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PREFACE

One of the great rewards enloyed by persons who spend their
lives in scientific research work is the unpredicitability of
what they are doing. It is an exciiing world and one I enjoy
immensely. However, not all of the surprises are the kind one
likes to boast about. Principal Investigators have to admit to
less productive years as well as proudly present their successes.

On this program, in the meteorological study area, we have had
one of those years., While good work has been done by several
persons, it is as yet too incomplete to include in this report.

We expect to prr.ent these efforts in next year's report.

I am happy to present three papers by Dr. Aniruddha Das
and his priucipal advisor, Professor T. C. Huang., Publication
of these papers concludes Dr. Das' development of a generalized
flexible satellite attitude control model and the application
of that model to somc relatively simple analyses, We anticipate
that i'as' model will be used by government agencies and by
industry in more complex applications.

1 am especially grateful to Professor Huang for his assistance
and support. We sincerely appreciate the patience and support of
the many dedicated persons in the National Aeronautics and Space
Administration with whom we have workcrd during the past year.

Verner E. Suomi
Principal Investigator
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STABILITY OF STOCHASTIC SATELLITES

T. C. Huang and Aniruddha Das

ABSTRACT

The effects of random environmental torques and noises in the moments of
inertia of spinning and three-axes stabilized satellites are compared analyti-
cally and by analog simulations. Four analytical methods are used to compute
the mean values and variances of the satellite response. Among the analytical
methods, it is shown that the Fokker-Planck formulation yields predictions
which most coincide with the simulation results. The variances of the responses
have been shown to have an initial period of growth. This growth rate falls
off with time and the variances reach and stay at an equilibrium valus. The
growth rate is also shown to be an increasing function of the inertia noises
and the nominal spin rate.

NOMENCLATURE

Ai‘ i = 1-4 = Arbitrary constants; Eq. (74).

a,, i = 1-27 = Coefficients defined by Eqs. (10-18) and Eqs. (19-27).
[ = Arbitrary constant; Eq. (74).

Dl' D2 = Arbitrary constants; Eq. (74).

E'{Fi} = Vector forcing function; Eqs. (91, 92),

f*.f*(g,tlé,‘r) = Conditional joint probability density function of w(t)

given the values of w(r).
_f_.{fil; i =1,2,3 = Arbitrary random forcing functions; Eqs. (1),(19)-(21).

£,(£,3 1 = 1,2,3 = Mean values of £,{f,}.

61,62,63 = Components of "200' HOZO' HllO' respectively; BEqs. (74),
(74a), (74b) and (74c).
] 11.12.13 = Stochastic moments of inertia of the satellite; Eq. (1).
Tl'TZ'YS = Mean values of 1., I, and I,, respectively.
J = Punctional defined by Eq. (95).
K = Polynomial function of p; Bq. (70).

L,L(el.e2.33|3.e) = Derivative characteristic function with parameters 01.
ez and 03 for the random variables wy for a given olt);
Eq. (7).
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a i{i=1-8
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6‘, i=1-3
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€40 {i=1-3
"1' i= 1-3
60 1= 1-3

“1’ f«]1-3

M, =13

= Matrix differential operator; Bq. (»).

= Covariance matrix of u; Eq. (5).

Statistical moments of w(t) for a given _Q(O); Eq. (30).

Parameters related to N

1y

by Eq. (108).
Covariance matrix of v; Eq. (94).

EBigenvalus of various equations.

A measure of the noise levels; BEq. (122).

Coefficients defined by Eqs. (74e) - (74g).

Coefficients defined by Eqe. (74e) -~ (74g).

Period of time in which the most-likelihood estimates

of w are required.
Time.

Coefficients defined by Eqs. (74e) - (74g8).

Random vector; Eq. (4).

Random vector; Bq. (93).

Coefficients of the characteristic polynomial for p;

2q. (41).

Components of ai Eqs. (46), (58) etc.

Lagrangian multipliers; Eq. (95).
Components of Bi; BEq. (109).

Dirac s delta function.

White noises associated with 1'11; 2. (2).

Largest absolute value of N

1)

for all 1 snd j; Eq. (108a).

Sample space vhite noises associated with 11; 2q9. (75).

Time dependent white noises associated with 11; . (75).

Parameters of L; Bq. (7).

e« Total forcing functions defined by Eqs. (10) - (12) and

= Memn values of ut.

Eqs. (19) - (21).



A'fi. {=1-3 = Total forcing functions defined by Eq. (1).

NEL 1.3 = Mean values of A'fy.

Al,xz = Parameters defined by Eqs. (71), (72).

is {=1-3 = Total white noises asscciated with Ii; q. (2).

n = Parameter defined by Eq. (74d).

p = Paraneter defined by Eq. (74d).

Prta = Statistical coefficients defined by Eqs. (6), (8).
9 i=1-3 = Standard deviations of w3 Eqs. (115), (116).

] = Nominal spin rate of the satellite.

_(3*.(0;) = Nominal angular velocity vector of the satellite,
o, (ui} = Angular velocity vector of the satellite; Eq. (1).
Q_,{ﬁi) = Realized angular velocity vector corresponding to w.
wij' j=1-34 = Components of w3 Eq. (®).

