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PREFA,'T

One of the great rewards enjoyed by persons who spend their
lives in scientific research work is the unpredicitability of
what they are doing. It is an exciiing world and one I enjoy
immensely. However, not all of the surprises are the kind one
likes to boast about. Principal Investigators have to admit to
less productive years as well as proudly present their successes.

On this program, in the meteorological study area, we have had
one of those years. While good work has been done by several
persons, it is as yet too incomplete to include in this report.
We expect to pr y-ent these efforts in next year's report.

I am happy to present three papers by Dr. Aniruddha Das
and his principal advisor, Professor T. C. Huang. Publication
of these papers concludes Dr. Ias' development of a generalized
flexible satellite attitude control model and the application
of that model to soave relatively simple analyses. We anticipate
that as' model will be used by government agencies and by
industry in more complex applications.

I am especially grateful to Professor Huang for his assistance
and support. We sincerely appreciate the patience and support of
the many dedicated persons in the National Aeronautics and Space
Administration with whom we have work,d during the past year.

Verner E. Suomi

Principal Investigator
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STABILITY OF STOCHASTIC SATELLITES

T. C. Huang and Aniruddha Das

ABSTRACT

The effects of random environmental torques and noises in the moments of
Inertia of spinning and three-axes stabilized satellites are compared analyti-
cally and by analog simulations. Four analytical methods are used to compute
the mean values and variances of the satellite response. Among the analytical
methods. it is show that the Fokker-Planck formulation yields predictions
which most coincide with the simulation results. The variances of the responses
have been sham to have an initial period of growth. This growth rate falls
off with time and the variances reach and stay at an equilibrium value. The
growth rate is also show to be an increasing function of the inertia noises
and the nominal spin rate.

NOMENCLATURE

Ai , i - 1-4 - Arbitrary constants; Eq.	 (74).

ai l i - 1-27 - Coefficients defined by Eqn. (10-18) and Eqs. (19-27).

C - Arbitrary constant; Eq. (74).

Di , D2 - Arbitrary constants; Eq. (74).

F,(F1 } - Vector forcing function; Eqs. (91, 92).

f*,f*(W,tl*).T) - Conditional point probability density function of m(t)
given the values of W(T).

f,(fi};	 i - 1,2.3 - Arbitrary random forcing functions; Eqs. 	 (1),(19)-(21).

i - 1,2,3 - Mean values of f,(fi}.

Gl ,G2 ,G3 - Components of 
M200' M

O20' M110' respectively; Eqs. (74).

(74s), (74b) and (74c).

I10 I 2 ,I 3 - Stochastic moments of inertia of the satellite; Eq. (1).

110 1 2 .1 3 - Mean values of 11, I 2 and I 3 , respectively.

J - Functional defined by Eq. (95).

K - Polynomial function of p; Eq. (70).

L,L(9 1 .9 2 ,9 3 1W,t)	 - Derivative characteristic function with parameters gl,

9 2 and 9 3 for the random variables w  for a given w(t);

Eq. (7).
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L* - Matrix differential operator; Eq. (79).

Nij ; i.j - 1-6 - Covariance matrix of u; Eq. (5).

Mu - statistical shownts of d(t) for a given r(0); Eq. (30).

Ni s i - 1-7 - Parameters related to Nij by Eq. (108).

Nij ; i.j - 1-6 - Covariance matrix of v; Eq. (94).

P - Eissnvalue of various equations.

r - A measure of the noise levels; Eq. (122).

rij ; i.j - 1-4 - Coefficients defined by Eqs. (74e) - (74g).

aij ; i.j - 1-4 - Coefficients defined by Eqs. (74e) - (74g).

T - Period of time in which the most-likelihood estimates
of w are required.

t - Tine.

tij ; i.j - 1-4	 - Coefficients defined by Eqs. (74e) - (74g).

u,(ui }; i - 1-6	 - Random vector; Eq. (4).

v.(vi
}; i - 1-6	 - Random vector; Eq. (93).

ai, 1 - 1-8	 - Coefficients of the characteristic polynomial for p;
Eq. (41).

aij ; j - 0-6	 - Components of a i ; Eqs. (46)p (58) etc.

8i . i - 1-3	 - Lagrangian multipliers; Sq. (95).

eij p j	 0.1.2.3... - Components of 01; Eq. (109).

d(t)	 - Dirac's delta function.

di p i - 1-3	 - White noises associated with A'f i ; Eq. (2).

C	 - Largest absolute value of N ij for all i and j; Eq. (108a).

ti . i - 1-3	 - Sample space white noises associated with Ii ; Eq. (75).

ni t i - 1-3	 - Time dependent white noises associated with I i ; Eq. (75).

619 1 - 1-3

ifi p i - 1-3

Ifl , : - 1-3

- Parameters of L; Eq. (7).

- Total forcing functions defined by gqs. (10) - (12) and
gqs. (19) - (21).

- Neva values of lfi.

i
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A'fi , i - 1-3	 - Total forcing functions defined by Eq. (1).

A'fi , i - 1-3 - Mean values of A'fi.

AV A2
- Parameters defined by Eqs. (71), (72).

vi, i - 1-3 - Total white noises associated with I i ; Eq. (2).

it - Parameter defined by Eq.	 (74d).

P - Parameter defined by Eq. (74d).

Pkim
- Statistical coefficients defined by Eqs. (6), (S).

oil i - 1-3 - Standard deviations of w i ; Eqs. (115), (116).

a - Nominal spin rate of the satellite.

{} - Nominal angular velocity vector of the satellite.

- Angular velocity vector of the satellite; Eq. (1).

- Realized angular velocity vector corresponding to w.

Wij , j - 1-34 - Components of w i ; Eq. (16).

OPERATORS

E{ }	 - Statistical expectation.

C)	 - Mean value.

I ) t	- Transpose.

C)	 d
dt

INTRODUCTION

This study compares the effects of stochastic geometry and random environ-
mental torques on the pointing accuracy of spinning and three-axes stabilized
satellites. A comparison of pointing accuracies requires a comparison of the
rates of error growth over and above any criterion for the asymptotic stability
of the satellites. For this reason, this study is oriented towards the dater-
mination of the statistical properties of the satellites' responses. The
questions of stability have been answered indirectly by the computed responses.

The reason for considering the environmental torques on the satellites
as random is self-evident. The geometries of the satellites are considered
stochastic in order to have a phenomenological model of the motions of the
satellites' flexible structural elements. If a satellite were absolutely rig-
id , its inertia properties would have been constant for all time and measured
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to a near certainty. because real satellites contain many flexible and moving
parts, their moments of inertia can be assumed to be stochastic variables with
certain associated noise.

To be more specific, the rigid body Ruler ' s equations

Ilml + (Ij I2)m2w3 - A'fl

I2(^2 
+ (Ii I 3)m

1
m3 - A l f 2	 (1)

I37o3 + ( IZ I1 ) W1W2 -
 

Alf 3

governing the motion of satellites will now be analysed. In the above equation,
I1, I2 , I 3 are the stochastic principal moments -of inertia of the satellite.

The vectors w - joV w2,4031T and Alf - (A'f l ,A'f29
 A

l f 3 1T are the angular velocity

vector and the environmental torque vector of the s.. -:its. respectively, along
the principal axon of inertia. And A' is a parameter. The vector Alf and,
consequently, the vector w are random variables.

kquation (1) is an example of an intrinsically nonlinear system of equa-
tions with random coefficients. The difficulty of obtaining an explicit solu-
tion to Eq. (1) can be appreciated when we realize that the stochastic version
of even a simple scalar linear equation is actually nonlinear due to the de-
pendence of the solution on the random coefficients. (See Refs. 1, 2.) The
situation has been made even more complex by the presence of several contradic-
tory methods for solving stochastic equations ( 1). A widely used method of
solving stochastic equations is the Fokker-Planck approach. In this, the equa-
tions are assumed to define a Markoff process and the transition probability
densities of the responses are computed directly as a function of time. Sev-
eral interesting equations have been solved by this method in Refs. (3-7).

Another useful method, using perturbation techniques for solving stochas-
tic equations, was discussed in Refs. (8,9). This is one of the "honest" "h-
ods in which response is solved analytically in terms of small random param-
eters. The stochastic properties of the response are obtained from the analy-
tic solution as secondary results.

A third promising method of solution can be obtained by extending the line
of logic shown in Ref. (10). This method determine* the moat likelihood estimates
of the response by maximizing the joint probability density of all the stochas-
tic variables of the pate. This is essentially a formulation of the Kalman
filter for the case of deterministic coefficients and random forcing functions.

Lastly, there is the obvious method of initially assuming the system of
equations to be deterministic and than attributing the proper stochastic prcp-
erties to the deterministic solutions. It is, of course, true that this method
is rigorous only if the random parameters are constants in time. The stochastic
properties of the eigenvalues and eigenvectors of such systems have been comput-
e d in Refs. (11,12). This method is worth Investigating for slowly war"
parameters with random step increments.

I
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The response vector, w(t), of a rigid satellite governed by Eq. (1)
will be analysed using the above mentioned techniques. The analytical responses
are than compared with results of an analog computer simulation. This allows
verification of the relative merits of the analytic methods.

THE POKKER-PLANCK APPROACH

This method of obtaining the response characteristics of stochastic equa-
tions is based on the analysis show:. in Refs. (1,13). The application of this
method on Eq. (1) proceeds as follows:

Let the random variables 
pi t y2' y3' 

al l 62 and d 3 be defined by the equa-
tions

Ii	 Ii + 1A	 i - 1, 2, 3
(2)

a'fi - A'fi + 61 ; i - 1,2,3

The bar on top of a snkbol indicates mean values. Honest

yi • di • 0 ; i - 1.2.3	 (3)

Let the stochastic vector u be defined as

a - I1j I . y2 . y3tu'fl ta'f2 6
a 'f3 IT	(4)

It is assumed that 0 1 and di , i - 1-3. are white noise disturbances, such that

the matrix elements. Mij . i,j • 1-6, are defined by

E(uiuj) - Mij i(t)	 (S)

In Eq. (S) and in the following, (t) is the Dirac's delta function and the
operator E(.) denotes statistical expectation.

Let 0
kJA(w1 0w2 tw3 .t) be the statistical coefficients of various orders

where W  are the realisations of the responses wit for i - 
1-3, at any point

in the time and sample spaces. Let it also be defined that f e Lw,t LW(0).0)
is the joint conditional probability density of the response vector. w. given
the values of m(0) at t - 0. Thus,

Okla At-00
I ! I (w1-w1)k (w2-w2) i (w3w3)mfe(r.t+Atlw,t)dwldw2dwi

.	 (6)

Although Eq. (6) is used to define the coefficients o t these are usual-
ly calculated from the derivative characteristic function kta

L(910 62t93 1u.t) .

This, in turn. is defined by
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3
Wi ts2 0I9 1r' t) ' et»o 

0t IE(exp(i 

jI 
9i (rj (t+ec)-rj (t))llg.t) - 11 (7)

where i • C-1 .

Comparing Eqs. (6) and (7). an alternative definition of pkxa 
can be

obtained as

-(t+l") a
t+"U L

p^ • 
i	 [ i0iithAasa ]lei • 92 • 93 • O	 (8)

Let it be assumed that

wj (t+et) - wj (t) n ;j (O-At(9)

The values of pk1a are now easily calculated from Eqs. (7.8.9). Tor example.

