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1. INTRODUCTION

In a previous énalysis (Sromovsky, 1974) it was found
that VAS calibration accuracy could be improved by providing
an auxifiary space view which by passed the primary telescope.
Compared to the original VAS calibration using an internal
ambient blackbody the additional measurement resulted in
significantly reduced sensitivity to bias errors induced by
systematic errors in laboratory measurements and possible
in-orbit degradation of optical components.

However, serious difficulties in the implementation of
the auxiliary space view appear to make it impractical. An
alternative technique which can, in principal, achieve the
same objective as the auxiliary space view is to provide two
internal radiation references at different levels. The specific
implementation of this approach now being considered is to pro-
vide the VAS internal blackbody with a heater so that it can be
operated at two significantly different temperatures. Formally
this should provide the same information as the internal space
view. The analysis presented here provides quantitative error
estimates for this new approach compared to the original VAS
calibration procedure.

It should be noted that the present VAS calibration analysis
also includes two new factors which have been previously neglected,
i.e. emission from the primary and secondary mirror masks which can

enter the relay exit pupil. As a result the radiometric model of

the VAS pPrimary telescope has been slightly modified.



2. Radiative Model of the VAS Telescope

Radiation enfering the relay exit pupil during external target
measurements is a weighted average of radiation from the target
(alternated by the telescope) and radiation from optical components.
If NT is the radiance of the target and B(Ti) is the blackbody
radiance of the ith optical component within the relay exit pupil,

then the average radiance within the relay exit pupil can be

expressed as

i .
Ng = Ny +;Z; a; B(T,) (1)

7
T =1 -.§1 a; (2)

B(Ti) = Planck radiance at temperature Ti’ and where, the
seven effective emissivity coefficients a, and the corresponding
component temperatures Ti are identified in Table 1. A schematic

diagram of the VAS telescope is presented in Figure 1.
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FIGURE 1. SCHEMATIC DIAGRAM OF VAS TELESCOPE (a) AND OBSCURATIONS
WITHIN THE RELAY SYSTEM FIELD OF VIEW (b)



TABLE 1. Components of the VAS Telescope Radiative Model

i COMPONENT NAME TEMPERATURE o |
1 scan mirror .Tl (1-R1)R2R3Tf (1—K4—K6-K7)
2 primary mirror T2 (l-RZ)RSTf (1—K4-K6-K7)
3 secondary mirror T3 | (l-RS)Tf (1—K7)
4 central obscuration T4 K4R3Tf
field lens T5 l-Tf
6. primary mask T6 K60R3orf
s secondary mask T, K7Tf

Parameters used to describe the a; coefficients are defined

below (see Figure 1).

R 0

1° RZ’ R3 = reflectivities of the scan mirror, primary

mirror, and secondary mirror respectively
Tg = transmission of the field lens

K4 = ratio of the central obscuration solid angle
to the exit pupil solid angle

K6 = fraction of the exit pupil solid angle obscured
by the primary mirror mask

K, = fractional solid angle obscured by the secondary
mirror mask

Nominal values assumed for these fundamental optical constants

are:
R;=R,=R, = 0.96,
Te = 0.90,
K, = 0.131, (3)
K = 0.060, and
K, = 0.121.



The total fractional obscuration is thus

K, + K¢ + K, = 0.312, (4)

6 7
and the net telescope transmission is

T = RjRpRy1e (1 - K, - K¢ - K.) = 0.5478, (5)

3. A Lumped Description of the VAS Instrument

A condensed description of the VAS and its radiation sources
and targets is presented in Figure 2. In the original VAS design
the internal blackbody operated at only one temperature, the
ambient temperature of the VAS aft optics cavity. In the case of
the heated blackbody presently under consideration TC will be
allowed to assume two distinct values.

There are three qualitatively Qifferent measurements which

must be considered in the VAS calibration. These are defined below.