OPERATORS

E( ) = Statistical expectation.

O = Mean value.

[ :l.r = Transpose.

) Cas

INTRODUCTION

This study compares the effects of stochastic geometry and random environ-
mental torques on the pointing accuracy of spinning and three-axes stabilized
satellites. A comparison of pointing accuracies requires s comparison of the
rates of error growth over and above any criterion for the asymptotic stability
of the satellites. FPor this reason, this study is oriented towards the deter-
mination of the statistical properties of the satellites' responses. The
questions of stability have been answered indirectly by the computed responses.

The resson for considering the environmental torques on the satellites
as random is self-evident, The geometries of the satellites are considered
stochastic in order to have a phencmenological model of the motions of the
satellites' flexible structural elements., If a satsllite were absolutely rig-
1d , its inertis properties would have been constant for all time and measured
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to a near certainty. Because real satellites contain many flexible and moving
parts, their moments of inertias can be assumed to be stochastic variables with
certain associated noise.

To be more specific, the rigid body Euler's equations

L e e e TR

- A'fl

Ia + (I,-I

1%1 2)%393

. N -3t
12"'2 + (11 13)u1m3 A fz 1)

139,

- - At
+ (I2 Il)«»luz A f3
governing the motion of satellites will now be analyzed. In the above equation,
Il' 12. 13 are the otochut:l.c principal moments -of nurtu of the satellite.

The vectors w = [ul.uz.u3] and A'f = [A' fl.x'tz.l'f:,] srs the angular velocity

vector and the environmental torque vector of the s..~:lite, respectively, along
the principal axes of inertia. And A' is a parameter. The vector A'f and,
consequently, the vector w are random variables.

Equation (1) is an example of an intrinsically nonlinear system of equa-
tions with random coefficients. The difficulty of obtaining an explicit solu-
tion to Bq. (1) cen be apprecisted when we realize that the stochastic version
of even a simple scalar linear equation is actually nonlinear due to the de-~
pendence of the solution on the random coefficients. (See Refs. 1, 2.) The
situation has been made even more complex by the presence of several contradic-
tory methods for solving stochastic equations [1]. A widely used method of
solving stochastic equations is the Yokker-Planck spproach. In this, the equs-
tions are assumed to define a Markoff process and the trsnsition probability
densities of the responses ars computed directly as & function of time. Sev-
eral interesting equations have been solved by this method in Refs. [3-7].

Another useful method, using perturbation techniques for solving stochas-
tic equations, wvas discussed in Refs. [8,9). This is one of the "honest" meth-
ods in vhich response is solved analytically in terms of small random psram-
eters. The stochastic propsrties of the response are obtained from the ansly-
tic solution as secondary results.

A third promising method of solution can be obtained by extending the line
of logic shown in Ref. [10). This method determines the most likelihood estimates
of the response by maximizing the joint probability density of all the stochas-
tic varisbles of the system. This is essentially s formulation of the Kalman
filter for the case of deterministic coefficients and random forcing functions.

Lastly, there is the obvious method of {nitially assuming the system of
equations to be deterministic and then attributing the proper stochastic prop-
erties to the deterministic solutions. It {s, of course, true that this sethod
is rigorous only if the random parameters are constants in time. The stochsstic
properties of the aigenvalues and eigenvectors of such systems have been comput-
ed in Refs. [11,12]). This method is worth investigating for slowly varying
parameters with random step increments.




The response vector, w(t), of a rigid satellite governed by Bq. (1)
will be analyzed using the above mentioned techniques. The analytical responses
are then compared with results of an analog computer simulation. This allows
verification of the relative merits of the analytic methods.

THE FOKKER-PLANCK APPROACH

This method of obtaining the response characteristics of stochastic equa-
tions is based on the analysis showr in Refs. [1,13). The application of this
method on Eq. (1) proceeds as follows:

Let the random variables Bpe Yy Mg, 61. 62 and 53 be defined by the equa-

tions
LeT +u ;1123 @
ME ST 48 51,2,
The bar on top of a srubol indicates mean values. Hence,
Ve F =0 120,23 &)
Lat the stochastic vector u be defined as
PN TR U AR U i )

It is assumed that u 1 and § L 4 = 1-3, are vhite noise disturbances, such that
the matrix elements, H”. 1, = 1-6, are defined by

““1“5’ - HuG(t) &)}

In Zq. (5) &0d in the following, (t) is the Dirsc's delta function and the
operator E{.} denotes statistical expectation.

