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INTRODUCTION

Analysis of the simulator results is still in process. A
report on diffractive misregistration will appear in next month's
report. A revised calibration analysis has been completed and a
few copies of the results have already been communicated to NASA.

The full report of this work is enclosed.



Recently, renewed interest has been generated in using an auxiliary
space view to improve the calibration accuracy of the VISSR Atmospheric
Sounder (VAS). The analysis which follows details the quantitative
improvements which can be expected from this proposed change. The
present VAS calibration and the calibration using the auxiliary space
view are discussed on the same footing, and compared in terms of errors
produced under similar conditions of laboratory measurement errors and
in-orbit degradations of optical components. The auxiliary space view
appears to provide a significant improvement in reducing bias errors in
the calibration, although whether the improvement is worth the cost of
implementation is strongly dependent on what kind and amount of in-orbit

degradation of the VAS is probable.



1. Rigorous Calibration of a Linear Radiometer

A linear radiometer (e.g. the VAS) produces an output signal linearly
related to the radiation input. If NT is the input radiance and V is the
output voltage then they must satisfy the following equation

V=RN, +V (1-1)
where R is the responsivity of the radiometer and Vévis the system offset
voltage. If R and V0 are known then the input radiance NT is determined
from the output V by the relation

Ny = (@-V) /R (1-2)
Calibration consists of determining V0 and R so that (1-2) can be applied:
Since there are only two unknowns in equations (1-1) and (1-2) a rigorous
determination can be made by exposing the radiometer to two different
external radiation targets of known radiance magnitude and measuring the

radiometer responses. This leads to a system of two linear equations

V, =RN, +V
o

1 1
(1-3)
V2 + R N2 + Vo
which has the solution
R = (v2 - Vl) / (N2 - Nl)
- _ (1-4)
V0 = (N2V1 NlVZ) / (N2 - Nl).

If the results of (1-4) are inserted into equation (1-2) we find the result

Np = [, = N) V= @V, = NV /v, - V). (1-5)

For the special case N, = 0, i.e., the radiometer uses empty space as one

1

of the external calibration targets, we find



R = (V2 - Vl) / N2,

. (1-6)
VO = Vl’ and

NT = N2 (v - Vl) / (V2 - Vl). (1-7)
Equations (1-6) and (1-7) apply to the VAS with the exception that
there is no real external radiance source N2 which can be used for
calibration. Instead an internal blackbody is used for calibration,
in which case an effective value for Nz must be determined. In the
case of the VAS this effective value is the radiance of an external
source which would produce the same voltage output which is produced
by the internal calibration blackbody. The estimate for the effective
value of N2 is based on optical constants of the VAS and temperature
measurements of the optical components. The accuracy of the calibration

is thus limited by the accuracy of the constants and temperatures used

to estimate N2.

2. Characterization of the VAS and VAS Calibration Measurements

A simplified description of the VAS and its radiation sources and
targets is presented in Figure 1. This description includes the capability
to view space bypassing the VAS telescope, although the case in which this
option is not available will also be considered. There are four distinct

measurements which must generally be considered in the VAS calibration.

These are defined below.

VIEW SIGNAL OUTPUT
space through ]
the VAS telescope Vl =a (1L -vy)B (TA) + VO (2-1)
internal
blackbody V2 = a B (TS) + VO - (2-2)
space bypassing
the VAS telescope V3 =ae B (Tm) + V0 (2-3)
external

target V4 = a (y NT + (1 -1v)B (TA)) + Vo (2-4)



The parameters used in expressions for the signal output are

defined us follows:

o = responsivity of the VAS detector system

(volts/unit radiance).

y = transmission of the VAS telescope.

TA = weighted average temperature of the VAS
telescope.
TS = temperature of the internal calibration

blackbody.

T , e = temperature and emissivity of the mirror

used to reflect the auxiliary space view.

B (T)

I

the plank . radiance of a blackbody at

temperature T.

The weighting used to obtain the average temperature TA will be described

later; the requirement it must satisfy is that TA be chosen so that

(1L-v)B (TA) is exactly the radiance contribution produced by the

VAS telescope.
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Calibration of the VAS Without the Auxiliary Space View

3.1 Basic Equations

In this case equation (2-3) for V, does not apply. The

3
equation corresponding to equation (1-7) relating a voltage
output to radiance of an external target is just
. = - -1
No=(V, -V) / (ay) (3-1)
where a Yy cannot be determined from the remaining measurements.