VIEW SIGNAL OUTPUT

space through

VAS telescope ¥y =& LI=mpBlTg) « W, (6)
internal blackbody . ) . "
reference cavity v2 - [RSB(Tt) L RS)B(TS)]+ \o (7
external target V4 = q [’atNT + (l-T)B(TA)] + Vo (8)
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FIGURE 2. LUMPED DESCRIPTION OF THE VAS RADIOMETER



The parameters used in expressions for the VAS signal output are

defined as foilows:

a = responsivity of the VAS detector system (volts/unit
radiance.
T = transmission of the VAS telescope (equation 21).
TA = weighted average temperature of the VAS telescope.
TS = temperature of the mirror shutter.
TC = temperature of the internal blackbody cavity.
Rs = reflectivity of the mirror shutter.
B(T) = Planck spectral radiance of a blackbody at temperature

T (dependence on wavelength is implicit).
The weighting used to obtain TA is defined by the condition

(1-7t) B(T,) =i§1 a, B(T,). (9)

The basic calibration equation rélating target radiance to
line-by-line voltage measurements (voltages measured for every
scan line) is just

Np = B(T*) (V,-V])/(V,-V,), (10)
where, in this case, V2 is measured for TC at ambient. The formal
expression for B(T*), the radiance of an external blackbody at
temperature T* which would produce the same response as the internal
blackbody at temperature Tc’ is obtained from equations (6) through
(8), i.e.

B(T*) = % F1-T)B(T,) + RB(T) + (1-R)B(T,)]. | (11)

However, since this quantity is only used while the cavity is at

ambient temperature TL we are able to simplify this expression to

the form

B(T*) = £ H1-0)B(T,) + B(T)], (12)



where we have justifiably assumed that

T = (T

) = . .

c’ ambient L

(13)

In the subsequent analysis only the B(T*) term of equation

(10) will be considered in estimating calibration errors (the

voltage factors have errors which are more properly described

as measurement errors). Furthermore, equation (12) will be

used exclusively to define B(T*).

4. Two Approaches to VAS Calibration

In general we must consider two different sets of calibration

measurements taken at different times and at different blackbody

cavity temperatures. In both the ambient blackbody and the heated

blackbody cases there are calibration measurements made during

every scan line while the cavity is at ambient temperature.

case of the heated cavity there is another set of measurements

made at a different time with the cavity heated to some higher

temperature Ty in addition to first operating at temperature T

L*

The first set of measurements are obviously made very frequently,

while the second set is made only occasionally. Thus the second

set can in general be affected by different parameter values than

the first. Both sets are defined below.

TIME STATUS VIEW
CURRENT SPACE
(LINE-BY-LINE)
CAVITY
SPACE

OCCASIONAL AMBIENT CAVITY

HEATED CAVITY

SIGNAL OUTPUT

a(l-T)B(TA) + VO
aB(TL) + Vo

at (1-T')B(TA) + v;
a'B(Ti) + v
a' [RgB(Ty) + (1-R)B(T!)]

+ vy

In the

(14
(15

(16
L1

(18



For METHOD 1 (ambient blackbody) only current measurements

are available, i.e. Vl’ V2 and component temperatures. Estimated

7
quantities are ass i=1,7 and T = 1 —iélai' The solution for
B(T#*) is found using equation (12) and the estimated quantities,
n (-

' 1
=t * = —
METHOD 1: B(T1 ) =

[B(T,) - (1-1)B(T,)] (19)
where B(TA) is given by equation (9) in terms of the a; and Ti'
The subscript on Tl* is used to denote the T* value derived by
Method 1. B(Tl*), V1 and V2 are then inserted in equation (10).

For METHOD 2 (heated blackbody) both current and occasional
measurements are used. The occasional measurements are used to

derive an improved estimate of tT' which has the formal solution

) B(TL) (v;-vi) B(TL) ; RSB(Té) : (l-RS)B(T;)
' = - — + .