Let ’m‘“v;z":’s"’ be the statistical coefficients of various orders
vhere w, are the realizations of the responses Ly for 1 = 1-3, st any point

in the time and semple spaces. Let it slso be defined that f*[u,t lé(o).o]
is the joint conditional probability density of the response vector, u, given
the values of w(0) at t = 0. Thus,

L ] - » - - t - -
Pt * oo IRe (g0, ) (030) (g Pt0 (0, t¥0t |4, 0)d0 duduy.  (6)

Although Bq. (6) is used to define the coefficients Oytu’ these are usual~-
1y calculated from the derivative charscteristic function

L(ox.oz.oalg.:) .
This, in turn, is defined by
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L“p’p',l-.t) - AM “ (Rlexp(1 J: oj(- (un)-. @ Nlmt) - 11 M)

where 1 = /<1 ,

Comparing Eqs. (6) and (7), sn alternative definition of Prra Co0 an be
obtained as

R fetial
Prim ” [
301302303 o - 0,0,- 0 ®)
Let it be assumed that
uj(ﬂAt) - uj(t) - uj(:)-u (9)

The values of Piym OTE DOV easily calculated from Xqs. (7,8,9). PFor example,

L Lim 1 3 3 -
100 ® "33 ]6. = 0 ™ 1 ace0 g 7o [Blexpli I OjuJAtllg.t)-l
14171 1 =1 1" 0
02 =0 . " 0
6, =0
3 F3 -0
°f P00 " ‘t‘o ic [l(u at]u,t))
Lil [} 'y T o~
°T 0100 " ae Bt "‘H— ('t - AyrTtiyouy)uyeyll)
. Lim 1 8t Y1 . (R -
* aes0 B¢ '(71 a- ixm'!l AyTy¥uyupdugeyl}
Expanding the right hand side and neglecting the cubic and higher order terms
in Ujo
,m.x u.lg_':L” 3 3V 'l‘u'n 10)
1
Proceeding similarly, it is sasily seen that
N, .~
B P Ui L R R L PR ;
9010 - Y £ 1 + !3 11)“1'3 Y + 2 !zl Q1)
2 2 2
_l_ _2.2-”‘! v TS o x“ Xri
001 * i, (o T, +1, - 12)'1"2 Y;- + A !,l (12)



4(1,~1. )

a1 ) 3 ~242
P200 = 3z Mgy = 23 + My, 04,5, ) ooy
1
4 = = " oa
+ i Ty, - 20050168, + 4y,] (13)
3‘I )
f110 * 'fT (M5 + Mpq - My, - My, + 04 5%),)
I,-1,) T,~1,) (I,-1,)
34 3Tz 7L
T Oyiyy) e (M) e ()
I, 2 2
(i3-iz) (Y3-T1) . a,-1p

~ .2
17, M lugepig + (M, - My, - I, M4

(I,-1.) I,-i,)
371 a o~ 3 "2
"7, MpJog g + My - My + I M5
-y .
+ _1.2 st}w2u3 + ll“] (14)
(1,-T, )

3
°101 " —113 ()3 - Myy = My + My ¥ I TRty

('fl-‘f ) (Ts-f ) (Tl-'fz)
054 ) + A 0y5-4y3) - — T, (M33-455)

Y - (I-1

}w uzl:) + { -M 1 2) M
=3 Mpgluguguy + My =My = =5 My
13 1
(I,-1.) I,.-1.)
175 . . vl
T T MagJayey (Mg - My + Y6
3 1

T-iy

+ -_i;— H36)w2w3 + Hﬁﬁl (15)




e ) - 22
®020 = 32 My - 20, + ), - ; @y 1) 0y, ) N

2
+ (2044, ) - TL (@,T) My 00,6, + M) (16)
2
1,1
Por1 * ’2"13 (04, =My )y + M, + 01y, )
(I,-1.) I,-1,) (63 -1)
2’0 51 2
+ My ))) + —5— T, Oy M) + —5 T, 05574, 5)
I,-1)d,-1,) (1 1,)
GG % I
R My dajiiy + My ~ Mg - My
2'3 )
v 5 IT,-1,)
(1.-1,) A A 2 1
o317 H“}mlua + {"15 - My + T Mg
I3 2
(Tz-_fl) .
+ T3 Haslulwz + H“] Qan

1
Pooz " 3z (M = Py + My, - “z T)) 0054, ) Yoy
3

‘ — o~ LY
+{ T-g (Iz-l[l)ll36 - 2(}126-!!16) }01«)2 + H66] (18)

All of the first and second order expressions of Piam BTC listed in Eqs. (10-
18) abova. The third and higher order Pron BT usually small and can be neglect-

ed. Suitably defining the set of constants a,, j = 1-27, Eqs. (10-18) can be
revritten as

P100 = Bydpiy * M, - a, (19)
P010 = %3%1¥3 + Afz -8, (20)
Poor = Ss¥i¥; + st - 8 (21)
Doy ® 86262 + 886, + 8 (22)
200 77273 823 9
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P10 ™ S10hidyiy + &y8dy + 85058, + a5 23)
Pygr = 214dyigoy + a150yd, + 4@l + ap, 4
020 = alsaiﬁg + 119«;1&3 + 8y, (25)
PorL = Bg1babyly + 8y, + 8,065, + 8y, (26)
P02 = ‘25““’%‘:’% + .265162 +ay, (27)

Because the values of Peta * corresponding to the gystem given by Eq. (1)

are at hand, the Fokker-Planck equation involving the density f*[g,t|§(0).0]
for that system can now be set up. This equation for the density is [1)

*
:i - I _(_l)kﬂ.-hn ak+£.+m © £ @8)
k+i4m>0  k!2im! akon ol T kRm *
aw13w23w3

Substituting Eqs. (19-27) in Eq. (28) and neglecting all third and higher order-
derivatives, Eq. (28) reduces to