P100 - -i(91 1 1th1 • 0 • -i At-00 	 i91 tE{•xP[i 
j i1 9jdjetll^.c}- 1

^1 • 0

	

02.0	 2.O

	

92.0	 .o
3

Linor p loO ' at-00 at [E(^o1 1.01

j	 or plot)' Lino et IE{ 1^1) I1'f 1 - ( 1-124'03-"2 ) ;2;3'))

f

' Lis Ot E Ii (1 - zl)I1'f1 - (13i2+v7-u2)r2u71)

grpanding the right hand side and neglecting the cubic and higher order terms
In uj.

pLOO • T" [{ 
•1 ai + I2 - i

1 }Y2r) - 16 + x 1 L1 1	 (lo)

	

1	 1	 1

Proceeding similarly. it is easily soon that

polo ' 1 I(M12 M2 + I
1 - I1 }r1^^ -	 + x't2 1	 (11)

	

I 2	 T2	 T2

0001 -' I(T3  + i1 - i2 );1;2 - K36 + i1^[1 1	 (12)
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1	 _ 4(1-1 2 	 -2-2
P200 ;2 {(M33 - 2K23 + M22 T— (M13-M12))W203

1

	

+ 'Z4 (13 12)Mlb - 2 34 M24));2W3 + 1444 1	 (13)
1

1	 (1312)
Pilo 

1112 ((M13 + M23 M33	 12 +	 O^Lf*ll)

-z )	 (1-1)	 (-13-4-1 )  
+ 1 3 1 

(M13 M12 ) + 3I22. (M23-4 12 ) + I2	 (M23 22 )
1

(1312) (13 11 )	 2	 X311)

	

T172	
M12)W1W2"3 + (M34 M14	

I1	
M14

(i -1 i	 (1 -1 )
3121 M20) 1l 'I + {M25 - M35 + 3I12 M15

(I -I )
+ 31 2 M25 )w2w3 + M45 ]	 (14)

2

1	 (I3 -1 2

P101I1I3 
{(M13 - M23 - M12 + M22 +	 I1 (K11-K12)

( Ii I2)	 (I3 12)	 (I-Y 2

I1 
(M13 M12 ) +	 13 CK13 -H 

23 )	 I3 (M33-M23)

(1312 ) ( 1112)	 ,.2,	 (I1 12)

	

1 I	 M13}W1^2W3 + (M14 - M24 - 1 M14

	

13	 1

1-1 2) 	(I3 I2)
13 M34 12 + (M36 M26 +	

I1 M16

(131 + 3I 	 M362W3 + M46 1
	 (15)

3
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020 I	 33 - 
2M

13	 11 I2 3 1 ' 3312 1 3
2

+ 
{2 (M35-M15) I (I3 I1)M25)01W3 + M55 1	 (16)

2

1	 (1311)
Poll I2 3 ((M13 - M23 - M11 + M12 + I 2	 (122-M12)

(I 2 I1)	 (I3-11)	
(I-1 1

+ I2 (M23-M12) + 73 a23-M13) + I3 (M33-M13)

(1311)('2 
I1)	 2. ^	 (1311)

	

7273 — M23 }wld2^o3 + 
(M36 M16	 72 M26

(I -I )
- (I T3 M36 }ru1W3 + 

(M15 - M25 +	 721 M25
3

(I -I )

+	 7 1 M35)w1W2 + M56 1	 (17)
3

P002 -f2 ((M22 - 2M12 + M11 - 3 (1211)(M23-*13))'1'2

3

+ { - (1211)M36 - 2(M26 M16));1^2 + M 66 1	 (18)
3

All of the first and second order expressions of pk1m 
are listed in bqs. (10-

18) above. The third and higher order p
k1a 

are usually Beall and can be neglect-

ed. Suitably defining the sat of constants aj . j - 1-27. Eqe. (10-18) can be
rewritten as

p10o - a
le2m3 + All - a 2	 (19)

polo - a3wlw3 + af
2 - a4	 (20)

pool - a,;,;2 + ai3 - a6	(21)

0200 - a7W2*3 + a8m2m3 + a9	 (22)

i
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P110 , a10W1w2w3
+ a11w1W3 + a12w2w3 + a13 (23)

P101 a14w1w2w3
+ a15w1w2 + a16w2w3 + a

17 (24)

P020 ' a18w1 3 + a19w1w3 + a20 (25)

Poll , a21W1W2W3 + a22W1W2
+ a23W1W3 + a24 (26)

0002
2-2

' a
25W1W2 +

a26W1W2 +
827 (27)

Because the values of 0kim , corresponding to the system given by Eq. (1)

are at hand, the Fokker-Planck equation involving the density f*[W,tIw(0),O]
for that system can now be set up. This equation for the density is [1]

af* _ E	 (-I) k+9+2  ak+I+m
at	 k+4+m>0 klilml 

aw1aw2a 3 (PUM
 

f*)	 (28)

Substituting Eqs. (19 -27) in Eq. (28) and neglecting all third and higher order-
derivatives, Eq. (28) reduces to

af* . 	-2-2	 . .	 a2f* 1	 2-2	 a?f*
at 2 [a7W2W3 

+ a8W2W3 + 89j =2 + 2 [a18w1W3 + a19w1w3 + a20] ^ 2
awl 	aW2

z*
+ 1 [a mw2 +a 	 +a ] awf + [a www2 +a ww

	

2 25 1 2	 26'1'2  	 27 aW2 	 10 1 2 3	 11 13
3

2*
+ a12w2 + a13] s aw am + [a14w1w2w3 + a15 W 1 + a16W2

	

*	
2

2*
+a j o 

2f +[a 	 + a 	 +a Ww +a ]aTZ-

	

17 aWiaW3 	21
w
1'2'3    22(01'2 23 1 3 24 U-23.3

+ (a10w1w3 + a12w3 + a14W 2 + a16W2 - a1W2w3 - af 1 + a2) aafl

+[a w  2 
+a w +a ww +a m	 -a w w - af +a ] af*

	

10 2 3	 11 3	 21 1 2	 23' 	 a?

+[a14w2w3 + a15w2 + a21W1w3 + a22w1 - a
5u+lw2 - J1f3 + a6) If*3

+ [alUw2 + a
14w2 + a21 21f*	 (29)

1

l
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The values of the density function can be obtained by solving this for-
midable linear second order partial differential equation. But little useful
information is obtained from the density function. The truly useful statisti-
cal parameters are the mean values, variances, covariances, and other higher
order moments of the satellite response. These parameters form a family, H1kA.,
which is defined by

Mkft - I I I wlW2 (d3 A)mf*[ in ,tL(0),0]dmldm2dd3	(30)
_. _.

and hence

• . w
ddt	

I I Idid2(^ ,-A)n 
tae 

doldw2dw3 .	 (31)

where A is the nominal value of the spin rate. Substituting the expression

for aa* from Eq. (29) into Eq. (31) and integrating, it is seen that

M100 a1IM010 + °1'011 - 
a2 + xf1	(32)

1
010 a3i1M100 + °3'101 - a

4 + af2	(33)

'001 a5M110 - a6 + af
3	(34)

'200 w 2(lfl °2)'100 + a80M010 + 2a1m110 + ,ay7A '020 + °0011 + a92

	

(35)

'110 - (a11A + J1f2 - a4)""100 + (a12^1f 1-a2)"010 + a10R020 + a1OA '110

+ 
a11M101 + a0200 + a12M011 + a13 	

(36)

'101 - (af3 °6)'100 + a16AMO10 + Ufl °2)'001 + °15'110

+ (a19+816)MO11 + a17 	

^	

(37)

MO20 a19IM100 + 2(af-a 4)'010 + a18
A2 

"200 + 2a3li110

+ °19'101 + a20	
(38)

MO11 °23'0100 + ( 'f 3 a6)MO10 + 611'2- a4)'001 + 84110

+ (a23+a3A)M101 + a
24	 (39)

M002 w 2(If3 a6)MO01 + 820110 + a27	
(40)

In deriving Hq*. (32-40), all third and higher order moments have been neglect-
ed . Solving these nine first order ordinary differential equations, the man
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values, the variances, and the covariances of the satellite response are ob-
tained completely.

THE FOKKER-PLANCK RESPONSE

At this point, it will be interesting to analyze the response predicted
by Eqs. (32-40). These predictions will later be compared with an analog simu-
lation of Eq. (1).

Let it be assumed that, at t - 0, all second order moments (k+Ris - 2)

and M001 are equal to zero. In this stage, the satellite will behave as it

does in the deterministic situation, that is, it will begin to precess with
a rate proportional to 0. Then, as the values of 

M001 and 
M002 grow with time,

the precessing rate and the mutation angle will also grow. Finally, the satellite
topples down. This phenomenon occurs physically and in simulations. Thus, Eqs.
(32-40) predict that the satellite response is greatly sensitive to the values
of 

a5' '^I€3 a6) ' a26 
and 

a27, 
Because a27 , a20' and ag are non-negative, these

equations predict that an uncontrolled satellite governed by Eq. (1) is inher-
ently unstable in the presence of random errors. The same conclusion can be
drawn by applying the stability criteria of Refs. (14,15] to Eq. (1). The
error growth rate of the satellite response can be minimized by minimizing the
values of a5 , a6' a26' and xf3 . This can be done if 'II3 - 0, TI - T2 and the

matrix Mij is a diagonal matrix.

The relative rates of error growth of spinning and non-spinning satellites
will now be examined from the characteristics of the eigenvalues of Eqs. (32-
40). It can be shown that the eigenvalues of these equations satisfy a ninth
degree algebraic equation of the form

p9 + 08p8 + a7p7 + a6p6
 + 0

5p5 + a4p4 + a3p3 + a2
 p
2 + alp - 0	 (41)

where mi . i - 1-8, are appropriate constants.

It is obvious that to have bounded growth rates, a  for all i must be non-
negative. It can be shown that

	

2	 (I_12) 

a8 . -a10a2	 I1I2	

1
IN 13 + M23 - M33 - M12 + 

	
(M1_M 11

(I -I )	 (I -I )	 (I -I )
+ I 1 (M13 M12) + 3

I 2 
(M23 M12) + I 1 (M23-M22)

1	 2	 2

(I3 II)(13 12) 
M
121	 (42)

III2

Because usual satellite geometries are such that
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I3 > Max [11.1 2)

Eq. (42) says that ag ft 0 if, and only if any of the following conditions exist:

a - 0	 (43)

nax[M
13'N23 1 1 ain [Nll'N12'N22'N33)	 (44)

In particular, 018.10 if M12 > 0 and

N13 N23 - 0	
(45)

since min [N11'N22'N331 >> 0

Equation (45) states that one of the conditions for a bounded error growth
rate is satisfied if the inertia noises in I 1 and I2 are independent of the

noise in I3 . But this condition usually is not satisfied because

I3 - I1 + I2 and I3 - I1 + I2 and hence

V3 - U  + V2

and, therefore,

N13 - Nil + M12

N23 M22 + M12

Thus, at this point it appears that Eq. (43) provides the only suitable con-
straint and that this constraint is available only to three-axes stabilised
satellites.

Now, let the conditions required to make a 7 non-negative be considered.
It can be shown that a7 is of the form

a7 - a70 + a
71
a + a72a2 + a74a4	

(46)

where

a70 - - [a22a12 + a23a16 + a13aill	
(47)

a71 - - 2[a1a23 + a3a16)	
(48)

a72 - - 6a1a3	(49)

a74	 a7ais	
(50)

Another reasonable assumption we can make now is that the inertia noises, Vi,
are independent of the forcing funcitons. Af I . Amsum'— this,
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a2  a4  a6 a8 • all a12 • a15 • a16 0	 (51)

a19 ' a22 ' a23 ' a26 ' 0	 (52)

Using Eqs. (51,52), the criterion for non-negative a 7 become either Eq. (43) or

a72 + a7402 > 0 .	 (53)

Equation (53) can be expanded to obtain

6a1a3 + a7a1802 `— 0

or

MM

ill 
I li M72 - (

13 1 M (I3 I l) + 1— 1
12	 1	 2

2	 4(I I )
+	 IM - 2M + M -	 3 2 M -M AIM - 2M

1112 
33	 23	 22	 I1	 13 	 12	 33	 12

4(I3 I1)
+ 
M11	 (M23 M12)) 1 0	 (54)

2

Assuming the satellite geosetry to be given by

2 13 - II ' 12	 (55)

u 3 ' v l + u 2	 (56)

and that Mij are small cospared to I i , Eq. (54) can be further simplified to
read

21 - M11 (3M
22-2Mll)A2 > 0	 (57)

Equation (57) is almost certainly satisfied for all real satellites and hence,
a7 is almost certainly positive. Equation (57) also states the obvious fact
that, in the presence of inertia noise, a high spin rate tends to sake the sat-
ellite unstable.

The expressions for a6 will now be considered. It can be shown that a6
is given by

096 ' a60 + a61 + a62A2 + a63A3 + a64G14 + a6606 	 (58)

where
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a60 - [a12a15a23 + a11416422+ (afi '2)('3'15+a5a11)

+ (afZ a4)(ala22+a5a12) + ('f37&6) (a 3& 16- ala23)1

461 ' - [a3a8a22 + ala15a19 + 
2a3a12915 + 2a1all

a22 + 4ala3 (af 3 a6)3

a62 a10a16a23

463 " 2 "1a10a23 + °3°10'161

_ 2	 2
464 _ 2(a1a3a10 s3a7 - a1a181

a66 ' a7a10a18

It has already been mentioned that, if (af 3 a6) is non-zero, then even the de-

terministic response is unbounded. Hence, to make any useful comparison, it
must be assumed that (1f3 a6) is either zero or has been made so by appropriate

controllers. Assuming this and the satisfaction of Eqs. (51,52), a 6 becomes

V '7'10'1806 + 23'1a3a10 '3a7 '1°18104 (59)

Hence, for non-zero values of 0, small MW and with the geometry given by

Eqs. (55,56), the condition for non-negative values of a 6 can be obtained as

4Ti + 9M11M22
n2 

> 0
	

(60)

The above relation is satisfied almost certainly for all real satellites.

A similar treatment for the coefficient a5 yields the inequality

T` _

1 - 11M22n2 - 14 I(af l) 2 - (xf 2)23(K23-*13) ' 
0	 (61)

36t1

which is also satisfied.