However, by estimating y and T o can be determined by the

\

A
equation
-1
a= (V- V) [B(T) - (L-v)B (T (3-2)

Inserting (3-2) into (3-1) we obtain the result

NT = B (T*) (V4 = Vl) / (V2 =V (3-3)

)
where B (T*) is the effective value of the external blackbody
radiance which produces the same response as the internal
blackbody radiance B(TS). This is just the effective value of
N, of equation (1-7). B(T*) is defined by the relation
1
B(T*) = = - -y ]. 3-4
(T%) = = [B (T) - (1 -7 B (T))] (3-4)

This same result could have been obtained by equating equations

(2-4) and (2-2) with B(T*) substituted for NT.

The weighted average temperature T, is determined by the

A

relation

[l S B

(=% B (TA) =

IoaP @) (3-5)

1
where the Ti and Ci values are defined in the following table in

which Ri’ € (=1 - Ri)’ i =1, 3 are the reflectivities and emissivities



respectively of the three telescope mirrors, K is the central

obscuration fraction, and Tf and €s (=1 - Tf) are the reflectivity

and transmission of the field lens.

i Component Temperature a;

1 scan mirror Tl €1R2R3Tf(l-K)
2 primary mirror T2 €2R3Tf(l—K)

3 secondary mirror T3 €37

4 central obscuration T4 KrfR3

5 field lens T5 €

Note that the a, satisfy the condition

5
Z a, =1- vy, where (3-6)
: i
i=1
y = RlR2R3Tf(1—K). (3=7)
Inserting (3-5) into (3-4) yields the expression
S
1

%* =2 e — S o)

B(T%*) - [B(TS) iil a; B(Ti)]. (3-6)

Since all of the defined temperatures will normally be within a few

degrees of TS it is justifiable to make use of the Taylor expansion

3B(T )
—E2 fp= By #yiss (3-9)

oT
s

B(T) =-B(TS) +

-

to simplify equations (3-5) and (3-8) to the following forms

5
I | ) ;
= T va ooy ik (T, (3-10)
. L5
T«=T -L 3 a_ (T.-T) (3-11)
S 5 : 8 i I S
Y i=1

In previous analyses a set of optical constants Ci were used

instead of the a. The relation between them is just a normalization



factor Y, i.e.

Ci = aily. (3-12)

The sum is then constrained to satisfy
i, == -1 (3-13)
iy ’

and equation (3-11) takes the form

5
* = - — =,
T TS iil Ci (Ti TS). | (3-14)

Expressions and nominal values for the Ci coefficients are listed

below
C, = el/Rl = 0.0417
C, = &,/R/R, = 0.0434
Gy = 83/R1R2R3 (1-K) = 0.0538 ‘(3-15)
C, = K/(RR, (1-K)) = 0.2067
Cy = er/(RR Ryt (1-K)) = 0.1495

where the fundamental constants were assumed to have the nominal

values

R, =R, =R, = 0.96

1~ By = By

el = 52 = 83 = 0,04

K = 0.16 (3-16)
T, = 0.90

ef = 0.10.

The value of y derived from these parameters is

Yy = 0.6689. (3-17)
A thermal analysis of the VISSR indicates that, except for eclipse
conditions, values for worst case temperature gradients between the
internal blackbody and the telescope components are as follows

(day 172 results)



T. - T = -3.34°
1 s

T2 - TS = -2.16°K

Ty =T = -8.54°K (3-18)
— = - o

T4 TS 6.47°K
- P o . -

T5 TS 2.16°K (estimated as 1/3 of T4 TS)

For day 172 gradients and the coefficients given in (3-15)

the computed difference between T* and TS is just

T* - TS 2.35°K. (3-19)

3.2 Effects of Errors

‘Errors in the VAS calibratién result from two distinct sources:
uncertainties in values of the fundamental optical constants
(Rle, etc.), and errors in measurements of blackbody and telescope
temperatures. Present estimates for these errors are presented in

the following tables.

Table 3.2-1 . VAS Temperature Errors

4

Thermistor, absolute

calibration uncertainty 0.1°K

Telemetry

uncertainty 0.08°K RMS

Temperature differences between probably negligible with the
sensor and other points on the possible exceptions of the
measured component central obscuration and the

field lens



Table 3.2-2 VAS Optical Constant Errors

Absolute errors in
laboratory measurements 0.01

Systematic errors in
laboratory measurements 0.005 (except for K)

Launch and in-orbit
degradation ?

