General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA CR 144169 Measurements from Satellite Systems

(NASA-CR-144669) METEOROLOGICAL
MEASUREMENTS FROM SATELLITE PLATFORMS Annual Scientific Repcrt, 1973-1974 (Wisconsin Univ.) 93 p HC $\$ 4.75$ CSCL

N75-30221

22 A
Unclas
G 3/15 34350

Annual Scientific Report on NAS5-21798, 1974 Space Science and Engineering Center The University of Wisconsin-Madison Madison, Wisconsin, March 1975

METEOROLOGICAL MEASUREMENTS
FROM SATELLITE PLATFORMS

REPRODUCTIOX RESTRICTIONS OVERP:DDEN masi selentifio and Toobaloal Informetion Troility

METEOROLOGICAL MEASUREMENTS FROM SATELLITE PLATPORMS

Annual Scientific Report on NAS5-21798
1973-1974

The research in this document has been supported in whole or in part by the National Aeronautics and Space Administration.

March 1975

```
Published for the
Space Science and Engineering Center
by the
```

University of Wisconsin Press

Published 1975
The Wiversity of Wisconsin Press
Box 1379, Madison, Wisconsin 53701

The University of Wisconsin Press, Ltd.
70 Great Russel Street, London

Copyright © 1975
The Regents of the University of Wisconsin System
All rights reserved

First printing

Printed in the United States of America

ISBN 0-295-97055-8

Correspondence concerning editorial matters should be addressed to
Space Science and Engineering Center
University of Wisconsin
1225 West Dayton Street
Madison, Wisconsin 53706

Orders for copies of this report should be addressed to
The University of Wisconsin Press

Contributors:

Contributors:

Verner E. Suomi

A. Das
T. C. Huang

University of Wisconsin

conterts

Technical ArticlesPage

1. T. C. Huang and Aniruddha Das: Stability of Stochastic Satellites 1
2. T. C. Huang and Aniruddha Das: Stability and Control of Flexible Satellites: Part I - Stability. 47
3. T. C. Huang and Aniruddha Das: Stability and Control of Flexible Satellites: Part II - Control 70

PREFATE

One of the great rewards enjoyed by persons who spend their lives in scientific research work is the umpredicitability of what they are doing. It is an exciting world and one I enjoy imensely. However, not all of the surprises are the kind one likes to boast about. Principal Investigators have to admit to less productive years as well as proudly present their successes.

On this program, in the meteorological study area, we have had one of those years. While good work has been done by several persons, it is as yet too incomplete to include in this report. We expect to pro-ent these efforts in next year's report.

I am happy to piesent three papers by Dr. Aniruddha Das and his principal advisor, Professor T. C. Huang, Publication of these papers concludes Dr. Das' development of a generalized flexible satellite attitude control model and the application of chat model to sone relatively simple analyses, We anticipate that Das' model will be used by government agencies and by industry in more complex applications.

I am especially grateful to Professor Huang for his assistance and support. We sincerely appreciate the patience and support of the many dedicated persons in the National Aeronautics and Space Administration with whom we have worked during the past year.

Verner E. Suomi
Principal Investigator

STABILITY OF STOCBASTIC SATELLITES

T. C. Huang and Aniruddha Das

ABSTRACT

The effecte of random environmental torques and noises in the moments of inertia of spinning and three-axes stabilized satellites are compared analytically and by analog simulations. Four analytical methods are used to compute the mean values and variances of the satellite reaponse. Among the analytical methods, it is shown that the Fokker-Planck formulation yields predictions which most coincide with the simulation results. The variances of the responses have been shown to have an initial period of growth. This growth rate falls off with time and the variances reach and stay at an equilibrium value. The growth rate is also shown to be an increasing function of the inertia noises and the nominal spin rate.

NONENCLATURE

$A_{i}, i=1-4$	= Arbitrary constants; Eq. (74).
$a_{i}, 1=1-27$	- Coefficients defined by Eqs. (10-18) and Eqs. (19-27).
c	= Arbitrary constant; Eq. (74).
$\mathrm{D}_{1}, \mathrm{D}_{2}$	= Arbitrary constants; Eq. (74).
$\underline{F},\left(\mathrm{~F}_{1}\right)$	- Vector forcing function; Eqs. (91, 92).
$f *, f *(\underline{\omega}, \tau \mid \underline{\underline{\underline{u}}, \tau)}$	- Conditional foint probability denaity function of $w(t)$ given the values of $\hat{\underline{\omega}}(\tau)$.
$\mathrm{f}_{\left.\mathbf{,}, \mathrm{ff}_{1}\right\} ; 1=1,2,3}$	- Arbitrary random forcing functions; Eqs. (1), (19)-(21).
$\left.\overline{\mathrm{E}}, \bar{f}_{1}\right\} ; 1=1,2,3$	- Mean values of \underline{f}, $\left\{\mathrm{f}_{1}\right\}$.
G_{1}, G_{2}, G_{3}	- Components of $\hat{M}_{200}, \hat{M}_{020}, \hat{\mathrm{M}}_{110}$, respectively; Eqe. (74). (74a). (74b) and (74c).
I_{1}, I_{2}, I_{3}	- Stochastic moments of inertia of the satellite; Eq. (1).
$\bar{I}_{1}, \bar{I}_{2}, \bar{I}_{3}$	- Mean values of I_{1}, I_{2} and I_{3}, respectively.
J	- Functional defined by Eq. (95).
K	- Polynomial function of p; Eq. (70).
$L, L\left(\theta_{1}, \theta_{2}, \theta_{3} \mid \dot{\omega}, t\right)$	- Derivative characteriatic function with parametera ${ }_{1}$ " θ_{2} and θ_{3} for the randon variablea ω_{1} for a given $\hat{\theta}(t)$; Eq. (7).

L*	- Matrix differential operator; Eq. (79).
$\mathrm{n}_{11} ; 1 . j=1-6$	- Covariance matrix of $\underline{\text { \% Eq. Eq. (5). }}$
$\hat{M}_{k \in m}$	- Statistical momate of $\underline{(t)}$ for a Eiven $\hat{\underline{(0}(0)}$; Eq. (30).
H_{1}; $1=1-7$	- Parmeters related to $\mathrm{X}_{\mathbf{i f}}$ by Eq. (108).
$\mathrm{n}_{1 j} ; 1, j=1-6$	- Coveriance matrix of v ; Eq. (94).
P	- Eisenvalue of various equations.
r	- A meagure of the noise levels; yq. (122).
$\mathrm{r}_{1 j} ; 1 . j=1-4$	- Coefficients defined by Eqz. (74e) - (74e).
$\mathrm{E}_{\text {ij }} ; 1, j=1-4$	- Coefficiente defined by EqE. (74e) - (74e).
T	- Period of time in which the mont-likelibood eatimatee of $\underline{\underline{c}}$ are required.
t	- Tine.
$t_{1 j} ; 1.1=1-4$	- Coefficiente defined by Eqs. (74e) - (748).
$\underline{\underline{u}},\left\{u_{1}\right\} ; 1=1-6$	- Randoan vector: Eq. (4).
\underline{y}, $\left.\mathrm{v}_{1}\right\} ; 1=1-6$	- Rendon vector; Eq. (93).
$a_{i}, 1=1-8$	= Coefficiente of the characteristic polynomial for p; Eq. (41).
$a_{i j} ; j=0-6$	- Componente of α_{1}; Eqs. (46). (58) etc.
$B_{1}, 1=1-3$	- Legrangian mitipliers; Eq. (95).
$8_{i j}, j \times 0,1,2,3$	- Componenta of B_{1}; Eq. (109).
8(t)	- Dirac e delta function.
$\delta_{1}, 1=1-3$	- Whice noisen associated with $\lambda^{\prime} f_{1}$; Eq. (2).
c	- Largeet absolute value of $\mathrm{m}_{1 j}$ for all 1 and j ; Eq. (108a).
$c_{1}, 1=1-3$	= Sample space white noises associated with I_{1}; Eq. (75).
$n_{1}, 1=1-3$	- Time dependent white noises ascociated with 1_{1}; Eq. (75) .
$\theta_{1}, 1=1-3$	- Paramera of L; Eq. (7).
$\lambda E_{1}, 1=1-3$	- Total forcing functione defiaed by Eqs. (10) - (12) and EqE. (19) - (21).
$\bar{\lambda} \bar{f}_{1},:=1-3$	- Mam values of $\lambda \mathrm{f}_{1}$.

$\lambda^{\prime} \mathrm{E}_{i}, 1=1-3$	- Total forcing functions defined by Eq. (1).
$\bar{\lambda} \cdot \bar{\epsilon}_{1}, 1=1-3$	- Mean values of $\lambda^{\prime} \mathrm{f}_{\mathrm{i}}$.
λ_{1}, λ_{2}	- Parameters defined by Eqs. (71), (72).
$\mu_{1}, 1=1-3$	- Total white noises assuciated with I_{1}; $\mathrm{E}_{\text {q }}$. (2).
${ }_{1}$	= Parmeter defined by Eq. (74d).
ρ	- Parameter defined by Eq. (74d).
$P_{\text {klm }}$	= Statietical coefficients defined by eqs. (6), (8).
$\sigma_{1}, 1=1-3$	- Standard deviations of ω_{1}; EqE. (115), (116).
Ω	- Nominal spin rate of the satellite.
	- Mominal angular velocity vector of the satelilite.
$\underline{\omega}_{0}\left\{\omega_{1}\right\}$	- Angular velocity vector of the satellite; Eq. (1).
$\underline{\hat{\omega}},\left\{\hat{\omega}_{1}\right\}$	- Realized angular velocity vector correaponding to $\underline{\omega}$.
$\omega_{i j}, j=1-34$	- Components of w_{i}; Eq. (\%).

OPERATORS
E\{ \} $=$ Statistical expectation.
[]r
= Hean value.

- Transpose.
(')
- $\frac{d}{d t}$.

INTRODUCTION

This etudy compares the affects of stochastic geonetry and randon environmental torquas on the pointins accuracy of epinaing and threa-axes stabilized atellites. A comparison of pointing accuracies requires a comparison of the rates of error growth over and above any criterion for the amyptotic stability of the satellites. For this reason, this study is oriented towarde the determination of the statistical properties of the satellites' responses. The question of atability have been anovered indirectly by the computed zesponses.

The resson for considering the environamal torques on the sateliftes as rando is self-evident. The geometrie of the satellitee are considered stochastic in order to have a phencmenological model of the motions of che satellites' flexible structural elements. If a eatellite were cbsolutely rigid, its inertie properties would have been constant for all time and measured
to a near certainty. Because real satellites contain may flexible and moving parts, their momente of inertia can be aseumed to be stochatic variablee with certain aseociated noise.

To be more specific, the rigid body Euler'e equatione

$$
\begin{align*}
& I_{1} \dot{\omega}_{1}+\left(I_{3}-I_{2}\right) \omega_{2} \omega_{3}=\lambda^{\prime} \varepsilon_{1} \\
& I_{2} \dot{\omega}_{2}+\left(I_{1}-I_{3}\right) \omega_{1} \omega_{3}=\lambda^{\prime} I_{2} \tag{1}\\
& I_{3} \dot{\omega}_{3}+\left(I_{2}-I_{1}\right) \omega_{1} \omega_{2}=\lambda^{\prime} \varepsilon_{3}
\end{align*}
$$

governing the metion of atellites will now be analysed. In the above equation, I_{1}, I_{2}, I_{3} are the stochastic principal moments of inartia of the atellite. The vectors $\underline{\omega}=\left[\omega_{1}, \omega_{2}, \omega_{3}\right]^{T}$ and $\lambda^{\prime} \underline{f}=\left[\lambda^{\prime} f_{1}, \lambda^{\prime} f_{2}, \lambda^{\prime} f_{3}\right]^{T}$ are the angular velocity vector and the enviromental torque vector of the ens":ite, respectively, along the principal axes of inertia. And λ^{\prime} is a parameter. The vector $\lambda^{\prime} \underline{f}$ and, congequently, the vector $\underline{\underline{m}}$ are randon variables.

Equation (1) is an axaple of an intrinaically nonlinear eyate of equations with randon coefficiente. The difficulty of obtaining an explicit solution to Eq. (1) can be appreciated vhen ve realize that the otochastic verion of even a edple scalar linear equation is actually nonlinear due to the dependence of the solution on the randon coefficientis. (See Refs. 1, 2.) The situation has been eade even more complaz by the presence of several contradictory methode for solving stochastic equations [1]. A widely used method of colving tochastic equations is the Fokker-Pianck approach. In this, the equetions are ascumed to define a Markoff procese and the traneltion probability densities of the reaponsen are computed directly as function of time. Several interesting equations heve bean solved by thie method in lefe. [3-7].

Another useful method, using perturbation techniquen for solving etochastic equetions, ves discuseed in lefs. [8,9]. This is one of the "honest" ethods in which reaponse is solved analytically in terms of rall random parameters. The atochastic properties of the response are obtained from the amiytic solution as secondary reaults.

A third pronising method of solution can be obtained by ertending the line of logic ohom in Ref. [10]. This method deternines the most ilikelibood estinates of the reaponse by eaxinizing the joint probability density of all the etochertic varisbles of the syeten. This is essentially a formiation of the talman filter for the case of deterninistic coefficiente and random forcing functions.

Laetly, there is the obviou method of initially aseuning the gyten of equations to be deterninietic and then attributiag the propar etochastic praperties to the deterministic solutions. It is, of course, true that this ethod is rigorous oaly if the rasdom parameters ara constante in time. The stochantic properties of the elfomvalues and elgervectors of such oyetens heve been computed in Refis. [11,12]. This method is worth investigatint for lowly varying parameters with randon etep increments.
 will be analyaed uaing the above mantioned techniquen. The analytical reaponees sre then compared with reate of an analog computer ainulation. Thie allow verification of the relative merite of the amalytic methods.

THE POXXRR-PLAMCR APPROACE

Thie method of obtaining the responge characteristics of stochantic equatione is based on the analysis shom. in tefe. [1,13]. The application of this method on Eq. (1) proceede as follows:

Let the rendon variablee $\mu_{1}, \mu_{2}, \mu_{3}, \delta_{1}, \delta_{2}$ and δ_{3} be defined by the equations

$$
\begin{gather*}
I_{i}=\bar{I}_{1}+\mu_{1}: 1=1,2,3 \tag{2}\\
\lambda^{\prime} I_{1}=\bar{\lambda}^{\prime} \bar{I}_{1}+\sigma_{1}: 1=1,2,3
\end{gather*}
$$

The bar on top of a syibol indicates mean values. Ience,

$$
\begin{equation*}
\bar{\mu}_{1}=\bar{\delta}_{1}=0: 1=1,2,3 \tag{3}
\end{equation*}
$$

Let the atochmatic vector \underline{u} be defined as

$$
\begin{equation*}
\underline{u}=\left[\mu_{1}, \mu_{2}, \mu_{3}, \lambda^{\prime} f_{1}, \lambda^{\prime} f_{2}, \lambda^{\prime} f_{3}\right]^{T} \tag{4}
\end{equation*}
$$

It is assused that μ_{1} and $\delta_{i}, 1-1-3$, are white noise disturbances, euch that the Eetrix elements, $K_{1 j}, 1, j$ - 1-6, are defined by

$$
\begin{equation*}
E\left\{u_{i} u_{j}\right\}=M_{i j} \delta(t) \tag{5}
\end{equation*}
$$

In Eq. (S) and in the following, (t) is the Dirac' delte function and the opertior $E\{$.$\} denotec etatistical expectation.$

Let $\rho_{k i m}\left(\stackrel{\omega}{1}_{1}, \dot{\omega}_{2}, \dot{\omega}_{3}, t\right)$ be the atatietical coefficiente of various ordere where ω_{1} are the realizatione of the remponses ω_{1}; for 1 - 1-3, at any point In the time and sample upaces. Let it aleo be defined chat $f\left(\left[\omega, i\left[\begin{array}{l}(0)\end{array}(0), 0\right]\right.\right.$ if the joint conditional probability denaity of the reaponse vector. w. Eiven the values of $\hat{\underline{\theta}}(0)$ at t. Thus,

Although Eq. (6) is used to define che coefficimots opie these are ursaliy calculated from the derivative characteristic function

$$
L\left(\theta_{1}, \theta_{2}, \theta_{3} \mid \underline{\underline{\theta}}, t\right)
$$

This, in turn, is defined by
where $1=\sqrt{-1}$.
Comparing Sqe. (6) and (7), an alternative definition of $p_{k f}$ can be obtalned at

$$
\begin{equation*}
\theta_{k l a}-\left.1^{-(k+2+\pi)}\left[\frac{p^{k+2+m} L}{2 \theta_{1}^{k} 2 \theta_{2}^{L} 2 \theta_{3}^{\text {n }}}\right]\right|_{\theta_{1}}=\theta_{2}=\theta_{3}=0 \tag{8}
\end{equation*}
$$

Let it be asculed that

$$
\begin{equation*}
\omega_{j}(t+\Delta t)-\omega_{j}(t)-\omega_{j}(t) \cdot \Delta t \tag{9}
\end{equation*}
$$

The valves of $p_{\text {ki }}$ are now eanily calculated from gis. (7,8,9). For exmple,
or $\rho_{200}=\frac{L 1}{\Delta t+0} \frac{1}{\Delta t}\left[E\left\{\dot{\omega}_{1} \Delta t \mid \hat{\omega}, t\right\}\right]$
or $D_{100}=\operatorname{Lim}_{\Delta t \rightarrow 0} \frac{1}{\Delta t}\left[E\left(\frac{\Delta t}{\left(I_{1}+L_{1}\right)}\left[\lambda^{\prime} f_{1}=\left(\bar{I}_{3}-\bar{I}_{2}+\mu_{3}-\mu_{2}\right) \hat{\omega}_{2} \hat{\omega}_{3}\right]\right)\right]$

$$
=\operatorname{Lin}_{\Delta t \rightarrow 0} \frac{1}{\Delta t} E\left\{\frac{\Delta t}{\bar{I}_{1}}\left(1-\frac{\mu_{1}}{\bar{I}_{1}}\right)\left[\lambda^{\prime} f_{1}-\left(\bar{I}_{3}-\bar{I}_{2}+\mu_{3}-\mu_{2}\right) \dot{\omega}_{2} \dot{\omega}_{3}\right]\right\}
$$

Enpading the right haod side and neglecting the cublc and higher order terne in μ_{j},

$$
\begin{equation*}
\theta_{100}=\frac{1}{I_{1}} \cdot\left[\left(-\frac{M_{13} M_{12}}{\bar{I}_{1}}+\bar{I}_{2}-I_{3} \operatorname{lin}_{2} \dot{\omega}_{3}-\frac{M_{14}}{\bar{I}_{1}}+\bar{\lambda}^{+} \bar{I}_{1}\right]\right. \tag{10}
\end{equation*}
$$

Frocecding similerly, it it eacily ceen thet

$$
\begin{align*}
& \left.{ }_{0} 010=\frac{1}{\bar{I}_{2}}\left\{\frac{\mu_{12}-\mu_{23}}{I_{2}}+\bar{I}_{3}-\bar{I}_{1}\right) \dot{x}_{2} \dot{\omega}_{3}-\frac{X_{25}}{\bar{I}_{2}}+\bar{\lambda}^{\prime} \cdot \bar{I}_{2}\right\} \tag{11}\\
& \rho_{001}=\frac{1}{\bar{I}_{3}}\left[\left(\frac{x_{23}-\tilde{x}_{23}}{I_{3}}+\bar{I}_{1}-\bar{I}_{2} \dot{x}_{2} \dot{\bar{w}}_{2}-\frac{x_{36}}{I_{3}}+\bar{\lambda} \cdot \bar{x}_{3}\right]\right. \tag{12}
\end{align*}
$$

$$
\begin{align*}
& \rho_{200}=\frac{1}{\bar{I}_{1}^{2}}\left\{\left\{\mathrm{M}_{33}-2 \mathrm{M}_{23}+\mathrm{M}_{22}-\frac{4\left(\mathrm{I}_{3}-\bar{I}_{2}\right)}{\overline{\mathrm{I}}_{1}}\left(\mathrm{M}_{13}-\mathrm{M}_{12}\right)\right\} \hat{\omega}_{2}^{2} \hat{\omega}_{3}^{2}\right. \\
& \left.+\left\{\frac{4}{\bar{T}_{1}}\left(\overline{\mathrm{I}}_{3}-\overline{\mathrm{I}}_{2}\right) \mathrm{H}_{14}-2\left(\mathrm{M}_{34}-\mathrm{M}_{24}\right)\right\} \hat{\omega}_{2} \hat{\omega}_{3}+\mathrm{H}_{44}\right] \\
& { }^{0}{ }_{110}=\frac{1}{\overline{\mathrm{I}}_{1} \overline{\mathrm{I}}_{2}}\left[\mathrm{IM}_{13}+\mathrm{K}_{23}-\mathrm{X}_{33}-\mathrm{H}_{12}+\frac{\left(\overline{\mathrm{I}}_{3}-\overline{\mathrm{I}}_{2}\right)}{\overline{\mathrm{I}}_{1}}\left(\mathrm{H}_{13}-\mathrm{H}_{11}\right)\right. \\
& +\frac{\left(\bar{I}_{3}-\bar{I}_{1}\right)}{\bar{I}_{1}}\left(\mathrm{H}_{13}-\mathrm{M}_{12}\right)+\frac{\left(\overline{\mathrm{I}}_{3}-\bar{I}_{2}\right)}{\bar{I}_{2}} \cdot\left(\mathrm{M}_{23}-\mathrm{M}_{12}\right)+\frac{\left(\bar{I}_{3}-\bar{I}_{1}\right)}{\bar{I}_{2}}\left(\mathrm{M}_{23}-\mathrm{H}_{22}\right) \\
& \left.-\frac{\left(\bar{I}_{3}-\bar{I}_{2}\right)\left(\overline{\mathrm{I}}_{3}-\bar{I}_{1}\right)}{\bar{I}_{1} \mathrm{I}_{2}} M_{12}\right\} \hat{\omega}_{1} \hat{\omega}_{2} \hat{\omega}_{3}^{2}+\left(\mathrm{M}_{34}-\mathrm{M}_{14}-\frac{\left(\overline{\mathrm{I}}_{3}-\overline{\mathrm{I}}_{1}\right)}{\overline{\mathrm{I}}_{1}} \mathrm{M}_{14}\right. \\
& \left.-\frac{\left(\bar{I}_{3}-\bar{I}_{1}\right)}{\bar{I}_{2}} M_{24}\right) \hat{\omega}_{1} \hat{'}_{3}+\left\{M_{25}-M_{35}+\frac{\left(\bar{I}_{3}-\bar{I}_{2}\right)}{\bar{I}_{1}} M_{15}\right. \\
& +\frac{\left(\overline{\mathrm{I}}_{3}-\overline{\mathrm{I}}_{2}\right)}{\overline{\mathrm{I}}_{2}} \mathrm{M}_{25} \boldsymbol{f} \hat{\omega}_{2} \hat{\omega}_{3}+\mathrm{H}_{45} \mathrm{~J} \\
& \rho_{101}=\frac{1}{\bar{I}_{1} \bar{I}_{3}}\left(M_{1,3}-M_{23}-K_{12}+K_{22}+\frac{\left(\bar{I}_{3}-\bar{I}_{2}\right)}{\bar{I}_{1}}\left(M_{11}-H_{12}\right)\right. \\
& -\frac{\left(\bar{I}_{1}-\bar{I}_{2}\right)}{\overline{\mathrm{I}}_{1}}\left(\mathrm{M}_{13}-\mathrm{M}_{12}\right)+\frac{\left(\overline{\mathrm{I}}_{3}-\overline{\mathrm{I}}_{2}\right)}{\overline{\mathrm{I}}_{3}}\left(\mathrm{M}_{13}-\mathrm{M}_{23}\right)-\frac{\left(\overline{\mathrm{I}}_{1}-\overline{\mathrm{I}}_{2}\right)}{\bar{I}_{3}}\left(\mathrm{~N}_{33}-\mathrm{M}_{23}\right) \\
& -\frac{\left(\bar{I}_{3}-\bar{I}_{2}\right)\left(\bar{I}_{1}-\bar{I}_{2}\right)}{\bar{I}_{1} \bar{I}_{3}} M_{13}{ }_{13} \hat{\omega}_{1} \hat{\omega}_{2} \hat{\omega}_{3}+\left(\mathrm{H}_{14}-\mathrm{M}_{24}-\frac{\left(\bar{I}_{1}-\bar{I}_{2}\right)}{\bar{I}_{1}} \mathbf{M}_{14}\right. \\
& \left.-\frac{\left(\bar{I}_{1}-\bar{I}_{2}\right)}{\bar{I}_{3}} \mathrm{M}_{34}\right) \hat{\omega}_{1} \hat{\omega}_{2}+\left(\mathrm{H}_{36}-\mathrm{K}_{26}+\frac{\left(\bar{I}_{3}-\bar{I}_{2}\right)}{\bar{I}_{1}} \mathrm{~K}_{16}\right. \\
& +\frac{\left(\bar{I}_{3}-\bar{I}_{2}\right)}{\bar{I}_{3}} \mu_{36}{ }^{\prime} \hat{\omega}_{2} \hat{\omega}_{3}+M_{46} I \tag{15}
\end{align*}
$$