Carrying on with this procedure, it can be shown that the coefficients
a40 a3 , a2 , and al are all well behaved and positive definite. Thus, the

only critical coefficient is a 8 . This is approximately given by

2

a8 . -41002	 T2 (Kll+M22)
1

where Mll and M22 are the variances of the inertia noiss &1006 1 1 and 12'

(62)
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respectively.

To give a clearer picture of the error growth phenomenon, we will analyse
the response of a three-axes stabilised satellite.

Let it be assumed that initially

	

0 - 0	 (63)

	a 5 ' 0	 (64)

	

af3 - a6 . 0	 (65)

and Eqs. (51,52) are satisfied. In this case, all coupling in Eqs. (32-40)
are lost and the responses grow linearly with time, according to the relations

M001 , 0

M100 • [Af 1 - a2]t

M010 - 
01 2 - a4it

M200 - (Af 1 - a2 ] 2 t2	(66)

MO20 - [af
2 - a4]2t2

M002 ' 0

The growth rate of the responses is greatly changed if Eq. (65) is not used, a
though Eqs. (63,64) and Eqs. (51,52) are used. In this case, the following
four equations remain coupled:

M100 a1M011

MO11 
(Af 

3 a6)MO10 + (Af2 a4)MOOl

M010	 a1M101	
(67)

M101 , Of  a6)M100 + (Afl a2)M001

where

M001 " ('f3-'6)

The eigenvalues of Eq. (67) satisfy the following algebraic equations

(p4 + ai(Uf3 a6) 2 ] ` 0	 (68)

f^•.,.....,.....,. ^..._^..,...,_,...._, 	 _.,____.-,_..wow......__ 	 ....__.___--....-^ .
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Equation (68) states that, apart from the linearly growing components. there
will be exponential and sinusoidal components in the satellite response. when
(IF 3a6) is largo.

The above mentioned cases. identified by Eqs. (66) and (67), are extremes.
A real situation can be portrayed better by assuwing (IT 3-e6 ) is non-zero but

very small. leading to a slight coupling in Eq*. (32-40). This causes a small
non-zero value of 0 to be developed. although Eqs. (51.52) are satisfied. With
this compromise. the eigenvalues of Eqs. (32-40) satisfy the following charac-
teristic equation:

2 2 2 2 3	 2 2	 2	 4	 2_2a	 4
p (P '►0 ) IP 'a10a P + (40 -a7aI80 )P + (a7a10a180	

^ 2a18)0 j

- a5[p - 0	 (69)

where it is easumed that I I - I2 - 2 I 3 and

K - ( Ai'A2 )p4 - 8A1A 20p3 + P202[ (AZ ai)(5+a7a18a2)

+ 2A IA 20(a7
+a18)] + 4p03 [AIA 2 (1+a7a1802) + 0(A 1a18 A2a7)

+ n5[s7alsXi-A2) - 2a1 a2 (a7+a18)1	 (10)

In Eq. ( 70). AI and A2 are given by

AI - Af I - a2 	(71)

A2 - if  - 84	 (72)

Equation (69) can be viewed with a better perspective by considering a5.
a7 . and a18 to be small. This reduced Eq. (69) to the form

p3(p2+A2)2(p2-a log 2p+40
2) - 0	 (73)

It is now clear that a spinning satellite will begin to satisfy Eq. (73)
immediately in the presence of noise. A three-axes stabilized satellite, on 	

tipthe other hand, will satisfy Eq. (73) only after s t period of linear error growth.
If a is equal to zero. Eq. (73) predicts a doeinant cyclic response with the
Wall 

I O
known frequencies of 0 and 20 . The solutions of Eq*. (32-40 ) , corres-

ponding to the characteristic Eq. (73). are rAw ily obtained as follow:	 s

K001 - 0

i002 - 0
Z

f
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iloo aa- A2 + (A1+A3t)cosQt + (AZ A4t)sinQt

a

K 10 ' p + (A
1+A3t)sinot - (AZ A4t)cosot

Klol A
3sluat + A4cosat

moll A4sinot - A3cosQt	 (74)

K200 - 
C + ezp[Z alOQ2 tJ{D1cos2Qt + D2ain2Qt) + Gl(t)

k20 ' C -
 exp [2  loQ2

t)(D1cos2ot + D2sin2Qt) + C
2 (t)

a a	 exp a Q2tJ
M110 _ 12 +	 2 102	

[(16D1 4a10OD2)sin2Qt
2

Q	
(16+a10Q )

- (16D2+4aloQDl)cos22t) + C3(t)

where Al . A2 . A3 . A4 . C. D1 sad D2 are arbitrary constants. and

2

G1(t) 
a10 112 

_ a2 
+ Al [r11sinQt + r12cosQt)

Q

• A2 [r21sinQt + r22cosQt) + A3 [r 31tsinot + r32tcosat

• r33sinot + r34cosot) + A4 [r41tainot + r42tcosot

+ r43sinot + r44cos"tJ	 (74a)

2

G2 (t) - - '120112 - )2 + A1 [a11cosat + al2sin0t)
Q

+ A2 to21cosot + 8226inQtJ + A3 [s 31tcosQt + s32tsinQt

+ 833cosot + a34sinot) + A4
(8
61teosQt + s42tsinot

+ s43cosot + 564"not)	 (74b)

G3(t) - A1 [t1lcoant + t 12siaQc1 + A2 't21cosQt + t22sinotJ

+ A3[t3ltcosQt + t 32tsiont + t33cosot + t346inot)

+ A4[t4ltcosQt + t42tainot + t43cosQt + ti40lnotJ	 (74c)

i
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In tQs. (74a-74c), the constants r id , sib . and Ili are defined as follows

Lot x1 and o be the wi bers given by

xl • a10A2

o	 I9A2 + xi]-1
	 (74d)

Then,

111 • 30(3110 - A2*1)

112 • - 30(3A20 - A1x1)

211	(74e)

r11 Q - 2t11 ; r12 2t12

2A2
all • - Q - 2t12 ; a12 Till

121 • 30(3A2A + Alxl)

2A

t22 111 ; i21 • 
-2t

21	 r22 ' 2t22 - Q1	
(16f)

212

s21 • -2t21 ; s22 • 2t21 	 A

131 • 111 % t32 112

2
t73 • a 1811203-1sAla2x1 2112Ari 2A1v1]

2
t34 • Q Is1A103-7212A2x1+9A1Ax1+2A2x1)

211	
2t32	

(745)

r31 • G - 2t 31 i r32 - 2t72 i33 - -2t33 - Q

	

2t31 211 	212

r34 • 2t34 - p + 02 s31 • -2132 - R

2t	 2t	 21

s32 • tt31 ; s33 • -2t 34 + a11 j s34 • 2t73 + a + p2

141 - -t21 % 142 • -111

2
143 • 0 (s1

A103 -721202x 1 - 21A1as2 + 212x1)

j ^
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2
t44 - a [six 203 + 72A a2r 1 - 211 Qsi - 2A1*i)

2X 1 	2t42	 2X1	 (74h)

r41 - -2t41 ; x
42 - 2t42

 + Q r43 - -2t43 - Q - 02

2t	 2X
41	 - 2t + 2x	 2t44 - 

2t
44 - Q ' a41 - - 42 ' s42	 41	 a

2t41 2A2	
2t42s43 - -2t44 + Q' + p2 ; a44 - 2t

43 + Q

The nature of the functions G I (t), C2 (t), and G 3(t) can be given a simpler form
if a10 is neglected in Eqs. (74a-74h). In this cue. the functions are given by

2

C1 (t) - - 
aZ +
	 [ AlA3 -X2Q(A1+A3t))cosQt

Q	 Q

- 
2 [X

IA4 + X 2Q(AZ A4t))sisQt

2

G2 (t) - - X2 + Z [ A 2A4 - Xla(A2-A4t))cosat
Q	 Q

(741)
+

02 [X
2A3 + Xla(AI+A3t))sidlt

G3(t) - A [ X I (Al+A3t ) + X2(A2 A
4t) + Q (A2A3+X1A4)1"ot

- a 112 (AI+A3
c) - X1(A2 A

4t) - G(XIA7 X2A4))sinQt.

The constants AI , A2 , A3. A4 . C. DI . and 02 are calculated from the appropriate
Initial conditions. Equations (66) and (74) provide a basis for comparison of
the error growth rate of spinning and three axis stabilised satellites. If app.
given by Eq. (62), is large and XI or X 2 are mall, then a tbree-axes stabilised
design is warranted. The reverse is also the case. Interestingly enough. all
these predictions have been borne out by analog simulations.

THE FIE71 UTION SCWM

A perturbation solution of Eq. (1) will now be obtained with the assumption
that A'f and that the noises associated with the moments of inertia of the
satelliti are wall. The inertia soises are defined as

Ii - Ii + ti + nl(t)

where c  and ni are the noises in the sample and time space@, respectively.

The angular velocity responses. w it are assumed to be functions of the owes

1
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small parameters V. ti and ni of the for:

Wi Q* + 1'Wi0 + t1W11 + t2Wi2 + t 3Wi3 + nl1°i4 + g2WiS + n3W16

• W) 2 
(00  + llt 1Wi8 + 11t 2W19 + Alt 3

WIN + l,n1Will

• 
lln2Wil2 + l'g3Wi13 + (t l)2W114 + t 1t 2Wi1S + t1t3Wi16

+ 
COIW117 + t1

11
2Wil$ + t1 n3Wi19 + (12)20120 + t2t3W121

a 
t 2n1Wi22 + t2n2w123 + t2n3Wi24 + (t3)2m125

+ 
t 3n1WL26 + t 3n2Wi27 + t 3n3W128 + (n

i)2W129 + n1n2W130

+ 
nIg 3W13l + 

02)2WL32 + n 2n3Wi33 + (n3)2Wi34 .
	 (76)

In Eq. (76), the cubic •nd higher powers of the mull parameters are neglected.
The quantities Q* are the nominal values of the angular velocities W i . It is

"aumed that

01 - 01 - 0

I - n - a constant

W1 (0) - W2 (0) - 0 - [ W 3(0) - n)
	

(77)

Equations (15). (76). and (77) are substituted into Eqs. (1) and separate
equations are then formed corresponding to each of the various combinations
of the small parameters. This classical principle of separation of parameters
results in only a few of the multitude of terms on the right hand side of Eq.

(76) being non-sero. Thus, a more compact expa:uion for the angular velocities
is obtained as

W1 1'W10 + (l')2W17 
+ Ale 1

1118 + " t 2W19 + " t3W110 + 1"1W111

+ " n2W112 + 1.n3W113

W2 - 1lW20 + (XI)2W27 + 1lt 1W26 + Vt 2W29 + 1lt3W210

+ l'n
1W211 + " 12W212 + "13'213

W3 . 0 + a'W30 + (1')2W37 + Ale 
3'310 + 11n 3W313

Let Le be a matrix differential operator defined by
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I1 0	 0	 wI	 0	 (1312)Q 0 jW1

L*(Wi ) -	 0	 12 0	 W2 + (Il I3)0	 0	 0	 W2	 (79)

0	 0	 I3	 0	 0	 0	 w3

Then the perturbation equations for the components of w given in Eq. (78) take
the form

L*(1'wi0) - [ 'f1' Alf 2' A
l f 3)T	 (79)

L*[(A ') 2w17l - [(I2-I3)(A'w20)(A'w30). (I
3 Il)(A'W10)(A'W30)

(I1 I2)(1'w10)(1'w20)]T	
(80)

L*(i'ElwiB) i [(A'E1:2(I3 I2)w20 - 
A' Elf l }	 -A'C aw1011, 

0]T (81)

L*(l'E2'19)	
[A'E2I2Aw23' -A'E 2((1311)'WlO + f2) , 0)T	 (82)

L*(A'E3wi10) - [-S2e
3A'w

20
	S1E3A'wlO	E3A'w301T
	

(83)

L*tklnlwild - - [A'nl*10 	
)'nIOw10 ' 0)T	 (84)

L*(A'n2wi12) - [A'n2nw20 -A'n2w20 	
0)T	 (85)

L*(A'n3wii3) - [-A 1 n30w2G . A'n
3RwlO . -A'n3w30 1T	(86)

Equations (79-86) a;re easily solved. In particular, assuming

	

Il - I2 - 2I3	 (87)

	

A
l f 2 - 

A
l f 3 - 0	 (88)

the solutions to Eq. (79) and (80) are obtained as

t
A'w10 - T ! cosS2(t-t)A'f1(T)dt

1 0
t

A'w20 - - I I sinR(t- z)A'f l(t)dt	 (89)

1 0

*30 w17 w27 - w37 - 0

and hence

*310 - *313 - 0	
(90)

4

j j Ilj
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The perturbation solutions obtained so far from Eqs. (89,90) agree closely
with the Fokker-Planck solutions given by Eq. (74). But the drawbacks of the
perturbation scheme become apparent when Eqs. (81-83) are solved. Equations
(81-83) predict a secular growth of the angular velocities even for the time-
independent sample space inertia noises, E . This is obviously not true from
a physical standpoint. Thus, all perturbation equations involving E i , but not
nil must be discarded and the parameters E  must be absorbed in Yi. 	

but

(81-83), then, are discarded and E  are set equal to zero, so that Eq. (78) re-
duces to

i
w1	 1lw10 + linlwlll + lin2w112 + Ain3w113

W2 - 1lw20 + Ain 1w211 + Ain 2w212 + Ain 3w213

W3 - 0 + l'n3w313	
(90a)

Equation (90a) predicts that, if A l f, and n  are independent, then the mean val-

ues of the amplitudes of w l and w2 do not grow with time. It also states that

the variances of the amplitudes are stable and oscillatory and that the ampli-
tudes of oscillation of the variances are constants for all time. In other
words, no growth rate of the variances of w is predicted by Eq. (90a). Con-
trary to this prediction, it will be seen A analog simulations that the ampli-
tudes do grow with time, even if V f i and n  are independent.