Although, once the VAS is operating in orbit, the main effect
of these errors is to produce a bias error in T*, it is useful to
consider them as random errors temporarily so that the probability
distribution of possible bias errors can be estimated.

It is advantageous for this error estimate to use equations

(3-13) and (3-12) to reduce (3-14) to the form.

T* o £ [T - g a,T,] (3-20)
Y s i=1 “i 4’ .

Since all the ai's must satisfy equation (3-6), regardless of the
values of Rl’ RZ’ R3, T, or K, they are not independent pérameters
and cannot be used as such to estimate variances in T*. The effects
of correlated errors in the ai's (and Ci's as well) can be avoided by
expressing the variance of T#* in terms of the independent parameters

Rl’ R2 R3, K, and 1. In terms of these parameters the variance of
>

T* is just .

3
2 8T*,2.42  B8T*.2 2  3T* 2 2
Orx =3L (aRi Ri+G)" 91+ ) %
5
1l o2 1 2452
Yz or, Yk OTi (3-21)

where the derivatives of T* have the general form

5
* da.
%_ e d {_T* g_Y 5 1} (3-22)
X Y X i=1 1 a5x ’
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where x denotes one of the independent optical parameters. The
component derivatives are tabulated in Table 3.2-3. From these
derivatives it is possible to evaluate (3-22) for each choice of

X. Results of these evaluations are found in equations (3-23)

through (3-27).

Table 3.2-3 Derivatives of Correlated Optical Parameters
with Respect to Independent Parameters

X = Rl R2 R3 T _Ji
9y b Y. X X Y
X Ry R, R, T 1-K
- da a a. a. -a,
-4 il 1 _r 1 ——
9x Ry R, Ry T 1-K
2% 0 TR B B Y
ox 1-R, R, T 1-K
92, 0 o "3 23 0
9x l—R3 T
98 0 0 . 3 By
9x R3 T K
da, 0 0 0 -1 0
ox i
aLx ]
———— T ceesmg— e o ] =
IR IR 1 r1J (3-23)
1 1
AT* -1 ]
S = * — - -2
2 12
T* -T | , . '
e = e - * - n o - = 3-
X, - [ (1-K) Rz {Rl(T Tl) + (11 rz)f < (12 13) + K(r4 T2)] (
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oT* -1
Fraie —; [R2R3 (1-K) {Rl (T* - Tl) + (Tl - Tz)}
+ R3 (T2 - T3) + K(T4 - TZ) + (T3 - TS)] (3-26)
9T* R3T
== [RE, (0% =13 # B, 00, = T,y & (L, — T, (3-27)

Approximate forms for the above derivatives can be obtained by
making the approximation

R, =R. =R, ~ 1. (3-28)

In this approximation we obtain

T* (T, - T*)
9Ry R* © (1K), (329
w2 (Tp = T ¢
2 R
* - .
M L@, - ™ K (1, - O], (3-31)
3R3 R™(1-K)
M [, - ™)k (1, - 9], and (3-32)
3T R (1-K)t S
oK R7(1-K)

For day 172 temperature gradients we recall from equation (3-19) that

T = I 2.35°K, (3-34)

which implies that

T, -T%= (T, -T) - 2.35°K (3-35)
1 i B S

where Ti - TS values are given in (3-18). For this specific case

numerical values of (3-29) through (3-33) are tabulated along with

temperature derivatives in Table 3.2-4.
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aT*
Table 3.2-4 Numerical Values of 3x for Day 172 Temperature
Gradients

| aT*
X _oX

[o]
Rl - 8.81°K

- [}
R2 4.89°K

- [o]
R3 13.25°K
T - 5.18°k
K +11.40°K

T 1.495

s
Tl - .0417
T2 - .0434
T3 - .0538
T4 - .2067
T5 - .1495
If we choose
O'Ts = O'Ti = o ’ (3-36)

then, for values listed in Table 3.2-4, equation (3-22) reduces to
the result

op% = 434°K%0g” + 2.30 op?. (3-37)
For expected uncertainties of

oR * .01, OT = (.12 + .082)% = .13°K (3-38)
we obtain the standard deviation of possible T* bias errors of

op* = 0,29°K. (3-39)
~ Systematic errors and in-orbit degradation induced errors car also |

be treated using the derivatives of Table 3.2-4. In this case the



13

bias error in T* is given by

11
%
§T* = 5 OIX 5y (3-40)

o J
j=1 ox,
J
where xj ranges over all the optical and temperature parameters and

ij is the systematic error of the xjth parameter. For the assumed

conditions.