$$
\begin{align*}
& \rho_{020}=\frac{1}{\bar{I}_{2}^{2}}\left\{\left(M_{33}-2 M_{13}+M_{11}-\frac{4}{\bar{I}_{2}}\left(\bar{I}_{3}-\bar{I}_{1}\right)\left(M_{23}-H_{12}\right)\right\} \hat{\omega}_{1}^{2} \hat{\omega}_{3}^{2}\right. \\
& \left.+\left\{2\left(\mathrm{X}_{35}-\mathrm{H}_{15}\right)-\frac{4}{\overline{\mathrm{I}}_{2}}\left(\overline{\mathrm{I}}_{3}-\overline{\mathrm{I}}_{1}\right) \mathrm{M}_{25}\right) \hat{\omega}_{1} \hat{\omega}_{3}+\mathrm{X}_{55}\right] \tag{16}\\
& \rho_{011}=\frac{1}{\bar{I}_{2} \bar{I}_{3}}\left[\mathrm{IM}_{13}-M_{23}-M_{11}+M_{12}+\frac{\left(\bar{I}_{3} \bar{I}_{1}\right)}{\bar{I}_{2}} 0_{22}-H_{12}\right) \\
& +\frac{\left(\bar{I}_{2}-\bar{I}_{1}\right)}{\bar{I}_{2}}\left(\mu_{23}-\mathrm{H}_{12}\right)+\frac{\left(\bar{I}_{3}-\bar{I}_{1}\right)}{\bar{I}_{3}}\left(\alpha_{23}-\mu_{13}\right)+\frac{\left(\bar{I}_{2}-\bar{I}_{1}\right)}{\bar{I}_{3}}\left(\mu_{33}-\mathrm{H}_{13}\right) \\
& -\frac{\left(\bar{I}_{3}-\bar{I}_{1}\right)\left(\bar{I}_{2}-\bar{I}_{1}\right)}{\bar{I}_{2} \bar{I}_{3}} M_{23}{ }^{3} \hat{\omega}_{1}^{2} \hat{\omega}_{2} \hat{\omega}_{3}+\left(M_{36}-M_{16}-\frac{\left(\bar{I}_{3}-\bar{I}_{1}\right)}{\bar{I}_{2}} M_{26}\right. \\
& -\frac{\left(\bar{I}_{3}-\bar{I}_{1}\right)}{\bar{I}_{3}} M_{36}{ }^{3} \hat{\omega}_{2} \hat{\omega}_{3}+\left(\mathrm{M}_{15}-\mathrm{M}_{25}+\frac{\left(\overline{\mathrm{I}}_{2}-\bar{I}_{1}\right)}{\bar{I}_{2}} \mathrm{M}_{25}\right. \\
& \left.+\frac{\left(\bar{I}_{2}-\bar{I}_{1}\right)}{I_{3}} \mu_{35}{ }^{j} \hat{\omega}_{1} \hat{\omega}_{2}+M_{56}\right] \tag{17}\\
& \rho_{002}=\frac{1}{\bar{I}_{3}^{2}}\left(\mathrm{M}_{22}-2 \mathrm{KI}_{12}+\mathrm{M}_{11}-\frac{4}{\bar{I}_{3}}\left(\overline{\mathrm{I}}_{2}-\bar{I}_{1}\right)\left(\mathrm{M}_{23}-\mathrm{H}_{13}\right)\right\} \dot{\omega}_{1}^{2} \hat{\omega}_{2}^{2} \\
& \left.+\left\{\frac{4}{\bar{I}_{3}}\left(\bar{I}_{2}-\bar{I}_{1}\right) M_{36}-2\left(M_{26}-M_{16}\right)\right\} \hat{\omega}_{1} \hat{\omega}_{2}+H_{66}\right] \tag{18}
\end{align*}
$$

All of the first and aecond order expresaions of $p_{\text {klem }}$ are listed in Eqs. (1018) abova. The third and higher order o kla are usually small and can be neglected. Suitably defining the set of constante $a_{j}, j=1-27$, Eqs. (10-18) can be rewritten as

$$
\begin{align*}
& \rho_{100}=a_{1} \dot{\omega}_{2} \dot{\omega}_{3}+\bar{\lambda}_{1}-a_{2} \tag{19}\\
& \rho_{010}=a_{3} \dot{\omega}_{1} \dot{\omega}_{3}+\bar{\lambda} \bar{f}_{2}-a_{4} \tag{20}\\
& \rho_{001}=a_{5} \hat{\omega}_{1} \dot{\omega}_{2}+\bar{\lambda} \bar{f}_{3}-a_{6} \tag{21}\\
& \rho_{200}=a_{7} \dot{\omega}_{2}^{2} \dot{\omega}_{3}^{2}+a_{8} \hat{\omega}_{2} \dot{\omega}_{3}+a_{9} \tag{22}
\end{align*}
$$

$$
\begin{align*}
& \rho_{110}=a_{10} \hat{\omega}_{1} \hat{\omega}_{2} \hat{\omega}_{3}^{2}+a_{11} \hat{\omega}_{1} \hat{\omega}_{3}+a_{12} \hat{\omega}_{2} \hat{\omega}_{3}+a_{13} \tag{23}\\
& \rho_{101}=a_{14} \hat{\omega}_{1} \hat{\omega}_{2}^{2} \hat{\omega}_{3}+a_{15} \hat{\omega}_{1} \hat{\omega}_{2}+a_{16} \hat{\omega}_{2} \hat{\omega}_{3}+a_{17} \tag{24}\\
& \rho_{020}=a_{18} \hat{\omega}_{1}^{2} \hat{\omega}_{3}^{2}+a_{19} \hat{\omega}_{1} \hat{\omega}_{3}+a_{20} \tag{25}\\
& \rho_{011}=a_{21} \hat{\omega}_{1}^{2} \hat{\omega}_{2} \hat{\omega}_{3}+a_{22} \hat{\omega}_{1} \hat{\omega}_{2}+a_{23} \hat{\omega}_{1} \hat{\omega}_{3}+a_{24} \tag{26}\\
& \rho_{002}=a_{25} \hat{\omega}_{1}^{2} \hat{\omega}_{2}^{2}+a_{26} \hat{\omega}_{1} \hat{\omega}_{2}+a_{27} \tag{27}
\end{align*}
$$

Because the values of $p_{k l_{m}}$, corresponding to the system given by Eq. (1) are at hand, the Fokker-Planck equation involving the density $f *[\underline{\omega}, t \mid \hat{\omega}(0), 0]$ for that system can now be set up. This equation for the density is [1]

$$
\begin{equation*}
\frac{\partial f^{*}}{\partial t}=\underset{k+\ell+m>0}{\Sigma} \frac{(-1)^{k+\ell+m}}{k!\ell!m!} \frac{\partial^{k+\ell+m}}{\partial \hat{\omega}_{I}^{k} \partial \hat{\omega}_{2} \partial \hat{\omega}_{3}^{m}}\left(\rho_{k \ell m} f *\right) \tag{28}
\end{equation*}
$$

Substituting Eqs. (19-27) in Eq. (28) and neglecting all third and higher orderderivatives, Eq. (28) reduces to

$$
\begin{align*}
& \frac{\partial f *}{\partial t}=\frac{1}{2}\left[a_{7} \hat{\omega}_{2}^{2} \hat{\omega}_{3}^{2}+a_{8} \hat{\omega}_{2} \hat{\omega}_{3}+a_{9}\right] \frac{\partial^{2} f *}{\partial \hat{\omega}_{1}^{2}}+\frac{1}{2}\left[a_{18} \hat{\omega}_{1}^{2} \hat{\omega}_{3}^{2}+a_{19} \hat{\omega}_{1} \hat{\omega}_{3}+a_{20} \frac{\partial^{2} f *}{\partial \hat{\omega}_{2}^{2}}\right. \\
& +\frac{1}{2}\left[a_{25} \hat{\omega}_{1}^{2} \hat{\omega}_{2}^{2}+a_{26} \hat{\omega}_{1} \hat{\omega}_{2}+a_{27}\right] \frac{\partial^{2} f \hbar}{\partial \hat{\omega}_{3}^{2}}+\left[a_{10} \hat{\omega}_{1} \hat{\omega}_{2} \hat{\omega}_{3}^{2}+a_{11} \hat{\omega}_{1} \hat{\omega}_{3}\right. \\
& \left.+a_{12} \hat{\omega}_{2} \hat{\omega}_{3}+a_{13}\right] \frac{\partial^{2} f \hat{c}}{\partial \hat{\omega}_{1} \partial \hat{\omega}_{2}}+\left[a_{14} \hat{\omega}_{1} \hat{\omega}_{2}^{2} \hat{\omega}_{3}+a_{15} \hat{\omega}_{1} \hat{\omega}_{2}+a_{16} \hat{\omega}_{2} \hat{\omega}_{3}\right. \\
& \left.+a_{17}\right] \frac{\partial^{2} f *}{\partial \hat{\omega}_{1} \partial \hat{\omega}_{3}}+\left[a_{21} \hat{\omega}_{1}^{2} \hat{\omega}_{2} \hat{\omega}_{3}+a_{22^{2}} \hat{\omega}_{1} \hat{\omega}_{2}+a_{23} \hat{\omega}_{1} \hat{\omega}_{3}+a_{24}\right] \frac{\partial^{2} f *}{\partial \hat{\omega}_{2} \partial \hat{\omega}_{3}} \\
& +\left[a_{10} \hat{\omega}_{1} \hat{\omega}_{3}^{2}+a_{12} \hat{\omega}_{3}+a_{14} \hat{\omega}_{1} \hat{\omega}_{2}^{2}+a_{16} \hat{\omega}_{2}-a_{1} \hat{\omega}_{2} \hat{\omega}_{3}-\bar{\lambda} \bar{f}_{1}+a_{2}\right] \frac{\partial f \dot{\omega}}{\partial \hat{\omega}_{1}} \\
& +\left[a_{10} \hat{\omega}_{2} \hat{\omega}_{3}^{2}+a_{11} \hat{\omega}_{3}+a_{21} \hat{\omega}_{1} \hat{\omega}_{2}+a_{23} \hat{\omega}_{1}-a_{3} \hat{\omega}_{1} \dot{\omega}_{3}-\overline{\lambda f}_{2}+a_{4}\right] \frac{\partial f t}{\partial \hat{\omega}_{2}} \\
& +\left[a_{14} \hat{\omega}_{2}^{2} \hat{\omega}_{3}+a_{15} \hat{\omega}_{2}+a_{21} \hat{\omega}_{1} \hat{\omega}_{3}+a_{22} \hat{\omega}_{1}-a_{5} \hat{\omega}_{1} \hat{\omega}_{2}-\overline{\lambda f}_{3}+a_{6}\right] \frac{\partial f \star}{\partial \hat{\omega}_{3}} \\
& +\left[a_{10} \hat{\omega}_{3}^{2}+a_{14} \hat{\omega}_{2}^{2}+a_{21} \hat{\omega}_{1}^{2}\right]^{*} . \tag{29}
\end{align*}
$$

The values of the density function can be obtained by solving this forBidable linear second order partial differential equation. But little useful information is obcained from the density function. The truly useful atatietical parameters are the mean values, variances, covariances, and other higher order monta of the satellite response. These parameters form a fanily, Hep, which is defined by

$$
\begin{equation*}
\hat{M}_{k 2 m}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\omega_{1}^{k} \hat{\omega}_{2}^{\ell}\left(\hat{\omega}_{3}-\Omega\right)^{\omega} f \pm[\underline{\hat{\omega}}, t \mid \underline{\hat{\omega}}(0), 0] d \hat{\omega}_{2} \mathrm{~d} \hat{\omega}_{2} \mathrm{~d} \hat{\omega}_{3}, ~} \tag{30}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\frac{d \hat{M}_{l l}}{d t}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \omega_{1} \hat{\omega}_{2}^{l}\left(\hat{r}_{:}, \Omega\right)=\frac{\partial f \hbar}{\partial t} d \hat{\omega}_{1} d \hat{\omega}_{2} d \hat{\omega}_{3} . \tag{31}
\end{equation*}
$$

where Ω is the nominal value of the spin rate. Substituting the expression for $\frac{\partial f *}{\partial t}$ from Eq. (29) into Eq. (31) and integrating, it is seen that

$$
\begin{align*}
& \hat{\mathrm{M}}_{100}=a_{1} s \hat{H}_{010}+a_{1} \hat{M}_{011}-a_{2}+\bar{\lambda} \bar{f}_{1} \tag{32}\\
& \hat{\hat{M}}_{010}=a_{3} \hat{M}_{100}+\hat{a}_{3} \hat{M}_{101}-a_{4}+\bar{\lambda} \bar{f}_{2} \tag{33}\\
& \hat{M}_{001}=a_{5} \hat{M}_{110}-a_{6}+\bar{\lambda} \bar{f}_{3} \tag{34}
\end{align*}
$$

$$
\begin{equation*}
\dot{\hat{M}}_{200}=2\left(\bar{\lambda}_{1}-a_{2}\right) \hat{M}_{100}+a_{8} \hat{M A}_{010}+2 a_{1} \hat{M}_{110}+a_{7}{ }^{2} \hat{M}_{020}+a_{8} \hat{M}_{011}+a_{9} \tag{35}
\end{equation*}
$$

$$
\dot{\hat{M}}_{110}=\left(a_{11} \Omega+\bar{\lambda} \bar{f}_{2}-a_{4}\right) \hat{A}_{100}+\left(a_{12} \Omega+\bar{\lambda} \bar{f}_{1}-a_{2}\right) \hat{M}_{010}+a_{1} \rho_{020}+a_{10}{ }^{\Omega} \hat{M}_{110}
$$

$$
\begin{equation*}
+a_{11} \hat{M}_{101}+a_{3} \hat{\mathrm{M}}_{200}+a_{12} \hat{\mathrm{H}}_{011}+a_{23} \tag{36}
\end{equation*}
$$

$$
\dot{\hat{M}}_{102}=\left(\bar{\lambda}_{3}-a_{6}\right) \hat{M}_{100}+a_{16}{ }^{8 \hat{H}} 010+\left(\bar{\lambda} \bar{f}_{1}-a_{2}\right) \hat{H}_{001}+a_{15} \hat{H}_{110}
$$

$$
\begin{equation*}
+\left(a_{1} \Omega+a_{16}\right) \hat{M}_{011}+a_{17} \tag{37}
\end{equation*}
$$

$$
\begin{equation*}
+a_{19} \hat{M}_{101}+a_{20} \tag{38}
\end{equation*}
$$

$$
\hat{\mathbf{H}}_{011}=a_{23^{g \hat{M}}}^{100}+\left(\bar{\lambda} \bar{f}_{3}-a_{6}\right) \hat{M}_{010}+\left(\bar{\lambda} \bar{f}_{2}-a_{4}\right) \hat{M}_{001}+a_{22} \hat{M}_{110}
$$

$$
\begin{equation*}
+\left(a_{23}+a_{3} n\right) \hat{\mu}_{101}+a_{24} \tag{39}
\end{equation*}
$$

$$
\begin{equation*}
\dot{\hat{x}}_{002}=2\left(\bar{\lambda}_{3}-a_{6}\right) \hat{M}_{001}+a_{26} \hat{H}_{110}+a_{27} \tag{40}
\end{equation*}
$$

In deriving Eqa. (32-40), all third and higher order nomente have been neglected. Solving these nine firet order ordinary differential equations, the man
values, the variances, and the covariances of the satellite response are obtained completely.

THE FORKER-PLANCK RESPONSE

At this point, it will be interesting to analyze the response predicted by Eqs. (32-40). These predictions will later be conpared with an analog simlation of Eq. (1).

Let it be assumed that, at $t=0$, all second order moments ($k+\ell+m=2$) and \hat{M}_{001} are equal to zero. In this stage, the satellite will behave as it does in the deterministic situation, that is, it will begin to precess with a rate proportional to Ω. Then, as the values of $\hat{\mathbf{H}}_{001}$ and \hat{H}_{002} grow with time, the precessing rate and the nutation angle will also grow. Pinally, the satellite topples down. This phenomenon occurs physically and in simalations. Thus, Eqs. (32-40) predict that the satellite response is greatly sensitive to the values of $a_{5},\left(\bar{\lambda} f_{3}-a_{6}\right), a_{26}$ and a_{27}. Because a_{27}, a_{20}, and a_{9} are non-negative, these equations predict that an uncontrolled satellite governed by Eq. (1) is inherently unstable in the presence of random errors. The same conclusion can be drawn by applying the stability criteria of Refs. [14,15] to Eq. (1). The error growth rate of the satelifte response can be mininized by minimizing the values of a_{5}, a_{6}, a_{26}, and λf_{3}. This can be done if $\lambda F_{3}=0, I_{1}=I_{2}$ and the matrix $M_{i j}$ is a diagonal matrix.

The relative rates of error growth of spinning and non-spinning satellites will now be examined from the characteristics of the eigenvalues of Eqs. (3240). It can be shown that the eigenvalues of these equations satisfy a ninth degree algebraic equation of the form

$$
\begin{equation*}
p^{9}+\alpha_{8} p^{8}+\alpha_{7} p^{7}+\alpha_{6} p^{6}+\alpha_{5} p^{5}+\alpha_{4} p^{4}+\alpha_{3} p^{3}+\alpha_{2} p^{2}+\alpha_{1} p=0 \tag{41}
\end{equation*}
$$

where $a_{i}, 1=1-8$, are appropriate constants.
It is obvious that to have bounded growth rates, a_{i} for all 1 must be nonnegative. It can be shown that

$$
\begin{align*}
a_{8}= & -a_{10} \Omega^{2}=-\frac{\Omega^{2}}{\bar{I}_{1} \bar{I}_{2}}\left[M_{13}+M_{23}-M_{33}-M_{12}+\frac{\left(\bar{I}_{3}-\bar{I}_{2}\right)}{\bar{I}_{1}}\left(M_{13}-M_{11}\right)\right. \\
+ & \frac{\left(\bar{I}_{3}-\bar{I}_{1}\right)}{\bar{I}_{1}}\left(M_{13}-M_{12}\right)+\frac{\left(\bar{I}_{3}-\bar{I}_{2}\right)}{\bar{I}_{2}}\left(M_{23}-M_{12}\right)+\frac{\left(\bar{I}_{3}-\bar{I}_{1}\right)}{\bar{I}_{2}}\left(M_{23}-H_{22}\right) \\
& \left.\frac{\left(\bar{I}_{3}-\bar{I}_{1}\right)\left(\bar{I}_{3}-\bar{I}_{2}\right)}{\bar{I}_{1} \bar{I}_{2}} M_{12}\right] \tag{42}
\end{align*}
$$

Because usual satellite geometries are such that

$$
\bar{I}_{3}>\operatorname{Max}\left[\bar{I}_{1}, \bar{I}_{2}\right]
$$

Eq. (42) anya that $a_{8} \times 0$ if, end only if any of the following conditione exist:

$$
\begin{gather*}
\Omega=0 \tag{43}\\
\operatorname{ara}\left[\mathrm{M}_{13}, \mathrm{M}_{23}\right] \leq \min \left[\mathrm{M}_{11}, \mathrm{M}_{12}, \mathrm{M}_{22}, \mathrm{M}_{33}\right] \tag{44}
\end{gather*}
$$

In particular, $\quad \alpha_{8} \geq 0$ if $M_{12} \geq 0$ and

$$
\begin{equation*}
H_{13}=M_{23}=0 \tag{45}
\end{equation*}
$$

since min $\left[\mathrm{M}_{11}, \mathrm{M}_{22}, \mathrm{H}_{33}\right] \geq 0$.
Equation (45) states that one of the conditione for a bounded error growth rate is satisfied if the inertia noises in I_{1} and I_{2} are independent of the noise in I_{3}. But this condition usually is not antisfied because

$$
\begin{gathered}
I_{3}=I_{1}+I_{2} \text { and } \bar{I}_{3}=\bar{I}_{1}+\bar{I}_{2} \text { and hence } \\
\mu_{3}=\mu_{1}+\mu_{2}
\end{gathered}
$$

and, therefore,

$$
\begin{aligned}
& M_{13}=M_{11}+M_{12} \\
& M_{23}=M_{22}+M_{12} .
\end{aligned}
$$

Thus, at this point it appears that Eq. (43) provides the only suitable constraint and that this constraint is available only to three-axes stabilized satellites.

How, let the condition required to make a_{7} non-negative be considered. It can be shown that a_{7} is of the fors

$$
\begin{equation*}
a_{7}=a_{70}+a_{71} \Omega+a_{72} \Omega^{2}+a_{74} \Omega^{\Omega^{4}} . \tag{46}
\end{equation*}
$$

where

$$
\begin{align*}
& a_{70}=-\left[a_{22} a_{12}+a_{23}{ }_{16}+a_{15} a_{11}\right] \tag{47}\\
& a_{71}=-2\left[a_{1} a_{23}+a_{3} a_{16}\right] \tag{48}\\
& a_{72}=-6 a_{1} a_{3} \tag{49}\\
& a_{74}=-a_{7} a_{18} \tag{50}
\end{align*}
$$

Another reaconable ascumption ve can make now is that the inertis noises, ${ }_{i}{ }_{i}$ are independent of the forcing furcitons, $1 f_{i}$. Aequalias this,

$$
\begin{align*}
& a_{2}=a_{4}=a_{6}=a_{8}=a_{11}=a_{12}-a_{15}-a_{16}=0 \tag{51}\\
& a_{19}=a_{22}=a_{23}=a_{26}=0 \tag{52}
\end{align*}
$$

Using Eqs. (51,52), the criterion for non-negative α_{7} becomes either Eq. (43) or

$$
\begin{equation*}
\alpha_{72}+\alpha_{74} \Omega^{2} \geq 0 \tag{53}
\end{equation*}
$$

Equation (53) can be expanded to obtain

$$
6 a_{1} a_{3}+a_{7} a_{18} \Omega^{2} \leq 0
$$

or

$$
\begin{align*}
& \frac{6}{\bar{I}_{1} \bar{I}_{2}}\left[\frac{M_{13}-M_{12}}{\bar{I}_{1}}-\left(\bar{I}_{3}-\bar{I}_{2}\right)\right]\left[\left(\bar{I}_{3}-\bar{I}_{1}\right)+\frac{M_{12}-\mathrm{M}_{23}}{\bar{I}_{2}}\right] \\
& \quad+\frac{\Omega^{2}}{\bar{I}_{1}^{2} \bar{I}_{2}^{2}}\left[M_{33}-2 \mathrm{I}_{23}+M_{22}-\frac{4\left(\bar{I}_{3}-\bar{I}_{2}\right)}{\overline{\bar{I}}_{1}}\left(\mathrm{M}_{13}-\mathrm{M}_{12}\right)\right]\left[\mathrm{M}_{33}-2 \mathrm{M}_{12}\right. \\
& \left.\quad+M_{11}-\frac{4\left(\bar{I}_{3}-\bar{I}_{1}\right)}{\bar{I}_{2}}\left(M_{23}-M_{12}\right)\right] \leq 0 \tag{54}
\end{align*}
$$

Assuming the satellite geometry to be given by

$$
\begin{align*}
\frac{1}{2} \bar{I}_{3} & =\overline{\mathrm{I}}_{1}=\overline{\mathrm{I}}_{2} \tag{55}\\
\mu_{3} & =\mu_{1}+\mu_{2} \tag{56}
\end{align*}
$$

and that $M_{i j}$ are saall compared to $\bar{I}_{i}, E q$. (54) can be further simplified to
read

$$
\begin{equation*}
2 \bar{I}_{1}^{4}-M_{11}\left(3 M_{22}-2 M_{11}\right) \Omega^{2} \geq 0 \tag{57}
\end{equation*}
$$

Equation (57) is almost certainly satisfied for all real satellitea and hence, a_{7} is almost certainly positive. Equation (57) also state the obvious fact that, in the presence of inertia noise, a high apin rate tende to make the atellite unstable.