THE MOST-LIKELIHOOD APPROACH

The method of most-likelihood estimates will now be applied to the system
described by Eq. (1). As mentioned earlier, this method is based on maximizing
the joint probability density of the random variables under the constraint
that Eq. (1) holds. It can be shown that this method, when applied on even a
linear equation, finally requires the solving of a nonlinear equation. For
this reason, the nonlinear Eq. (1) needs to be linearized initially to make ana-
lytic manipulations possible.

The well-known linearized form of Eq. (1) is given by

I lwl F1

I 2w2 	F2 	(^1)

I3w3 F3

where

F1 ' A l f I
 - (13-12)W2

F2 - 1 'f 2 - (I1 I 3)Aw1 	(92)

F3 • Alfa

Let v be the vector defined by
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M - [ul , 1A 2 9 v 3 56 1 .6 2 . 6 3 1T (93)

Let the matrix elements N ij be defined by

E (vi 
vj } - Nij 6(t) (94)

Let the functional J be defined by

T
J -	 E	 f	 (vi [N 1]ij vi + 20k [IkWk-Fk})dt (95)

i,j.k 0

where Bj are arbitrary time-dependent Lagrangian multipliers. 	 It can be shown
[10] that the most likelihood estimates of W	 are obtained by minimizing the
functior.sl J in the interval [0.T] with respict to the variables vi and w 

The variational equations for minimizing J are given by Eq. (91) and the
following two equations:

j
[N 1 ] ij vj + av	 k 

Bk(IkWk-Fk)	 0 (96)

d [ IkBk 1 + 1 Bj :U - 0 (97)

The terminal point condition on B is given by

01 (1) - 0. (98)

Assuming that

N13 . N23 - N31 - N32 - 0
	

(99)

and

N4j-Nj4-0 if j04

N5j -Nj5 -0 if j 05
	 (100)

N 6 
- Nj6 -0 if j f 6

Equation (96) can be opened up to read

u1 N11 [ 01w1 + OW1 B2 1 + N12 [02w2 - no 1'2 1

y2 N12 [B1W1 + OW1 02 1 + N22 [02W2 - OB1W21

'J 3 - N33 [B
3W3 + O(B1W2 - W1B2)]	

(101)
6 1 - _N 4401

i	 I	 t

I
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62 -N5502

63 -N6603
i

Using Eqs. (92) and (101), Eqs. (91) and (97) can now be reduced to the follow-
!	 ing forms:

[I1 + N11 ( 61W1+S2w162) t x12 ( 62W2t161W2)]W1 + 0[13-12

+ N33{03'3 + !2(01'2"102)} - N12(B1w1+S2w1B2)

- N22(02 to- a'fl + N4461 0	 (102)

[I2 + N
12 (B1W1 + Oa102) + N22(02W2S201'2)'2 + Q[I3 I3

- N11(01w1+g'6102) + N12(S2w2 Q01'2) - N33{03'3

+ 0(BlwZ '102)1]'2 - a'f 2 + x5502 0	 (103)

[I3 + N33 (83'3+ Q(01W2w1 02 )}]W3 - a'f3 + N6603 - 0	 (104)

[I1 + N11 (01'1+Ow102) + N12 (02w2II01w2)101 - A[1113

+ N11 (01w1+"201 02) + N12 (0 2W200102 ) - N33{033

+ 0(01(02w102)1102 ' 0 	 (1011

[I2 + N12 (01W1+ ,02) + x22 (02'2 Rslw2)]s2 - n[i3 I2

+ N33(03w3 + A(01'2-'10
2 - N12(01W1+9w102)

- N22 (0 2W29101w2)101 . 0	 (106)

[I3 + N33(03w3 + n(01W2w1 02 )}]03 - 0	 (107)

Equations (102-107), together with the initial conditions on w i and the end

conditions on 0 i given by Eq. (98), form the final two-point boundary value
problem coverning the stochastic motion of the satellite. To solve this
problem, a perturbation sequence for 0 1 and w  has to be adopted.

Let it be assumed that E is a small parameter and the numbers Ni.l are of
the order of a or less. Let Ni , i - 1-7, be defined as

N11 , eNI

it 	 " eN2

i

i
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N22 - EN3

N33 - EN4	(108)

N44 - CN5

N55 - EN6

N66 - EN7

where

E - Nax INij I	 (108a)

i, j

Let the variables w  and 
81 

be assumed in the form

W  - '10 + Ewii 
+ 

E2m12 
+ ...

81 - 010 + t811 
+ E26i2 + ...	 (109)

such that

Si 
j (T) - 0
	

(110)

Substituting Eqs. (108) %ad (109) in Eqs. (102-107) and separating the co-

efficients of ED , E 1 , E2 , etc., it can be seen that the zeroth order response
is given by

si0 - 0
	 (lll)

I1w10 + 2 - 
TIT 

I2m20 - (29 
I1AW10 - 

A l f 2	 (112)

I3W30 1 f3

After soak involved algebra and the use of Eq. (110), it can be seen that the
predicted response from the higher order perturbation equations has essential-
ly the same characteristics as that obtained by the straight forward pertur-
bation scheme explained in the preceding section. Thus, the method of the
most likelihood estimates suffers from the same drawbacks as those of the per-
turbation method.

THE METHOD OF STOCHASTIC EIGENVALUES

According to this method, the deterministic solutions of Eq. (1) are to
be obtained first. Stochasticity is then imposed on these solutions to esti-
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sate the behavior of the system which was random from the beginning. Although
this method is not enact, it is such simpler than the methods previously dis-
cussed.

For example, the approximate deterministic response of a three -axes stabi-
lized satellite is given by

t Alf
Wi J Ii dt , i - 1,2,3	 (113)

0 1

Hence, assuming Jl'f i to be a constant, the mean values and the variances of wi
are given by [16}

a'f
H( Wi } . - i t

i

E(W2}	 (ai ) 2t2	 (115)

where	

2	 22

02 - 
1 [ (a'f1 ) [ill + I1 

44}

1 I
1	

11 + x11

02	 1 [ (1'f 2) 22 + I2 {55 }
	

(116)
2 12	

12 + x22

02	 1 [ (I'f 3)2x33 + 13"66}
3 

13	 13 + x33

In deriving Eq. (116), it was assumed that 
V  

and 6 1 are Gaussian random variables.

For the case of a spinning satellite withI I - I2 
1 

I 3 , a'f 3 - 0, and

constant values of A'f I and V f 2 , the deterministic amplitudes and frequency of

oscillation of W1 ad w2 are given by

Freq.[w1 ]	 Preq.[w2 1 . W3

a'f 2	a'f2
Amp. [WI} I 
	 = I A	

(117)

2w3 	 2

a'11 VfI

^P•[w2} I
1 W3 'I"

i+
I	 L

(114)
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when w1(0) - m2(0) - 0.

Hence, the growth rates of the amplitudes and frequency are described by
the variances, which are

E{ [Freq •(w1 11 2 ) - E{ [Freq •[w2 11 2 1 - (03) 2[2 	(118)

(.X , ) 2o 2 t2 + 02M
E{[Amp.[w1112} - _2 2[ 	 2 2 3 2 2 

55 1
I20	 R + a 3 t

(119)

(x'f

1 )

202t2 + 02M
E { [Amp "w2 11 2 } 

- —2 2 [ 	2 3 2 2 
44 1

I10	 0 + a 
3 
t

From Eqs. (114) and (115), it is seen that the approximate predictions
for the responses of three-axes stabilized satellites are quite satisfactory.
Equation (118) approximately predicts the frequency growth phenomenon. Equa-
tion (119) predicts that, when t is small, such that oat is small compared to

0, the variances are of the form

( a1 f )202[2
E{[Amp .[w1 11 2 1 - j722 [ 	2 3 + M5S }	 (120)

 0 2

But for large values of t, the variances will reach a constant value. This is
given by

Alf 
1E{[Amp •[w1 11 2 } - ( I )	 .	 (121)

2

The prediction of an initially growing variance finally levelling off to
a constant value is satisfactory and is corroborated by analog simulations.
The only problem with Eqs. (120) and (121) is that these equations predict a
lower growth rate and a lower value of the asymptotic variance as 0 becomes
large. In this respect, Eqs. (120) and (121) differ from the Fokker-Planck
formulation and the analog simulations which give higher growth rates and
higher values of the asymptotic variance for larger values of 0.

ANALOG SIMULATION

The results of simulation of the satellite response, as given by Eq. (1),
can now be presented. The simplified system block diagram is shove in Figure
1. This system was programmed on an AD -256 (Analytical Dynamics -256) analog
computer. The white noise inputs 4 and 6 ! , 1 - 1-3, were obtained from a
coupled SDS-930 (Scientific Data Systems -930) real time digital computer. A
high frequency QO (Repetitive Operation) clock circuit from the AD -256 was
used to trigger a pseudo-random number generating program in the SDS -930. Sam-
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plea of twenty such pseudo-random numbers were used to fors, a Gaussian white
noise sequence with a zero mean value and suitable peak values. Six such in-
dependent noise sequences were continuously generated in the 3DS-930 and fad
to the AD-256 through six DAC (Digital to Analog Converter) lines. One test
line was also used to interrupt the SDS-930 and change the peak values of the
noise sequences. A sample of the noise sequences u t , i - 1-3, is shown in
Figure 2 at a high brush recorder speed. At any instant of time, the frequencies
of generation and the peak values and, hence, the bandwidth of all u 1 and 61

i - 1-3, were maintained equal. Thus, d, i - 1-3, are similar in nature to
that shown in Figure 2, although all six inoise sequences were independent of
each other.

Let r be the ratio defined by

r - [Peak value of 
ui

 and 6 1 , 1 - 1-31/I 3	(122)

where I is the nominal moment of inertia about the spin-axis. Brush records
of the hmulated angular velocities w i , w2 , and w3 , for different values of

r and 0, are shown in Figures 3-15. The values of r and 0, corresponding to
each of these figures, are tabulated in Table 1. In all cases the initial
values of w  and w2 were taken to be zero.

Table 1: Index to the attached figures showing samples of the sto-
chastic satellite responses.

Values of r

Values of 0,
rad./sec.

r	 12 - 0.083 r - 6 - 0.166 r4 - 0.25

Figure Nos. Figure Nos. Figure Nos.

3,4 5 6,7Fast spinner: 0 - 1.0

Slow spinner: n - 0.5 8 9 10,11

Three-axes stabilized: 12 13 14,15
n - 0.0

EVALUATIONS AND COMPARISON

The results of the analog simulation will now be evaluated and compared
with the predictions of the analytical methods discussed earlier.

The first important result of the simulation study is that, in every use,
the responses grow with time. The growth phenomenon is predicted by all four
of the analytic methods only for the case of a three-axes stabilised satellite.
This was true because. if 0 - 0, Eq. (1) leads to a perturbed equation given by

3

i
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I i'i • A'f i ; i - 1,2,3	 (123)

Responses given by the cclutions of Eq. (123) are the integrals of A'fand,
hence, must grow linearly with time, even if T'T i are equal to zero. iBut,
in the case of spinning satellites, only the Fokker-Planck formulation pre-
dicts an initial exponential growth. The perturbation method and the most-
likelihood approach predict a constant variance. The stochastic eigenvalue
method also predicts a linear growth rate which, however, is inversely propor-
tional to 02 . Looking at Figures 4, 8, and 12, or at Figures 5, 9, and 13,
or at Figures 7, 11 and 15, it is seen that the variances increase with Q.
Thus, at this point, the Fokker-Planck formulation is apparently the best of
the theories under consideration.

A second interesting result, discernible from Figures 3, 7 and 11, is
that, with time, the response amplitudes reach a stable value. Such stable
values are predicted directly by the stochastic eigenvalue method. The per-
turbation method and the most-likelihood approach also yield the same result
if it is assumed that these methods are valid only for the asymptotic case.
It is to be noted that the Fokker-Planck formulation can also be made to
yield this result, al;hough not as directly as the other methods. To do this,
let the solutions of 

M200 
and MO20 as given by Eq. (74) be considered:

M200 ` C + exp[2a 10n2 t]{D lcos 2nt + D2sin2Slt) + G
1 (t)

(124)

MO20 " C - ex
p [ 2 alO

02t]{D lcos2Qt + D 2sin2ilt) + G2(t)

The exponential terms in M
200 

and MO20 appear with opposite signs.