8K = 0, and (3-41)

equation (3-40) takes the following form for day 172 temperature

gradients:
6T* = (-32.13°K)6R. (3-42)

Specific cases of interest are found in Table 3.2-5.

Table 3.2-5 Effects of Systematic Errors in Optical Constants
on T* for Day 172 Temperature Gradients

SR ST*
*+.005 (systematic error _
in laboratory measurements) +0.16°K

-.03 (possible in-orbit
degradation) +.96°K
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Calibration of the VAS Using the Auxiliary Space View

4.1 Basic Equations

As in the previous case the equation corresponding to equation
(1-7) relating a voltage output to an external target radiance is
just

Np =V, -V) / (@), (4-1)

which is derived from equations (2-1) and (2-4), and is identical to
equation (3-1). As before, the parameter product oy cannot generally
be determined from the remaining measurements without estimation of
optical constants and temperature measurements. There is a difference
in the present case in that it provides one additional measurement,
i.e. equation (2-3), and requires estimation of two additional
parameters, i.e. 9 and Tm.

At this point there are two approaches one can take in deriving
the final calibration. The distinction between them arises from
different choices of known and unknown parameters. The two approaches
and their corresponding solutions are summarized below.

APPROACH NO. L APPROACH NO. 2
" Tm’ em, T

"Known" parameters (must be ' Tes T s €5 Y T
directly measured or estimated)

-

A

"Unknown" parameters (are
derived from calibration T

A’ o Y0
measurements

Solution for o (same for both approaches)

o = (v2 - v3) / (B(TS) - emB(Tm)) (4-2)

Solution for TA (Approach No. 1)

Y5V
B(T,) = (1 -y [B(T) - (Vz'V3) (B(T)) - e B(T))] (4-3)
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Solution for y (Approach No. 2)

y=1- B(Ts) +(V2—V1) . B(Ts) B emB(Tm) (4-4)
B(TA) (V2—V3) B(TA)
Solution for T*
Approach No. 1
(V,=V) .
- 1_2 1 - -
B = I,y BT - Bl (4-5)

Approach No. 2

B(T*) = B(T,) [B(T) - e B(T )] / [B(T)) - € B(T )

V2—V3 (4-6)
+7;;Vi— (B(T,) - B(T))]

Even a cursofy_examination of equation (4-5) indicates that
approach No. 1 is unsatisfactory; a quite probable 2.2% RMS error
in vy (0Y2/Y2 5 5 0R2/ R2) leads directly to an unacceptable 2.2%
RMS error in B(T*) which is equivalent to an RMS error in T#* that
ranges from 1.94°K for v = 680 cm ! to 0.5°K for v = 2700 cm_i. The
effect of systematic errors is even worse. The reason this approach
is so unsatisfactory is that it ignores telescope temperatures and
does not make use of the fact that an isothermal VAS is perfectly
calibrated by the internal biackbody. Thus it is not practical to
calibrate the VAS without using a radiative model for the telescope
itself. Only the second approach, which does make use of measured

telescope temperatures, will receive any further discussion.

4.2 Effects of Errors

Errors in the estimation of T* by means of equation (4-6) can

be determined by the same procedures used previously, i.e. the
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the systematic bias error is found from the relation

9B(T*) 1 16 sp(Tx)
* = S, Sl 48 P ke, e D —
ST (IBT* ) jél 5 : xj 4-7)

and the bias error due to randomly distributed uncertainties

(or the noise due to random errors) is found using the relation

!

3
3 (T* 16 * L2
_[[ ( 5%}; ) j=l [ng(T )] XJ } -

™~

(4-8)

where xj ranges over all the optical and temperature parameters
required for evaluation of equation (4-6) and where (4-6) is used
to obtain the required derivatives of B(T#*).

However, implementation of this approach using linearization
of the Planck function and appropriate approximations is by no means
straightforward. The complexity of equation (4-6) and the large
number of independent parameters involved makes the derivation
of meaningful analytic expressions tedious and obscure. As a
result errors in the VAS calibration with the auxiliary space view
are treated numerically by computer calculation.