2 2
of* EXE L § a242 aa AR
2« 3 (0,030] + aghyiy + ag) il 2 (a)guwy + a)qu 03 + 85123
wl awz
+—[a +a W0, +a,.,] S +[a ww2+a 0,0,
2512 269192 + 27 wz 10919293 * 811919
3
+a, 0.0 ]—-——r—+[a &&2& +a, 0,0, +a,,0.0
12293 * 213 3550, * 1R14019203 A5t Y %16ty
2%¢n . .- a2g%
+a,) e, Tayouy | [8,y5 gy + 8,901y + 8y3byiy + 8y, ] FrE- auzaw3
. a2 Zeai J— af*
+ lagg0,03 + 8),0; + 8),8,8) + a;60, - 83,0, - A + 8] o,
. a2 R 2. . R — af#
+o[a)g0y0y + @) 0y + 8y 015y + 88 - aju 0y - A, +a] %
,.2» - -2- - A A Se af*
+ [a) 0o03 + 80, + 85y + 8y50) = By, = ALy + ag) £
a2 ald a
[ ]
+ [110w3 + 8,0y + nzlullf . (29)

s s 1 o e e 4
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The values of the density function can be obtained by solving this for-
midsble linear second order partial differential equation. But little useful
information is obtained from the density function. The truly useful statisti-
cal parameters are the mean values, variances, covarisnces, and other higher

order moments of the satellite response. These parameters form s family, Hu_-,
vhich is defined by

“u- = _£ _{ _.{ 8“&;(& -0 [a, ¢ |8(0),01d6 X RN 30)
and hence
Wy = » o
3 " :r. _'f. .‘{ul 2(~ N ST 46 dd di, . (31)

where Q 1is the nominal value of the spin rate. Substituting the expression
*
for :—i— from Eq. (29) into Bq. (31) and integrating, it is seen that

ll100 =80t Ay -8y T @2
Hoo = 85800 + 8y = 8, +3F, (33
Moo1 = sl 10 - 26 + AE, 68

Hago = 2 -ayly o0 + agiiy, o + 20,08+ a,0%p,0 +afl)) +eg  (39)

M0 = (a0 + 3, - 4R g0 + (8 00F Ry o + a4 ‘10“2“110

+ g+ o, + a My, ey, (36)
Mgy = OFgaghy oo + o,y + GF -apityy, + a8,
ot (0,00, O ) + 1y, @n
Hozo = 819%ig + 20E,ma g g + a0 W00 + 20,8

*aggiio + g (38
Rory = 82300 + OF-agily o + GEp-a g, + ey,

+ (s, 4».30){1101 + .26 (39)
;00 = 2(Af "6)“001 + s, 110 4, (40)

In deriving Eqs. (32-40), all third and higher order moments have been neglect-
ed . Solving these nine firet order ordinary differential equations, the mean

e s
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values, the variances, and the covariances of the satellite response are ob-
tained completely.

THE FOKKER-PLANCK RESPONSE

At this point, it will be interesting to analyze the response predicted
by Eqs. (32-40). These predictions will later be compared with an analog simu-
lation of Eq. (1).

.Let it be assumed that, at t = 0, all second order moments (k+iim = 2)
and HDOI are equal to zero. In this stage, the satellite will behave as it

does in the deterministic situation, that is, it will begin to precess with

a rate proportional to §. Then, as the values of H°01 and HOOZ grow with time,

the precessing rate and the nutation angle will also grow, Finally, the satellite
topples down. This phenomenon occurs physically and in simulations. Thus, Eqs.
(32-40) predict that the satellite response is greatly sensitive to the values

of ag, (Xf3-a6), a6 and a,;. Because ay7s 850 and ag are non-negative, these

equations predict that an uncontrolled satellite governed by Eq. (1) is inher-
eutly unstable in the presence of random errors. The same conclusion can be
drawn by applying the stability criteria of Refs. [14,15) to Eq. (1). The
error growth rate of the satellite response can be minimized by minimizing the
values of ag, ac, a,., and Af,. This can be done if Ifs = 0, Tl = T, and the
matrix Hij is a diagonal matrix.

The relative rates of error growth of spinning and non-spinning satellites
will now be examined from the characteristics of the eigenvalues of Eqs. (32-
40). It can be shown that the eigenvalues of these equations satisfy a ninth
degree algebraic equation of the form

9 8 7 6 5 4 3 2
p + asp + a,p + 06p + asp + ap + a3p + a,p + ulp 0 (41)

where a,, £ = 1-8, are appropriate constants.

1'
It is obvious that to have bounded growth rates, oy for all i must be non-
negative. It can be shown that

2 a? (1,1
og = ~ag? = - g M3 My - My m My v Oy
112 1
a,1p (T,-1) (1,-1))
7L 5 7
o (Mg T My T (M)
1 2 2
(1,-1)(1,-1,)
31 32 %2)
1,1 12
L)

Because usual satellite geometries are such that
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13 > Max [Il,lz]

Bq. (42) says that ag £ 0 if, and only if any of the following conditions exist:

Q=0 (43)
nax(M);,My5] < min [M)),0),.M)0M3) (44

In particular, ag >0 if M, 2 0 and
M3 =My =0 (%3

since min [un,nzz.n33] >0.