According to Eq. (124), one of the variances must grow and the other de-
cay with time. Thus after a certain time, one of these variances will tend
to be negative. But variances are by definition non-negative quantities.
Hence, DI and D2 are to be taken as non-zero until one of the variances first

becomes zero. DI and D2 should then be set equal to zero in order not to have

negative values of 
M200 

and 
MO20' 

This procedure yields the prediction that

the response amplitudes become stable after a certain time, which is in agree-
ment with the simulation results.

The last obvious result obtained from the simulation is that, for a given
value of n, the variances and the growth rates increase with r. This is ex-
pected, both intuitively and rationally, and all four theories predict it.

A comparison can now be made of the theoretical methods, based on purely
analytical grounds. The strength of the Fokker-Planck method lies in the fact
that it does not require either uncoupling or linearization of coupled non-
linear systems such as that of Eq. (1). The statistical moments of all orders
are obtained directly as the solution of a coupled linear set of equations.
Hence, digital computer methods can be used easily to solve such equations.
The other three methods are based on initial linearization and possible un-
coupling. This linearization results in a loss of useful statistical information.

i



1

1

30

There are, however, sons disadvantages of the Fokker-Planck method. The
primary disadvantage is that all statistical moments are coupled. Hence, when
the number of dependent variables is large, the resulting set of equations is
more so, even if the third and higher order moments are neglected. This method
then requires some foreknowledge of the higher order moments and the statistical
forms of the input random functions.

In view of the above discussion, the following conclusions can be made:

i) The Fokker-Planck formulation yields the most complete information
on the responses of a satellite with random disturbing torques and stochastic
moments of inertia.

ii) For a satellite with very small inertia noises, the spinning configu-
ration is better than a three-aces stabilized configuration. The reverse is
also the case.

iii) In all cases, the responses have an initial fast rate of growth.
But after some time, this growth rate falls off, leading to a constant variance
level depending on the variances of the input disturbing torque and on the mean
moments of inertia of the satellite.
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Figure 2: Input white noises.
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ible elements; Eqs.	 (3),	 (49), (53) - (57).

[AiJ, i - 1-5 • Hat ricon similar to (Ai ); Eq. (44).

a	 - Radiusof the cylindrical rigid core of the assumed satellite
configuration; Mg. 2.

as 	- Normalis ing factor of the joint probability density; Eq. (17)

Be	 -Additional composite body for a flexible dual-spin satellite.

(a 1 ], 1E2 1	 - Matrices associated with conned equations of notion of the
satellite; Eqs.	 (S) -	 (7).

b1 , 6 3	 - Elements of r
dl , 43; Eq. (38).

ICJ	 - Stochastic systemmatrix; Eqs. (21), (27).

Ci e i - 1-10	 - Coefficients of the characteristic Eq. (71); Eqs. (74) - (77)
(80),	 (85),	 (86).

s i t i	 1-4	 - Llesamte of rte . i - 1-4; Eq. (38).

t(t) 	 Deterministic forcing function; Eqs. (S), ( 10).

f 2 , f4	 - Elements of 42 , d4 ; Eq. (38).

is (t)	 - Deterministic environmental torque vector on the satellite;
Eqs. (4), (45), (50).
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STASILITT AND OMWL OF 1LEQELE SATELLITES

EAST I - STAEILITT

T. C. Sueng and Aniruddha Dam

AESTEACT

This investigation has two distinct parts. In this first part the euviron-
mental and control torques experienced by a satellite are assumed to be random
so r to account for the inherent error* in the control system and the lack
of asset models of the environmental torques. It has been shown that under this
assumption the required stability criteria of a satellite is quite different
from that obtained by a deterministic approach. It bas also been shown that
a flexible throe-axes stabilised satellite can be made almost certainly wympto-
tically stable, while the same is not true for a flexible spinning satellite.

NOWCLATUEE

	

Ae 	- Composite body of a flexible satellite.
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(G)	 - Stochastic control matrix, Eqs. (21), (26).

gii	
- Elements of coefficient matrix defined by Eq. (63).

h[x(t)1	 - Datecmdnistic observed function of x(t); Eq. (13).

(I]	 - Identity matrix.

(11	 - Moment of inertia matrix of the nominal configuration of the
satellite.

Ix , Iy , Ix - Diagonal elements of [I]; Eq.	 (52).

J - The point probability density of	 (f-b and
Ix(0) - x(0)]. Eq.	 (17).

J* - Functional defined by Eq. 	 (17a).

J** - Functional defined by Eq. (18).

Ai, 1 -
I

1-4 - Lengths of flexible beams of the satellite.

IN1 1,	1 - 1-4 - Submatrices of [8 1 ] 1 ; Eqs.	 (28),	 (29).

101 - Null matrix.

IF 
0 1 - Covariance matrix of (x(0) - 1(0)3; Eq.	 (12).

IF1 1. 	 1 - 1-5 - Matrices associated with the angular momentum equations of the
flexible satellite; Eqs. 	 (4),	 (50).

1?	 1,	 1 - 1-5 - Matrices similar to IF1 1; Eq.	 (45).

P1
- Eigenvalues of 1-	

'21
La21.

P 16 , i - 1-4 - Exponents of the assumed been dieplacesent function; Eq. (42).

I
J	 [Q1 - Covariance matrix of Iu(t) - u(t) 1; E•4.	 (15).

Qi' , i,3-1-6 - Elements of the characteristic matrix of Eqs. (49). (50);
Eqs.	 (70).	 (71).

1 - Generalised position vector of the flexible elements of the
satellite; Eqs.	 (3).	 (4),	 (49),	 (50).

q' - Vector, similar to 1; Eq*.	 (44). (45).

gbi- i
- 1-4 - Time dependent pert of 1b1 ; Eq. (42).

IE3 - Covariance ratrix of (m(t) - m(t)]; Eq. (14).

- Displacement vector of the center of sass of the flexible sa-

I

tellite from its nominal position; Eq. (63).

1

i
I
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rte , i 1-4 - Nominal position vectors of the spring-mess-damper systems;
Eq. (38).

ri , 1 1-4 - Nominal position vectors of the beam-end masses; Eq. (37).

[SK ), K	 1-3 - Coefficient matrix; Eq. (67).

S	 - Covariance matrix of [f(t) - f(t)); Eq. (16).

s	 - Generalised velocity of the flexible elements; Eq. (8), (11).

T	 - Terminal point of controlling time interval

T	 - Terminal point of the time interval in which the maximum like-
lihood estimates are required.

T	 - Total kinetic energy of the flexible satellite.

t	 - Time.

U	 - Augmented control torque vector; Eqs. (5), (9).

u*	 - Control torque vector; Eqs. (4), (45), (50).

X	 - Stochastic system state variable; Eqs. (21), (24).

X	 - Deterministic system state variable; Eqs. (5), (8).

pbi , i - 1-4 - Displacement vector of beams.

ydi, i - 1-4 - Components of Z& ; Eq. (41).

Y&, i - 1-4 - Displacement vector of spring-mass-damper systems.

yam , i - 1-4 - Displacement vector of beam-end masses.

Z	 - Stochastic forcing function; Eqs. (21), (25).

Z	 - Observed values of the state variables; Eqs. (13), (19), (23).

a	 - Characteristic values of Eqs. (49), (50); Eq. (70).

[ak ], k - 0-3 - Coefficients of structural equations; Eqs. (64) - (68).

d(t)	 - Dirac's delta function.

8	 - Relative angular displacement vector of A* with respect to 8*.

a	 - Lagrangian multiplier and state variable; Eqs. (18), (22).

- Lagrangian multiplier; Eq. (18).

k	 - Coefficients of structural equations; Eqs. (64) - (66).
%i j
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tbi' a Sam displacement nods parameters; Eqs . (46) . (47) .

sdi
- Spring-mw-damper displacement mode paruetera; Eq. (48).

A - Nominal angular velocity vector of the satellite.

W w Perturbed angular velocity vector; Eq. (1).

We - Angular velocity vector of the satellite.

-MA*
Angular velocity vector of Ae.

W1
- Angular velocity vector of Be.

OPERATORS

(') - Time derivative; dt

11T - Transpose.

(^) - Vector cross product operator; Eq. (69).

() - Mean value.

(, - Vector.

Dot.	 I	 ) - Determinant of the matrix.

E[	 ) - Statistical expectation.

Tr.	 [	 ) - Trace of the natrix.

INTEDDDGTION

The primary requirement of an artificial satellite is that it should be
capable of precise orientation in space. This capability is determined mainly
by the stability and controllability of the satellite when viewed as a dynamic
system. A large number of investigations have been made in the area of flexible
satellite dynamics. But several interesting questions on the stability and
controllability of flexible satellites have not been examined in sufficient de-
tell. The present study looks at two of these questions:

(a) (bat are the stability criteria of flexible satellites in the
presence of errors in the controlling torques and largely unknown
environmental torques?

(b) For a given control system, and for a given number of torquing
bets, is it possible to increase the controllability of a flexible
satellite by monitoring the deflections of the flexible elements?

In the first part of this study it will be shown that, in the presence of
random errors in the external torques on a flexible satellite, the stability
criteria are far more restrictive than those deduced from a deterministic

f
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approach. The second part of this study will present reasons for an affirma-
tive answer to question (b).

As mentioned earlier, deterministic criteria for the stability of flexible
satellites have been studied extensively [1-4]. It must be noted that, to ac-
count for errors in the external torques acting on the satellite, these torques
and the dynamic state variables of the satellite model must be treated as
stochastic variables. Several studies [5- 7] on the state identification prob-
lem have been done. These studies generally assumed Gaussian distributions
and used Kalman filtering techniques. Using methods similar to that given in
Ref. [8], equations of motion and the stochastic angular velocity response of
flexible satellites have been computed in Refs. (9;1,x. But the problem of
comp-sing the stability characteristics of various satellite configurations
subjected to random excitations has not been investigated.

DETERMINISTIC EQUATIONS OF NOTION

Formal deterministic equations of motion of a flexible satellite can be
established. The stochastic stability boundaries can be determined only when
these equations are available.

Le'. w*(t) be the angular velocity vector of a flexible satellite. For a
single body satellite, w*(t) is a (3x1) vector. For a dual-spin satellite with
two main composite bodies (A* and B*), w*(t) is usually taken as

w*(t)	 [wA(t), wB( t ). e(t)]T
	

(1)

In the above equation, w*A and wB are the ( 3x1) angular velocity vectors of the

composite bodies A* and B*; while 9 is the (3x1) relative angular velocity vec-
tor of the body A* with respect to B*. Let O be the constant vector of the
nominal values of w*(t), such that the perturbing angular velocity vector w(t)
is defined by

W (t) - w*(t) - $1
	

(2)

Let the motions of the flexible elements of the satellite be represented by
the generalized (nxl) position vector g (t). With these definitions, the equa-
tions of motion of the flexible elements can be expressed in the following form:

[A1 ]q(t) + [A2(w,w,R.t)]g(t ) + (A3t)]g(t)

[A4 ]w(t) + (A5(w,tt,t)]w(t)
	

(3)

Similarly, the equations for the conservation of angular momentum of the compos-
ite bodies of the satellite can be shown to be of the form:

(P 1 a(t ) + (P 2 (w rw.n. t ) ]g(t) + [P3`.w.^rt) iY(t)

[P4 ]w(t) + [P5(w,lt,t) ]w(t) + u*(t) + f*(t)
	

(4)

i	 +
i	 I	 i
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where u*(t) and f*(t) are the controlling and environmental torque vectors, re-
spectively.

Detailed methods of developing Eqs. (3.4) are given in Refs. [1-4] and es-
pecially in Refs. (11,12]. Eqs. (3.4) provide the complete sat of equations
of motion of the flexible satellite. Equation (3) contains 1 0 scalar equa-
tions, such that the mstrices [A,]. [A,] and (A ] are square. Equation (4) cone
talus either three or nine equations dipending 9; whether the satellite is of
a single body or a dual-spin type.

Equations ( 3,4) can be combined in the form

(EI ]i + [E2 Lx - u(t) + I(t)	 (5)

where. defining [ I] to be the identity matrix.

P4 -P1	0

[E1 ) -	 A4 -AI 	0	 (6)

0	 0	 I

PS -P2 -P3

(E2 ) -	 AS -A2 -A3 	(7)

0	 -I	 0

u(t) - I—u*(t). 0, 0]T 	 (9)

f(t) - Lf*(t), 0. 0]T 	(10)

and

^(t) - g(t)	 (11)

Equation (5) is the required differential equation describing the determdnis-
tic motions of a flexible satellite.

