.

The spatial weighting functions for channels 1,5,7,8,10 are shown in
Figure 1.5 and 1.6. The plots represent east-west slices of ¢; since we
are assuming a uniform detector responsivity the north-south slices are
identical to the diffraction functions. The oscillations noticeable in
the semilog plots are caused by oscillations of the impulse response
function and are largest for channels where the diffraction function falls
off the sharpest. For very large angles, ¢ and D become essentially
identical because the impulse response function is a sharply peaked function.

The band 12 spatial weighting function is shown in Figure 1.7 and
1.8. To illustrate the difficulty of registering band 12 with the HgCdTe
window band, band 8 weighting functions are also included. A 100% linear
modulation of the detector responsivity was included in the band 8 spatial

“

weighting functions, while the responsivity was assumed uniform for band 12.

e
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