Equation (45) states that one of the conditions for a bounded error growth
rate is satisfied if the inertia noises in 11 and 1, are independent of the

noise in 13. But this condition usually is not satisfied because

=1 +I, and I,=1 +T

L=L*+L 3" L+t

and hence

Hym ity
and, therefore,

Pt TR P)

My =My + My, -
Thus, at this point it appears that Bq. (43) provides the only suitable con-
straint and that this constraint is available only to three-axes stabilized
satellites.

Now, let the conditions required to make ay non-negative be considered.
It can be shown that a, is of the form

4 =a,+ G, 8+ 07202 + u”ﬂ‘ . (46)
where

B0 = = [8y58)5 + 853815 + 8)53)] n

L 2[.1323 + aalul (48)

a2 = = 6818, “9

T (50)

Another reasonable assumption we can make nov is that the inertia noises, ¥ g
are independent of the forcing fumcitons, Af 1 Assumi.:g this,
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R S S S PR P R TRl Tl GL
319 " 82 T 83 "8 "0 G2
Using Eqs. (51,52), the criterion for non-negative a, becomes either Eq. (43) or
2
aj, v a8 20 . (53)
Equation (53) can be expanded to obtain
2
Bajay + 2840 <0
or
M. .~ M
1 — — [ —
T Nt B TP e -
I.1 1 372 371 1
172 1
a? 4(Y3-72)
t g May m By My - Oy iy - A,
172 1
4(I,-1))
My T T Myl <o o
Assuming the satellite geometry to be given by
Iy a1 &1 (55)
273 1 2
My =My + 1, (56)

and that Hij are small compared to Yi' Eq. (54) can be further simplified to
read

1, - “11(3"22"2“11)"2 20 Gn

Equation (57) is almost certainly satisfied for all real satellites and hence,

@, is almost certainly positive. Equation (57) also states the obvious fact
that, in the presence of inertia noise, a high spin rate tends to make the sat-
ellite unstable.

The expressions for ag will now be considered, It can be shown thst 8
is given by

+a..+ta 02+u

6
g = %60 * %1 * %3 63 8 (58

3 4
a4+ “6&“ + °66

where
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B0 = = (817815853 + 2,88, (Af)-a))(aza, gtaga,,)
+ (M5-a,)(a,8,,%a58) ) + (Afy-a() (a3, -8,2,,)]

Ggp = = (84398, + aja,58,9 + 2243)58) 5 + 222,10y + 4a)ay (M 5ag)]

61
%2 = 810*16"23

963 = 2[aya1895 + 243,48)6)
%q = 2(ayay3,4 - ade; - ‘i“ls’

%66 = 27%10"18
It has already been mentioned that, if (—kf— 3"6) is non-zero, then even the de-

terministic response is unbounded. Hence, to make any useful comparisom, it
must be assumed that 0f3—56) is either zero or has been made so by appropriate

controllers, Assuming this and the satisfaction of Eqs. (51,52}, ag becomes
6 2 2 &
g™ 378)08) g8 + 2(8,858)5 - 238, - aja Gl . 9

Hence, for non-zero values of 0, small "1,1' and with the geowetry given by
Eqs. (55,56), the conditjon for non-negative values of ag cen be obtained as

n‘l‘ + 9 o . (60)

2
2?2
The above relation is satisfied almost certainly for all real satellites.

A similar treatment for the coefficient g yields the inequality

~
&

=4 2 1 a5l . Giae
I, - M M0t - oo Q)T = QE)71(M,y,-M,4) > 0 (61)

vhich 1s also satisfied.

Carrying on with this procedure, it can be shown that the coefficients
G 9y, Oy, and o, are all well behaved and positive definite. Thus, the

only criticsl coefficient is age This is approximately given by

2
2 a

i Bl Ui B P 2 (62
1

where “11 and sz are the variances of the inertia noise along 11 and Iz.
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respectively.

T A

To give a clearer picture of the error growth phenomenon, we will analyze
the response of a three-axes stabilized satellite.

Let it be assumed that initially

i
i
i
i
{

Q=0 (63)
ag =0 (64)
My -ag=0 (65)

and Eqs. (51,52) are satisfied. In this case, all coupling in Egqs. (32-40) '
are lost and the responses grow linearly with time, according to the relations ;

-

Ni00 = D) - a,lt i

= Af, - alt

x>

1
—
>t
baal

]

8,17 (66)

- = 2.2
M0 = lkfz - a,‘l t

The growth rate of the responses is greatly changed {f Bq. (65) is not used, s
though Eqs. (63,64) and Eqa. (51,52) are used. In this case, the following :
four equations remain coupled: }

K >

100 = *1Mon1 i

- 3

o1 = (ME3maMg o + (AEy-a )My,

b10 * ~*1M1m (67)

| 213

o1 = (Mf3-8M 05 + Af-a))My,,

where
¥o01 = (Mf37%¢)
The eigenvalues of Eq. (67) satisfy the following slgebraic equation;

(p* + a2GEyrap?) = 0 (68)

e ek
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Equation (68) states that, apart from the linearly growing components, there
will be exponentisl and sinusoidal components in the satellite response, when
01'3-16) is large.