The expressions for a_{6} will now be considered, It can be shown that a_{6} 1s given by

$$
\begin{equation*}
a_{6}-a_{60}+a_{61}+a_{62} \Omega^{2}+a_{63} n^{3}+a_{64}{n^{4}}^{4}+a_{66} n^{6} \tag{58}
\end{equation*}
$$

where

$$
\begin{aligned}
& \left.+\left(\bar{\lambda}_{\bar{f}}^{2}-a_{4}\right)\left(a_{1} a_{22}+a_{5} a_{12}\right)+\left(\bar{\lambda}_{3}-a_{6}\right)\left(a_{3} a_{16}-a_{1} a_{23}\right)\right] \\
& a_{61}=-\left[a_{3} a_{8} a_{22}+a_{1} a_{15} a_{19}+2 a_{3} a_{12}{ }_{15}+2 a_{1} a_{11}{ }^{a} 2_{2}+4 a_{1} a_{3}\left(\bar{\lambda}_{3} \bar{f}_{3} a_{6}\right)\right] \\
& a_{62}={ }^{a}{ }_{10}{ }^{2}{ }_{16}{ }^{a}{ }_{23} \\
& a_{63}=2\left[a_{1}{ }_{10}{ }^{a}{ }_{23}+a_{3} a_{10} a_{16}\right] \\
& a_{64}=2\left(a_{1}{ }^{a}{ }_{3}{ }_{10}-a_{3}{ }_{3}{ }_{7}-a_{1}^{2}{ }_{1}{ }_{18}\right] \\
& a_{66}=a_{7}{ }^{a} 10^{a} 18
\end{aligned}
$$

It has already been mentioned that, if $\left(\bar{\lambda}_{\mathbf{f}}^{3}-\mathrm{a}_{6}\right)$ is non-zero, then even the deteministic response is unbounded. Hence, to make any useful comparison, it wast be assumed that $\left(\mathrm{XF}_{3} \mathrm{an}_{6}\right.$) is either zero or has been made so by appropriate controllers. Assuming this and the satisfaction of Eqs. (51,52), a_{6} becomes

$$
\begin{equation*}
a_{6}=a_{7} a_{10} a_{18} a^{6}+2\left[a_{1} a_{3} a_{10}-a_{3}^{2} a_{7}-a_{1}^{2} a_{18}\right]^{4} . \tag{59}
\end{equation*}
$$

Hence, for non-zero values of Ω, ganall $M_{i j}$, and with the geometry given by Eqa. $(55,56)$, the condition for non-negative valuea of a_{6} can be obtained at

$$
\begin{equation*}
4 I_{1}^{4}+9 M_{11} M_{22} \Omega^{2} \geq 0 \tag{60}
\end{equation*}
$$

The above relation is satisfied almost certainly for all real satellites.
A similar treatment for the coefficient a_{5} yields the inequality

$$
\begin{equation*}
\bar{I}_{1}^{4}-2 H_{11} H_{22} \Omega^{2}-\frac{\overline{\mathrm{I}}_{1}^{2}}{36 \Omega^{4}}\left[\left(\bar{\lambda}_{1}\right)^{2}-\left(\bar{\lambda} \bar{f}_{2}\right)^{2}\right]\left(M_{23}-M_{13}\right) \geq 0 \tag{61}
\end{equation*}
$$

which is aleo satisfied,
Carrying on with this procedure, it can be shown that the coefficiente a_{4}, a_{3}, a_{2}, and a_{1} are all vell behaved and positive definite. Thus, the only criticil coefficient is a_{8}. This is epproxtantely siven by

$$
\begin{equation*}
a_{8}=-a_{10} \Omega^{2}=-\frac{\Omega^{2}}{r_{1}^{2}}\left(M_{11}+M_{22}\right) \tag{62}
\end{equation*}
$$

where H_{11} and X_{22} are the variances of the inertia noise alont I_{1} and I_{2},

respectively.

To give a clearer picture of the error growth phenomenon, we will analyse the reaponse of a threc-axes stabilized atellite.

Let it be ansumed that initially

$$
\begin{align*}
\Omega & =0 \tag{63}\\
a_{5} & =0 \tag{64}\\
\bar{\lambda} \bar{f}_{3}-a_{6} & =0 \tag{65}
\end{align*}
$$

and Eqs. (51,52) are satisfied. In this case, all coupling in Eqs. (32-40) are lost and the responses grow linearly with time, according to the relations

$$
\begin{align*}
& \hat{M}_{001}=0 \\
& \hat{M}_{100}=\left[\bar{\lambda} \bar{f}_{1}-a_{2}\right] t \\
& \hat{M}_{010}=\left[\bar{\lambda} \bar{f}_{2}-a_{4}\right] t \\
& \hat{M}_{200}=\left[\bar{\lambda} \bar{f}_{1}-a_{2}\right]^{2} t^{2} \tag{66}\\
& \hat{M}_{020}=\left[\bar{\lambda} \bar{f}_{2}-a_{4}\right]^{2} t^{2} \\
& \hat{M}_{002}=0
\end{align*}
$$

The growth rate of the responses is greatly changed if Bq . (65) is not used, a though Eqs. $(63,64)$ and Eqs. $(51,52)$ are uged. In this case, the following four equation remain coupled:

$$
\begin{align*}
& \dot{\hat{H}}_{100}=a_{1} \hat{M}_{011} \\
& \dot{\hat{M}}_{011}=\left(\bar{\lambda}_{3}-\bar{a}_{6}\right) \hat{M}_{010}+\left(\bar{\lambda}_{2} \bar{x}_{4}\right) \hat{M}_{001} \\
& \dot{\bar{M}}_{010}--_{1} \dot{M}_{101} \tag{67}\\
& \dot{\hat{M}}_{101}=\left(\bar{\lambda}_{3}-\bar{a}_{6}\right) \hat{M}_{100}+\left(\bar{\lambda}_{1}-a_{2}\right) \hat{M}_{001}
\end{align*}
$$

where

$$
\dot{\hat{m}}_{001}=\left(\bar{\lambda}_{3}-\mu_{6}\right)
$$

The eigenvalues of Eq. (67) satinfy the following algebraic equation:

$$
\begin{equation*}
\left[p^{4}+a_{1}^{2}\left(\bar{\lambda}_{3}-a_{6}\right)^{2}\right]=0 \tag{68}
\end{equation*}
$$

Equation (68) atates that, apart from the linaarly growing componante, there will be exponential and ainusoidal componente in the satelife reaponee, when $\left(\lambda I_{3}-\pi_{6}\right)$ is large.

The above mentioned cased, Identified by Eqs. (66) and (67), are extremas. A real oituation can be portrayed better by ascuning ($\lambda_{3}-\mathbf{a}_{6}$) is non-sero but very mall, leading to a ilight coupling in Eqs. (32-40). This causes a anall non-zero value of Ω to be developed, although Eqs. (51,52) are satiafied. With this comprosise, the eigenvalues of Eqs. ($32-40$) entiafy the following characteriatic equation:

$$
\begin{align*}
& p^{2}\left(p^{2}+\Omega^{2}\right)^{2}\left[p^{3}-a_{10} \Omega^{2} p^{2}+\left(4 \Omega^{2}-a^{a} 18^{R^{4}}\right) p+\left(a_{7} 10^{2} 18^{a^{2}-2 a} 7^{-2 a} 18\right) a^{4}\right] \\
& -a_{5} x_{p}=0 \tag{69}
\end{align*}
$$

where it is assumed that $\bar{I}_{1}-\bar{I}_{2}-\frac{1}{2} \bar{I}_{3}$ and

$$
\begin{align*}
K & =\left(\lambda_{1}^{2}-\lambda_{2}^{2}\right) p^{4}-8 \lambda_{1} \lambda_{2} \Omega^{3}+p^{2} \Omega^{2}\left[\left(\lambda_{2}^{2}-\lambda_{1}^{2}\right)\left(5+a_{7} a_{1} 8^{2}\right)\right. \\
& \left.+2 \lambda_{1} \lambda_{2} \Omega\left(a_{7}+a_{18}\right)\right]+4 p \Omega^{3}\left[\lambda_{1} \lambda_{2}\left(1+a_{7}{ }^{a} 18^{\Omega^{2}}\right)+\Omega\left(\lambda_{1}^{2} a_{18}-\lambda_{2}^{2} a_{7}\right)\right. \\
& +\Omega^{5}\left[a_{7}{ }^{a} 18^{\left.\Omega\left(\lambda_{1}^{2}-\lambda_{2}^{2}\right)-2 \lambda_{1} \lambda_{2}\left(a_{7}+a_{18}\right)\right]}\right. \tag{70}
\end{align*}
$$

In Eq. (70), λ_{1} and λ_{2} are given by

$$
\begin{align*}
& \lambda_{1}=\bar{\lambda} \bar{f}_{1}-a_{2} \tag{71}\\
& \lambda_{2}-\bar{\lambda} \bar{f}_{2}-a_{4} . \tag{72}
\end{align*}
$$

Equation (69) can be viewed with a better perapective by conidering as, a_{7}, and ${ }_{18}$ to be mall. This reduced Eq. (69) to the fora

$$
\begin{equation*}
p^{3}\left(p^{2}+\Omega^{2}\right)^{2}\left(p^{2}-310^{2} p+4 \Omega^{2}\right)=0 \tag{73}
\end{equation*}
$$

It is now clear that apinning satellite will begin to satisfy Eq. (73) imadiately in the presence of noise. A three-axes stabilized satelifte, on the other hand, vill eatiafy Eq. (73) only after a period of linear error growth. If a ${ }_{10}$ is equal to eero, Eq. (73) predicts a dowinant cyclic response vith the mil 10 known frequencies of Ω and 2Ω. The solutione of Eqs. (32-40), correnponding to the characteristic Eq. (73), are zatily obtained as follows:

$$
\begin{aligned}
& \hat{M}_{001}=\Omega \\
& \dot{M}_{002}=\Omega^{2}
\end{aligned}
$$

$$
\begin{align*}
& \hat{M}_{100}=-\frac{\lambda_{2}}{\alpha^{2}}+\left(A_{1}+A_{3} t\right) \cos \alpha_{t}+\left(A_{2}-A_{4} t\right) \sin \theta t \\
& \hat{M}_{010}=\frac{\lambda_{1}}{\Omega}+\left(A_{2}+A_{3} t\right) \sin \beta t-\left(A_{2}-A_{4} t\right) \cos \Omega t \\
& \hat{\mathbf{M}}_{101}=A_{3} \operatorname{singt}+A_{4} \operatorname{con} \Omega t \\
& \hat{H}_{011}=A_{4} \sin n t-A_{3} \cos n t \tag{74}\\
& \hat{M}_{200}=C+\exp \left[\frac{1}{2} a_{10} \Omega^{2} t\right]\left\{D_{1} \cos 2 \Omega t+D_{2} \sin 2 \Omega t\right\}+G_{1}(t) \\
& \hat{M}_{020}-C-\exp \left[\frac{1}{2} a_{10} \Omega^{2} t\right]\left\{D_{1} \cos 2 \Omega t+D_{2} \sin 2 \Omega t\right\}+C_{2}(t) \\
& \left.\hat{M}_{110}=-\frac{\lambda_{1} \lambda_{2}}{\Omega^{2}}+\frac{\exp \left[\frac{1}{2} a_{\left.10^{\Omega^{2}} t\right]}^{\left(16+a_{10} \Omega^{2}\right)}\right.}{\left(16 D_{1}-4 a\right.} 10^{R D_{2}}\right) \operatorname{ein} 2 \Omega t \\
& \left.-\left(16 D_{2}+4 a_{10} 0_{1}\right) \cos 28 t\right)+G_{3}(t)
\end{align*}
$$

where $A_{1}, A_{2}, A_{3}, A_{4}, C, D_{1}$ and D_{2} are arbitrary constants, and

$$
\begin{align*}
& G_{1}(t)=\frac{{ }_{10} \lambda_{1} \lambda_{2}}{2 \Omega}-\frac{\lambda_{1}^{2}}{\Omega^{2}}+A_{1}\left[r_{11} \ln \Omega t+r_{12} \cos \Omega t\right] \\
& +A_{2}\left[r_{21} s i n \Omega t+r_{22} \cos \Omega t\right]+A_{3}\left[r_{31} \tan \Omega t+r_{32} t \cos \Omega t\right. \\
& \left.+r_{33} \sin \Omega t+r_{34} \cos \Omega t\right]+A_{4}\left[r_{41} t \sin \Omega t+r_{42} t \cos \Omega t\right. \\
& \left.+r_{43} \operatorname{inn} t+r_{44} \operatorname{con} n t\right] \tag{74a}\\
& G_{2}(t)=-\frac{a_{10} \lambda_{1} \lambda_{2}}{2 \Omega}-\frac{\lambda_{2}^{2}}{\Omega^{2}}+A_{1}\left[s_{11} \cos \Omega t+s_{12} \sin \Omega t\right] \\
& +A_{2}\left[s_{21} \cos \Omega t+s_{22} \ln \Omega t\right]+A_{3}\left[s_{31} t \cos \Omega t+s_{32} t \sin \Omega t\right. \\
& \left.+5_{33} \cos \Omega t+H_{34} \ln \Omega t\right]+A_{4}\left[8_{41} t \cos \Omega t+t_{42} \tan \Omega t\right. \\
& +5_{43} \cos \Omega t+4_{44} \text { [inst] } \tag{76b}\\
& G_{3}(t)=A_{1}\left[t_{11} \operatorname{con} \Omega t+t_{12} \sin \Omega t\right]+A_{2}\left[t_{21} \cos O t+t_{22} \operatorname{lnat}\right] \\
& +A_{3}\left[t_{31} t \cos D t+t_{32} t \sin 0 t+t_{33} \cos A t+t_{34} \text { ingt }\right] \\
& +A_{4}\left[t_{41} t \cos n t+t_{42} t \sin n t+t_{43} \cos 8 t+t_{44} \sin \Omega t\right] \tag{74c}
\end{align*}
$$

 Let π_{1} and ρ be the numbers given by

$$
\begin{align*}
& \pi_{1}=a_{10} R^{2} \\
& \rho=\left[9 R^{2}+\pi_{1}^{2}\right]^{-1} \tag{74d}
\end{align*}
$$

Then,

$$
\begin{align*}
& t_{11}=30\left(3 \lambda_{1} \Omega-\lambda_{2} 1_{1}\right) \\
& t_{12}=-30\left(3 \lambda_{2} \mathrm{Q}-\lambda_{1}{ }_{1}{ }_{1}\right) \\
& r_{11}=\frac{2 \lambda_{1}}{\Omega}-2 t_{11} ; r_{12}=2 t_{12} \tag{76e}\\
& c_{11}=-\frac{2 \lambda_{2}}{a}-2 t_{12} ; n_{12}=2 t_{11} \\
& t_{21}=30\left(3 \lambda_{2} R+\lambda_{1} \pi_{1}\right) \\
& t_{22}=t_{11} ; r_{21}=-2 \tau_{21} ; r_{22}=2 t_{22}-\frac{2 \lambda_{1}}{\Omega} \tag{74f}\\
& s_{21}=-2 t_{21} ; e_{22}=2 t_{21}-\frac{2 \lambda_{2}}{\Omega} \\
& t_{31}=t_{11} ; t_{32}=t_{12} \\
& t_{33}=\frac{\rho^{2}}{R}\left[81 \lambda_{2} a^{3}-18 \lambda_{1} a^{2} I_{1}-21 \lambda_{2} 0 \pi_{1}^{2}-2 \lambda_{1} 1_{1}^{3}\right] \\
& t_{34}=\frac{\rho^{2}}{a}\left\{81 \lambda_{1} Q^{3}-72 \lambda_{2} q^{2} \eta_{2}+9 \lambda_{1} Q \pi_{1}^{2}+2 \lambda_{2}{ }^{3} 1_{1}\right] \\
& r_{31}=\frac{2 \lambda_{1}}{Q}-2 t_{31}: r_{32}=2 t_{32}: r_{33}=-2 t_{33}-\frac{2 t_{32}}{Q} \tag{74g}\\
& r_{34}=2 t_{34}-\frac{2 t_{31}}{Q}+\frac{2 \lambda_{1}}{Q^{2}} ; s_{31}=-2 t_{32}-\frac{2 \lambda_{2}}{Q} \\
& e_{32}=2 \tau_{31}: \varepsilon_{33}=-2 \tau_{34}+\frac{2 t_{31}}{Q}: \varepsilon_{34}=2 t_{33}+\frac{2 t_{32}}{Q}+\frac{2 \lambda_{2}}{\alpha^{2}} \\
& t_{41}=-t_{21}: t_{42}=-t_{11} \\
& t_{43}=\frac{e^{2}}{Q}\left[01 \lambda_{1} Q^{3}-72 \lambda_{2} a^{2} I_{1}-21 \lambda_{1} g_{1}^{2}+2 \lambda_{2} 1_{1}^{3}\right]
\end{align*}
$$

$$
\begin{align*}
& t_{44}=\frac{\rho^{2}}{\Omega}\left[81 \lambda_{2} \Omega^{3}+72 \lambda_{1} \Omega^{2} \pi_{1}-21 \lambda_{2} \Omega \pi_{1}^{2}-2 \lambda_{1}{ }^{3} 1\right] \\
& r_{41}=-2 t_{41} ; r_{42}-2 t_{42}+\frac{2 \lambda_{1}}{\Omega} ; r_{43}-2 t_{43}-\frac{2 t_{42}}{\Omega}-\frac{2 \lambda_{1}}{\Omega^{2}} \tag{74h}\\
& r_{44}=2 t_{44}-\frac{2 t_{41}}{\Omega} ; \varepsilon_{41}=-2 t_{42} ; t_{42}=2 t_{41}+\frac{2 \lambda_{2}}{\Omega} \\
& t_{43}=-2 t_{44}+\frac{2 t_{41}}{\Omega}+\frac{2 \lambda_{2}}{\Omega^{2}} ; \varepsilon_{44}=2 t_{43}+\frac{2 t_{42}}{\Omega}
\end{align*}
$$

The nature of the functions $G_{1}(t), G_{2}(t)$, and $G_{3}(t)$ can be given aimpler form If a_{10} is neglected in EqB. (74a-7h). In thia case, the functiona are given by

$$
\begin{align*}
G_{1}(t) & =-\frac{\lambda_{1}^{2}}{\Omega^{2}}+\frac{2}{\Omega^{2}}\left[\lambda_{1} A_{3}-\lambda_{2} \Omega\left(A_{1}+A_{3} t\right)\right] \cos \Omega t \\
& =\frac{2}{\Omega^{2}}\left[\lambda_{1} A_{4}+\lambda_{2} \Omega\left(A_{2}-A_{4} t\right)\right] \sin \Omega t \\
G_{2}(t) & =-\frac{\lambda_{2}^{2}}{a^{2}}+\frac{2}{\Omega^{2}}\left[\lambda_{2} A_{4}-\lambda_{1} \Omega\left(A_{2}-A_{4} t\right)\right] \operatorname{coa} \Omega t \\
& +\frac{2}{\Omega^{2}}\left[\lambda_{2} A_{3}+\lambda_{1} \Omega\left(A_{1}+A_{3} t\right)\right] \operatorname{in} \Omega t \tag{74i}\\
G_{3}(t) & =\frac{1}{\Omega}\left[\lambda_{1}\left(A_{1}+A_{3} t\right)+\lambda_{2}\left(A_{2}-A_{4} t\right)+\frac{1}{\Omega}\left(\lambda_{2} A_{3}+\lambda_{1} A_{4}\right)\right] \cos \Omega t \\
& =\frac{1}{\Omega}\left[\lambda_{2}\left(A_{1}+A_{3} t\right)-\lambda_{1}\left(A_{2}-A_{4} t\right)-\frac{1}{\Omega}\left(\lambda_{1} A_{3}-\lambda_{2} A_{4}\right)\right] \ln \Omega t .
\end{align*}
$$

The constante $A_{1}, A_{2}, A_{3}, A_{4}, C, D_{1}$, and D_{2} are calculated from the appropriate Initial conditions. Equations (66) and (74) provide a baeis for comparison of the error growth rate of spinaing and three axis stabilized sacallites. If a ${ }_{10}$ siven by Eq. (62), is large and λ_{1} or λ_{2} are anll, then a chroe-axes etabilibid design is verranted. The reverse is aleo the eses. Interestingly enough, all thece predictions have been borne out by analog almulations.