A description of the computer calculation and comparative
results for calibrations with and without the auxiliary space view

are presented in Section 5.



5. Computer Simulation of Alternative Techniques for VAS Calibration

5.1 Basic Computational Procedure

The computational procedure can be summarized by the following

steps:

(1) Read in exact values of parameters which specify the state
of the VAS instrument.

(2) Calculate the exact value of T* using exact values of all
required parameters and without expanding the Planck
function (this result is, of course, independent of calibration
technique).

(3) Read in bias errors and/or standard deviations for chosing
random errors for each parémeter which is measured or must
be estimated to calculate T* in orbit. .

(4) Calculate perturbed values for all parameters required to
calculate T* in orbit. .

(5) Using errored parameters calculate two valués of T* using
in one case the T* equation for the present VAS calibration
énd in the second case the T* equation for the auxiliary
space view calibratién.

(6) Determine the difference between the results of (5) and
the results of (2) for each approach. This yields the T*
errorsvproduced by the input parameter uncertainties.

(7) For cases in which random errors are inserted\steps (4)
through (6) are repeated many times and RMS and mean
results of (6) are obtained as a final output.

It should be noted that the general approach just discussed

allows much greater flexibility than is needed in the initial error
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analysis. Our basic approach initially is to determine partial
derivatives of T* with respect to all parameters involved in
calculating it so that quick linear estimates of various kinds of
errors can be estimated for the worst case day 172 temperature

gradient situation.

5.2 Alternative Equations for T*

The two methods for determination of T* are: (1) the present
VAS calibration discussed in section 3; and (2) the VAS calibration
using an auxiliary space view, as discussed in section 4. The two
methods have distinctly different expressions for estimating T* and,
unless all parameters are known exactly, these expressions yield
different values for T*. Denoting Tl* as the T* esﬁimate for the
present VAS calibration and T2* the result for the auxiliary space

view approach, we may state the two determining equations as follows:

PRESENT VAS (METHCD I)
*—1 5D
CB(IM) = = [B(T) "I e )] ' (5-1)

VAS WITH AUXILIARY SPACE VIEW (METHOD 2)

5
[B(r,) - smB(Tm)]-i%; £y ,B(T)

B(T *) = o (5-2)
2773

VZ—Vl

1

[__

Il Mo -

B(TS) - emB(Tm) + giB(Ti) - B(TS)]

1-y i=1

The function B(T) stands for the Planck function

— ~-11-1
B (T) = c, v3 [exp(CZv/T) 1]



which, of course, depends on wavenumber v as well as T. The
wavenumber dependence is implicit in equations (5-1) and (5-2).
In both methods iinearization of the Planck function is avoided,
and Tl* and T2* are determined from B(Tl*) and B(Tz*) using the
inverse Planck function

c,v3 V;1

* = ‘ 1 i = -
T Cov iln [1 + B(Ti)]. g A o= 1,2 (5-4)

~

All parameters used in equations (5-1) and (5-2) are defined in
sections 2, 3 and 4. Note that when exact values of all parameters

are employed we have the result Tl* = T2* = T%*,

5.3 Numerical comparison of Partial Derivatives

For day 172 temperature gradients numerical values of partial
derivatives were obtained from computer calculation by perturbing
each parameter value separately and dividing the resultant T*
perturbation by the magnitude of the input perturbation, i.e.

*
BT,

90X
j 8x ..
J 3

% . - T*
. Ti (xl, Xy oees xj + ﬁxj, ved) T ,i=1,2. O (5-5)

~

The eleven derivatives relevant to Method 1 and the sixteen
relevant té Method 2 are listed in Table 5-1. The values for

5T, *

a;#—-in Table 5-1 are found to be in substantial agreement with
the values of %gf in Table 3.2-4, although the latter, which are
based on linearization of the Planck function and on approximation
of derivative expressions, do show some small differences with the

present results which is to be expected.

The interesting comparison is between derivatives for Method 1



FAY)

and derivatives for Method 2. Although the derivatives with
respect to temperature are in close agreement, the derivatives
with respect to optical constants are quite different. On the
average derivatives of Tl* are larger in magnitude than those of
T2*. In addition, all the Tl* derivatives imply additive bias
errors resulting from in-orbit degradation, while the T2*
derivatives allow for considerable cancellation of degradation
induced errors (since-em increases as a result of degradation of
the space view mirror the sign of BTZ*/aam implies some cancellation
with changes due to degradation of Rl’ R2 and 1. This effect will
be quantitatively treated in the next section.