B(T,)

(V,-Vy) B(T,) (20)
Since ass i=1,7 and RS are theoretical estimates in practice
and B(TA) is an estimate based on the a; and measured temperature
values, the derived value of T' using equation (20) is, in general,
different from the exact value, it is desireable to define a new

parameter vy:

METHOD 2: v = (T")gsTIMATED USING EQ. 20. (&L)
The parameter y is used in equation (19) in place of T to obtain
PR
T2 s l.€.
1
. %) = 2L = =
METHOD 2: B(T2 ) - [B(TL) (1 Y)B(TA)], (22)

where we have used the notation

A

7 1
B(T,) =;I; a; B(T,), and , (23)

|[[ne RN

;L1 as B(Ti). (24)

A) i
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It should be noted that although we allow the case a'# o, it
is assumed that ai = ay and conscquently that t'= 1. Cases for

which ai # a, are not dealt with in this analysis.

5. Relative Sensitivities to lirrors

In determining Tl* and TZ* a large number of parameters
must be either estimated or measured. A complete list is provided
below:

ESTIMATED OPTICAL R
CONSTANTS 1’

OCCASIONAL TEMPERATURE A

MEASUREMENTS Ty, Ty Tgy Ty, i=1,7
CURRENT TEMPERATURE f . ae
MEASUREMENTS L Tie =1
OCCASIONAL VOLTAGE o' w
MEASUREMENTS 17 V20 '3

Since all of these parameters will contain errors there will also
be errors in Tl* and Tz*. If Xy denotes the kth parameter of the
29 just tabulated then the error in Tl* or Tz* can be obtained from

the following expressions

S N 29 BTITZ
YSTEMATIC ERROR 8T1*; =121 o Xy (25)
© 29 3T %, 2 ). 1/2
RANDOM ERO = —
ROOR oTlfz [1Z, (axk ) oxy”] (26)

where Sxk and o, are systematic and random errors respectively
K :

in the parameter Xy -

The partial derivatives have been numerically evaluated for
METHOD 1 using equation (19) and for METHOD 2 using equations (20),
(21) and (22). Results for both methods are presented in Table 2.

These results are valid for the following specific conditions
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1
R = 0.96 T, = 340°K
S H
\
= [o]
T, = 300°K
1
= ] = (o]
T, = 300°K T, = 300°K
1
T -T, = 3.34°K TL—Tl = 3.34°K
T, -T, = 2.16°K TL—T; = 2.16°K
T -T, = 8.54°K TL-Té = 8.54°K }(27)
T, -T, = 6.47°K | TL-T; = 6.47°K
T, -T. = 2.16°K TL-T; = 2.16°K
T, -T¢ = 2.16°K TL-Té = 2.16°K
T, -T, = 8.54°K TL-T; = 8.54°K
a = 0.024 V/(erg/etc.) a' = 0.012 V/(erg/etc.) /

The temperature gradients are based on VISSR thermal model
calculations for day 172 (a worst case condition). An additional
implicit parameter is the wave number v. Although results in

Table 2 apply for v = 680 cm 1

, the temperature equivalent errors

will not change significantly for other VAS spectral intervals.
Comparing results for Tz* with those for Tl* we find that

TZ* is significantly less sensitive to optical constant uncertainties

on the average and slightly more sensitive to temperature

measurement errors as a result of the greater number of temperature

measurements required. Note that errors in the unprimed temperatures

are much more significant than errors in the primed temperatures.
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Table 2. T* Derivatives for METHODS 1 and 2 with Respect to
Parameters used in Calibration