THI PERTUREATIOM BCHEAS

A perturbation colution of Eq. (1) will now be obtained thth the cosumption that λ ' f, and that the nolses esgociaced with the monente of ineztia of the satellit are mall. The inertia nolces are defined at

$$
\begin{equation*}
I_{1}=\bar{I}_{1}+c_{1}+\eta_{1}(t): 1=1,2,3 \tag{75}
\end{equation*}
$$

where c_{1} and n_{1} are the molecs in the sample and tin opaces, reepectively. The angular volocity reaponsed. ω_{i}, are aseumed to be functione of the eeven
emall paranetare λ^{\prime}, c_{1} and n_{1} of the fors:

In Eq. (76), the cubic and higher powers of the amell parmeters are neglected. The quantities n_{1} are the nominal values of the angular velocitiea w_{i}. It is aspumed that

$$
\Omega_{1}^{4}=\Omega_{2}=0
$$

$$
\Omega_{3}=\Omega=\text { a constant }
$$

$$
\begin{equation*}
\omega_{1}(0)=\omega_{2}(0)=0=\left[\omega_{3}(0)-\Omega\right] \tag{77}
\end{equation*}
$$

Equations (75), (76), and (77) are substituted Into Eqa, (1) and separate equations are then formed corresponding to each of the various combinations of the amall parametare. This clastical principle of separation of parameters rasulte in only a few of the mititude of teres on the right hand side of Eq. (76) belag non-zero. Thus, a eore compect expansion for the angular velocities 1s obtained as

$$
\begin{aligned}
\omega_{1} & =\lambda^{\prime} \omega_{10}+\left(\lambda^{\prime}\right)^{2} \omega_{17}+\lambda^{\prime} \varepsilon_{1} \omega_{18}+\lambda^{\prime} \varepsilon_{2} \omega_{19}+\lambda^{\prime} \varepsilon_{3} \omega_{110}+\lambda^{\prime} n_{1} \omega_{111} \\
& +\lambda^{\prime} n_{2} \omega_{112}+\lambda^{\prime} n_{3} \omega_{113} \\
\omega_{2} & =\lambda^{\prime} \omega_{20}+\left(\lambda^{\prime}\right)^{2} \omega_{27}+\lambda^{\prime} c_{1} \omega_{28}+\lambda^{\prime} \varepsilon_{2} \omega_{29}+\lambda^{\prime} \varepsilon_{3} \omega_{210} \\
& +\lambda^{\prime} n_{1} \omega_{211}+\lambda^{\prime} n_{2} \omega_{212}+\lambda^{\prime} n_{3} \omega_{213} \\
\omega_{3} & =\Omega+\lambda^{\prime} \omega_{30}+\left(\lambda^{\prime}\right)^{2} \omega_{37}+\lambda^{\prime} c_{3} \omega_{310}+\lambda^{\prime} n_{3} \omega_{313}
\end{aligned}
$$

Let L be amatrix differential operator defined by

$$
\begin{align*}
& \omega_{1}=D_{1}+\lambda^{\prime} \omega_{10}+c_{1} \omega_{11}+c_{2} \omega_{12}+c_{3} \omega_{13}+\eta_{1} \omega_{14}+\eta_{2} \omega_{15}+\eta_{3} \omega_{16} \\
& +\left(\lambda^{\prime}\right)^{2} \omega_{17}+\lambda^{\prime} c_{1} \omega_{18}+\lambda^{\prime} c_{2} \omega_{19}+\lambda^{\prime} c_{3} \omega_{110}+\lambda^{\prime} \eta_{1} \omega_{111} \\
& +\lambda^{\prime} n_{2} \omega_{112}+\lambda^{\prime} n_{3} \omega_{113}+\left(\varepsilon_{1}\right)^{2} \omega_{114}+c_{1} c_{2} \omega_{115}+c_{1} c_{3} \omega_{116} \\
& +c_{1} \eta_{1} \omega_{117}+c_{1} \eta_{2} \omega_{118}+c_{1} n_{3} \omega_{119}+\left(c_{2}\right)^{2} \omega_{120}+c_{2} c_{3} \omega_{121} \\
& +c_{2}{ }_{1} \omega_{122}+c_{2}{ }_{2} \omega_{123}+c_{2} n_{3} \omega_{124}+\left(c_{3}\right)^{2} \omega_{125} \\
& +c_{3} n_{1} \omega_{126}+c_{3} n_{2} \omega_{127}+\varepsilon_{3} n_{3} \omega_{128}+\left(n_{1}\right)^{2} \omega_{129}+n_{1} n_{2} \omega_{130} \\
& +n_{2} n_{3} \omega_{131}+\left(n_{2}\right)^{2} \omega_{132}+n_{2} n_{3} \omega_{133}+\left(n_{3}\right)^{2} \omega_{134} \text {. } \tag{76}
\end{align*}
$$

$$
L *\left(\omega_{1}\right)=\left[\begin{array}{ccc}
\bar{I}_{1} & 0 & 0 \tag{79}\\
0 & \bar{I}_{2} & 0 \\
0 & 0 & \bar{I}_{3}
\end{array}\right]\left\{\begin{array}{l}
\dot{\omega}_{1} \\
\dot{\omega}_{2} \\
\dot{\omega}_{3}
\end{array}\right\}+\left[\begin{array}{ccc}
0 & \left(I_{3}-I_{2}\right) \Omega & 0 \\
\left(I_{1}-I_{3}\right) \Omega & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left\{\begin{array}{l}
\omega_{1} \\
\omega_{2} \\
\omega_{3}
\end{array}\right\}
$$

Then the perturbation equations for the components of $\underline{\omega}$ given in Eq. (78) take the form

$$
\begin{align*}
& L *\left(\lambda^{\prime} \omega_{10}\right)=\left[{ }^{\prime} f_{1}, \lambda^{\prime} f_{2}, \lambda^{\prime} f_{3}\right]^{T} \tag{79}\\
& L *\left[\left(\lambda^{\prime}\right)^{2} \omega_{17}\right]=\left[\left(\bar{I}_{2}-\bar{I}_{3}\right)\left(\lambda^{\prime} \omega_{20}\right)\left(\lambda^{\prime} \omega_{30}\right),\left(\bar{I}_{3}-\bar{I}_{1}\right)\left(\lambda^{\prime} \omega_{10}\right)\left(\lambda^{\prime} \omega_{30}\right),\right. \\
& \left.\left(\bar{I}_{1}-\bar{I}_{2}\right)\left(\lambda^{\prime} \omega_{10}\right)\left(\lambda^{\prime} \omega_{20}\right)\right]^{T} \tag{80}\\
& L *\left(\lambda^{\prime} \varepsilon_{1} \omega_{18}\right)=\frac{1}{\bar{I}_{1}}\left[\left(\lambda^{\prime} \varepsilon_{1} \Omega\left(\bar{I}_{3}-\bar{I}_{2}\right) \omega_{20}-\lambda^{\prime} \varepsilon_{1} f_{1}\right\},-\lambda^{\prime} \varepsilon_{1} \Omega \omega_{10} \bar{I}_{1}, 0\right]^{T} \tag{81}\\
& L^{*}\left(\lambda^{\prime} \varepsilon_{2} \omega_{19}\right)=\frac{1}{\bar{I}_{2}}\left[\lambda^{\prime} \varepsilon_{2} \bar{I}_{2} \Omega \omega_{20^{\prime}}-\lambda^{\prime} \varepsilon_{2}\left\{\left(\overline{\mathrm{I}}_{3}-\bar{I}_{1}\right) \Omega \omega_{10}+\mathrm{f}_{2}\right\}, 0\right\}^{T} \tag{82}\\
& L \star\left(\lambda^{\prime} \varepsilon_{3} \omega_{110}\right)=\left[-\Omega \varepsilon_{3} \lambda^{\prime} \omega_{20}, \Omega \varepsilon_{3} \lambda^{\prime} \omega_{10},-\varepsilon_{3} \lambda^{\prime} \dot{\omega}_{30}\right]^{T} \tag{83}\\
& L^{*}\left(\lambda^{\prime} \eta_{1} \omega_{111}\right)=-\left[\lambda^{\prime} \eta_{1} \dot{\omega}_{10}, \lambda_{\eta_{1}} \Omega_{10}, 0\right]^{T} \tag{84}\\
& L *\left(\lambda^{\prime} n_{2} \omega_{i 12}\right)=\left[\lambda^{\prime} n_{2} \Omega \omega_{20},-\lambda^{\prime} n_{2} \dot{\omega}_{20}, 0\right]^{T} \tag{85}\\
& L^{*}\left(\lambda^{\prime} \eta_{3} \omega_{113}\right)=\left[-\lambda^{\prime} n_{3} \Omega \omega_{20}, \lambda^{\prime} n_{3} \Omega \omega_{10},-\lambda^{\prime} \eta_{3} \dot{\omega}_{30}\right]^{T} \tag{86}
\end{align*}
$$

Equations (79-86) sse easily solved. In particular, assuming

$$
\begin{align*}
\bar{I}_{1} & =\bar{I}_{2}=\frac{1}{2} \bar{I}_{3} \tag{87}\\
\lambda^{\prime} f_{2} & =\lambda^{\prime} f_{3}=0 \tag{88}
\end{align*}
$$

the solutions to Eq. (79) and (80) are obtained as

$$
\begin{align*}
& \lambda^{\prime} \omega_{10}=\frac{1}{I_{1}} \delta_{0}^{t} \cos \Omega(t-\tau) \lambda^{\prime} f_{1}(\tau) d \tau \\
& \lambda^{\prime} \omega_{20}=-\frac{1}{\bar{I}_{1}} \int_{0}^{t} \sin \Omega(t-\tau) \lambda^{\prime} f_{1}(\tau) d \tau \tag{89}\\
& \omega_{30}=\omega_{17}=\omega_{27}=\omega_{37}=0
\end{align*}
$$

and hence

$$
\begin{equation*}
\omega_{310}=\omega_{313}=0 \tag{90}
\end{equation*}
$$

The perturbation solutions obtained so far from Eqs. (89,90) agree closely with the Fokker-Planck solutions given by Eq. (74). But the drawbacks of the perturbation scheme become apparent when Eqs. (81-83) are solved. Equations (81-83) predict a secular growth of the angular velocities even for the timeindependent sample apace inertia noises, ε_{i}. This is obviously not true from a physical standpoint. Thus, all perturbation equations involving ε_{i}, but not η_{1}, must be discarded and the parameters ε_{i} must be absorbed in \bar{I}_{i}. ${ }^{1}$ Equations (81-83), then, are discarded and ε_{1} are set equal to zero, so that Eq . (78) reduces to

$$
\begin{align*}
& \omega_{1}=\lambda^{\prime} \omega_{10}+\lambda^{\prime} \eta_{1} \omega_{111}+\lambda^{\prime} \eta_{2} \omega_{112}+\lambda^{\prime} \eta_{3} \omega_{113} \\
& \omega_{2}=\lambda^{\prime} \omega_{20}+\lambda^{\prime} \eta_{1} \omega_{211}+\lambda^{\prime} \eta_{2} \omega_{212}+\lambda^{\prime} \eta_{3} \omega_{213} \\
& \omega_{3}=\Omega+\lambda^{\prime} \eta_{3} \omega_{313} . \tag{90a}
\end{align*}
$$

Equation (90a) predicts that, if $\lambda^{\prime} f_{i}$ and η_{i} are independent, then the mean values of the amplitudes of ω_{1} and ω_{2} do not grow with time. It also states that the variances of the amplitudes are stable and oscillatory and that the amplitudes of oscillation of the variances are constants for all time. In other words, no growth rate of the variances of ω_{1} is predicted by Eq. (90a). Contrary to this prediction, it will be seen in analog simulations that the amplitudes do grow with time, even if $\lambda^{\prime} f_{i}$ and η_{i} are independent.

THE MOST-LIKELIHOOD APPROACH

The method of most-iikelihood estimates will now be applied to the system described by Eq. (1). As mentioned earlier, this method is based on maximizing the joint probability density of the random variables under the constraint that Eq. (1) holds. It can be shown that this method, when applied on even a linear equation, finally requires the solving of a nonlinear equation. For this reason, the nonlinear Eq. (1) needs to be linearized initially to make analytic manipulations possible.

The vell-known linearized form of Eq. (1) is given by

$$
\begin{align*}
& I_{1} \dot{\omega}_{1}=F_{1} \\
& I_{2} \dot{\omega}_{2}=F_{2} \\
& I_{3} \dot{\omega}_{3}=F_{3}
\end{align*}
$$

where

$$
\begin{align*}
& Y_{1}=\lambda^{\prime} f_{1}-\left(I_{3}-I_{2}\right) \Omega \omega_{2} \\
& F_{2}=\lambda^{\prime} f_{2}-\left(I_{1}-I_{3}\right) \Omega \omega_{1} \tag{92}\\
& F_{3}=\lambda^{\prime} f_{3}
\end{align*}
$$

Let \mathbf{v} be the vector defined by

$$
\begin{equation*}
\underline{v}=\left[\mu_{1}, \mu_{2}, \mu_{3}, \delta_{1}, \delta_{2}, \delta_{3}\right]^{T} \tag{93}
\end{equation*}
$$

Let the matrix elements $N_{i j}$ be defined by

$$
\begin{equation*}
E\left\{v_{i} v_{j}\right\}=N_{i j} \delta(t) \tag{94}
\end{equation*}
$$

Let the functional J be defined by

$$
\begin{equation*}
J=\underset{i, j, k}{\Sigma} \int_{0}^{T}\left\{v_{i}\left[N^{-1}\right]_{i j} v_{j}+2 B_{k}\left[I_{k} \dot{i}_{k}-F_{k}\right]\right\} d t \tag{95}
\end{equation*}
$$

where β_{j} are arbitrary time-dependent Lagrangian multipliers. It can be shown [10] that the most likelihood estimates of ω_{1} are obtained by minimizing the function:3l J in the interval $[0, T]$ with respect to the variables v_{i} and ω_{i}.

The variational equations for minimizing J are given by Eq. (91) and the following two equations:

$$
\begin{align*}
& \sum_{j}\left[N^{-1}\right]_{i j} v_{j}+\frac{\partial}{\partial v_{i}} \sum_{k} \beta_{k}\left(I_{k} \dot{\omega}_{k}-F_{k}\right)=0 \tag{96}\\
& \frac{d}{d t}\left[I_{k} \beta_{k}\right]+\sum_{j} \beta_{j} \frac{\partial F_{j}}{\partial \omega_{k}}=0 \tag{97}
\end{align*}
$$

The terminal point condition on B is given by

$$
\begin{equation*}
\beta_{1}(T)=0 . \tag{98}
\end{equation*}
$$

Assuming that

$$
\begin{equation*}
N_{13}=N_{23}=N_{31}=N_{32}=0 \tag{99}
\end{equation*}
$$

and

$$
\begin{align*}
& N_{4 j}=N_{j 4}=0 \text { if } j \neq 4 \\
& N_{5 j}=N_{j 5}=0 \text { if } j \neq 5 \tag{100}\\
& N_{6 j}=N_{j 6}=0 \text { if } j \neq 6
\end{align*}
$$

Equation (96) can be opened up to read

$$
\begin{align*}
& \mu_{1}=N_{11}\left[\beta_{1} \dot{\omega}_{1}+\Omega \omega_{1} \beta_{2}\right]+N_{12}\left[\beta_{2} \dot{\omega}_{2}-\Omega \beta_{1} \omega_{2}\right] \\
& \mu_{2}=N_{12}\left[\beta_{1} \dot{\omega}_{1}+\Omega \omega_{1} \beta_{2}\right]+N_{22}\left[\beta_{2} \dot{\omega}_{2}-\Omega \beta_{1} \omega_{2}\right] \\
& \mu_{3}=N_{33}\left[\beta_{3} \dot{\omega}_{3}+\Omega\left(\beta_{1} \omega_{2}-\omega_{1} \beta_{2}\right)\right] \tag{101}\\
& \delta_{1}=-N_{44} \beta_{1}
\end{align*}
$$

$$
\begin{aligned}
& \delta_{2}=-N_{55} B_{2} \\
& \delta_{3}=-N_{66} B_{3}
\end{aligned}
$$

Using Eqs. (92) and (101), Eqs. (91) and (97) can now be reduced to the following forms:

$$
\begin{align*}
{\left[\bar{I}_{1}\right.} & \left.+N_{11}\left(\beta_{1} \dot{\omega}_{1}+\Omega \omega_{1} \beta_{2}\right)+N_{12}\left(\beta_{2} \omega_{2}-\Omega \beta_{1} \omega_{2}\right)\right] \omega_{1}+\Omega\left[\bar{I}_{3}-\bar{I}_{2}\right. \\
& +N_{33}\left\{\beta_{3} \dot{\omega}_{3}+\Omega\left(\beta_{1} \omega_{2}-\omega_{1} \beta_{2}\right)\right\}-N_{12}\left(\beta_{1} \dot{\omega}_{1}+\Omega_{1} \beta_{2}\right) \\
& \left.-N_{22}\left(\beta_{2} \dot{\omega}_{2}-\Omega \beta_{1} \omega_{2}\right)\right] \omega_{2}-\bar{\lambda}^{\prime} \bar{f}_{1}+N_{44} \beta_{1}=0 \tag{102}\\
{\left[\bar{I}_{2}\right.} & +N_{12}\left(\beta_{1} \dot{\omega}_{1}+\Omega \omega_{1} \beta_{2}\right)+N_{22}\left(\beta_{2} \dot{\omega}_{2}-\Omega \beta_{1} \omega_{2}\right) \dot{\omega}_{2}+\Omega\left[\bar{I}_{1}-\bar{I}_{3}\right. \\
& -N_{11}\left(\beta_{1} \dot{\omega}_{1}+\Omega \omega_{1} \beta_{2}\right)+N_{12}\left(\beta_{2} \omega_{2}-\Omega \beta_{1} \omega_{2}\right)-N_{33}\left\{\beta_{3} \dot{\omega}_{3}\right. \\
& \left.\left.+\Omega\left(\beta_{1} \omega_{2}-\omega_{1} \beta_{2}\right)\right\}\right] \omega_{2}-\bar{\lambda}^{\prime} \bar{f}_{2}+N_{55} \beta_{2}=0 \tag{103}\\
{\left[\bar{I}_{3}\right.} & \left.+N_{33}\left\{\beta_{3} \dot{\omega}_{3}+\Omega\left(\beta_{1} \omega_{2}-\omega_{1} \beta_{2}\right)\right\}\right] \omega_{3}-\bar{\lambda}^{\prime} \bar{f}_{3}+N_{66} \beta_{3}=0 \tag{104}\\
{\left[\bar{I}_{1}\right.} & \left.+N_{11}\left(\beta_{1} \omega_{1}+\Omega \omega_{1} \beta_{2}\right)+N_{12}\left(\beta_{2} \dot{\omega}_{2}-\Omega \beta_{1} \omega_{2}\right)\right] \dot{\beta}_{1}-\Omega\left[\bar{I}_{1}-\bar{I}_{3}\right. \\
& +N_{11}\left(\beta_{1} \dot{\omega}_{1}+\Omega \omega_{1} \beta_{2}\right)+N_{12}\left(\beta_{2} \dot{\omega}_{2}-\Omega \beta_{1} \omega_{2}\right)-N_{33}\left(\beta_{3} \dot{\omega}_{3}\right. \\
& \left.\left.+\Omega\left(\beta_{1} \omega_{2}-\omega_{1} \beta_{2}\right)\right\}\right] \beta_{2}=0 \tag{105}\\
{\left[\bar{I}_{2}\right.} & +N_{12}\left(\beta_{1} \dot{\omega}_{1}+\Omega \omega_{1} \beta_{2}\right)+N_{22}\left(\beta_{2} \dot{\omega}_{2}-\Omega \beta_{1}^{\left.\left.\omega_{2}\right)\right] \dot{\beta}_{2}-\Omega\left[\bar{I}_{3}-\bar{I}_{2}\right.}\right. \\
& +N_{33}\left\{\beta_{3} \dot{\omega}_{3}+\Omega\left(\beta_{1} \omega_{2}-\omega_{1} \beta_{2}\right)\right\}-N_{12}\left(\beta_{1} \dot{\omega}_{1}+\Omega \omega_{1} \beta_{2}\right)
\end{align*}
$$

Equations (102-107), together with the initial conditions on ω_{i} and the end conditions on B_{i} given by Eq. (98), form the final two-point bJundary value problem coverning the stochastic motion of the satellite. To solve this problem, a perturbation sequence for β_{i} and ω_{i} has to be adopted.

Let it be assumed that E is a small parameter and the numbers $\mathrm{N}_{1 \mathrm{j}}$ are of the order of ε or less. Let $N_{1}, 1=1-7$, be defined as

$$
\begin{aligned}
& N_{11}=\varepsilon N_{1} \\
& N_{12}=\varepsilon N_{2}
\end{aligned}
$$

$$
\begin{align*}
& N_{22}=\varepsilon N_{3} \\
& N_{33}=\varepsilon N_{4} \tag{108}\\
& N_{44}=\varepsilon N_{5} \\
& N_{55}=\varepsilon N_{6} \\
& N_{66}=\varepsilon N_{7}
\end{align*}
$$

where

$$
\begin{equation*}
\varepsilon=\operatorname{Max}_{i, j}\left|N_{i j}\right| \tag{108a}
\end{equation*}
$$

Let the variables ω_{i} and β_{i} be assumed in the form

$$
\begin{align*}
& \omega_{1}=\omega_{10}+\varepsilon \omega_{11}+\varepsilon \varepsilon^{2} \omega_{12}+\ldots \\
& \beta_{1}=\beta_{10}+\varepsilon \beta_{11}+\varepsilon^{2} \beta_{12}+\ldots \tag{109}
\end{align*}
$$

such that

$$
\begin{equation*}
\beta_{i j}(T)=0 \tag{110}
\end{equation*}
$$

Substituting Eqs. (108) and (109) In Eqs. (102-107) and separating the coefficients of $\varepsilon^{0}, \varepsilon^{1}, \varepsilon^{2}$, etc., it can be seen that the zeroth order response is given by

$$
\begin{align*}
& B_{10}=0 \tag{111}\\
& \bar{I}_{1} \omega_{10}+\left(\bar{I}_{3}-\bar{I}_{2}\right) \Omega \omega_{20}=\bar{\lambda}^{\prime} \bar{f}_{1} \\
& \bar{I}_{2} \dot{\omega}_{20}-\left(\bar{I}_{3}-I_{1}\right) \Omega \omega_{10}=\bar{\lambda}^{\prime} \cdot \bar{f}_{2} \tag{112}\\
& \bar{I}_{3} \dot{\omega}_{30}=\bar{\lambda}^{\prime} \bar{f}_{3}
\end{align*}
$$

After some involved algebra and the use of Eq. (110), it can be seen that the predicted response from the higher order perturbation equations has essentially the same characteristics as that obtained by the straight forward perturbation scheme explained in the preceding section. Thus, the method of the most likelihood estimates suffers from the same drawacks as those of the perturbation thod.

THE METHOD OF STOCHASTIC EIGENVALUES

According to this method, the determiniatic solutions of Eq. (1) are to be obtained first. Stochasticity is then iaposed on these solutions to eati-
mate the behavior of the syster which was randoe from the beginning. Although this method is not exact, it is much simpler than the methods previously discuseed.