The above mentioned cases, identified by Eqs. (66) and (67), are extremss.
A real situation can be portrayed better by assuming (113-06) is non-zero but

very small, leading to a slight coupling in Eqs. (32-40). This causes a small
non-zero value of i to be developed, although Eqs. (51,52) are satisfied. With
this compromise, the eigenvalues of Eqs. (32-40) satisfy the following charac-
teristic equation:

2,2.2.2 3 2 2 2 4 2 4
P ) p -.wn p- 4+ (40 -.7.180 P+ (.7.10.189 -217-2a18)ﬂ ]
- agkp = 0 (69)
- - 1=
where it is assumed that I1 - I2 -3 13 and
2.2, 4 3 2.2,,,2 ,2 2
K= (AR = 80,097 + p R [(A3-A]) (S+a,a, 0%)

3 2 2 .2

+ 22,00 4 ] + 4pa [ ), (4ase 07) + G Fa oA %e)

+ ns[. 2 n(z-xz) - 222, (a 4a. )] (70)
721894722 A AT

In Eq. (70), Al and kz are given by

P
o]

\ =M -, M)

ol
lad]

Ay =y - e, a2)

Equation (69) can be viewed with a better perspective by considering LY
8, and a4 to be small. This reduced Eq. (69) to the fora

(2022 (p2a, alpraa?) = 0 3)

It is now clear that & spinning satellite will hegin to satisfy Eq. (73)
immediately in the presence of noise. A three-axes stabilized sateilite, on
the other hand, will satisfy Eq. (73) only after v period of linear error growth,
If a,, is equal to zero, Eq. (73) predicts a dominant cyclic response vith the

nll.l frequencies of 0 and 28 . The solutions of Eqs. (32-40), corres-
ponding to the characteristic Bq. (73), are sasily obtained as follows:

le -q

- )

KOO! Q

e e e e e g
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R Ay
llmo "~ + (A1+A3t.)cosnt + (Az-A‘t)llnﬂt
ﬁ°10 - %% + (A1+A3t)linﬂt - (Az-Aht)coaﬂt
.101 - Aaninﬂt + Akconnt
ﬁou = A sindt - Ajcosit (74)
Mypo = C+ expi} a,8t]{D cos20t + D,sin20t} + G, ()

. 12
Moo € - exp(?mn tl(chosznt + DzlinZQt} + 6,()

N Xllz exp[-’z'- lloﬂzt]
"no .-+ —_— ((161:1-1..10092)-1::20:
f (1641100 )

- (16n2+6.mm1)co.zn:) + Gs(t)

where Al' Az. A3. Ab' c, Dl and IJ2 are arbitrary constants, and

2
a A A A
107172 1
Gl(t) - 7a nz + Allruunm + rucount]

+ Azlrucinm + rzzcosnt] + A3[r31tunﬂt + l’aztcoﬂlt

+ r”unn: + r,,cosfit] + Ablr“uinnt + r, teosfit

34 42

+ r,.8inlt + t“cosntl (74a)

43

a4
Gz(t) = -3 - ? + Alllucolnt + .uunm]

+ A, (s, ,conflt + 8, ,8in0t] + A_[s  tcosfit + s, teinQt
20721 22 373 32
+ l”coont + -uunncl + Abllutcolnt + c.zulnm
+ uucomt + -“-mm] (76b)
GJ(t) - Alltncomt + tulinnt] + Azltucum + tzzllnm]
+ As[:ntcocnt + taztlinnt + t”colﬂt + tuolnﬂt]

+ A‘[tutcooﬂt + t“utnnt + t“cum + :“-unc] (74c) i

o
M



In Bqs. (74a-74c), the constants r

13° %1y° 1
Let " and p be the numbers given by

2
n- uloﬂ

2

o = t9a? + 4217}

- 39(3!10 - Azll)

~
L]

12 = - B8 - A )

2,

Tt T® ¥ it
2,

TR Ty, 8,2y,

2‘12

39(3xzn +Aw

1 1)

a,
22" % Ty Ty Tyt 2y, -5

- 2
80 = "2ty 8y = 2ty -

B3 "t i %32 b2

2
.L - -
) [8112 182 0 " 21X

il RN

t33

w9 ande2a 03

2
- 3. 2
ty " g (812,87-722,09 v 9 01 21l

2, 2t,,
TR Ty i Tyt Aty iryy -2ty -

x 22
——31 —-—— . - —2
Ty * 2: - ¢ az P 8y -2:,2 -3

b3

2t 2t

. .- k) —32
832 % 2ty i B3y ey v g i 8y, = Ay g+
ta” "ttt "ty
g_ 3 _ 2. 2
tyy = & (0,0° -1 jele - 20 0nf ¢ 200 1)

I S |

I
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and t, . are defined as follows:

(744)

(74e)

141)

(74g)
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2
£_ 3 2 2 _ 3
t = 7 (812,07 ¢ 720.0% ~ 2100w, - 22, M)
»y iy 2y (7en
Ty "y Tt Ay T i Tyt 2y - 2
2t n
6l . 2,y
e e R SR P L R R
2t 22 2t
-- ML 2. - 2
T THetTT t T Mt et