oT . * aT ., *

1 2
k fk axk IXy
1 R, - 7.67°K + 2.16°K
2 R, - 6.45°K + 3.56°K
3 R, -14.25°K - 5.33°K
4 e - 4.22°K + 6.83°K
5 K, +15.70°K + 2.33°K
6 K¢ + 9.15°K - 4.85°K
7 K. +18.80°K + 5.73°K
8 R, - +10.64°K
9 T, 1.79 1.79
10 T, - 0.040 - 0.040
11 T, - 0.042 - 0.042
12 T, - 0.054 - 0.054
13 T, - 0.196 - 0.196
14 T, - 0.177 - 0.177
15 T - 0.092 - 0.092
16 T, - 0.186 - 0.186 ~
17 i - ~0.28
18 T, - - 0.01
19 TL : + 0.45
20 Ty - - 0.005
21 T, . - 0.005
22 Ty - - 0.006
23 T - - 0.022

E=N
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Table 2. Continued

1 2
Lk fk axk axk
24 T; - - 0.020
1
25 T, . - 0.011
1
26 T, : - 0.021
27 vi - +10.05°K/V
28 V; - 22.12°K/V
29 V; - +12.12°K/V

6. Combined Effects of Random Errors

The effect of randomly distributed parameter uncertainties
on T* errors can be calculated using equation (26) and the
derivatives listed in Table 2. Although there are 29 parameters
to be considered there are only three different standard
deviations associated with three different parameter groups:
optical constants, temperature measurements, and voltage

measurements. These are defined as follows:

O—R = 0R1 = O‘RZ = O'R3 = o’T = 0K4 = Uk6 = O'K7 = ORS (28)
Op = O =gm"'=gn' = gn' = o = UT'

T =T, T Ts Ty i,i=1,7 i,i=1,7 (29)
T B ' = iy & G (30)
vV TV, TV,

Equation (26) can then be written in the two forms

7 BTl* 2 2 16 BTl* Z 2 1/2
°r* T Ly GGx ) or fido Gr ) or (1)
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. 8 BTZ* 2 2 26 3T2* - 2 28 9T, *
OTg" = [kél (axk ) 9 +k§9 (axk ) or

2 ’ 2 1/2

Inserting derivative values from Table 2 yields the following

numerical results:

v, . 2 2 B.51 % 1/2 33
[1000.5(°K) “ op“ + 3.324 OTz] (33)

)
I

o 2, 1/2
[267.4(°K) 2 og? + 3.606 op? + 737.2(:5) "oy’ (34)

Q
*
]

If we assume an RMS voltage error equal to the RMS 8-bit
quantizing error of 5 x 10 °V and the SBRC estimates of

Op = .01
" (35)

op = 0.13°K,

then the T* standard deviations expressed by equations (33) and

(34) take on the specific values

Q

3
*
L}

1 0.395°K
(36)

Q

3
*
n

0.326°K.

Thus we see that both methods have substantially the same
performance under the assumed conditions of randomly distributed
errors and Day 172 temperature gradients, although cTz* is slightly

smaller and T2* is much less sensitive than Tl* to optical parameter

errors.

7. Effects of Systematic Errors

The systematic T* errors GTl* and 6T2* can be computed using
equation (25), the derivatives in Table 2, and estimated systematic

parameter errors 6xk. First let us consider the case of uniform

systematic error, i.e.



i)

6R1=6R2=6R3=6T=6Rs = §R
6K4=6K6=6K7 2 0
6T = 0

In this case we find, for Day 172 temperatures, the specific

results
GTl* = (-32.6°K) 6R
GTZ* = (+17.9°K) 6R.

Specific values of S8R and resuliting T* errors are presented in

Table 3 for two cases of interest.

Table 3. Examples of T* Bias Errors Resulting from Uniform
Systematic Optical Constant Errors

' ST * %
EE GTl _ ST,

* 0.005 (systematic error
in laboratory measurements)

+1

0.16°K + 0.09°K

- 0.03 (possible in-orbit
degradation of optical
components)

+

0.98°K - 0.54°K

The major cause for the relatively small imprévement of METHOD 2
over METHOD 1 is the high sensitivity of Tz* to errors in the
shutter mirror reflectivity R (see Table 2). This effect can
also be seen in Tables 4 and 5 which present cases on nonuniform
degradation.