For example, the approximate deterministic response of a three-axes atabilized satellite is given by

$$
\begin{equation*}
\omega_{i}=\int_{0}^{t} \frac{\lambda^{\prime} f_{i}}{I_{i}} d t \quad i=1,2,3 \tag{113}
\end{equation*}
$$

Hence, assuaning $\bar{\lambda} \cdot \bar{f}_{i}$ to be a constant, the mean values and the variances of ω_{i}
are given by [16]

$$
\begin{align*}
& E\left(\omega_{1}\right\}=\frac{\bar{\lambda}^{\prime} \bar{f}_{1}}{\bar{I}_{1}} t \tag{114}\\
& E\left\{\omega_{i}^{2}\right\}=\left(\sigma_{i}\right)^{2} t^{2} \tag{115}
\end{align*}
$$

where

$$
\begin{align*}
& \sigma_{1}^{2}=\frac{1}{\bar{I}_{1}^{2}}\left[\frac{\left(\bar{\lambda}^{\prime} \bar{f}_{1}\right)^{2} M_{11}+\bar{I}_{1}^{2} M_{44}}{\bar{I}_{1}^{\prime}+M_{11}}\right] \\
& \sigma_{2}^{2}=\frac{1}{\bar{I}_{2}^{2}}\left[\frac{\left(\lambda^{\prime} f_{2}\right)^{2} M_{22}+\bar{I}_{2}^{2} M_{55}}{\bar{I}_{2}^{2}+M_{22}}\right] \tag{116}\\
& \sigma_{3}^{2}=\frac{1}{\bar{I}_{3}^{2}}\left[\frac{\left(\lambda^{\prime} \bar{f}_{3}\right)^{2} M_{33}+\bar{I}_{3}^{2} M_{66}}{\bar{I}_{3}^{2}+M_{33}}\right]
\end{align*}
$$

In deriving Eq. (116), it was assumed that μ_{i} and δ_{i} are Gausian randomariables. For the case of a apinaing satelifte with $\overline{\mathrm{I}}_{1}=\overline{\mathrm{I}}_{2}=\frac{1}{2} \overline{\mathrm{I}}_{3}, \bar{\lambda}^{+} \overline{\mathrm{f}}_{3}=0$, and constant values of $\bar{\lambda} \cdot \overline{\mathcal{F}}_{1}$ and $\bar{\lambda}^{\prime} \bar{f}_{2}$, the deterministic amplitudes and frequency of oucillation of ω_{1} and ω_{2} are given by

$$
\begin{align*}
& \text { Freq. }\left[\omega_{1}\right]=\text { Preq. }\left[\omega_{2}\right]=\omega_{3} \\
& \text { Aqp. }\left[\omega_{1}\right]=\frac{\lambda^{\prime} f_{2}}{\overline{\bar{I}}_{2} \omega_{3}}=\frac{\lambda^{\prime} f_{2}}{\overline{\bar{I}_{2} \Omega}} \tag{117}\\
& \text { Anp. }\left[\omega_{2}\right]=\frac{\lambda^{\prime} f_{1}}{\bar{I}_{1} \omega_{3}}=\frac{\lambda^{\prime} f_{1}}{\bar{I}_{1} \Omega}
\end{align*}
$$

when $\omega_{1}(0)=\omega_{2}(0)=0$.
Hence, the growth rates of the aplitudes and frequency are described by the variancea, which are

$$
\begin{align*}
& \left.\operatorname{E}\left\{\left[\text { Preq. }\left[\omega_{1}\right]\right]^{2}\right\}=\operatorname{E}\left\{\text { Preq. }\left[\omega_{2}\right]\right]^{2}\right\}=\left(\sigma_{3}\right)^{2} t^{2} \tag{118}\\
& E\left\{\left[\text { Amp. }\left[\omega_{1}\right]\right]^{2}\right\}=\frac{1}{\bar{I}_{2}^{2} \Omega^{2}}\left[\frac{\left(\bar{\lambda}^{\prime} \overline{\mathrm{I}}_{2}\right)^{2} \sigma_{3}^{2} t^{2}+\Omega^{2} \mathrm{M}_{55}}{\Omega^{2}+\sigma_{3}^{2} t^{2}}\right] \tag{119}\\
& E\left\{\left[\text { Amp } \cdot\left[\omega_{2}\right]\right]^{2}\right\}=\frac{1}{\bar{I}_{1}^{2} \Omega^{2}}\left[\frac{\left(\bar{\lambda}^{\prime} \bar{f}_{1}\right)^{2} \sigma_{3}^{2} t^{2}+\Omega^{2} A_{44}}{\Omega^{2}+\sigma_{3}^{2} t^{2}}\right]
\end{align*}
$$

From Eqs. (114) and (115), it is seen that the approximate predictiona for the responses of three-axes stabilized satellites are quite satisfactory. Equation (118) approximately predicts the frequency growth phenomenon. Equation (119) predicts that, when t is small, such that $\sigma_{3} t$ is anall compared to Ω, the variances are of the form

$$
\begin{equation*}
E\left(\left[A \operatorname{mp} \cdot\left[\omega_{1}\right]\right]^{2}\right\}=\frac{1}{\overline{\mathrm{I}}_{2}^{2} \Omega^{2}}\left[\frac{\left(\lambda^{\prime} f_{2}\right)^{2} \sigma_{3}^{2} t^{2}}{\Omega^{2}}+M_{55}\right] \tag{120}
\end{equation*}
$$

But for large values of t, the variances will reach a constant value. This is given by

$$
\begin{equation*}
\mathrm{E}\left\{\left[\text { Amp. }\left[\omega_{1}\right]\right]^{2}\right\}=\left(\frac{\bar{\lambda}^{\prime} \bar{f}_{2}}{\left.\bar{I}_{2}\right)^{2}}\right. \text {. } \tag{121}
\end{equation*}
$$

The prediction of an initially growing variance finally levelling off to a constant value is sacisfactory and is corroborated by analog simulations. The only protlen with Eqs. (120) and (121) is that these equations predict a lower growth rate and a lower value of the asyaptotic variance ae Ω becomes large. In this respect, Eqs. (120) and (121) differ from the Fokker-Planck formulation and the analog simulations which give higher growth rates and higher values of the asymptotic variance for larger values of Ω.

ANALOG SIMULATION

The results of simulation of the satelilte response, asiven by Eq. (1), can now be presented. The simplified system block diagran is shown in Figure 1. This aystem was programed on an AD-256 (Analytical Dynamice-256) analog computer. The white noise inputs μ_{1} and δ_{1}, $1=1-3$, were obtained froma coupled SDS-930 (Scientific Date Syteas-930) real time digital computer. A high frequency 0 (Repetitive Operation) clock circuit from the AD-256 was used to trigger aseudo-random number generating progran in the SDS-930. Sam-
ples of twenty such pseudo-randow nubbers were used to form a Gassian white noise sequence with a zero mean value and suitable peak values. Six auch independent noise gequences were continuously generated in the 3n5-930 and fed to the AD- 256 through six DAC (Digital to Analog Converter) lines. One teat line vas also used to interrupt the SDS-930 and change the peak values of the noise sequences. A sample of the noise sequences $\mu_{1}, 1=1-3$, is shown in Figure 2 at high brush recorder speed. At any inftant of time, the frequencies of generation and the peak values and, hence, the bandwidth of all μ_{1} and δ_{i} $1=1-3$, were maintained equal. Thus, $\delta_{i}, 1=1-3$, are siailar in nature to that ehow in Figure 2, although all six noise sequences were independent of each other.

Let r be the ratio defined by

$$
\begin{equation*}
r=\left[\text { Peak value of } \mu_{1} \text { and } \delta_{1}, i=1-3\right] / \bar{I}_{3} \tag{122}
\end{equation*}
$$

where \bar{I}_{3} is the nominal monent of inertia about the spin-axis. Brush records of the Bimulated angular velocities ω_{1}, ω_{2}, and ω_{3}, for different values of r and Ω, are shom in Figures 3-15. The values of r and Ω, corresponding to each of these figures, are tabulated in Table 1. In all cases the initial values of ω_{1} and ω_{2} were taken to be zero.

Table 1: Index to the attached figures showing samples of the stochastic satellite responses.

Values of r Values of Ω, rad./sec.	$=-\frac{1}{12}=0.083$	$x=\frac{1}{6}=0.166$	$x-\frac{1}{4}=0.25$
	Pigure Nos.	Figure No.	Pigure Nos.
Fast spinner: $\Omega=1.0$	3,4	5	6.7
Slow spinner: $\Omega=0.5$	8	9	10,11
$\begin{gathered} \text { Three-axea atabilized: } \\ \Omega=0.0 \end{gathered}$	12	13	14,15

EVALUATIONS AND COMPARISON
The results of the anslog simulation will now be evaluated and compared with the predictions of the analytical methods discussed earifer.

The first important result of the aimulation study is that, in every case, the responses grow with time. The growth phenomenon is predicted by all four of the andytic methods only for the case of a three-axes atablifed satellite. This was true because, if Ω - 0 , Eq. (1) leads to a perturbed equation given by

$$
\begin{equation*}
I_{i} \dot{\omega}_{i}=\lambda^{\prime} f_{i} ; 1=1,2,3 \tag{123}
\end{equation*}
$$

Responsea given by the zclutions of Eq. (123) are the integrals of $\lambda^{\prime} f$ and, hence, mast grow linearly with time, even if $\mathrm{X}^{\prime} \mathrm{F}_{1}$ are equal to zero. But, in the case of spinning satellites, only the Fokker-Planck formulation predicte an initial exponential growth. The perturbation aethod and the mostlikelihood approach predict a constant variance. The atochastic eigenvalue method also predicts a linear growth rate which, however, is inversely proportional to Ω^{2}. Looking at Figures 4,8 , and 12, or at Figures 5, 9 , and 13, or at Figures 7, 11 and 15 , it is seen that the variances increase with Ω. Thus, at this point, the Fokker-Planck formalation is apparently the best of the theories under consideration.

A second interesting result, discernible from Figures 3, 7 and 11, 1s that, with time, the response amplitudes reach a stable value. Such stable values are predicted directly by the stochastic eigenvalue method. The perturbation method and the most-likelihood approach also yield the same result if it is assumed that these methods are valid only for the asyaptotic case. It is to be noted that the Fokker-Planck formulation can also be made to yield this result, although not as directly as the other methods. To do this, let the solutions of \hat{M}_{200} and \hat{M}_{020} as given by Eq. (74) be considered:

$$
\begin{align*}
& \hat{M}_{200}=C+\exp \left[\frac{1}{2} a_{10^{\prime}} \Omega^{2} t\right]\left\{D_{1} \cos 2 \Omega t+D_{2} \sin 2 \Omega t\right\}+G_{1}(t) \\
& \hat{M}_{020}=C-\exp \left[\frac{1}{2} a_{10} \Omega^{2} t\right]\left\{D_{1} \cos 2 \Omega t+D_{2} \sin 2 \Omega t\right\}+G_{2}(t) \tag{124}
\end{align*}
$$

The exponential terms in $\hat{\mathrm{M}}_{200}$ and $\hat{\mathrm{M}}_{020}$ appear with opposite signs.
According to Eq. (124), one of the variances must grow and the other decay with time. Thus after a certain time, one of these variances will tend to be negative. But variances are by definition non-negative quantities. Hence, D_{1} and D_{2} are to be taken as non-zero until one of the variances first becomes zero. D_{1} and D_{2} should then be set equal to zero in order not to have negative values of $\hat{\mathrm{M}}_{200}$ and $\hat{\mathrm{M}}_{020^{\circ}}$. This procedure yields the prediction that the response amplitudes become stable after a certain time, which is in agreement with the simulation results.

The last obvious result obtained from the mimulation is that, for aiven value of Ω, the variances and the growth rates increase with r. This is expected, both intuitively and rationally, and all four theories predict it.

A comparison can now be made of the theoretical methods, based on purely analytical grounds. The strength of the Fokker-Planck method lies in the fact that it does not require either uncoupling or linearization of coupled nonInear systems such as that of Eq. (1). The atatistical moment of all orders are obtained directly as the solution of a coupled linear set of equations. Hence, digital computer methods can be used easily to solve auch equations. The other three methods are based on initial linarization and poseible uncoupling. This linearization results in a loss of useful statistical information.

There are, however, some disadvantages of the Fokker-Planck method. The prieary disadvantage is that all statistical moments are coupled. Hence, when the number of dependent variablea is large, the reaulting set of equations is more so, even if the third and higher order moments are neglected. This method then requires some foreknowledge of the higher order moments and the statistical form of the input random functions.

In view of the above discussion, the following conclusions can be made:
i) The Fokker-Planck formulation yields the most complete inforation on the reaponsea of atellite with random disturbing torques and stechastic acments of inertia.

1i) For satellite with very saall inertia noises, the apinning configuration is better than a three-axes stabilized configuration. The reverse is also the case.
iii) In all cases, the responses have an initial fast rate of growth. But after some time, this growth rate falls off, leading to a constant variance level depending on the variances of the input disturbing torque and on the mean moments of inertia of the satellite.

ACKNONLEDGENENTS

This investigation has been partially supported by NASA Contract No, NAS521798 through the Space Science and Engineering Center, Kadison, Wisconsin.

REFRREACES

1. Saaty, T. L., Modern Monlinear Equationg, McGraw-Hill Book Company, 1967, Chapter 8.
2. Wonhan, H. M., in Probabilietic Methods in Applied Matheantics, edited by A. T. Bharucha-Reid, Academic Press, 1970, Vol. II.
3. Caughey, T. K. and J. K. Dienes, "The Behaviour of Linear Systens fith Random Parametric Excitation," J. Math. and Phye., Vol. 41, Pp. 300318, 1962.
4. Kozin, F. and J. L. Bogdanoff, "A Conment on 'The Beheviour of Liuear Systess with Randon Parametric Excitation'," J. Math. and Phys., Vol. 42, PP. 336-337, 1963.
5. Leibowitz, M. A., "Statistical Behaviour of Linear Syetens with Randomly Varying Parmeters," J. Math. Phys., Vol. 4. Pp. 852-858, 1963.
6. Mckenne, J. and J. A. Morrison, "Moments of Solutions of a Claes of Stochastic Differential Equations," J. Math. Phys., Vol. 12, Pp. 21íh-2136, 1971.
7. Morrison, J. A., "Moments and Correletion Punctions of Solutions of Sole Stochatic Matrix Differential Equations," 3. Mach. Phys., Vol. 13, pp. 299-306. 1972.
8. Samuele, J. C. and A. C. Eringen, "On Stochastic Linear Systeng," J. Math. and Phys., Vol. 38, Pp. 83-103, 1959.
9. Boyce, W. E., In Probablliatic Methods in Applied Mathematice, edited by A. T. Bharuchu-Reid, Academic Prees, 1968, Vol. I.
10. Saty, T. L. and J. Bran, Nonlinear Mathentics, McGraw-Hill Book Cowpany, 1964, pp. 358-360.
11. Hasselean, T. K. and G. C. Hart, "Modal Analysis of Random Structural Systems," Jnl. of the Eng. Mech. Div., ASCE, Vol. 98, No. EM3, Proc. Paper 8958, Pp. 561-579, June 1972.
12. Hart, G. C., "Eigenvalue Uncertainty in Stressed Structures," Jnl. of the Eng. Mech. Div., ASCE, Vol. 99. No. EM3, Proc. Paper 1780, Pp. 481494, June 1973.
13. Bartlett, M. S., Stochastic Processes, Cambidge Univeraity Prese, London, 1962.
14. Kozin, F. and C.-M. Wu, "On the Stability of Linear Stochestic Differential Equations," Jnl. of App. Mech., ASME, March 1973, Pp. 87-92.
15. Caughey, T. K. and A. H. Gray Jr., "On the Almont-Sure Stability of Linear Dynamic System with Stochastic Coefficients." Jnl. of App. Mech., ASTE, June 1965, Pp. 365-372.
16. Haugen, E. B. Probabilistic Approaches to Desipn, John Wiley, 1968.
\qquad
\qquad

FIGURE 1. SIMULATION BLOCK DIAGRAM.

STABILITY AMD COHTHOL OP FLEXIES SATMLITES

PAT I - ETABILITY
T. C. Hung and Aairudche Den

Abstract

Anstacr This iavectigation has two dietinct parte. In this first part the eavironental and control torquas expericaced by a atelilte are asouned to be random $s 0$ to eccount for the itherent errora in the control aysteme and the lack of eract edels of the environmental torquet. It ha been chown that under this asemption the required atability criteria of antellite is quite differant froe that obtalned by a deterninistic approach. It has also been shown that a flexible three-ame atabilized satellite can be made almot certainly aympotically stable, vaile the sate is not true for alexible epinaing satellite.

honmelatuee

A*	- Conpoite body of a flexible satellite.
$\left[A_{1}\right], 1=1-5$	- Matrices asociated vith the equation of motion of the flexible lemente; Eqe. (3). (49), (53) - (57).
$\left[A_{1}^{\prime}\right], 1=1-5$	- Matricee siadlar to [A A_{1}; Eq. (44).
a	- Redice of the cylindrical rigid core of the manmed satellite configuration; Fig. 2.
*	- Morellaing factor of the joint probability density; Eq. (17).
B*	- Additional composite body for a flexdble dual-apin satelite.
$\left[B_{1}\right],\left[B_{2}\right]$	- Motrices msociated with combined equations of motion of the satellite; Eqe. (5) - (7).
b_{1}, b_{3}	- Elemente of $\underline{r}_{\mathrm{d} 1}$ " $\underline{r}_{\mathrm{d} 3}$; Eq. (38).
[C]	- Stochatic ayetem mat xix ; Eqa. (21) , (27).
$c_{1}, 1=1-10$	- Coefficients of the characteriatic Eq. (71) : Eqs. (74) - (77), (80). (85), (86).
$e_{1}, 1=1-4$	- Elemente of $\mathrm{E}_{\text {d1 }}, 1=1-4$: Eq. (38).
$\underline{\text { (}}$ ($)^{\text {(}}$	- Deterdaistic forcing function; Zqs. (5), (10).
$\mathrm{f}_{2} \mathrm{f}_{4}$	
事(t)	- Deternialetic environment corque vector on the satellite: Eqs. (4). (45), (50).

[G]	26).
${ }_{15}$	- Elementa of coefficient matrix defined by Eq. (63).
$\underline{h}[\underline{x}(t)]$	- Deterministic observed function of $\underline{x}(t)$; Eq. (13) .
(I)	- Identity matrix.
[1]	- Moment of inertia matrix of the nowinal configuration of the satelifte.
I_{x}, I_{y}, I_{z}	- Diagonal elements of [i]; Eq. (52).
J	- The goint probability density of $(\underline{z}-\overline{\underline{z}}),(\underline{\underline{-}} \overline{\underline{\underline{u}}}),(\underline{f}-\overline{\mathbf{q}})$ and [$x(0)-\underline{x}(0)]$. Eq. (17).
J*	- Functional defined by Eq. (17a).
j**	- Functional defined by Eq. (18).
$i_{1}, 1=1-4$	- Lengthe of flexible berme of the artellite.
$\left[\mathrm{N}_{1}\right], 1=1-4$	- Submatrices of [$\left.\mathrm{B}_{1}\right]^{-1}$; EqI. (28), (29).
[0]	- Null matrix.
$\left[P_{0}\right]$	
$\left[P_{1}\right], 1=1-5$	Katricas asociated with the angular momentua equationa of the flexdble atellite; Eqs. (4), (50).
$\left[P_{1}^{\prime}\right], 1=1-5$	
p_{i}	- Eigenvalum of $\left[-\mathrm{B}_{1}^{-1} \mathrm{~B}_{2}\right]$.
$P_{1}{ }_{1}$ 1-1-4	- Exponente of the menued besm dieplscement function; Eq. (42).
(Q)	- Covariance matrix of $\left[\underline{\underline{u}}(\mathrm{t})-\underline{\mathrm{I}}(\mathrm{t}) \mathrm{l}\right.$; $\mathrm{E}_{\mathbf{i}}$. (15).
$Q_{i j}, 1, j=1-6$	```- Elemente of the characteristic antrix of Eqa. (49). (50): Eqs. (70), (71).```
s	- Generalized position vector of the fiexible clemente of the satellite; Eqs. (3), (4), (49), (50).
s^{\prime}	- Vector, simlar to g; Equ. (46). (45).
$s+81^{1} 1=1-4$	- Time dependent part of $y_{\text {bi }}$; Eq. (42).
(1)	
$\underline{\square}$	- Dieplacement vector of the center of mags of the flexible eotellite from its noulnal position; E4. (63).

$T_{\text {bij }}$	- Eem displacemat mode paranetere EqE. (46). (47).
${ }^{\boldsymbol{T}}$ + ${ }_{\text {d }}$	- 8pring-men-dayer dieplacement mode parameters; Eq. (48).
®	- Moninal angular velocity vector of the matellita.
$\underline{\underline{\omega}}$	- Perturbed angular velocity vector; Eq. (i).
$\underline{\omega t}^{*}$	- Angular velocity vector of the satellite.
	- Angular velocity vector of An.
$\stackrel{4}{*}$	- Angular velocity vector of $\mathrm{D}^{\text {a }}$.
OPERATORS	
(${ }^{(1)}$	$\text { - Tize derivative; } \frac{d}{d t} \text {. }$
[]T	- Trenspose.
(i)	- Vector croas product operator; Eq. (69).
(i)	= Mean value.
(1)	- Vector.
Det. []	- Deterninant of the satrix.
E[]	- Statistical expectation.
Tr. []	- Trace of the matrix.

DTTPDDUCTIOM

The primery requirement of an artificial satellite is that it should be capable of precise orientation in space. This capobility is deterinaed atioly by the stability and controllability of the sacellite shen vieved as a dyamic syatem. A large nuber of inventigation have been made in the area of flexdble satellite dynanics. But eeveral intereating questiona on the atiblity and controllability of flexible satellites have not been exained in oufficient defail. The present atudy looke at two of these queations:
(a) What are the atability criteria of flexible atellites in the preaence of errore in the controlling torques and largely urknown environmental corques?
(b) For a given control syeten, and for a gen nuber of torquing jets, is it possible to increase the controllability of flexible eatellite by monitoring the deflections of the flexible elemente?

In the first part of chis atudy it will be shown that, in the presence of randon errors in the exteral torques on a flexible eatellice, the stability criteria are far wore restrictive than thoee deduced fron a deternaistic
approach. The aecond part of this study will present reasons for an affirmative answer to question (b).

As mentioned earlier, deterministic eriteria for the at ability of flexible satellites have been studied extensively [1-4]. It must be noted that, to account for errors in the external torques acting on the satellite, these torques and the dynamic ate variables of the satellite model must be treated as stochastic variables. Several studies [5-7] on the state identification problem have been done. These studies generally assumed Gausian distributions and used Kalman filtering techniques. Using methods sjodlar to that given in Ref. [8], equations of motion and the stochsstic angular velocity response of flexdble satellites have been computed in Refs. [9, Ijj. But the protiem of comp:ing the stability characteristics of various satellite configurations subjectad to random excitations has not been investigated.

DETERAINISTLC EQUATIONS OF MOTION

Formal deterministic equations of motion of a flexdble satellite can be established. The stochastic stability boundaries can be determined only when these equations are avallable.

Le: $\boldsymbol{w}^{*}(\mathrm{t})$ be the angular velocity vector of a flexdble satellite. For a single body satellite, $\omega^{*}(t)$ is a (3xi) vector. For a dual-spin satellite with two main composite bodies (A^{*} and B^{*}), $\underline{\omega}^{*}(t)$ is usually taken as

$$
\begin{equation*}
\underline{\omega}^{*}(t)=\left[\underline{\omega}_{A}^{*}(t), \underline{\omega}_{B}^{*}(t), \dot{\theta}(t)\right]^{T} \tag{1}
\end{equation*}
$$

In the above equation, $\underline{\omega}_{A}^{*}$ and ${\underset{-1}{*}}_{*}$ are the ($3 x 1$) angular velocity vectors of the composite bodies A^{\star} and B^{*}; while $\dot{\theta}$ is the (3×1) relative angular velocity veccor of the body A^{*} with respect to B^{*}. Let $\underline{\Omega}$ be the constant vector of the nominal values of $\underline{\omega}^{(}(t)$, such that the perturbing angular velocity vector $\underset{(}{ }(t)$ 18 defined by

$$
\begin{equation*}
\underline{\omega}(t)=\underline{\omega}^{\star}(t)-\underline{\Omega} \tag{2}
\end{equation*}
$$

Let the motions of the flexible elements of the satellite be represented by the generalized ($n \times 1$) position vector $g(t)$. With these definitions, the equations of motion of the flexdble elements can be expressed in the following form:

$$
\begin{align*}
{\left[A_{1}\right] \ddot{\underline{q}}(t) } & +\left[\Lambda_{2}(\underline{\omega}, \dot{\omega}, \underline{\Omega}, t)\right] \underline{\dot{q}}(t)+\left[A_{3}(\underline{\omega}, \underline{\omega}, \underline{\Omega}, t)\right] \underline{g}(t) \\
& =\left[\Lambda_{4}\right] \underline{\underline{\omega}}(t)+\left[A_{5}(\underline{\omega}, \underline{\Omega}, t)\right] \underline{\omega}(t) \tag{3}
\end{align*}
$$

Similarly, the equations for the conservation of angular momentum of the composite bodies of the satellite can be shown to be of the form:

$$
\begin{align*}
{\left[P_{1} \ddot{\underline{q}}(t)\right.} & +\left[P_{2}(\underline{\omega}, \underline{\underline{\omega}}, \underline{\Omega}, t)\right] \dot{\underline{g}}(t)+\left[P_{3}(\underline{\omega}, \dot{\omega}, \underline{\Omega}, t) \dot{j}(t)\right. \\
& =\left[P_{4}\right] \dot{\underline{\omega}}(t)+\left[P_{5}(\underline{\omega}, \underline{\Omega}, t)\right] \underline{\underline{\omega}}(t)+\underline{u}^{*}(t)+\underline{\underline{f}}(t) \tag{4}
\end{align*}
$$

where $\underline{u}^{*}(t)$ and $\underline{f}^{*}(t)$ are the controlling and onvironental torqua vectors, reepectively.