The nature of the functions Gl(t). cz(:). and 63“) can be given a simpler form
i1f a . is neglected in Eqs. (74a-74h). In this case, the functions are given by
2
A

1,2
G (t) = - = + 3 (3,4 =A,0(A, #A,t) Jcontit

10

2
- 02 [AIA‘ + Azn(Az-A‘t)]uum

2
A
2,2 - -
G,(e) = - 2 + 2 (2,4, = 200, A, t) Jcostic
2 (741)
+ ;2- Ay + Aln(Alﬂat)]aim:

G(e) = 3 A (A*ALE) + Ay (A A 0) + 1 (AAg#A A Jcont
1 1
-4 [XZ(AIM:’!) - Xl(Az-A‘l) - a(llhs-lzk‘)]llnﬂt.

The constants Al' Az. AJ. A‘. C, DL‘ and °2 are calculated from the appropriaste

initial conditions. BEquations (66) and (74) provide s basis for comparison of
the error growth rate of spinning and three axis stabilized satellites. If a .,
given by Eq. (62), is large and Al. or Xz sre small, then a three-axes mbm“a

design is varranted. The reverse is also the case. Interestingly snough, all
these predictions have been borne out by analog simulations.

THE PERTURBATION SCHEME

A perturbation solution of Eq. (1) will nov be obtained with the assumption
that A'f, and that the noises associsted with the moments of inertia of the
uunlt& are small. The inertis noises sre defined as

L el 4 ¢+ “1“) i 1=1,2,) (7%)

vhere L and n, are the nofess in the sampls and tims spaces, respectively.
The angular velocity responses, v ar8 aseumed to be functions of the seven




small paramsters )', ¢ and n, of the form:

1]
“ -m+x«nm+c1u

1 01 AR TR TR UV VTR U

|2 L] 1] .
+(A)w”+x:luu+xczu”+X¢

0 * M M
#ATNgep * ANgug gt (%014 * €165005 + Cyequyg
* oMoy Y 6% * S Mte t “z)z”xzo + 634
*eneian Y 6Ny t 202y * e300y

+eanwigg T EaNgygy ¥ EaNyu g ¢ (n)2uy5 + M0
+ nngegy * () %0y5y + nynguyyy + gy, - 6

In Eq. (76), the cubic »nd higher powers of the small parameters are neglected.

The quantities ﬂ: are the nominal values of the angular velocities W, It is
assumed that

af - o= 0

Qs = ] » g constant

“ Q) = “’2(0) =0= (u3(0) - ) n

Equations (75), (76), and (77) are substituted into Eqs. (1) and separate
squations are then formed corresponding to each of the various combinations
of the small parsmeters. This classical principle of separation of parameters
results in only a few of the multitude of terms on the right hand side of Eq.
(76) being non-zero. Thus, a more coupact expansion for the angular velocities
is obtained as

®, = X'um + (A')zm17 + X'clu“ + A'czu“ + l'c3u11° + x'nluln
MERPUTP RN UTE

wy ® X'wzo + (x')zm27 + A'clwz‘ + x‘tzwn + A't3u210
* Angugyy # ANgegpy AN,

wy " o+ A'u” + (X')zun + l‘tsmno + V"J”!U

Let L* be a matrix differential operator defined by




I, 0 o wy 0 (11,08 0
L*(wi) - 0 I2 0 w, + (11—13)0 0 0
o 0 T 0y 0 0 0

Then the perturbation equations for the components of w given in Eq. (78) take

the form

L*Qlugg) = [ ', Ay, ME)T
LD %) = [T 0 luy) ey T T 0oy ) (Wayy)

T T T
@1 o)) (M 'ay)]

] __1_ (] T - ) nY] T T
L*()\ tlmis) 1, [{x 519(13—12)u20 by clfl} » =A clﬂmloll, 0}

L*(A'e

_=1_ v T - T T T
2w19) i, [ Szlzﬂwza. A 52{(13 Il)ﬂmlo + fz} , 0}

. T
[ - e ' ' - '
L&) c3w110) f 9531 W0 ne3x w0 zax m30]

. T
' - - *
L*Anj0,4)) O x“1““’10 » 01

* T
' - [t By
Le(A"njuy19) = [ATnyf0,0 + =A"nyuyq 5 0]

. T
' - [a)? ' Y
L*(A"nqugy3) = [=A"ngfupg » A'ngfleyg 5 =ATngugp)

Equations (79-86) a‘e easily solved. In particular, assuming

L=l=314

[ST] ]

\ - ' -
A fz A f3 o,

the solutions to Eq. (79) and (80) are obtained as

t

A'wlo - %; fo co:R(t-t)A'fl(t)dt

t

T .__1- - A
A ®50 Ti IO sinfi(t=T)2 fl(T)dT

-y =w.,=0

@ 27~ “n

=

30 17

and hence

-0

310 313
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(79)

(80)
(81)
(82)
(83)
(84)
(85)

(86)

(87)

(88)

(89)

(90)