With regard to the temperature derivatives both methods show an

overwhelming dependence on Ts’ a moderate dependence on T and T

4
Note that the

5

and a fairly weak dependence on Tl’ T2’ and T3.
dependence of T2* on Tm is exceptionally weak, a fortunate result

considering the probable difficulty in measuring Tm accurately.

5.4 Absolute and Comparative Error Estimates

The effect of randomly distributed parameter uncertainties on
T* errors can be calculated from the derivatives listed in Table

5-1 and the usual relation

2 _ 5 8T* 2 2 -
ops” = LG Oy (=8
J J J
where xj denotes one of the independent parameters and Ox{ its
J

uncertainty. Individual parameter uncertainties have been estimated
previously for all parameters except those new ones required by

Method 2, i.e. €. Tm’ Vl’ V2, and V3. The first of these, €’ will



Table 5-1

NOTE:

4.75V for the internal blackbody measurement.

L N

Numerical Compariscns of T* derivatives for Alternative

Calibration Methods

A AT, *
AT, * c 2
G ox
VAS WITH .
PRESENT VAS AUXILIARY SPACE VIEW
-5.74 K +1.56°K
-4.50 K +2.94°K
-11.79 K -5.19°K
-3.49 K +4.62°K
4+10.70 K +2.48°K
- +7.69°K
+1.478 +1.514
—1041 = 044
-.042 -.046
-.051 -.055
-.198 -.214
-.146 -.158
- +.004
- +.0049°K /mv
- -.0014°K /mv
- -.0035°K /mv

Voltage derivatives assume a worst case gain yielding 50% of

Also note that

digited level spacing is approximately 18 mv.



be treated as the other optical parametérs Rl, R2, etc. Tm is
more difficult to measure than any other temperature. However,
even a 1°K error in Tm has such a small effect that it is reasonable
to ignore its contribution to the T* variance altogether. The
voltage measurements are assumed to be average results of sufficiently
many measurements to reduce the voltage noise to at least the level of
the 8 bit quantization noise (which has the approximate RMS value of
5 mv). Under these conditions voltage variances also have a negligible
effect on opk.

for an assumed measurement uncertainty of op in the optical parameters
Rl’ RZ’ R3, 7, K, and Em’ and op in TS and Ti’ i = 1,5 the uncertainty
in éstimating T* obtained from Table 5-1 and equation 5-6 is found

to satisfy the following relationships for Methods 1 and 2:

; 2 1
or;t. [or” % (319°K )+ 2.25 0p2],% (5-7)
3 (1p502 2. 3
opz*= [op® (125°K7) + 2.37 o5 ] ™ (5-8)
It should be remembered that these relationships are specific to the
temperature gradients predicted for Day 172. For expected errors
listed in Tables 3.2-1 and 3.2-2 it is appropriate to use

o, = .01, o

R = 0.13% (5-9)

T
in equations (5-7) and (5-8) to determine best estimates for the

standard deviation of possible T* errors. The results are

G'Ti*

0.26°K, and (5-10)

(¢

- o
Ty* 0.23 K. (5-11)
Thus we see that both methods have substantially the same performance

under the assumed conditions of randomly distributed errors, ‘although
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it should be noted that op* has significantly less dependence on
2 s

2 than does o,.*.

°r T3

When systematic errors are considered the two methods diverge
considerably in their sensitivity to errors in optical component
parameters. The effects of systematic errors ij in the optical
Parameters Xj on the systematic error in T* (denoted by 6T#*) are
estimated using Table 5-1 derivatives and the relation

*
6T* = § —-68x.. (5-12)
g %5 3

First let us consider the case of unifori systematic error, i.e.

6Rl = 6R2 = 6R3 = 61 = (—6em) = 6R. (5-13)

The systematic error in K is assumed to be zero. In this case,

again for day 172 gradients we find -

*
GTl

GTZ* (- 3.8°K) S6R. (5-15)

(-25.5°K) ¢R, (5-14)

Table 5-2 Comparative Estimates of T* Bias Errors Resulting from
Uniform Systematic Optical Constant Errors 6
T
S % 2
T, (VAS WITH

SR

(PRESENT VAS) AUXILIARY SPACE VIEW)
++0.005 (systematic error .

in laboratory measurements +0.13°K F0.02°k

-

-0.03. (possible in-orbit
degradation of optical
components +0.77°K +0.11°K
For uniform systematic errors Method 2 is seen to have a very strong
advantage over Method 1 (bias errors are reduced by a factor of 7).
For the case of nonuniform systematic errors results vary considerably

with the distribution of errors among the optical components. Let us

assume a:fixed transmission loss of 20%, i.e. Y changes from 0.6689 to
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an in-orbit value of 0.5351, and then calculate the values of

8T.* and 8T, as a function of how the transmission loss is dis-

1

2

tributed among the optical components for some limited cases of

interest.