Datailed methoda of developing Bqs. (3,4) are given in Refa. [1-4] and especially in Refs. [11,12]. Eqs. $(3,4)$ provide the complete set of equations of motion of the flexible satellite. Equation (3) contain ' n ' ecalar equetions, such that the errices [A,], [A, and [A, are equare. Equation (4) 0 : tain elther three or nine equation dipending on whether the eatellite is of a single body or a dunl-apin type.

Equations $(3,4)$ can be combined in the form

$$
\begin{equation*}
\left[B_{1}\right] \dot{x}+\left[B_{2}\right] \underline{x}=\underline{u}(t)+\underline{f}(t) \tag{5}
\end{equation*}
$$

where, defining [I] to be the identity matrix,

$$
\begin{align*}
& {\left[B_{1}\right]=\left[\begin{array}{ccc}
P_{4} & -P_{1} & 0 \\
A_{4} & -A_{1} & 0 \\
0 & 0 & I
\end{array}\right]} \tag{6}\\
& {\left[B_{2}\right]=\left[\begin{array}{ccc}
P_{5} & -P_{2} & -P_{3} \\
A_{5} & -A_{2} & -A_{3} \\
0 & -I & 0
\end{array}\right]} \tag{7}\\
& \underline{x}(t)=[\underline{\omega}(t), \underline{E}(t), \underline{g}(t)]^{T} \tag{8}\\
& \underline{u}(t)=[\underline{u} *(t), \underline{0}, \underline{0}]^{T} \tag{9}\\
& \underline{f}(t)=[\underline{f} *(t), \underline{0}, \underline{0}]^{T} \tag{10}
\end{align*}
$$

and

$$
\begin{equation*}
g(t)=\dot{g}(t) \tag{11}
\end{equation*}
$$

Equation (5) is the required differential equation describing the deterninistic motion of a flexdble satellite.

STOCHASTIC EQUATIONS OF MOTION

The stochastic equation of motion of the flexdble satellite will now be obtained following the method shown in lefe. $[8,9]$.

Let it be asumed that the initial values, $\underline{x}(0)$, have Gavaian distribu tion vith a kown mean value, $E(0)$, and a knorn covariance merix, [$\left.\mathcal{P}_{0}\right]$, given by

$$
\begin{equation*}
\left[P_{0}\right]=E\left\{[\underline{x}(0)-\underline{E}(0)][\underline{x}(0)-\underline{E}(0)]^{T}\right\} \tag{12}
\end{equation*}
$$

Here the operator E denotes etatistical expectation. Let $x(t)$ be monitored on
the Earth by masuring a variable $\underline{z}(t)$ where the mean vilue, $\overline{\underline{\varepsilon}}(t)$, of $\underline{\underline{z}}(\mathrm{t})$ is related to $\underline{x}(t)$ by

$$
\begin{equation*}
\underline{\underline{z}}(\mathrm{t})=\underline{\mathrm{h}}[\underline{x}(\mathrm{t})] \tag{13}
\end{equation*}
$$

Let it also be assumed that the variables $\underline{z}(t), \underline{u}(t)$, and $\underline{f}(t)$ are Gausian with known mean values and covariance matrices $\bar{R}(t), Q(t)$, and $S(t)$, respectively. Hence, assuning zero lag, we get

$$
\begin{align*}
& E\left\{[\underline{z}(t)-\underline{z}(t)][\underline{z}(\tau)-\underline{\underline{\underline{E}}}(\tau)]^{T}\right\}=R(t) \delta(t-\tau) \tag{14}\\
& E\left\{[\underline{u}(t)-\underline{\underline{u}}(t)][\underline{u}(\tau)-\underline{\underline{u}}(\tau)]^{T}\right\}=Q(t) \delta(t-\tau) \tag{15}\\
& E\left\{(\underline{f}(t)-\underline{\underline{I}}(t)][\underline{f}(\tau)-\underline{\bar{f}}(\tau)]^{T}\right\}=S(t) \delta(t-\tau) \tag{16}
\end{align*}
$$

where $\underline{\underline{u}}(t)$ and $\underline{\underline{f}}(t)$ are the mean values of $\underline{\underline{u}}(t)$ and $\underline{f}(t)$, respectively.
Let the maximur-likelihood estimates of the response of the satellite be required in the time interval $[0, \bar{T}]$. In view of the definitions given above, the joint probability density, J, of $(\underline{z}-\bar{z}),(\underline{\underline{u}} \underline{\underline{u}}),(\underline{f}-\underline{\underline{f}})$ and $[\underline{x}(0)-\overline{\bar{x}}(0)]$ is given by

$$
\begin{equation*}
J=a^{\star}\left[\exp \left(-\frac{J^{\star}}{2}\right)\right] \tag{17}
\end{equation*}
$$

where J * is defined as

$$
\begin{align*}
J * & =[\underline{x}(0)-\underline{\bar{x}}(0)]^{T}\left[P_{0}\right]^{-1}[\underline{x}(0)-\underline{\underline{x}}(0)] \\
& +\int_{0}^{T}[\underline{z}(t)-\underline{z}(t)]^{T}[R(t)]^{-1}[\underline{z}(t)-\underline{\bar{z}}(t)] \\
& +[\underline{u}(t)-\underline{\bar{u}}(t)]^{T}[Q(t)]^{-1}[\underline{u}(t)-\underline{\underline{u}}(t)] \tag{17a}\\
& +[\underline{f}(t)-\underline{\underline{f}}(t)]^{T}[S(t)]^{-1}[\underline{f}(t)-\underline{\underline{I}}(t)] d t
\end{align*}
$$

and 'a*' is the normalizing factor.
The maximum-likelihood estimates can be obtained by maximizing the probability density.J. In other words, we minimize the functional J*, subject to the constraints that Eqs. (5), (13) be satisfied. This is done by defining J** by the relntion

$$
\begin{align*}
J^{*} * & =J^{*}+2 \int_{0}^{T}\left\{\underline{\mu}^{T}[\underline{z}(t)-\underline{h}(\underline{x})]\right. \\
& \left.+\underline{\lambda}^{T}\left[\underline{x}+B_{1}^{-1}\left\{B_{2} \underline{x}-\underline{u}-\underline{f}\right)\right]\right\} d r \tag{18}
\end{align*}
$$

and winidizing $J * *$ by considering $\underline{x}(0), \underline{z}(t), \underline{u}(t), \underline{f}(t), \underline{x}(t)$ and the L grangian vector multipliers $\mu(t)$ and $\underline{\lambda}(t)$ the independent varisbles.

It will now be assumed that

$$
\begin{equation*}
\underline{g}(t)=\underline{h}[\underline{\underline{x}}(t)]=\underline{\underline{g}}(t) \tag{19}
\end{equation*}
$$

which ens

$$
\begin{equation*}
\frac{\partial h}{\partial \underline{\partial g}}=[I] \tag{20}
\end{equation*}
$$

With thie asemption, the variational equations obtained by einimizing jth are exprensed as

$$
\begin{align*}
& \underline{X}(t)=[C] \underline{X}(t)+[G \underline{\underline{u}}(t)+\underline{z}(t) \tag{21}\\
& \underline{\lambda}(T)=0 \tag{22}
\end{align*}
$$

and

$$
\begin{equation*}
\underline{x}(0)=\underline{\underline{x}}(0)+\left[P_{0}\right] \underline{\lambda}(0) \tag{23}
\end{equation*}
$$

where

$$
\begin{align*}
& \underline{Z}(t)=[\underline{x}(t), \lambda(t)]^{T} \tag{24}\\
& \underline{Z}(t)=\left[B_{1}^{-1} \underline{f}(t),-R^{-1} \underline{g}(t)\right] \tag{25}\\
& {[G]=\left[\begin{array}{l}
\left.B_{1}^{-1}\right] \\
0
\end{array}\right]} \tag{26}\\
& {[C]\left[\begin{array}{cc}
-B_{1}^{-1} B_{2} & \left.B_{1}^{-1}[Q+S]\left[B_{1}^{-1}\right]^{T}\right] \\
B^{-1} & {\left[B_{1}^{-1} B_{2}\right]^{T}}
\end{array}\right]} \tag{27}
\end{align*}
$$

Equations (21-23) are the required stochastic differential equation of motion of the flexible atellite.

STABELITY CDITERIA

The atochastic Eq. (21) hat twice man scalar equations a the deterdnistic Eq. (5). The deterninistic equetion are etale if the eigeavalume of $\left[-\mathrm{B}_{1}^{-1} \mathrm{~B}_{2}\right]$ have negative real parts. The stochestic equations are atable if all the eigenvalues of [C] have negetive real parts. If there were no errore Involved with $\underline{u}(t)$ and $f(t)$, the matrices [Q] and [S] vould be null antrices. Conequencly, Eq. (21) would degenerate Into Eq. (5).

The hypothesis of this study is that [Q] and [S] are not null setrices, but have positive elements which are very enall compared to thoce of (B_{1}) or [B_{2}]. Elace, helf of the eigenvalue of [C] will be alret equal to thi eiger-
values. p_{1}, of $\left[-B_{1}^{-1} B_{2}\right]$ and the other ha' I will be almost equal to $-p_{1}$. In at the eigenval ues of [Cl lie symmetrically thout the imaginary axis can be verified by noting that

$$
\operatorname{Tr}[C]=0
$$

and that the eigenvalues of $\left[B_{1}^{-1} B_{2}\right]^{T}$ are equal and opposite to those of $\left[-\mathrm{B}_{1}^{-1} \mathrm{~B}_{2}\right]$.

In view of this, it is evident that Eq. (21) is aluays unstable. Even if the real parts of $p_{\text {}}$ are zero, the instability will be caused by the multiple roots. Thus, according to the classical meaning of the term, no stability criterion exists for the stochastic Eq. (21). The physical resson behind this is that the probable errors in the dependent variables accumulate with time. This accumulation causes the maximum-likelihood estimates to be asymptotically divergent, even if the deterministic Eq. (5) is stable. The grouth phenomenon, for satellite in which the vector $x(5)$ is weasured at discrete intervals of time, is illustrated in Figure 1, Let the mean values of $x(t)$ be considered to be given by the solutions of Eq . (5). Let the variances of $\underline{x}(t)$ be computed from the differences of the values of $\underline{x}(t)$ computed from Eqs. (5) and (21). The error functions computed from these mean values and variances are shown at three instants of time in Figure l. In Figure lA, there is a data input and the computation cycle has been started. Hence the error distribution curve has a high peak. The variances here correspond only to the measurement errors of the variables $x(t)$. In Figures $1 B$ and $1 C$, it is seen that the height of the error function becomes shorter and shorter, although the mean position given by Eq. (5) approaches the origin. In Figure lC, the error function is very flat $f u s t$ before the new data input. It becomes sharp again just after the new data input when a new computation cycle is started.

Since Eq. (21) is necessarily unstable, the stociastic stability cirterla for a flexible satellite must be formulated in a particular manner. The stochatic stability criteria of the response of a flexible satellite are those which make
(a) the deterministic model given by Eq. (5) stable, and
(b) the growth rate of the stochastic model given by Eq. (21) a miniman.

In the absence of further information about the covariance matrices Q, R and S, these two requirements are met if the real parts of P_{i} are equal to zero. Thus, a flexible satellite will be called stochastically stable if all the eigenvalues of $\left[-B_{1}^{-1} B_{2}\right]$ are purely imaginary. It is interesting to note at this point that a perfecty rigid satellite satisfies this requirement.

Specific stability criteria can be obtaired for a satellite when the elements of $\left[B_{1}\right]$ and $\left\{B_{2}\right]$ are known. For this, a particular satoilite configura-
tion has to be asumed. In the absence of such apecific configuration, several conditions sufficient to make the p_{1} puiely ieaginary can be entablished in term of the matrices $\left[A_{1}\right]$ and $\left[P_{1}\right], I_{i}-1-5$, when the matrices are square.

SURFICIENT CMDITIONS

Tha suff. : ent condition for the p_{1} to be gurely inasinary, the matrix $\left\{\mathrm{B}_{1}^{-1} \mathrm{H}_{2}\right]$ niot be otinymatric. Let $\left\{\mathrm{A}_{1}\right]$ and $\left\{\mathrm{P}_{1}\right\}, 1=1-5$, be mquare mericen. Let $\left[\mathrm{s}_{1}^{-1}\right]$ be given by

$$
\left(B_{1}\right)^{-1}=\left[\begin{array}{lll}
N_{1} & N_{2} & 0 \tag{28}\\
N_{3} & N_{4} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Comaring Eqa. (6) and (28), the matrican $\mathrm{K}_{1}, 1$ - $1-4$, are given by

$$
\begin{align*}
& {\left[N_{1}\right]=\left[P_{4}-P_{1} A_{1}^{-1} A_{4}\right]^{-1}} \\
& {\left[N_{2}\right]=\left[A_{4}-A_{1} P_{1}^{-1} P_{4}\right]^{-1}} \tag{29}\\
& {\left[N_{3}\right]=\left[P_{4} A_{4}^{-1} A_{1}-P_{1}\right]^{-1}} \\
& {\left[N_{4}\right]=\left[A_{4} P_{4}^{-1} P_{1}-A_{1}\right]^{-1} .}
\end{align*}
$$

Hence fron Eqa. (7) and (28), $\left[8_{1}^{-1} \mathrm{~B}_{2}\right]$ is given by

$$
\left[B_{1}^{-1} B_{2}\right]=\left[\begin{array}{ccc}
{\left[N_{1} P_{5}+H_{2} A_{5}\right]} & -\left[H_{1} P_{2}+N_{2} A_{2}\right] & -\left[N_{1} P_{3}+N_{2} A_{3}\right] \tag{30}\\
{\left[A_{3} P_{5}+A_{4} A_{5}\right]} & -\left[H_{3} P_{2}+H_{4} A_{2}\right] & -\left[H_{3} P_{3}+H_{4} A_{3}\right] \\
{[0]} & {[-I]} & {[0]}
\end{array}\right]
$$

To have $\left[B_{1}^{-1} B_{2}\right]$ antisymetric, the requdred condition becone

$$
\begin{align*}
& M_{1} P_{5}+H_{2} A_{5}=0 \\
& N_{3} P_{2}+H_{4} A_{2}=0 \\
& M_{1} P_{3}+N_{2} A_{3}=0 \tag{31}\\
& M_{3} P_{3}+H_{4} A_{3}=-1 \\
& M_{1} P_{2}+H_{2} A_{2}=M_{3} P_{5}+M_{4} A_{5} .
\end{align*}
$$

Eliadnating $N_{1}, i=1-4$ from Eqa. (29) and (31), the required ufficient conditions are finally obtained as

$$
\begin{align*}
& {\left[P_{3}\right]=\left[P_{1}\right]} \tag{32}\\
& {\left[A_{3}\right]=\left[A_{1}\right]} \tag{33}\\
& {\left[P_{2}\right]=-\left[P_{4} A_{1}^{-1} A_{5}\right]} \tag{34}\\
& {\left[A_{2}\right]=-\left[A_{4} A_{1}^{-1} A_{5}\right]} \tag{35}\\
& {\left[P_{5}\right]=\left[P_{1} A_{1}^{-1} A_{5}\right]} \tag{36}
\end{align*}
$$

The stochastic tability criteria given by Eqs. (32-36) are much too restrictive and it will be almot imposible to obtain a practical desfgn of a satellite satisfying these constraints. For example, Eq. (33) requires that the natural frequencies of the flexdble elements of the satellite should be equal to unity. This is not a fessible constraint.

In spite of these draubacks, Eqs. (32-36) do provide several guidelines for satellite design. It can be easily verified that Eqs. (34-36) are satisfied identically by a three-axe stabilized satellite in which all subbodies have undamed, purely elastic mountings. A spinning or a dual-spin satellite, even if it is free of daming, generally does not satisfy Eqs. (34-36). Equation (32) is satisfied by all types of satellites in which there is an axis of sym wet $r y$, and in which the flexible elements are so constrained that the center of mase movea only along the axis of symetry. Hence it can be claimed that, among satellite designs with comparable aass, stiffues, daming and covariance matrices, a symetric, three-axes stabilized satellite is likely to have the lowest error growth rate.

A SPECIFIC CONFIGURATION

The constraints given by Eqs. (32-36) are too restrictive because, in their derivation, no attention hae been paid to the zero elements of the sat rices involved. To utilize the location of the zero element in the matrices [B ${ }_{1}$] and $\left[B_{2}\right]$, a particulir satellite configuration (shown in Figure 2) will now be considered. The sacellite consists of a rigid cylindrical body with four beam, four beam-tip mases, and four apring-masedamper aystem, placed eymetrically as required by Eq. (32). The beam are perpendicular to the axd of mymetry and are assumed to be axially rigid. The spring-mase-dapper aytem are anmed to be conatrained to move only parallel to the axis of symetry. These asumtions lead to a large number of zerou in the matricea $\left[B_{1}\right]$ and $\left[B_{2}\right]$, aking the algebraic manipulation considerably simpler.

The major drawback of any atability analyaia with a particular satelite configuration is that conclusione drayn from it cannot be extended to other configurations. The method of modelling and analysis of the atellite configuration (ahow in figure 2) that has been ued in chis atudy partially overcomes
this disadvantage. In this method, the location of zeros in [8 $]_{1}$ and $\left[B_{2}\right]$ regain unchanged when the numbers of bede, tip-meses, or apring-mas-damer eyeten are changed.

TEE DMUALC MODEL
Let 'a' be the radius of the min rigid body and $\ell_{1}, 1$ e 1-4, be the length
 of the besm-tip emacs and the epring-menderper oysters, respectively. According to the choice of coordinate ax a shown in Figure 2 , we have

$$
\begin{align*}
& \underline{r}_{r 1}=\left[\left(a+\ell_{1}\right), 0,0\right]^{T} \\
& \underline{r}_{r 2}=\left[0,-\left(a+\ell_{2}\right), 0\right]^{T} \tag{37}\\
& \underline{r}_{r 3}=\left[-\left(a+\ell_{3}\right), 0,0\right]^{T} \\
& \underline{r}_{T 4}=\left[\left(0,\left(a+\ell_{4}\right), 0\right]^{T}\right.
\end{align*}
$$

Let it be defined that

$$
\begin{align*}
& \underline{x}_{d 1}=\left[\begin{array}{lll}
l b_{1}, & 0, & e_{1}
\end{array}\right]^{T} \\
& \underline{x}_{d 2}=\left[\begin{array}{lll}
0, & -f_{2}, & e_{2}
\end{array}\right]^{T} \tag{38}\\
& \underline{x}_{d 3}=\left[\begin{array}{lll}
-b_{3}, & 0, & e_{3}
\end{array}\right]^{T} \\
& \underline{x}_{d 4}=\left[\begin{array}{lll}
0, & f_{4} & e_{4}
\end{array}\right]^{T}
\end{align*}
$$

Let x be the distance along the axe of the beam mean urged from the fixed end. Let $Z_{t i}(t), Z_{b i}(x, t)$ and $\mathbf{Y}_{1}(t), 1=1-4$ be the deflections of the bean-tip mage, the bean, and the epriag-maed-damper oysters, respectively. According to the previously aimed constraints, let it be defined that

$$
\begin{align*}
& Z_{r 1}(t)=\left[0, y_{r 1,2}(t), y_{r 1,3}(t)\right]^{T} \\
& Z_{r 2}(t)=\left[y_{r 2,1}(t), 0, y_{r 2,3}(t)\right]^{T} \tag{39}\\
& Z_{r, 3}(t)=\left[0, y_{r 3,2}(t), y_{r 3,3}(t)\right]^{T} \\
& Z_{T 4}(t)=\left[y_{r 4,1}(t), 0, y_{r 4,3}(t)\right]^{T}
\end{align*}
$$

$$
\begin{align*}
& y_{b 1}(x, t)=\left[0, y_{b 1,2}(x, t), y_{b 1,3}(x, t)\right]^{T} \\
& y_{b 2}(x, t)=\left[y_{b 2,1}(x, t), 0, y_{b 2,3}(x, t)\right]^{T} \\
& y_{b 3}(x, t)=\left[0, y_{b 3,2}(x, t), y_{b 3,3}(x, t)\right]^{T} \tag{40}\\
& y_{b 4}(x, t)=\left[y_{b 4,1}(x, t), 0, y_{b 4,3}(x, t)\right]^{T}
\end{align*}
$$

and

$$
\begin{equation*}
y_{d} \mathrm{~d}_{1}(\mathrm{t})=\left[0,0, y_{d i}(t)\right]^{\mathrm{T}} \tag{41}
\end{equation*}
$$

Equations of motion in the coordinates $\underline{\varphi}, y_{r 1, j}, y_{b i, j}$ and $y_{d i}$ for $1=1-4$, 1-1,3 are obtained uaing the method ahown in Ref. [1]. The space dependence of these equations is elininated by aseuming

$$
\begin{equation*}
y_{b 1, j}(x, t)=\left[q_{b 1, j}(t)\right]\left[\exp \left(p_{1}^{*} x\right)-p_{1}^{*} x-1\right] \tag{42}
\end{equation*}
$$

and applying the Galerkin's method [1,11]. The space-dependent ehape functiona in Eq. (42) are aseumed to be known and correapond to those of a cantilever bean with tip-mass.

At thie point, the boundary conditions

$$
\begin{equation*}
y_{r i, j}(t)=\left[\exp \left(p_{1}^{n_{1}^{2}}\right)-p_{i}^{l} i_{i}-1\right] q_{b i, j} \tag{43}
\end{equation*}
$$

are applied, and the equatione of motion reduce to the form

$$
\begin{align*}
{\left[\Lambda_{1}^{\prime}\right] \ddot{\underline{g}}^{\prime}(t) } & +\left[\Lambda_{2}^{\prime}(\underline{\omega}, \dot{\underline{\omega}}, \Omega, t)\right] \dot{\underline{g}}^{\prime}(t)+\left[\Lambda_{3}^{\prime}(\underline{\omega}, \underline{\dot{u}}, \Omega, t) \underline{\underline{~}}^{\prime}(t)\right. \\
& =\left[\Lambda_{4}^{\prime}\right] \underline{\dot{\omega}}(t)+\left[\Lambda_{\underline{\xi}}^{\prime}(\underline{\omega}, \Omega)\right] \underline{\omega}(t) \tag{44}
\end{align*}
$$

and

$$
\begin{align*}
& {\left[P_{1}^{\prime}\right]_{\underline{q}}{ }^{\prime}(t)+\left[P_{2}^{\prime}(\underline{\underline{\omega}}, \underline{\underline{u}}, \Omega, t)\right]_{\underline{q^{\prime}}}(t)+\left[P_{3}^{\prime}(\underline{\omega}, \underline{\underline{u}}, \Omega, t)\right]_{\Omega^{\prime}}(t)} \\
& \text { - }\left[P_{4}^{\prime}\right] \underline{\underline{\omega}}(t)+\left[P_{5}^{\prime}(\underline{\omega}, \Omega)\right] \underline{\underline{\omega}}(t)+\underline{\underline{u}}(t)+\underline{f}(t) \tag{45}
\end{align*}
$$

where $g^{\prime}(t)$ consists of the non-zero elemente of $g_{b 1}$ and $y_{d i}, 1=1-4$. The set of Eqs. (44) and (45) is of the order of 27 . It is still quite difficult to extract a.y meaningful analytic atability eriterion out of this set.