STOCHASTIC EQUATIONS OF NOTION

The stochastic equations of motion of the flexible satellite will now be
obtained following the method shown in Refs. [8,9].

Let it be assumed that the initial values, x(0), have a Gaussian distribu-
tion with a known mean value, =(0), and a known covariance matrix, (PO ]. given by

[Pa] ' E{[:(0) - ?(0)]x(0) - =(0)]T)	 (12)

Hera the operator E denotes statistical expectation. Let x (t) be monitored on
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the Earth by measuring a variable z(t) where the mean vtlue, a(t), of z(t) is
related to x(t) by

s(t) - 11E(t)1	 (13)

Let it also be assumed that the variables z(t), u(t), and f (t) are Gaussian
with known mean values and covariance matrices N F(t) , Q(t), and S (t), respec-
tively. Hence, assuming zero lag, we get

E(IZ(t) - r(c) I (_z (T) - T(T) ]T} - x(t)a (t-T)	 (14)

E{[u(t) - i(t)][u(T) - u(T)]T }	 Q(t)d(t-T)	 (15)

E{(f(t) - 1(t)][f(t) - f(T)]T }	 S(t ) 6(t-T)	 (16)

where i (t) and f(t) are the mean values of u(t) and f ( t), respectively.

Let the maximum-likelihood estimates of the response of the satellite be
required in the time interval [0,T]. In view of the definitions given above,
the joint probability density, J, of (z-D, (-Du, (f-_f) and Jx(0) - z(0)] is
given by

J - a*[exp (- 2*)]	 (17)

where J* is defined as

J* - 11(0) - ^c(0)IT [p0 1-1 [x(0) - i(0)]

+ 1; [s(t) - z(t) I [x(t) ] 1[Z(t) - z(t) }

+ In(t) - u(t) IT[Q(t)]-1 [n(t) - u(t)]	 (17s)

+ [f(t) - 1(t) IT [S(0] 1 [ f(t) - T(t)] dt

and 'a*' is the normalizing factor.

The maximum- likelihood estimates can be obtained by maximizing the proba-
bility density •I. In other words, we minimize the functional J*, subject to
the constraints that Eqs. (5), (13) be satisfied. This is done by defining
J** by the rel,ition

J** - J * + 2 ID { LT [z(t) - h(,]

+ AT [x + Bi
1
{B2x-u-f)]}dt	 (18)

and minimizing J** by considering E(0), t(t), u(t), f(t), x(t) and the La-
grangian vector multipliers p(t) and A(t) as the independent variables.

It will now be assumed that
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s_(t) - LX(t) l - x(t) 	 (19)

which means

8h - [I]	 (20)
IS

With this assumption, the variational equations obtained by minimising J** are
expressed as

Z(t) - (C)2(t) + [GCn(t) + Z(t) 	 (21)

1(T) - 0	 (22)

x(0) - 1(0) + [PO1A(0)	 (23)

X(t) - [_x(t) . A(01 	 (24)

Z(t) - [all f(t). - R 1=(t))	 (25)

B1
1

[G] -	 (26)

0

B11

	

B2	 B11[Q*SI[s111T
(C)	 (27)

	

el	 (BllB2]T

Equations (21-23) are the required stochastic differential equations of motion
of the flexible satellite.

STABILITY CRITERIA

The stochastic Eq. (21) has twice as many scalar equations as the deter-
ministic Eq. (5). The deterministic equations are stable if the eigenvalues

of [-61162 1 have negative real parts. The stochastic equations are stable if
all the algenvalues of [C1 have negative teal parts. If there were no error
involved with u(t) and f(t), the matrices [Q] and 151 would be null metric".
Consequently, Eq. (21) would degenerate into Eq. (5).

The hypothesis of this study is that [Q] and (S] are not null matrices,
but haws positive elements which are very small compared to those of (B 1 or
[B21. Banco, half of the eiganvalusa of (C) will be almost equal to Q sigma-

and

where
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t

values. p I , of [-B1 1B2 1 and the other ha l t will be almost equal to -pi . Tnat

the eigenvalues of [C) lie symmetrically about the imaginary axis can be veri-
fied by noting that

Tr[C] - 0

and that the eigenvalues of [B1 1B2 ]T are equal and opposite to those of

[-81182]•

In view of this, it is evident that Eq. (21) is always unstable. Even if
the real parts of p are zero, the instability will be caused by the multiple
roots. Thus, accoriding to the classical meaning of the term, no stability cri-
terion exists for the stochastic Eq. (21). The physical reason behind this is
that the probable errors in the dependent variables accumulate with time. This
accumulation causes the maximum - likelihood estimates to be asymptotically di-
vergent, even if the deterministic Eq. (5) is stable. The growth phenomenon,
for a satellite in which the vector x(') is measured at discrete intervals of
time, is illustrated in Figure 1. Let the mean values of x(t) be considered
to be given by the solutions of Eq. (5). Let the variances of x(t) be compu-
ted from the differences of the values of x(t) computed from Eqs. (5) and (21).
The error functions computed from these mean values and variances are shown at
three instants of time in Figure 1. In Figure 1A, there is a data input and
the computation cycle has been started. Bence the error distribution curve
has a high peak. The variances here correspond only to the measurement errors
of the variables x(t). In Figures 1B and 1C, it is seen that the height of the
error function becomes shorter and shorter, although the mean position given
by Eq. (5) approaches the origin. In Figure 1C, the error function is very
flat just before the new data input. It becomes sharp again j ust after the new
data input when a new computation cycle is started.

Since Eq. ( 21) is necessarily unstable, the stocastic stability cirteria
for a flexible satellite must be formulated in a particular manner. The sto-
chastic stability criteria of the response of a flexible satellite are those
which make

(a) the deterministic model given by Eq. (5) stable, and

(b) the growth rate of the stochastic model given by Eq. ( 21) a minimum.

In the absence of further information about the covariance matrices Q, E and S.
these two requirements are met if the real parts of p i are equal to zero.
Thus, a flexible satellite will be called stochastically stable if wll the eigen-

values of [-B, B,J are purely imaginary. It is interesting to note at this

point that a perfectly rigid satellite satisfies this requirement.

Specific stability criteria can be obtained for a satellite when the ele-
ments of [B I ] and (B2 ] are known. For this, a particular satellite configura-

tion has to be assumed. In the absence of such a specific configuration, sev-
eral conditions sufficient to make the p i purely imaginary can be w.-tablished
in terms of the matrices [AI ] and [PI, i - 1- 5, when the matrices are square.

I	 ^

I
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SUFFICIENT CADITIONS

:ha suff:. 'enc candition for the p i to be t^urely imaginary, the mtri=
(311' 2 1 uu-t be _,atisymwtric. Let (A i l and (pi 1. i - 1-5, be square
matrices. Let [El') be given by

	

N1 	N2	 0

(gI j
-I 

.	 N3	 N4 	0	 (28)

	

0	 0	 I

Coopering Eqs. (6) and (28), the matrices N i . 1 - 1-4. are given by

INI] - (p, - P14^1A4]-1

(N2 1 - (A4 - I1IpIlp41- 1
(29)

(N 3 1 - [p4A741

1

Ai Pl ] l

(N4 ) - [A4p4 P-A1 i

Nance frog Eqs. (7) and (28). (8 11E2 ) is given by

[NlP5+N 2A5] -[NlP2+N 2A2 1 -IN1P3+NIA31

[gi lt -	 IN3P5+N4A5] -(N 3p2+N4A2 ] -[N ?3+N4A3 1	 (30)

	

to]	 1-11	 101

To have (E71IE2 ) antisysmotric. the required conditions become

N1P5
 + 5

2A5 - 0

N3 p2+ N4 A2 - 0

	

N1P3 + N 2A3 - 0	 (31)

Nh + 54A3 - -I

N?2 + N2A2 5?5 + M4A5

i

i

I
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Eliminating Ni, i - 1-4 from Eqs. (29) and (31), the required sufficient con-
ditions are finally obtained as

IF 3 1 - ( pl )	 (32)

(A3 1 - [A 11 (33)

IF 2 1 - - NA1 1A 5 1 	(34)

IA2 1 - - IA4Al lA 5 1	 (35)

IP5 1 - I P 1A 11A5 1 	 (36)

The stochastic stability criteria given by Eqs. (32-36) are such too re-
strictive and it will be almost impossible to obtain a practical design of a
satellite satisfying these constraints. For example, Eq. (33) requires that
the natural frequencies of the flexible elements of the satellite shoald be
equal to unity. This is not a feasible constraint.

In spite of these drawbacks, Eqs. (32-36) do provide several guidelines
for satellite design. It can be easily verified that Eqs. (34-36) are satisfied
identically by a three-axes stabilized satellite in which all subbodies have
undamped, purely elastic mountings. A spinning or a dual-spin satellite, even
if it is free of damping, generally does not satisfy Eqs. (34-36). Equation
(32) is satisfied by all types of satellites in which there 1s an axis of sym-
setry, and in which the flexible elements are so constrained that the center
of mass moves only along the axis of symmetry. Hence it can be claimed that,
among satellite designs with comparable mass, stiffness, damping and covariance
matrices, a symmetric, three-axes stabilized satellite is likely to have the
lowest error growth rate.

A SPECIFIC CONFIGURATION

The constraints given by Eqs. (32-36) are too restrictive because, in their
derivation, no attention has been paid to the zero elements of the matrices in-
volved. To utilize the location of the zero elements in the matrices )R ) and
IB 2 ), a particular satellite configuration (shown in Figure 2) will now lbe con-
sidered. The satellite consists of a rigid cylindrical body with four beams,
four beam-tip cases, and four spring-sus-damper system. placed symmetrically
as required by Eq. (32). The beams are perpendicular to the ails of symmetry
and are assumed to be axially rigid. The spring-mass-damper systems are assumed
to be constrained to move only parallel to the axis of symmetry. These assump-
tions lead to a large number of zeros in the matrices I g 1 1 and 13 2 1, making the
algebraic manipulation considerably simpler.

The mayor drawback of any stability analysis with a particular satellite
configuration is that conclusions drawn from it cannot be extended to other
configuration. The method of modelling and analysis of the satellite configu-
ration (shown in Figure 2) that has been used in this study partially overcomes

i
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this disadvantage. In this esthod, the location of zeros in (3 1) and (32 ) to-
main unchanged when the numbers of bases, tip-masses. or spring-mass-damper sys-
tem are changed.

THE DYNAMIC MDDEL

Lot 'a' be the radius of the main rigid body end t i . 1 - 1-4, be the lengths
of the h^aes. Lot mar, and rte . i - 1-b, b ye the nodnal position coordinates
of the bessrtip masses and the spriag -meu-damper systems. respectively. Ac-
cording to the choice of coordinate axon shown in Figure 2. we have

rrl - (( &+),1). 0. 0jT

=r2 - 10. -(a+12). 0)T	
(37)

rr3 ' (-(8}1 3). 0. 0)T

Let it be defined that

tdl _ 
lbl. 0. o1)T

=d2 - (0. -f2 . o2)T
(33)

43 ' 14 3 9
 0. a3)T

.
Ed4 

_ 10. fb. % )T

Let x be the distance along the axes of the beams measured from the fixed ends.
Let -T-r1(t). Zb1 (x,t) and ZS1 (t). i - 1-4 be the deflections of the beam-tip

masses. the bases, and the spring-mass-damper systems. respectively. According
to the previously seemed constraints, lot it be defined that

Lrl (t) - (0. yrl,2 (t ). yr1.3(t))T

7r2(t) - (y:2.l(t). 0. yr2.3(0)T
(39)

43(t) ' (0 . 7r3.2( t). 7r3,3(t))T

j rA (t) - (7r4,1( t). 0. yr4.3(t))T
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Yb1 (x ' t) - (0. ybl,2(x.t). yb1,3(=.01T

Yfi2 (x.t) - (yb2.1(x,t). 0 . yb2,3(x.t)]T
(40)

Yb3 (x ' t ) - (0. 7b3,2(x.t). yb3.3(x.t))T

Zb4 (x . t) - [yb4.l(x.t), 0, yb4.3(x.t)]T

and

131(t) - [0. 0, ydi ( t )]T	 (41)

Equations of notion in the coordinates w, 
yri,j' Ybij 

and 
ydi 

for 1 - 1-4,

J - 1.3 are obtained using the method shown in Ref. [1). The space dependence
of these equations is eliminated by assuming

ybi,j (x , t ) - (gbi,j ( t)]( exp (ptx) - pix-1]	 (42)

and applying the Galerkin's method [1,11). The space-dependent shape func-
tions in Eq. (42) are assumed to be known and correspond to those of a canti-
lever beam with a tip-sass.