For the case of nonuniform systematic errors results vary
considerably with the distribution of efrors among optical
components. In Table 4 results are presented for many cases in
which fixed transmission loss of 20% is assumed. For simplicity,
when more than one optical component degrades, all are assumed

to degrade the same amount. Note that METHOD 2 has a strong

(37)

(38)



106

advantage over METHOD 1 ekcept when RS is degraded.

Another way to compare in-orbit degradation effects is to
assume a fixed degradation per element and determine T* errors
as different combinations of elements are allowed to degrade.
Results for a fixed degradation of 0.05 are presented in
Table 5. Again, we find that METHOD 2 is much better than
METHOD 1 only when Rs is not degraded. A summary of all the
cases presented in both Tables is presented in TaBle 6.

| Although the magnitude of the per element degradations
assumed for the examples of Tables 4 and 5 are probably much
larger than is likely to be found in-orbit, it does allow
relative comparisons of the two methods. However, the absolute
comparison becomes very significant in deciding whether or not
to implement the second, more complicated method. Better
estimates of likely in-orbit degradation and evaluation of

errors for more representative temperature gradients than just

the extreme Day 172 case.
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T* Bias Errors for a 20% Transmission Loss as a

Function of which Elements are Degraded

Parameters which are
degraded equally to
yield a net 20% drop
in transmission

R1 (scan mirror)

RisRy

Ri»Rs

Ry»Ry,Ro

Tf

RppRso g

RisRysRz, T

Rs’Rl

R_,R{,R

1°72

Re»Ry5R), Ry
RS,Tf

RS’RI’RS’Tf

R,,R

ReoRy5Ry Ry, T

Individual
Parameter Change

-~ « 192
- O
* . 102
-.069
= « L81
-.068
-.052-

-.192
-.101
-.069
-.180
-.068
~ o 52

*
6Tl

+1.47°K
+1.43°K
+2.21°K
+1.96°K
+0.76°K

+1.78°K

+1.69°K

o

.41°K
.58°K
<54 °K
.03°K
.23°K
«25°K
.38°K

.46°K
.65°K
.76°K
.15°K
.97°K
.93°K
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Table 5. T* Bias Errors Resulting from 0.05 Regradation per
Element as a Function of the Combination of Elements
which Degrade

Parameters which Degrade 6T1* GTZ* Transmizggon Loss
Ry ’ + .38°K -0.11°K 5.2%
R;5R, + .76°K -0.29°K 10.1%
Rq»Rs +1.10°K +0.16°K 10.15%
RysRy5Rs +1.42°K -0.02°K 14.8%
g +0.21°K -0.34°K 5.6%
R »Rs,Te +1.31°K -0.18°K 15.1%
Ry,RyRe, T +1.63°K -0.36°K 19.6%
R.,R; - ©-0.64°K 5.2%
R_,R;,R, - -0.82°K 10.1%
RgsR;sR2 - -0.37°K 10.1%
R ,R;,R,,Rs - -0.55°K 14.8%
Rg»Tg - -0.87°K 5.6%
R,Ry Ry, Ty - -0.71°K 15.1%

Ry s Ry sBpaRos T - -0.89°K 19.

(@)
oR
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Table 6. Summary of Results for all Degradiation Cases
Considered in Tables 3 and 4

METHOD 1 METHOD 2
(AMBIENT BLACKBODY) (HEATED BLACKBODY)

Bias error
averaged over +1.29°K -0.68°K
all cases

Bias error
absolute value o ‘ ‘ .
averaged over 1.29°K 0.72°K

all cases

0

% cases
exceeding 1.5°K 36% 11%
absolute error

% cases

exceeding 1.0°K 71% 15%
absolute error

% cases

exceeding 0.5°K 86% 52%
absolute error