It is now aseumed that there exists certain unknown conetante $t_{b i j}$ and
$i=1-4, j=1,3$, such that $T_{d 1}=1=1-4, j=1,3$, such that

$$
\begin{align*}
& r_{b 12} q_{b 1,2}=r_{b 21} q_{b 2,1}=\tau_{b 32} q_{b 3,2}=\tau_{b 41} q_{b 4,1} \tag{46}\\
& r_{b 13} q_{b 1,3}=r_{b 23} q_{b 2,3}=\tau_{b 33^{q}} q_{b 3,3}=\tau_{b 43}{ }_{b 4,3} \tag{47}
\end{align*}
$$

and

$$
\begin{equation*}
\tau_{d 1} y_{d 1}=\tau_{d 2} y_{d 2}=\tau_{d 3^{\prime} d 3}=\tau_{d d} y_{d 6} \tag{48}
\end{equation*}
$$

The values of $r_{b i j}$ and $\tau_{d i}$ can be obtalned froe the eigenvectore of Eqa. (44), (45). But it is not our intention at this point to look for eigenvalued and eigenvectors of Eqs. (44), (45). Subetituting Eqs. (46), (47), and (48) into Eqs. (44) and (45), the equations of motion of the eateliltes are reduced to the form

$$
\begin{equation*}
\left[A_{1}\right] \ddot{g}(t)+\left[A_{2}\right] \dot{g}(t)+\left[A_{3}\right] g(t)=\left[A_{4}\right] \dot{\underline{w}}+\left[A_{5}\right] \underline{\underline{m}} \tag{49}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\left[P_{1}\right] \ddot{g}(t)+\left[P_{2}\right] \dot{g}(t)+\left[P_{3}\right] \underline{g}(t)=\left[P_{4}\right] \underline{\underline{w}}+i P_{5}\right] \underline{\underline{\varphi}}+\underline{\underline{u}}(t)+\underline{\underline{f}}+(t) \tag{50}
\end{equation*}
$$

where

$$
\begin{equation*}
g(t)=\left[y_{d 1} ; q_{b 1,2} ; q_{b 1,3}\right]^{T} \tag{51}
\end{equation*}
$$

It should be noted that $g(t)$ given by Eq. (5i) is a (3xl) vector and all antrices $\left[A_{1}\right]$ and $\left[F_{1}\right]$, $1=1-5$, are ($3 x 3$) entrices. The Eqs. (49), (50) now form only a ninch order eet of ordinary differential equatione. Thie ereat reduction wea ande poseible by the aesuptione of Eqs. (46), (47), (48). It ohould also be noted that, irrespective of the numer of beem or apring-masedaper syatem introduced at the initial stages of the dyanac modeliling, Eqe. (49) and (50) can alvays be ade ainth ordar aet by euitably mozanting the equationa in Eqs. (46). (67), and (48).

Let it be asaumed that the moment of inarila eatrix, [I], of the acelife 1s giver by

$$
[\dot{I}]=\left[\begin{array}{lll}
I_{z} & 0 & 0 \tag{52}\\
0 & I_{y} & 0 \\
0 & 0 & I_{z}
\end{array}\right]
$$

The linearized form of the eatricee $\left[A_{1}\right]$ and $\left[P_{i}\right], 1-1-5$, cea thea be ohown to be as follow:

$$
\left[A_{1}\right]-\left[\begin{array}{ccc}
0 & \left(u_{b 12}^{1}-\varepsilon_{11} 1_{b 12}^{3}-\varepsilon_{21} L_{b 12}^{4}\right) & 0 \tag{53}\\
-8_{33} 3_{b 13}^{3} & 0 & \left(4_{b 13}^{1}-8_{32} 4_{b 13}^{3}\right) \\
\left(\mu_{d 1}^{1}-\varepsilon_{33} u_{d 1}^{4}\right. & 0 & -E_{32^{4} 4 d}^{4}
\end{array}\right]
$$

$$
\begin{align*}
& {\left[A_{2}\right]-\left[\begin{array}{ccc}
0 & -\left(\varepsilon_{11}{ }^{\mu_{b 12}^{5}}+\varepsilon_{21} \mu_{b 12}^{6}\right) & 0 \\
0 & 0 & 0 \\
\mu_{d 1}^{2} & 0 & 0
\end{array}\right]} \tag{54}\\
& {\left[A_{3}\right]=\left[\begin{array}{ccc}
0 & \left.\mu_{b 12}^{2}-8_{11^{\mu_{b 12}}}{ }^{7} 8_{21} u_{b 12}^{8}\right) & 0 \\
0 & 0 & \mu_{b 13}^{2} \\
u_{d 1}^{3} & 0 & 0
\end{array}\right]} \tag{55}\\
& {\left[A_{4}\right]=\left[\begin{array}{ccc}
0 & 0 & u_{b 12}^{9} \\
\mu_{b 13}^{4} & u_{b 13}^{5} & 0 \\
\mu_{d 1}^{5} & u_{d 1}^{6} & 0
\end{array}\right]} \tag{56}\\
& {\left[A_{5}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
\mu_{b 13}^{6} \Omega_{3} & \mu_{b 13}^{7} a_{3} & 0 \\
u_{d 1}^{7} \Omega_{3} & \mu_{d 1}^{8} \Omega_{3} & 0
\end{array}\right]} \tag{57}
\end{align*}
$$

$$
\begin{align*}
& {\left[P_{3}\right]=\left[\begin{array}{ccc}
\left(s_{23}^{1}+a_{23}^{3}{ }_{33}\right) & a_{23}^{2}{ }_{21} & \left(s_{32}^{3}+a_{23}^{3} g_{32}\right) \\
-\left(s_{13}^{1}+a_{13}^{3} 3_{33}\right) & -a_{23}^{1} \varepsilon_{11} & \left(s_{31}^{3}-a_{13}^{3} z_{32}\right) \\
0 & 0 & 0
\end{array}\right] \Omega_{3}^{2}} \tag{60}\\
& {\left[P_{4}\right]-[\hat{I}]} \tag{61}\\
& {\left[P_{5}\right]-\bar{X}[\hat{I}]-[\tilde{I} \underline{\underline{g}}] .} \tag{62}
\end{align*}
$$

The undafined coastante introduced in Eq:. (53) - (62) are defined by the following relations:

$$
\underline{r}_{c}=\left[\begin{array}{ccc}
s_{11} & 0 & 0 \tag{63}\\
s_{21} & 0 & 0 \\
0 & s_{32} & s_{33}
\end{array}\right] \quad\left\{\begin{array}{c}
q_{b 1,2} \\
q_{b 1,3} \\
y_{d 1}
\end{array}\right\}
$$

where $\frac{r}{c}$ is the isindiacement of the center of mase of the satellite from ite nominal ponititn, ai

$$
\begin{align*}
& +u_{b 12}^{6} \dot{r}_{c, 2}+u_{b 12}^{7} r_{c, 1}+u_{b 12}^{8}{ }^{r} c_{c, 2}+u_{b 12}^{9} \dot{w}_{3} \tag{64}\\
& u_{b 13}^{2} \ddot{q}_{b 1,2}+u_{b 13}^{2} q_{b 1,3}=u_{b 13}^{3} \ddot{\mathrm{r}}_{\mathrm{c}, 3}+u_{b 13}^{4} \dot{\dot{m}}_{1}+\mu_{b 13}^{5} \dot{山}_{2} \\
& +\mu_{b 13}^{6} \omega_{1} \omega_{3}+\mu_{b 13}^{7} \omega_{2} \omega_{3} \tag{65}\\
& u_{d 1}^{1} \ddot{y}_{d 1}+\mu_{d 1}^{2} \dot{y}_{d 1}+\mu_{d 1}^{3} y_{d 1}-\psi_{d 1}^{4} \bar{r}_{c, 3}+\mu_{d 1}^{5} \dot{w}_{1}+u_{d 1}^{6} \dot{w}_{2} \\
& +u_{d 1}^{7} \omega_{1} \omega_{3}+L_{d 1}^{8} \omega_{2}^{\omega_{3}} \tag{66}
\end{align*}
$$

$$
\begin{align*}
& +q_{b 1,2}\left[s_{i j}^{2}\right] \underline{\underline{w}}+q_{b 1,3}\left[s_{i j}^{3}\right] \underline{\underline{w}}+\left[s_{i j}^{4}\right] \dot{q}-\left[a_{i j}^{0}\right] \dot{q}_{c} \tag{67}
\end{align*}
$$

where \dot{I} ie the kinetic energy functional (1) of the eatellite. The operator
(i) on any (3×1) vector \underline{y} ia defined by

$$
v=\left[\begin{array}{ccc}
0 & -v_{3} & v_{2} \tag{68}\\
v_{3} & 0 & -v_{1} \\
-v_{2} & v_{1} & 0
\end{array}\right]
$$

such that the crose-product between any two arbitrary vectors \underline{u} and \underline{y} is given by

$$
\begin{equation*}
\underline{u} \times \underline{v}=\tilde{u} \underline{v}=-\dot{v} \underline{u} \tag{69}
\end{equation*}
$$

Analytic search for the eigenvalues of Eqs. (49) and (50) is now quite eany, because these form only a ninth order set. As in the elementa of the matrices $\left[A_{1}\right]$ and $\left[P_{1}\right], 1=1-4$, these eigenvalues are functions of the unknown constants $\tau_{b i j}$ and $\tau_{d i}$. The method of analysis to be adopted now is to obtain the stability criteria in terms of $\tau_{b i j}$ and $\tau_{d i}$. Then we must obtain the union of all criteria such that the resulting criteria become independent of $\boldsymbol{\tau}_{\text {bij }}$ and $\tau_{d 1}$.

EIGENVALUE EQUATIONS

The characteristic equation in a for Eqs. (49) and (50) is given by

$$
\text { Det. } \quad\left[\begin{array}{cc}
{\left[P_{5}+\alpha P_{4}\right]} & -\left[P_{3}+\alpha F_{2}+\alpha^{2} P_{1}\right] \tag{70}\\
{\left[A_{5}+\alpha A_{4}\right]} & -\left[A_{3}+\alpha A_{2}+\alpha^{2} A_{1}\right]
\end{array}\right]=0
$$

With the help of Eqs. (53) - (62), it can be seen that Eq. (70) is of the form

$$
\text { Det. } \quad\left[\begin{array}{cccccc}
Q_{11} & Q_{12} & 0 & Q_{14} & Q_{15} & Q_{16} \tag{71}\\
Q_{21} & Q_{22} & 0 & Q_{24} & Q_{25} & Q_{26} \\
0 & 0 & Q_{33} & 0 & Q_{35} & 0 \\
0 & 0 & Q_{43} & 0 & Q_{45} & 0 \\
Q_{51} & Q_{52} & 0 & Q_{54} & 0 & Q_{56} \\
Q_{61} & Q_{62} & 0 & Q_{64} & 0 & Q_{66}
\end{array}\right]=0
$$

It can be verified that tie locations of the zeros of the matrix in Eq. (71) remain the same even if the number of beans or spring-mass-damper systems are increased.

Equation (71) can be factorized into

$$
\text { Det. } \quad\left[\begin{array}{llll}
Q_{11} & Q_{12} & Q_{14} & Q_{16} \\
Q_{21} & Q_{22} & Q_{24} & Q_{26} \\
Q_{51} & Q_{52} & Q_{54} & Q_{56} \\
Q_{61} & Q_{62} & Q_{64} & Q_{66}
\end{array}\right]\left[Q_{43} Q_{35}-Q_{33} Q_{45}\right)=0
$$

Thus, the characteristic equations become

$$
\begin{equation*}
\left(Q_{43} Q_{35}-Q_{33} Q_{45}\right)=0 \tag{72}
\end{equation*}
$$

and

$$
\text { Det. }\left[\begin{array}{llll}
Q_{11} & Q_{12} & Q_{14} & Q_{16} \tag{73}\\
Q_{21} & Q_{22} & Q_{24} & Q_{26} \\
Q_{51} & Q_{52} & Q_{54} & Q_{56} \\
Q_{61} & Q_{62} & Q_{64} & Q_{66}
\end{array}\right]=0
$$

Equation (72) yields three roots of a and the other $s i x$ roots are obtained from Eq. (73). One of the roots of a from Eq. (72) is identically equal to $2 e r o$. The other two roots of Eq. (72) are given by the equation

$$
\begin{equation*}
c_{1} a^{2}+c_{2} a+c_{3}=0 \tag{74}
\end{equation*}
$$

where

$$
\begin{align*}
& C_{1}=\left[I_{z}\left(\mu_{b 12}^{1}-g_{11} \mu_{b 12}^{3}-g_{21} \mu_{b 12}^{4}\right)+\mu_{b 12}^{9}\left(S_{32}^{4}-a_{13^{g}}^{0}{ }_{11}-\alpha_{23^{\prime}}^{0} g_{21}\right)\right] \tag{75}\\
& c_{2}=-I_{z}\left(g_{11} \mu_{b 12}^{5}+g_{21} \mu_{b 12}^{6}\right) \tag{76}\\
& C_{3}=I_{2}\left(\mu_{b 12}^{2}-g_{11} \mu_{b 12}^{7}-g_{21} \mu_{b 12}^{8}\right) . \tag{77}
\end{align*}
$$

Hence the requirement of purely imaginary roots leads to the conditions

$$
\begin{equation*}
c_{2}=0 ; c_{3} / c_{1} \geq 0 \quad \text { if } c_{1} \neq 0 \tag{78}
\end{equation*}
$$

Expanding Eq. (73), the resulting equation in a is obtained aa

$$
\begin{equation*}
c_{4} a^{6}+c_{5} a^{5}+c_{6} a^{4}+c_{7} a^{3}+c_{8} a^{2}+c_{9} a+c_{10}=0 \tag{79}
\end{equation*}
$$

To eimplify the expreseion of $C_{1}, 1=4-10$, let it be assuned that

$$
\begin{gather*}
\tau_{\mathrm{b} 12}=-\tau_{\mathrm{b} 32} ; \tau_{\mathrm{b} 21}=-\tau_{\mathrm{b} 41} ; \tau_{\mathrm{b} 13}=-\tau_{\mathrm{b} 33} ; \tau_{\mathrm{b} 23}=-\tau_{\mathrm{b} 43} ; \\
\tau_{\mathrm{d} 1}=-\tau_{\mathrm{d} 3} ; \tau_{\mathrm{d} 2}=-\tau_{\mathrm{d} 4} \tag{79a}
\end{gather*}
$$

This assumed mode corresponds to that which, in terms of pointing accuracy, we are most interested. This mode leads to pure rotational motions of the rigid core about its center of mass. With this assumption, the coefficient C_{9} is given by

$$
\begin{align*}
& C_{9}=\left(I_{z}-I_{x}\right)\left(I_{z}-I_{y}\right) \Omega_{3}^{2} \mu_{d 1}^{2} u_{b l 3}^{2}+2 b_{1} \mu_{b 13}^{2} \Omega_{3}^{3} S_{23}^{1}\left(I_{x}-I_{z}\right) \\
& +2 \Omega_{3}^{3}\left(\tau_{d 2} / \tau_{d 1}\right) f_{2} \mu_{b 13}^{2}\left[I_{x} S_{13}^{1}-S_{21}^{4}\left(I_{2}-I_{x}\right)\right] \\
& +\Omega_{3}^{2}\left\{\Omega_{3} \mu_{b 13}^{7}{ }^{\mu}{ }_{d 1}^{3}\left[s_{23}^{4}\left(I_{2}-I_{x}\right)-S_{31}^{3} I_{x}\right]-I_{x} s_{31}^{3}\left(\mu_{b 13}^{5} \mu_{d 1}^{3}+\Omega_{3} \mu_{b 13}^{7} \mu_{d 1}^{2}\right)\right\} \\
& -\Omega_{3}^{2}\left(\mu_{d 1}^{5} \mu_{b 13}^{2} S_{13}^{1}\left(I_{z}-I_{y}\right)+\mu_{d 1}^{7} \mu_{b 13}^{2}\left[\Omega_{3} I_{y} S_{23}^{1}+S_{11}^{4}\left(I_{z}-I_{y}\right)\right]\right\} \\
& +\Omega_{3}^{3} s_{31}^{3}\left(I_{z}-I_{y}\right)\left(\mu_{d 1}^{3} \mu_{b 13}^{4}+\Omega_{3} \mu_{b 13}^{6} \mu_{d 1}^{2}\right)-\Omega_{3}^{3} \mu_{d 1}^{3} \mu_{b 13}^{6}\left[I_{y} s_{32}^{3}+s_{13}^{4}\left(I_{z}-I_{y}\right)\right] \\
& +\Omega_{3}^{5}\left[\left(\mu_{d 1}^{1} \mu_{b 13}^{7}+\mu_{b 13^{\mu}}^{5}{ }_{d 1}^{7}-\mu_{b 13}^{4} \mu_{d 1}^{8}-\mu_{b 13^{\mu}}^{6}{ }_{d 1}^{6}\right)\left(s_{23}^{4} s_{11}^{4}-s_{21}^{4} s_{13}^{4}\right)\right. \\
& \left.+\left(\mu_{d 1}^{7} \mu_{b 13}^{7}-\mu_{b 13}^{6} \mu_{d 1}^{8}\right)\left(s_{23}^{4} s_{13}^{1}+s_{32}^{3} s_{11}^{4}-s_{13}^{4} s_{23}^{1}+s_{21}^{4} s_{31}^{3}\right)\right] \text {. } \tag{80}
\end{align*}
$$

Expressions for the other coefficients in Eq. (79) are similarly obtained.
For the roots of α in Eq. (79) ti ve purely imaginary,

$$
\begin{equation*}
c_{5}=c_{7}=c_{9}=0 \tag{81}
\end{equation*}
$$

Examining Eq. (80) and similar exprestions for C_{5} and C_{7} it becomes evident that E4. (81) can be satisfied for arbicrary values of $\mathcal{l}_{b i j}$ and $\tau_{d i}$ if and
only if

$$
\begin{equation*}
\Omega_{3}-\mu_{\mathrm{d} 1}^{2}=0 \tag{82}
\end{equation*}
$$

Equation (82) is another proof of our previous claim that stochastic stability is possible only for undampen inree-axes stabilized satellites.

THRPE-AXES STABILIZED SATELLITES

For a three-axes stabilized satellite, the constraints given by Eq. (78) are almont always satiafied, Also for this configuration,

$$
\begin{equation*}
c_{5}=c_{7}=c_{8}=c_{9}=c_{10}=0 \tag{83}
\end{equation*}
$$

such that Eq. (79) becomes

$$
\begin{equation*}
a^{4}\left[C_{6}+C_{4} a^{2}\right]=0 \tag{84}
\end{equation*}
$$

Hence the required stability criteria are

$$
\begin{align*}
0 \leq c_{4} & -I_{x} I_{y} \mu_{d 1}^{1} \mu_{b 13}^{1}+2 b_{1} \mu_{b 13}^{1} I_{x} s_{21}^{4}+\mu_{d 1}^{1} I_{x} s_{23}^{4}+I_{y} s_{11}^{4} \mu_{d 1}^{5} \mu_{b 13}^{1} \\
& +I_{y} \mu_{d 1}^{1} \mu_{b 13}^{4} s_{13}^{4}+\left(\mu_{d 1}^{5} \mu_{b 13}^{5}-\mu_{d 1}^{6} \mu_{b 13}^{4}\right)\left(s_{11}^{4} s_{23}^{4}-s_{21}^{4} s_{13}^{4}\right) \tag{85}
\end{align*}
$$

and

$$
\begin{align*}
0 \leq c_{6} & =I_{y} s_{13}^{4} \mu_{d 1}^{3} \mu_{b 13}^{4}+I_{y} s_{11}^{4} \mu_{d 1}^{5} \mu_{b 13}^{2}+I_{x} s_{23}^{4} \mu_{b 13}^{5}{ }^{\mu_{d 1}^{3}} \\
& +2 b_{1} \mu_{b 13}^{2} I_{x} s_{21}^{4}+I_{x} I_{y}\left(\mu_{d 1}^{3} \mu_{b 13}^{1}+\mu_{d 1}^{1} \mu_{b 13}^{2}\right) \tag{86}
\end{align*}
$$

Constraints given by Eqs. (85) and (86) can be atisfied usually without great difficulty, irrespective of the values of $\tau_{b i f}$ and $\tau_{d i}$. This is due to the fact that C_{4} and C_{6} are mainly the ass and stiffneas terms of the atellite model. Hence, it can be concluded that three-axes atabilized sateliftes are more likely to be table under random environmental and control torques.

ACKNONLEDGENENTS

This work has been partially supported by MASA Contract No. NAS5-21798 through the Space Science and Engineering Center, University of Wisconain, Madison, Wisconsin.

REPERENCES

1. Meirovitch, L. and R. A. Calico, "A Comparative Study of Stability Methods for Flexible Satellites," ALM Journal, Vol. 11, No. 1, January 1973, pp. 91-98.
2. Meirovitch, L., "Stability of Spinning Body Containing Elastic Earts via Liapunov's Direct Method," AIMA Journal, Vol. 8, No. 7, July 1970, pp. 1193-1200.
3. Gale, A. H. and P. W. Likins, "Influence of Flaxible Appendagea on Dualapin Spacecraft Dynaics and Control." Journal of Spacecraft and Rockete, Vol. 7, No. 9, Septeaber 1970, pp. 1049-1056.
4. Fiatley, T. W., 'Equilibrius States for Clase of Dual-apin Spacecraft, MASA Technical Report No. NASA TR R-362, March 1971.
5. A State Determination Method for Flexible Body Spacecraft, Avco Syatens Division Report No. AVSD-0152-71-CR, March 1971.
6. Phillipson, G. A., Identification of Distributed Systems, American Elsevier Publishing Co., Inc., New York, 1971.
7. Holt, J. A., "The Application of Ralman Filtering to the Attitude Deteraination of Spinning Space Vehicles," Jnl. of the British Interplanetary Society, Vol. 26, pp. 348-368, 1973.
8. Saaty, T. L. and J. Bram, Nonlinear Mathematics, McGraw Hill, 1964, pp. 357-362.
9. Huang, T. C. and A. Das, "Random Motion Analysis of Flexible Satellites," in preparation.
10. Huang, T. C. and A. Das, "A Comparative Study of the Pointing Accuracy of Flexible Satellites," In preparation.
11. Huang, T. C. and A. Das, "Thermoelastic Flutter Models for Elements of Flexible Satellites," Paper presented at the 24 th International Astronautical Congress, Baku, USSR, October, 1973. Measurements from Satellite Systems, Annual Scientific Report, Space Science and Engineering Center, Madison, Wisconsin, February 1974.
12. Huang, T. C. and A. Das, "Singular Perturbation Equations for Flexible Sateliftes," Paper presented at the 24th IAC, Baku, USSR, October 1973. Measurements from Satellite Systems, Annual Scientific Report, Space Science and Engineering Center, Madison, Wisconsin, February 1974.

STABILITY AND CONTBOL OF FLEXIBLE SATELLITES:

PART II - CONTEDL

T. C. Huang and Ani ruddha Das

Abstract

This is the second part of an earlier investigation. In thic section, it is demonstrated that, by monitoring the deformations of the flexible elements of a satelifte, the effectiveuess of the satellite control system can be increased considerably. A simple model of a flexible satelifte had been analyzed in the first part of this work. The same model has been used here for digital computer simulations.