At this point, the boundary conditions

yri,j (t) - [exp (ptli) - p il i - I]gbij	 (43)

are applied, and the equations of motion reduce to the form

(A1]g'(t) + (A2 (..W.n.t)]g'(t) + [A3(W.^,n,t)];'(t)

- (A4)W(t) + [AS(W,G)]W(t)	 (44)

and

(POi ]g'(t) + (P2(m,W.n.t)]g'(t) + [P3(

( P "fl(t) + (PS(w,0)Jm(t) + u*(t) + f*(t) 	 (45)

where g'(t) consists of the non-zero elements of 
qbi 

and 
ydi' 

i - 1-4. The

set of Eqs. (44) and (45) is of the order of 27. It Is still quite difficult
to extract :,.,y meaningful analytic stability criterion out of this set.

It is now assumed that there exists certain unknown constants 
Tbi) 

and
tdi . i - 1-4, j - 1,3, such that

Ibl2gb1,2 ' Tb2lgb2.1	 t b32gb3,2 * tb41gb4,1	
(46)

Tbl3gbl.3 - Tb23gb2.3 - Tb33gb3,3	 Tb43gb4,3	 (47)
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and

rdlydl - td2yd2 - td3yd3 td4yd4	 (48)

The values of sbi' and Tdi can be obtained from the sigenvactore of Eqs.

(44). (45). But it is not our intention at this point to look for sigenvalues
and eigenvectors of Eqs. (44). (45). Substituting Eqs. (46). (47). and (48)
into Eqs. (44) and (45). the equations of notion of the satellitea are reduced
to the form

(AI 11(t) + (A2 ]q(t) + [A3 )1(t) - [A4 1W + (A5 1±	 (49)

[P111(t) + (PA(t) + (P 
3 1.%(t)- 

(P4 1W + ; P5 11 + ue (t) + fe (t)	 (50)

1(t) - (ydl' gbl.2 • gbl.31T	
(51)

It should be noted that 1(t) given by Eq. (5i) to a (3x1) vector and all
matrices (Ai l and (P11. i - 1-5. are (3x3) matrices. The Eqs. (49). (50) now

form only a ninth order set of ordinary differential equations. This great re-
duction was made possible by the assumptions of Eqs. (44). (47). (48). It should
also be noted that, irrespective of the number of beams or spring-mass-damper
systems introduced at the initial states of the dynamic modelling. Eqs. (49)
and (50) can always be made a ninth order set by suitably augmenting the equa-
tions in Zqs. (46). (47). and (48).

Let it be assumed that the moment of inartia matrix. [1). of the satellite
is giver. by

Ix	 O	 0

61 -	 0	 1 	 0	 (52)

0	 0	 Is

The linearized form of the matrices (A i ] and (Pi 1. 1 - 1-5. can than be shown
to be as follow:

1	 3	 4
0	 (%12 -911%12-621%12 )	0

(A11 -	 -633%13	
0	

(Yb13-32%13)	
(53)

(Ydl 933odl	 -532Y41

and

where

'	 1



0	 4
(413532-513)

23832-523)

0

(58)

61

S	 6
0	 -(211%12 + 8210 b12 )	0

[A2 ) 0 0	 0

2
ydl

0	 0

0
2	 7	 8

"b12 dll%l2 521Nbl2)

[A3 ) 0 0
3

4di
0 

0 90	 %12

[A4 )
4

Ub13
S
%13	

0

S
4d1

6	 0
^dl

0 0	 0

(AS ) %133 Wb13a3	
0

7
u d103

8
ud103	

0

0	 4	 0

	

(013833 511	 °12`21

0	 4	 0

)pl )	 (623533 521)	°12811

0	 0	 4
0	 (613511+°23521-532)

4 0 	 0
(521 °23533)	°12811

	

4	 0
)r2 )	 (013833 511	 °12821

0	 0

0

2
vbl3

0

(54)

(S5)

(56)

(57)

(59)

4 0
(523 623832)

o	 a
(6135 32-513 )	03

0

i

i

z
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(523+023533)	°2321	 (532+°23532)

IP3 1 '	 '(513+013533)	 °13511	 (S 31 °13532)	
03	 (60)

0	 0	 0

(P 
4
1 - (I]	 (61)

N

	

( P 5 1 ` a lt) - (I g].	 (62)

The undefined constants Introduced in Eqs. (53) - (62) are defined by the fol-
lowing relations:

511	 0	 0	 gbl.2

r 	 521	 0	 0	 %1,3	 (63)

0	 532 533	 ydl

where r is the 4:eplacaeent of the center of suss of the satellite from its
noains1cposit t:,n, •.brt

%l2gb.%; + ' 'b:; .4b1,2	 Pb12 rc,1 + Ub12rc,2 + µ12n,1

+ %12 rc,2 + b12rc.1 + 0:12rc.2 + °b12W3
	 (64)

% 13gbl.2 + %13gbl,3 ' %13rc.3 + %13'1 + "bl3w2

+ °
6	 7	

(63)
b13 1"3 + pbl3W2W3

1,41Y41 + ° dl ydl + j'dlydl ' Pdl rc.3 + 
jj
dl id1 + ud1W2

+ polwlY13 + Odiw21tl3	 (66)

ig+ (t]W + rc ^ I (aii -V + rc.2 la
1^ ]W	 tc,3 (O1i ]1-° + yd1I5t^Jm

+ gb1.2(S1^Jm + gbl,3I51j1^ + (sli	— faij C	 (67)

when T is the kinetic energy functional (1) of the satellite. The operator

<^^- a °_
^	 I

I
r

i
i
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(^) on any (3x1) vector v_ is defined by

0	
-v3	 v2

v	 v3	 0	 -v1	 (68)

_v2	vl	 0

'ruch that the cross-product between any two arbitrary vectors u and v_ is given
by

	

uxv - uv - -vu	 (69)

Analytic search for the eigenvalues of Eqs. (49) and (50) is now quite
easy, because these fora only a ninth order set. As in the elements of the
matrices [Ai l and [Pi 1, 1 - 1-4, these eigenvalues are functions of the unknown

constants tbij and tdi . The method of analysis to be adopted now is to obtain

the stability criteria in term of t bij and tdi . Then we must obtain the union

of all criteria such that the resulting criteria become independent of tbij

and Tdi'

EIGENVALUE EQUATIONS

The characteristic equation in a for Eqs. (49) and (50) is given by

[P5+aP4 ]	 -[P3+O2'a2P11

Det.	 ^ 0	 (70)
[A5+aA4 ]	 -[A3+aA2+a2All

With the help of Eqs. (53) - (62), it can be seen that Eq. (70) is of the form

Qll	 Q12	 0	 Q14	 Q15	 Q16

Q21	 Q22	 0	 Q24	 Q25	 Q26

0	 0	 Q	 0	 Q	 0
Det	

33	 35	 . 0	 (71)
0	 0	 Q43	 0	 Q45	 0

Q51	 Q52	 0	 Q54	
0	

Q56

Q61	 Q62	 0	 Q64	 0	 Q66

It can be verified that the locations of the zeros of the matrix in Eq.
(11) remain the same even if the number of beams or spring-mass-damper systems
are increased.

1

j	 ^	 I

i

I
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Equation (71) can be factorized into

Qll	 Q12 Q14	 Q16

Det.	 Q21	 Q22

Q51	 Q52

Q61	 Q62

Thus, the characteristic equal

(Q43Q35 Q33Q45)

and

Q11	 Q12	 Q14	 Q16

Dot.	
Q21	 Q22	 Q24	 Q26	 0	 (73)

Q51	 Q52	 Q54	 Q56

Q61	 Q62	 Q64	 Q66

Equation (72) yields three roots of a and the other six roots are obtained from
Eq. (73). One of the roots of a from Eq. (72) is identically equal to zero.
The other two roots of Eq. (72) are given by the equation

	

Cla2 + C 2 
a + C3 . 0	 (74)

where

C1 . II z (Ub12 gllubl2 g2l%l2) + I'b12 (S32 °/3911-°23221)) 	
(75)

C2 ' - Iz (gllubl2 + 2214bl2)	
(16)

C 3 " I z (pbl2 gllubl2 22l%l2)	
(77)

Hence the requirement of purely imaginary roots leads to the conditions

C2 - 0 ; C3/Cl > 0 if Cl f 0 .	 (78)

Expanding Eq. (73). the resulting equation in a is obtained as

C 4 a 6 + C 5 a 5 + C 6 
a 4 + C 7 a 3 + C 8 

a 2 + C 9 a + C10 " 0	 (79)

To simplify the expressions of C i s i - 4-10, let it be assumed ••hat

Q24	 Q26	 _
(Q43Q35-Q33Q45) 0

Q54	 Q56

Q64	 Q66

:ions become

• 0	 (72)

i
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I

1
F

Tb12 - Tb32 ' Tb21 - Tb41 ' Tb13	 Tb33 ' Tb23 - Tb43 '

	

Tdl - Td3 ' Td2 " Td4	 (79a)

This assumed mode corresponds to that which, in terms of pointing accuracy,
we are most interested. This mode leads to pure rotational motions of the rigid
core about its center of mass. With this assumption, the coefficient C 9 is
given by

r
C9 . ( lz-Ix)(Iz I )0 u2 2	 + 2b v2 03S1 (I -I )

t	
y 3 dlubl3	 1 b13 3 23 z z

i	 + 2f2
3 (Td2/Td1)f 2pb13 [Ixs13 S21 (Ii Ix))

i

+ D3{C3pb13ud1 (S23 (Ii Ix) - S31Ix) - IxS31(Nb13pd1+D3ub13µd1)}

- n3{Nd1pb13S13 (Iz Iy) + uZ1Nb13{D3IyS23 + S11(Iz Iy))}

+ 03S31 (Iz-I )(Y3 v4 +9 v6 u` ) - 
n3u3 u

6 ( I S3 +S4 (I -I ))

	

q dl b13 3 b13 dl	 3 dl b13 y 32 13 z y

+ n5 I(N 1 v7 
+v5 

u7 -v4 u8 -u6 v6 )(S4 S4 
-S4 S

4 )3 dl b13 b13 dl b13 dl b13 dl 23 11 21 13

+ (v 7 u 7 -v6 u8 )(S4 S1 3 S4 -S4 S1 +S4 S3 M.	 (80)dl b13 b13 dl 23 13
+5 

32 ll 13 23 21 31

Expressions for the other coefficients in Eq. (79) are similarly obtained.

For the roots of a in Eq. (79) — :.,e purely imaginary,

C5 ' C7 - C9 . 0	 (81)

Examining Eq. (80) and similar expresrions for C 5 and C it becomes evident
that Eq. (81) can be satisfied for arbitrary values of^bij and Tdi if and
only if

R3 ydl . 0	 (82)

Equation (82) is another proof of our previous claim that stochastic stability
is possible only for undampoa three-axes stabilized satellites.

THREE-AXES STABILIZED SATELLITES

For a three-axes stabilized satellite, the constraints given by Eq. (78)
are almoot always satisfied. Also for this configuration,

C5 " C7 , C8 , C9 , CIA. 	 (83)
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such that Eq. (79) becomes

a4 (C6+C4a2 1 - 0	 (84)

Hence the required stability criteria are

0 < C4 
IxIyvdlubl3 + 

2b
1Pb13IxS21 + ydlIxS23 

+ 
IyS11 dl b13

+ I u l u4 S4 + (v5 u5 - u6 u4 )(S4 S4 - S4 S4 )	 (85)y dl b13 13	 dl b13	 dl b13 11 23	 21 13

and

0 ` C6 IyS13udlubl3 
+ IyS

11 dlubl3 + IzS23^b13^dl

+ 2b 1
ub13IxS21 + Ixly (Ndl%13 + ud1Nb13)	

(86)

Constraints given by Eqs. (85) and ( 86) can be satisfied usually without great
difficulty, irrespective of the values of T bii and Tdi . This is due to the

fact that C 4 and C6 are mainly the mass and stiffness term of the satellite

model. Hence, it can be concluded that three -axes stabilised satellites are
more likely to be stable under random environmental and control torques.
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STABILITY AND CONTROL OF FLEXIBLE SATELLITES:

PART II - OONTROL

T. C. Huang and Aniruddha Dam

ABSTRACT

This is the second part .if an earlier investigation. In this section, it
is demonstrated that, by monitoring the deformations of the flexible elements
of a satellite, the effectiveness of the satellite control system can be in-
creased considerably. A simple model of a flexible satellite had been analyzed
in the first part of this work. The same model has been used here for digital
computer simulations.

NOMENCLATURE

[Ai], i - 1-5 - Matrices governing the equations of motion of flexible struc-
tural elements of the satellite; Eq. (1)

[B'), i - 1,2 - Matrices governing the satellite motion; Eqs. (3,7,8).

[B(t)]	 - Upper (3x3) left corner submatrix of [*(t)][Bi]-1

f	 - External forcing function; Eq. (6).

f*	 - External torque vector on the satellite; Eq. (2).

[I]	 - Identity matrix.

[K]	 - System fundamental matrix; Eq. (22).