Results are presented in Table 5-3.

For simplicity,

when more than one optical component is assumed to degrade, all

are assumed to degrade equally.

Table 5-3.

T* Bias Errors for a 20% Transmission Loss as a Function

of which Elements are Degraded

e also degraded
by same amount as
other parameters

{increased).

PARAMETERS WHICH ARE DEGRADED INDIVIDUAL
EQUALLY TO YIELD A COMBINED PARAMETER
20% TRANSMISSION LOSS CHANGE
Rl (scan mirror) -0.192 "
Rl’RZ -0.101
Rl’R3 -0.101
Rl’RZ’R3 -0.069
T (field lens) -0.180
Rl’BSi T -0.068"
Rl’RZ’RB’t -0.052
(R, ' -0.192
Rl’RB -0.101
Rl’RZ’R3 -0.069
1 | -0.180
Rl,R3:T -0.068

‘\Bl’RZ’R3’T -0.052

In all cases considered in Table

5-3, except for all

+1.10°K

+1.04°K

+1.52°K
+0.63°K
+1.43°K

+1.33°k

+1.78°K - 4+0.37°K

degradation

residing in the field lens,de* is smaller, and often very much

smaller, than 8T_* if €

1

is not allowed to degrade significantly.
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Iif €n is also degraded by the same magnitude as those parameters
which produce the transmission loss the results are not quite so

dramatic. In the latter case, although 8T,* is significantly

2
smaller on the average, there are two cases for which 6T1* is
smaller than 6T, *. Of course, a meaningful comparison of the

2

“two methods would be greatly aided by some knowledge of the
relative probabilities of these cases or perhaps others which

have not been considered.

Another approach to estimating in-orbit degradation effects
is to define a fixed degradation per element and examine T* errors
as different combinations of elements are allowed to degrade.

Results for a fixed degradation of 0.05 are presented in Table 5-4.

If the conditions considered in Table 5-4 are reasonable, then
Method 2 would again appear to have a strong advantage over Method 1.
As before, this conclusion is conditional on the probability of each

of the situations considered.

If we assume, for lack of any specific degradation probability
information, that all uses considered in both tables are equally
likely (a truly gross aséumption), then it is possible to summarize
the relative érrors probable for the two methods by finding average
and absolute aQerage values for the total sample set. Results of this

calculation, presented in Table 5-5, also point up the advantages of

Method 2.



Table 5-4. T* Bias Errors Resulting from 0.05 Degradation per

which Degrade

PARAMETERS WHICH DEGRADE agi* STa* NET TRANSMISSION LOSS
R, +0.29°K ~0.08K 5.2%

‘ R;,R,  +0.51°K . -0.23°K 10.1%
R ,R, ‘ +0. 88°K +0.18°K 10.1%
S +1.10°K +0.03°K 14.8%
T +0.17°K ~0.23°K 5.6%
R ,Ryst +1.05°K ~0.05°K 15.1%
R \Ry0Ryst +1.28°K -0.20°K 19.6%
Rpse, - +0.30°K 5.2%
R R, ,eo | . +0.1K  10.1%
R .Ryc - +0.56°K 10.1%
R LR, Ryse | - . 40.4K 14.8%
Ty € - , +0.15°K 5.6%
R; >Ry, T,E ' - +0.33°K 15.1%
Ry 5B R Tyt - +0.18°K 19.6%

Table 5-5. Avérage Results for all Degradation Cases Considered in

-Tables 5-3 and 5-4.

METHOD I METHOD 2
(PRESENT VAS) (USING AUXILIARY SPACE VIEW):

Bias error averaged
"over -all cases +1.01°K +0.04°K

Bias error absolute
value averaged over
all cases 1.01°K 0.35°K

% cases exceeding 1 K
absolute error 647 47

% cases exceeding 0.5 K
absolute error 86% 22%