NOMEN CLAT URE

$\left[A_{1}^{\prime}\right], 1=1-5$	= Matrices goveraing the equations of motion of flexible structural elements of the satelifte; Eq. (1)
$\left[B_{i}^{\prime}\right], 1=1,2$	- Matrices governing the satellite motion; Eqs. (3, 7, 8).
[$\hat{B}(t)]$	- Upper (3×3) left corner s ubmatrix of [$\dagger(t)]\left[B_{1}^{\prime}\right]^{-1}$.
\underline{f}	- External forcing function; Eq. (6).
f*	- External torque vector on the satellite; Eq. (2).
[I]	- Identity matrix.
[K]	= System fundamental matrix; Eq. (22).
$\left[\mathrm{K}_{1}\right]$	- Matrix defined by Eq. (28).
n	- Number of calar elements in 9^{\prime}.
[0]	= Null matrix.
$\left[P_{1}^{\prime}\right], 1=1-5$	- Matrices governing the rotational motion of the satellite; Eq. (2)
$q^{\prime},\left(q_{1}^{\prime}\right)$	- Generalized structural position coordinate vector.
${ }_{\text {H }} 1$	- Sencralized position coordinate for the ith beat.
T	- Terainal time for optimal control.
t	- Time.

U	- Torque amgnitude parameter, defined by Eq. (25).
$\underline{u},\left\{u_{i}\right\}$	- Ceneralized control vector; Eqs. (5), (22).
$\underline{\underline{\mathbf{u}}}$	- Control torque vector on the satellite; Eq. (2).
$\underline{\underline{u}}^{1},\left\{u_{1}^{1}\right\}$	= Variou control torque functions ; Eqs. (14) - (21).
ㅍ	= State vector; Eqs. (3). (4), (22).
\mathbf{L}	= Uncont rolled response; Eq. (22).
$\chi_{\text {di }}$	- Position vector of the ith spring-mass-damper nystem.
$L_{\text {ri }}$	= Position vector of the ith beam-end nass.
$\lambda^{*},\left\{\lambda_{1}^{*}\right\}$	- Cont rol system parameter; Eqs. (24). (26).
$\text { 先*, }\left\{\mu_{1}^{*}\right\}$	- Relative control torque magnitude vector; Eqs. (24), (27).
τ	- Duany cime variable.
[\$]	= Fundamental matrix of $-\left[B_{1}^{\prime}\right]^{-1}\left[B_{2}^{\prime}\right]$; Eqs, (9), (10).
$\left[\phi_{i}\right], i=1-4$	= Component matrices of [1]; Eq. (11).
$\underline{\omega},\left\{\omega_{1}\right\}$	- Angular velocity vector of the satellite; Eqe. (1), (2).
$\underline{\omega}^{1},\left\{\omega_{j}^{1}\right\}$	- Various simulation responses of $\underset{\sim}{\text {; }}$: Eqs. (14) - (21).

INT RODUCT ION

In the first part [1] of this study, the question of stochantic stability of flexible satellites was discussed. Specific stability criteria were developed for a simple flexible model of satellite (shown in figure 1). In this part of the study, we deternine whether it is posible to increase the pointing accuracy of a atellite by observing the deflections of the flexible eleants. To do this, we ue the same atellite configuration (Figure l) and the theoretical model developed in Ref. [1].

Likins and Fleischer [2] have shown that the flexible elements of apacecraft can have a destabilizing influence. They have shown a method of dasigning a proportional 11 near control syatememploying root-locus plota and eigenvalue analyses. The control loop gains in [2] were based on dynadc model, using hybrid coordinates, of a sacecraft containing long flexible beam. An essentially ainilar approach was eqployed ry DLorenzo and Santinelif [3]. Here also a Ilnear proportional control system wesigned by considering the equations of motion of the spacecraft along with those of the flexdble elenente. The spacecraft model in [3] consisted of a rigid body with two epring-mass syatens.

In this study, a time-optisel 'bang bang' control policy ha been asumed. The method of calculating the control torques is easentially the ase at that
given in Ref. [4]. Full detalla of the cosputation of control torque: are presented in Ref. [5]. Apart frow the control policy, this analyais differe from Refa. [2,3] in another important aspect. In the analyses of Refe. [2,3], the deflection of the flexdble elementa are not observed. Hence, zero initial deflections and velocities of the flexible elements are inherently asumed. The present method can accomodate arbitrarily large initial conditions of the flexible elements of the satellite.

THEORETICAL BASIS OF COYPARISON

The theoretical analysis and comparison of the satellite responses is based on the dynamic model explained in Section 6 of Ref. [1]. It was ahoun there [1] that, by using the Galerkin's method, the deflections of the flexible elements of the astellite are governed by purely t ime-dependent generalized position vectors, $f_{b}(t), y_{I i}(t)$ and $y_{d i}(t)$. It was also shuwn that these vectors can be condensed subsecuently, and reduced to a vector $q^{\prime}(t)$ by applying suitable boundary and continuity conditions. Laually the numer of elements in g^{\prime} is much maller chan that in the set $\left[\mathcal{G}_{\mathrm{bi}}, \mathbf{Y}_{\mathrm{ri}}, \mathbf{Y}_{\mathrm{di}}\right]$].

Let $\underline{\omega}(t)$ be the angular velocity vector of the atellite. Let $\underline{u}^{*}(t)$ and $\mathbf{I}^{\star}(t)$ be the control torque and enviromental torque vector on the satellite. Given these definitions, it is well known $[1,6,7]$ that the atellite resporse is governed by a pair of matrix equation of the form

$$
\begin{align*}
{\left[A_{1}^{\prime} \ddot{g}^{\prime}(t)\right.} & \left.+\left[A_{2}^{\prime}(\underline{\omega}, t)\right] \dot{g}^{\prime}(t)+\dot{A}_{3}^{\prime}(\underline{\omega}, t)\right]_{\underline{\prime}}^{\prime}(t) \\
& =\left[A_{4}^{\prime}\right] \underline{\underline{\omega}}(t)+\left[A_{5}^{\prime}(\underline{\omega})\right] \underline{\omega}(t) \tag{1}
\end{align*}
$$

and

$$
\begin{align*}
{\left[P_{1}^{\prime}\right] \ddot{g}(t) } & +\left[P_{2}^{\prime}(\underline{\omega}, t)\right] \dot{q}^{\prime}(t)+\left[P_{3}^{\prime}(\underline{\omega}, t)\right] \underline{q^{\prime}}(t) \\
& =\left[P_{4}^{\prime}\right] \underline{\underline{\omega}}(t)+\left[P_{5}^{\prime}(\underline{\omega})\right] \underline{\omega}(t)+\underline{u^{*}}(t)+\underline{f} *(t) . \tag{2}
\end{align*}
$$

Equation (1) governs the flexdble motion of the beas, pring-mas-dampern, and beamend masses of the eatellite model. Equation (2) ia based on the principle of conservation of angular mantur of the atcilite. If $q^{\prime}(t)$ is ($n x i$) vector, then there are ' n ' scalar equation in Eq. (1). Equation (2) alvay has tinree scalar equations. Equations (1) and (2) correspond to Eqs. (44) and (45) of lef. [1].

Equations (1) and (2) are now combined together to form one firet order equati:n given by

$$
\begin{equation*}
\left[E_{1}^{\prime}\right] \underline{x}(t)+\left[B_{2}^{\prime}\right] \underline{x}(t)=\underline{u}(t)+\underline{f}(t) \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\underline{x}=\left[\underline{w}, \dot{q}^{\prime}, q^{\prime}\right]^{\mathrm{T}} \tag{4}
\end{equation*}
$$

$$
\begin{align*}
& \underline{\underline{u}}=\left[\underline{u}^{*}, \underline{\underline{0}}, \underline{0}\right]^{T} \tag{5}\\
& ==\left[\underline{f}^{\star}, \underline{\underline{0}}, \underline{\underline{0}}\right]^{T} \tag{6}\\
& {\left[\mathrm{E}_{1}^{\prime}\right]=\left[\begin{array}{ccc}
{\left[\mathrm{P}_{4}^{\prime}\right]} & -\left[P_{1}^{\prime}\right] & {[0]} \\
{\left[A_{4}^{\prime}\right]} & -\left[A_{1}^{\prime}\right] & {[0]} \\
{[0]} & {[0]} & {[1]}
\end{array}\right]} \tag{7}
\end{align*}
$$

and

$$
\left[B_{2}^{\prime}\right]=\left[\begin{array}{ccc}
{\left[P_{5}^{\prime}\right]} & -\left[P_{2}^{\prime}\right] & -\left[P_{3}^{\prime}\right] \tag{8}\\
{\left[A_{5}^{\prime}\right]} & -\left[A_{2}^{\prime}\right] & -\left[A_{3}^{\prime}\right] \\
{[0]} & -[1] & {[0]}
\end{array}\right]
$$

Let $[\rho(t)]$ be the furdamental atrix of the homgeneoue equation

$$
\begin{equation*}
\underline{\dot{x}}=-\left[B_{1}^{\prime}\right]^{-1}\left[z_{2}^{\prime}\right] \underline{x} \tag{9}
\end{equation*}
$$

such that the aslution of Eq. (3) is given by

$$
\begin{equation*}
\underline{x}(t)=[\theta(t)] \underline{x}(0)+\int_{0}^{t}[\theta(t-\tau)]\left[B_{j}\right]^{-1}[\underline{u}(\tau)+\underline{f}(\tau)] d \tau . \tag{10}
\end{equation*}
$$

Let $[\phi(t)]$ be composed of $\left[\phi_{1}(t)\right\},\left[\varphi_{2}(t)\right],\left[\varphi_{3}(t)\right]$ and $\left[\varphi_{4}(t)\right]$ such that

$$
10]=\left[\begin{array}{ccc}
{\left[\varphi_{1}\right]} & {\left[\phi_{2}\right]} & {\left[\phi_{3}\right]} \tag{11}\\
(3 \times 3) & (3 \times n) & (3 \times n) \\
& {\left[\phi_{4}\right]} & \\
{[2 n \times(2 n+3)]}
\end{array}\right]
$$

whan $\underline{q}(t)$ and $q^{\prime}(t)$ are (3×1) and ($n x l$) vectors, respectively. Then the equations corresponding to $\underline{(}(t)$ can be separated froa Eq. (10) in the form

$$
\begin{align*}
\underline{\underline{\varphi}}(t)=\left[t_{1}(t) \underline{\underline{\mu}}(0)\right. & +\left[\theta_{2}(-)\right] \dot{\underline{q}}^{\prime}(0)+\left[\theta_{3}(t) \underline{q}^{\prime}(0)\right. \\
& +\int_{0}^{t}[\hat{\mathrm{~B}}(\mathrm{t}-\tau)]\left[\underline{\mathrm{I}}^{\star}(\tau)+\underline{\underline{f}}(\tau)\right] d \tau \tag{12}
\end{align*}
$$

where $[\hat{B}(t)]$ is the (3×3) upper left hand corner sumat $r i x$ of $[\theta(t)]\left[\mathbb{a}_{1}\right]^{-1}$.
1t should be noted that previous invertigatione $(2,3]$ were concemed malnly with the deterndation of $\left[\hat{1}_{1}(t)\right]$ and $[\hat{B}(t)]$ and then with the approximation of Eq . (12) by
$\dot{q}_{1}^{\prime}(0)=\dot{q}_{2}^{\prime}(0)=0.01 ; \dot{q}_{j}^{\prime}(0)=0 . j \notin 1.2$.
The complete numerical experiment is parformed through the following atepa:

Step 1: A tim interval [$0, T$] in which the controis are to be effected is fixed. In this case T was taken m 5.0 sece.

Step 2: The atellite is aaund to be rigid, and without controls, euch that $\underline{\underline{w}}(t)$ is given by the solution $\underline{w}^{1}(t)$, of the equation
$\left[P_{i}^{\prime}\right] \underline{\underline{u}}(t)+\left[P_{\underline{5}}^{\prime}\right] \underline{\underline{\omega}}(t)+\underline{f}(t)=\underline{0}$.
Equation (14) is integrated and the responses $\omega_{1}^{1}(t)$ and $\omega_{2}^{1}(t)$ are plotted in Pigure 2.

Step 3: Tise atellite is assumed to be rigid and subjected to tim-optimal 'banfbeng' control, $\underline{u}^{1}(t)$, auch that $\underline{w}(t)$ is given by the solution $\underline{\omega}^{2}(t)$, of the equation

$$
\begin{equation*}
\left[P_{4}^{\prime}\right] \dot{\underline{\omega}}^{2}(t)+\left[P_{j}^{\prime}\right] \underline{\omega}^{2}(t)+\underline{u}^{1}(t)+\underline{f}^{m}(t)=\underline{0} . \tag{15}
\end{equation*}
$$

The $\underline{u}^{1}(t)$ are computed so as to yield $\underline{w}^{2}(T)=0$ by the method shown in Appendix A. Equation (15) is integrated and the responses $\omega_{1}^{2}(t)$ and $\omega_{2}^{2}(t)$ are plotted in Figure 3.

Step 4: The sftellite is assumed to be flexible, without control and with $q^{\prime}(0)=q^{\prime}(0)=\underline{0}$, such that $\underline{w}(t)$ is given by $\underline{w}^{3}(t)$. Here $\underline{\underline{\omega}}^{3}(t)=\left[1_{1}(t)\right] \underline{\omega}(0)+\int_{0}^{t}[\hat{B}(t-\tau)] \underline{f}(\tau) d \tau$.

The responsen $\omega_{1}^{3}(t)$ and $\omega_{2}^{3}(t)$ frow Eq. (16) are plotted in Figure 4 .
Step 5: The satellite is asumed to be flexdble, with $\dot{q}^{\prime}(0)=g^{\prime}(0)=0$. The satellite is subjected to the control torque $\underline{u}^{1}(t)$ computed in Step 3, such that $\underline{\omega}(t)$ is given by $\underline{w}^{4}(t)$, where
$\underline{\underline{q}}^{4}(t)=\left[t_{1}(t)\right] \underline{\underline{\omega}}(0)+\int_{0}^{t}[\hat{B}(t-\tau)]\left[\underline{f}(\tau)+\underline{u}^{l}(r)\right] d r$.
The responses $\omega_{1}^{4}(t)$ and $\omega_{2}^{4}(t)$ from Eq. (17) are plotted in Figure 5.

Step 6: The atellite is assumed to be fiexible, vith $\dot{q}^{\prime}(0)=q^{\prime}(0)=0$. and aubjected to a time-optimal 'bang-bang' control, $\underline{u}^{2}(t)$. such that $\underline{\underline{w}}(t)$ ie given by $\underline{w}^{5}(t)$, where
$\underline{\omega}^{5}(t)=\left[\varphi_{1}(t)\right] \underline{\omega}(0)+\int_{0}^{t}[\bar{B}(t-\tau)]\left[\underline{E}(r)+\underline{u}^{2}(t)\right] d t$.

The $\underline{u}^{2}(t)$ are computed so us to yield $\underline{\underline{w}}^{5}(T)=0$ by the method ahown in Appendix A. The responses $\omega_{1}^{5}(t)$ and $\omega_{2}^{5}(t)$ fron Eq. (18) are platted in pigure 6.

Step 7: The satellite is asumed to be flexible, with $\dot{q}^{\prime}(0) \neq 0 q^{\prime}(0)$ and without control, such that $\underline{\omega}(t)$ is given by $\underline{w}^{6}(t)$, where

$$
\begin{align*}
\underline{w}^{6}(t) & =\left[\theta_{1}(t)\right]_{\underline{w}}(0)+\left[\varphi_{2}(t)\right] \dot{g}^{\prime}(0)+\left[\theta_{3}(t)\right]_{g^{\prime}}(0) \\
& +f_{0}^{t}[\hat{B}(t-\tau)][\underline{f}(\tau)] d \tau . \tag{19}
\end{align*}
$$

The responses $\omega_{1}^{6}(t)$ and $\omega_{2}^{6}(t)$ are plotted in Pigure 7 .
Step 8: The astellite in assumed to be flexible, with $\dot{g}^{\prime}(0) \neq 0$ g'(0) and subjected to the control torque $\underline{u}^{2}(t)$ computed in Step 6 . such that $\underline{\underline{\omega}}(t)$ in given by $\underline{\Delta}^{7}(t)$, where

$$
\begin{align*}
\underline{\underline{w}}^{7}(t) & =\left[\varphi_{1}(t)\right] \underline{\underline{u}}(0)+\left[\varphi_{2}(t)\right] \dot{\underline{g}}^{\prime}(0)+\left[\varphi_{3}(t)\right] g^{\prime}(0) \\
& +\int_{0}^{t}[\hat{B}(t-\tau)]\left[\underline{u}^{2}(\tau)+\underline{f}^{*}(\tau)\right] d \tau . \tag{20}
\end{align*}
$$

The responses $\omega_{1}^{7}(\tau)$ and $\omega_{2}^{7}(t)$ are plotted in sigure 8 ,
Step 9: The satellite is assuand to be flexdble, with $\dot{g}^{\prime}(0) \neq 0 \notin q^{\prime}(0)$. It is also subjected to a time-optimal 'bang-bang' control. $\underline{u}^{3}(t)$, wch that $\underline{\underline{u}}(t)$ is given by $\underline{\underline{g}}^{8}(t)$, where

$$
\begin{align*}
\underline{\underline{w}}^{8}(t) & =\left[t_{1}(t)\right] \underline{\underline{u}}(0)+\left[t_{2}(t) \dot{\underline{q}}^{\prime}(0)+\left[t_{3}(t)\right] \underline{\underline{g}}^{\prime}(0)\right. \\
& \left.+f_{0}^{t}[\hat{B}(t-\tau)] \underline{\underline{u}}^{3}(\tau)+\underline{f}(t)\right] d \tau . \tag{21}
\end{align*}
$$

The corques $\underline{\underline{u}}^{3}(t)$ are also computed to yield $\underline{\underline{w}}^{8}(\mathrm{I})=\underline{0}$ by the method shown in Appendix A. The responces $\omega_{1}^{8}(t)$ and $\omega_{2}^{9}(t)$ from Eq. (21) are plotted in Figure 9.

COMPARISON AND EVALUATION

One important reauit of the aimulation, eseen from Miguren 2 and 3, is that the control sequence $\underline{\underline{u}}^{l}(t)$ is very effective on the rigid model of the satellitt. But Figure 5 shows that, for the ame values of $\underline{(0)}\left(0, \underline{u}^{1}(t)\right.$ producea unwanted non-zero valuee of $\underline{\varphi}(\mathrm{T})$ when it is mplied to the flexible satnilite model, although $\dot{g}(0)$ and $g(0)$ are aseumed to be zezo. Thue, another ipportant result, presented in pigures 5 and 6 , shows that $\underline{u}^{2}(t)$ ie wore effective than $\underline{u}^{1}(t)$ men a flexdble satellite model ia considered. Up to thia point, then, ve
have essentially the same conclusion as that in Refs. [2], [3], that for a flexible satellite the control should not be based on a rigid model. The difference between Refs. [2], [3] and the present study is in the adopted control policy. 'Bang-bang' controls have been used here instesd of linear proportional contrcl.

The most important results are presented in Figures 8 and 9 . When the $\dot{q}(0)$ and $g(0)$ are observed and found different from zero, $u^{2}(t)$ does not lead to the required zero values of $\omega(T)$. In contrast, $\underline{u}^{3}(t)$, which is based on the observed values of $\dot{q}(0)$ and $q(0)$, yields zero values of $\underline{\omega}(T)$. Another point to be considered is the divergence of $\underline{\omega}(t)$ from zeru in the two cases. The maximum divergence of $\underline{\omega}(t)$ and $\underline{u}^{2}(t)$ is $11.0 \times 10^{-4} \mathrm{rads} / \mathrm{sec}$, while that with $\underline{u}^{3}(t)$ is only 7.0×10^{-4} rads/sec. This bears out the theo.roical claims that a control based on Eq. (12) is mere effective than one based on Eq. (13) and that the effectiveness of a control system can be greatly inproved if the deflections of the flexible elements of a satellite are observed.

ACKNOWLEDCEMENTS

This work has been partially supported by NASA Contract No. NAS5-21798 through the Space Sciance and Engineering Center, University of Wisconsin, Madis on, Wis consin.

REFERENCES

1. Huang, T. C., and Das, A., "Stability and Control of Flexible Satellites: Part I - Stability," in preparation.
2. Likins, P. W., and Fleischer, G. E., "Results of Flexible Spacecraft Attitude Control Studies Ut'lizing Hybrid Coordinates," Jnl. of Spacecraft and Rockets, Vol. 8, No. 3, March 1971, Pp. 264-273.
3. DiLorenzo, R. and Santinelif, A., "State Space Attitude Control Synthesis tor a Satellite with Flexible Appendages," Proc. 13th Iaternational Conference on Space, Rome, Italy, March 1973, Pp. 339-348.
4. Saaty, T. L. and Bram, J., Nonlinear Mathematín, McGram-HIII Book Co., 1964, pp. 302-3n7.
5. Huang, T. C. and Das, A., "Nonlinear Motion Analysis and Control of Flexible Satellites," Measurements from Satellite Systems, Annual Scientific Report, Space Science and Engineering Center, Madison, Nisconsin, June 1974.
6. Huang, T. C. and Das, A., "Thermoelastic Flutter Models for Elements of Flexible Satellites," Paper presented at the 24 th. International Astronautical Congress, Baku, U.S.S.R., October 1973. Measurements from Satellite Systeme, Annual Scientific Report, Space Science and Engineering Center, Madison, Wisconsin, June 1974.
7. Gale, A. H. and Likins, P. W., "Influence of Plexible Appendages on Dualepin Spacecraft Dynamics and Cont rol," Jnl. of Spacecraft and Rockter, Vol. 7, No. 9, September 1970, Pp. 1049-1056.

APPENDIX A

The method of computing the time-optimal control torques for a system given by

$$
\begin{equation*}
\left.\underline{x}(t)=\underline{L}(t)+\int_{0}^{t} r(t-\tau)\right] \underline{u}(\tau) d \tau \tag{22}
\end{equation*}
$$

is now presented. Reference [5] presents computing alforithms and other details of the method. In Eq. (22), $x(t)$ is the output vector of the system, $\underline{u}(t)$ is the cortrol vector, and $Z(t)$ and $[K(t)]$ are known vector and matrix functions of the time, t.

It is assumed that, for a given $t=T, \underline{u}(t)$ should be such that

$$
\begin{equation*}
\underline{x}(T)=\underline{0} \tag{23}
\end{equation*}
$$

and $|\underline{u}(t)|$ for all t is a minimum. Thus, the minimum $t i m e$ problem is converted to the equivalent minimum control effort problem. The solution for $u(t)$ is then given by [5].

$$
\begin{equation*}
u_{j}(t)=U(T) \mu_{j}^{k} \operatorname{sgn}\left[\sum_{i} \lambda_{i} k K_{i j}(T-t)\right] \tag{24}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{U}(\mathrm{~T})=1.0 /\left[\underset{\lambda_{1}^{*}}{\min } \underset{j}{ } \int_{0}^{T}\left|\Sigma \lambda{ }_{1} \mathrm{~K}_{1 j}(\mathrm{~T}-\tau)\right| \mathrm{d} \tau\right] \tag{25}
\end{equation*}
$$

such that

$$
\begin{equation*}
\sum_{i} \lambda_{i}{\underset{i}{1}}(T)-1.0 \tag{26}
\end{equation*}
$$

and

$$
\begin{align*}
& \mu \star=-\frac{1}{U}\left[K_{1}\right]^{-1} y(T) \tag{27}\\
& {\left[K_{1}\right]_{i j}=\int_{0}^{T}\left[K_{i j}(t-T)\right] \operatorname{sgn}\left[\sum_{r} \lambda_{r} K_{r j}(T-\tau)\right] d \tau} \tag{28}
\end{align*}
$$

The sumation convention of repeated indices is not to be used in Eqs. (24) to (27) above.

Pifure 4