[K 1 J	 - Matrix defined by Eq. (28).

n	 - Number of scalar elements in g'.

[0]	 - Null matrix.

[P'J, 1 - 1-5 - Matrices governing the rotational motion of the satellite;
Eq. (2)

q', (q1)	 - Generalized structural position coordinate vector.

gbi	 - ;entralized position coordinate for the ith beam.

T	 - Terminal time for optimal control.

t	 - 'lime.
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U	 - Torque magnitude parameter, defined by Eq. (25).
i

f H. (ui )	 - Generalised control vector; Eqs. (5), (22).

i	 ue	 - Control torque vector on the satellite; Eq. (2).
i

!	
ui, {u'}	 - Various control torque functions; Eqs. (14) - (21).

t
z	 - State vector; Eqs. (3), (4), (22).

r
- Uncontrolled response; Eq. (22).

rp

f	 Ydi	 - Position vector of the ith sprinroass-damper system.

E	
pri	 - Position vector of the ith beam-end mass.

- Control system parameter; Eqs. (24), (26).
i

_v_e. {)+i)	 - Relative control torque magnitude vector; Eqs. (24), ( 27).

T	 - Dummy time variable.

[@]	 - Fundamental matrix of -[Ri) 1 1821; Eqs. (9). (10).

[ @i ), i - 1-4 - Component matrices of I@}; Eq. (u)•

W, {wi }	 - Angular velocity vector of the satellite; Eqs. (1), (2).

{wj}	 - Various simulation responses of w; Eqs. (14) - (21).

INTRODUCTION

In the first part (1) of this study, the question of stochastic stability
of flexible satellites was discussed. Specific stability criteria were devel-
oped for a simple flexible model of a satellite (shown in Figure 1). In this
part of the study, we determine whether it is possible to increase the pointing
accuracy of a satellite by observing the deflections of the flexible elements.
To do this, we use the same satellite configuration (Figure 1) and the theore-
tical model developed in Ref. [1].

Likins and Fleischer [2) have shown that the flexible elements of space-
craft can have a destabilising influence. They have shown a method of design-
ing a proportional linear control system employing root-locus plots and eigen-

yvalue analyses. The control loop gains in [2) were based on a dynamic model,
using hybrid coordinates, of a spacecraft containing long flexible beams. An
essentially similar approach was employed ry D1Lorenso and Santinelli (3).
Here also a linear proportional control system was designed by considering the
equations of motion of the spacecraft along with those of the flexible elements.
The spacecraft model in (3) consisted of a rigid body with two spring-mass
system.

In this study, a time-optimal 'bang bang' control policy has been assumed.
The method of calculating the control torques is essentially the same as that
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given in Ref. [4). Full details of the computation of control torques are pre-
sented in Ref. (5). Apart from the control policy, this analysis differs from
Refs. (2,3) in another important aspect. In the analyses of Refs. [2,3], the
deflections of the flexible elements are not observed. Hance, zero initial
deflections and velocities of the flexible elements are inherently assumed.
The present method can accommodate arbitrarily large initial conditions of the
flexible elements of the satellite.

THEORETICAL BASIS OF COMARISON

s	 The theoretical analysis Nod comparison of the satellite responses is
F

	

	 based on the dynamic model explained in Section 6 of Ref. (1), It was shown
there (1] that, by using the Galerkin 's method, the deflectio^w of the flex-
ible elements of the satellite are governed by purely tine -dependent generalized
position vectors, Qbi(t), yYi (t) and y di (t). It was also shwn that these vec-

tors can be condensed subsequently, and reduced to a vector Q'(t) by applying
suitable boundary and continuity conditions. Usually the number of elements
in Q' is much smaller than that in the set [qb1' Yri' 41 IT.

Let w([) be the angular velocity vector of the satellite. Let u e (t) and
f e (t) be the control torque and eivironmental torque vector on the satellite.

k

	

	 Given these definitions, it is well known ( 1,6,7] that the satellite response
is governed by a pair of matrix equationsn of the form

(A']Q'( L ) + [AZ(w,t)JQ'(t) + ,A3(w.t)JQ'(t)

	

[A41u(t) + [AS(W) ]w(t)	 (1)

and

(Pi]Q(t) + [PZ(w,t)JQ'([) + [P 3(m,t)]Q^(t)

- [P4)m(t) + (PS(,J±(t) + ue (t) + fe (t).	 (2)

Equation ( 1) governs the flexible notion of the beams, spring-mass-dampers, and
beam-end musses of the satellite sodel. Equation (2) is based on the principle
of conservation of angular momentum of the satellite. If 1'(t) is a (nil) vec-
tor. then there are 'n' scalar equations In Eq. (1). Equation ( 2) always has
three scalar equations. Equations ( 1) and ( 2) correspond to Eqs. (44) and (45)
of Ref. [1].

i

	

	 Equations ( 1) and ( 2) are now combined together to form one first order
equati-. n given by

	

f1ili(t) + [BZjx(t) - u(t) + f(t) 	 (3)

f
where

IT
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u " [ue,O,OJT	(5)

	

T	 (6)

	

(poi	 —[pil	 (0)

13i1 -	 (A-)	 -(A1 1 	 (0)	 (7)

	

101	 101	 [11

and

	

1p51	 -(p 21	 -(p3)

[B21 -	 [A51	 - [A2 l	
- [A 31	 (8)

[0 1	 —111	 (0)

Let [0(t)) be the fundamental matrix of the hosageneous equation

x ' -'BI 1-1(B2Jx
	

(9)

such that the solution of Eq. (3) is given by

X(t) - Mt) ].!(0) + ID(0(t-t)1[Bi 1 -1 ( u ( T ) + f(r) 1dr 	(10)

Let (0(t)) be composed of Itl (t)), (02 (t)), (03 (t)) and [ 04 (t)J such that

	

[01 1	 102 1	 f031

	(3x3)	 (3xn)	 (3xn)	 (11)

[ 0 1 -

[ 041

[2n x(2n+3) )

when w(t) and _%' (t) are ( 34) and (nxl) vectors, respectively. Than the equa-
tions corresponding to W(t) can be separated from Eq. (10) in the form

m(t) - It (01! (0) + [02(')1g'(0) + [0 3 (t) Is' (0)

+ Ip (B(t-i)1(u*(t) + f t (r)1dr	 (12)

where [B(t)) is the (3x3) upper left hand corner n ubmatrix of I0(c)11B^J
-I

It should be noted that previous investigations (2,3) were concerned main-
ly with the determination of (0 l (t)1 and (B(t)1 and then with the approximation

of Eq. (12) by

i

i

i

fI
I	 ^
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Qi(o) - q2(0) - 0.01 ; aj(0) - 0 , 	 f 1,2.

The complete numerical experiment is performed through the following
steps:

Step 1: A time interval [0,T) in which the controls are to be effected
is fixed. In this case T was taken as 5.0 secs.

Step 2: The satellite is assumed to be rigid and without controls, such
that w( t) is given by the solution Wi (t), of the equation

(P4	 (t) + (P;	 (t)+ P(t) - 0	 (14)

Equation (14) is integrated and the responses wilt) and w2(t) are

plotted in Figure 2.

Step 3: The satellite is assumed to be rigid and subjected to a time-op-
timal 'bang-bang' control, u l (t), such that w(t) is given by the
solution w (t), of the equation

[P4	
(t)+ [PSJw2 (t) + ul (t) + fe (t) - 0	 (15)

The ul (t) are computed so as Co yield w 2 (T) - 0 by the method
shown in Appendix A. Equation (15) is integrated and the res-

ponses W2 (t) and w2(t) are plotted in Figure 3.

Step 4: The satellite is assumed to be flexible, without control and
with 1'(0) - 1'(0) - 0, such that w(t) is given by w (t). Here

w 3 (t) - (61 (t)1W(0) + Io [ g (t-T)Jfe (T)dT	 (16)

The responses w i(t) and w2(t) from Eq. (16) are plotted in Figure 4.

Step 5: The satellite is assumed to be flexible, with g' (0) - 1'(0) - 0.
The satellite is subjected to the control torque H1 (t) computed
in Step 3, such that w(t) is given by w 4 (t), where

w4 (t) - It1 (t)Jw(0) + It [g(t-T)J[fe(T) + o (T))dT	 (17)

The responses wi (t) and w4 (t) from Eq. (17) are plotted in Figure
5.

Step 6: The satellite is assumed to be flexible, with q'(0) - 1'(0) - 0.
and subjected to a time-optimal 'bang-bang' control, u 2 (t), such

that w(t) is given by w 5 (t), where

W5 (t) - (^l(C))!(0) + 10 Ig(t-T)J[f•(T) + u2 (i)JdT	 (18)

I	 `
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The u2 (t) are computed so ass to yield W 5 (T) - 0 by the method
shown in Appendix A. The responses Wi (t) and W2(t) from Eq. (18)
are plotted in Figure 6.

Stan 7: The satellite is assumed to be flexible, with g'(0) 4 0 f 1'(0)
and without control, such that W(t) is given by W6 (t), where

W6 (t) - (m1(t))!(0) + Im2(t))g'(0) + (m3(t))1'(0)

+ ft (B (t-T))(fe(T))dT	 (19)

The responses W i (t) and WZ(t) are plotted in Figure 7.

Step 8: The satellite is assumed to be flexible, with g'(0) 0 0 4 1'(0)
and subjected to the control torque u2 (t) computed in Step 6,
such that W(t) is given by w 7(t), where

W7 (t ) - (41(t))W(0) + (42(t))g'(0) + it3(t)1&'(0)

+ l0 IB(t-T)](U2(T) + fe(T))dT	 (20)

The responses W1 (t) and W! (t) are plotted in cigure 8.

Step 9: The satellite is assumed to be flexible, with g'(0) 4 0 0 1'(0).
It is also subjected to a time-optimal 'bang-bang' control,

u3(t), such that W(t) is given by W 8(t). where

!gaW - ( 61(t))W(0) + IO2(t))q'(0) I. I03(t))Q'(0)

+ ft Is' (t-T)11.!! 3 (T) + fe (T))dT	 (21)

The torques u3 (t) are also computed to yield W 8(T) - 0 by the
method shown in Appendix A. The responses Wi(t) and Wi(t) from

Eq. (21) are plotted in Figure 9.

COMPARISON AND EVALUATION

One important result of the simulation, as seen from Figures 2 and 3, is

that the control sequence u1 (t) is very effective on the rigid model of the n a-

tallitc. But Figure 5 shows that, for the same values of X0(0), uI (t) produces
unwanted non-zero values of m(T) when it is Applied to the flexible satellite mo-
del, although 1(0) and 5L(0) ate assumed to be zero. Thus, another important

result, presented in Figures 5 and 6, shows that u2 (t) is more effective than

u1 (t) when a flexible satellite model is considered. Up to this point, then, we
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have essentially the aame conclusion as that in Refs. [2], [3], that for a flex-
able satellite the control should not be based on a rigid model. The difference
between Refs. [2], [3] and the present study to in the adopted control policy.
'Bang-bang' controls have been used here instead of linear proportional contrcl.

The most iuportant results are presented in Figures 8 and 9. When the
g(0) and q(0) are observed and found different from zero, u2 (t) does not lead
to the required zero values of w_(T). In contrast, u 3 (t), which is based on the
observed values of g(0) and q(0), yields zero values of w(T). Another point
to be considered is the divergence of w(t) from zeru in the two cases. The

maximum divergence of w(t) and u2 (t) is 11.0 x 10-4 rads/sec, while that with

u3(t) is only 7.0 x 10 
4 

rads/sec. This bears out the theo ro tical claims that
a control based on Eq. (12) is mere effective than one based on Eq. (13) and
that the effectiveness of a control system can be greatly improved if the de-
flections of the flexible elements of a satellite are observed.
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APPENDIX A

t

I
The method of computing the time-optimal control torques for a system

given by

x(t) = y(t) + f;'r.(t-T)]u(T)dT	 (22)

is now presented. Reference [5] presents computing alaarithms and other de-
tails of the method. In Eq. (22), x(t) is the output vector of the system,

s u(t) is the cnr, . rol vector, and Y(t) and [K(t)] are known vector and matrix
functions of the time, t.

It is assumed that, for a given t - T, u(t) should be such that

x(T) - 0	 (23)

and Ju(t)) for all t is a minimum. Thus, the minimum time problem is converted
to the equivalent minimum control effort problem. The solution for u(t) is
then given by [5].

uj (t)	 U (T)uj s9n[1 aiKij (T-t)]	 (24)

where

U(T)	 1.0 /[min E f  It a*K (T-T)IdT]	 (25)
ai j 0 1 i ij

such that

i A+
iry i (T)	 1.0	 (26)

and

U 
[ Kl ] Y(T)	 (27)

[K1 ] i j . l^ [K1 j ( t-T) I sgn [ = X*K,,. (T-T) ]dT	 (28)

The summation convention of repeated indices is not to be used in Eqs. (24)
to (27) above.
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