M)

i
j
}
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‘The perturbation solutions obtained so far from Eqs. (89,90) agree closely
with the Fokker-Planck solutions given by Eq. (74). But the drawbacks of the
perturbation scheme become apparent when Eqs. (81-83) are solved. Equations
(81-83) predict a secular growth of the angular velocities even for the time-
independent sample space inertia noises, £,. This is obviously not true from
a physical standpoint. Thus, all perturbl%ion equations involving €., but not
"i' must be discarded and the parameters ci must be absorbed in T;. Equations

(81-83), then, are discarded and €, are set equal to zero, so that Eq. (78) re-
duces to

- ! v ' '
wp = Mejg ¥ ATngey gy AT F A3y,
- }! * . t
wy = Awpg + ATnjuggy AT ngg10 * ANk
- L]
Wy Q+ 2 Nyligyq (90a)
Equation (90a) predicts that, if X'fi and n, are independent, then the mean val-

ues of the amplitudes of ©y and w, do not grow with time. It also states that

the variances of the amplitudes are stable and oscillatory and that the ampli~
tudes of oscillation of the variances are constants for all time. In other
words, no growth rate of the variances of w, is predicted by Eq. (90a). Con-
trary to this prediction, it will be seen 1& analog simulations that the ampli-
tudes do grow with time, even if A'fi and n, are independent.

THE MOST-LIKELIHOOD APPROACH

The method of most-likelihood estimates will now be applied to the system
described by Eq. (1). As mentioned earlier, this method is based on maximizing
the joint probability density of the random variables under the constraint
that Eq. (1) holds. It can be shown that this method, when applied on even a
linear equation, finally requires the solving of a nonlinear equation. For
this reason, the nonlinear Eq. (1) needs to be linearized initially to make ana-
lytic manipulations possible.

The well-known linearized form of Eq. (1) is given by

Ly =Hh

Izéz -F, (31)
Iy =Py
wvhere

- ' - -
Pl A fl (I3 12)0m2

- ' - -
Pz A fz (11 13)0w1 (92)

t
13 -2 £3

Let v be the vector defined by
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T
vse [“11u20u3561p62|53] (93)

Let the matrix elements N:lj be defined by

E {v:l vj} = Nijé(t) (94)
Let the functional J be defined by
T
-1 .
Je ¢ f {v,[N 1,, v, + 28 (I w-F ]t (95)
10 1 13 V4 (i "

where B; are arbitrary time-dependent Lagrangian multipliers. It can be shown
{10] that the most likelihood estimates of w, are obtained by minimizing the
functicral J in the interval [0,T] with respéct to the variables vy and w, .

The variational equations for minimizing J are given by Eq. (91) and the
following two equations:

-1 _L . R -
;i N lij vy + W, i Bk(Ikmk Fk) 0 (96)
oF
4 i
at (L&) + E ez = 0 o)

The terminal point condition on B is given by

B,(T) = 0. (98)
Assuming that

Ny = Nyg = N3 = N3 =0 (99)
and

“4_1'"1&'0 if § ¢4 4

“53'“_15'0 ifj¥5 (100)

NGJ-Nje-O 1If 346

Equation (96) can be opened up to read
uy = Ny [Bjug + 00,8,) + Ny [By0) = 28,0,)
vy = Ny [Bjay + B0)81 + Ny (B, = 080,
By = N3y [Bjug + 8(Bjw, - u)B))]

(101)

6= “Nuby
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§; = Fs5sfy
55 = Neghs

Using Eqs. (92) and (101), Eqs. (91) and (97) can now be reduced to the follow-
ing forms:

[T, + By (8 )0 ¥0,8,) + By, (80,08 0,1, + 2T,
+ Nyy(By0y + B(B10,-0,8))} = K, (B 0+, 8,)
= Ny (B,0,-08,0,) Jwy - X'E) + N, B, = 0 (102)
[T, + N, (8,0, + fw8,) + Nyp (By0,-08 0,00, + B[T,-T,
- By (80y#00,8)) + Ny, (8,0,-08,0,) - Nyy{Byoy
+ 0(8 wy-w,8,) Hu, - TE, + N8, = 0 (103)
3 * Nyy{Baiy + QB wy=0 ) ug - XE; + NgcBy = 0 (104)
[T, + ¥y, (804 8,) + N, (B,0,-98,0,) 18, - AIT;-T,
+ Ny (8,0,900,8,) + B, (80,08 0,) = Ny(B30
+ ﬂ(Blwz-wlez))]BZ =0 (105)
o+ N (8,04 8)) + N, (8,0,-08 0,) 18, - R(T,T,
+ Hag{By0y + (810,70,8,)} = N (B 0, +00;8,)
- Ny (Byw,-08,0,)18, = 0 (106)
(T, + Ny5{B,0, + 2(8,0,-0,8,)}18; = 0 (107)
Equations (102-107), together with the initial conditions on w, and the end
conditions on By given by Eq. (98), form the final two-point bsundary value
problem coverning the stochastic motion of the satellite. To solve this
problem, a perturbation sequence for 81 and wy has to be adopted.

Let it be assumed that € is a small parameter and the numbers Nij are of
the order of ¢ or less. Let Ni' i = 1-7, be defined as

“11 - ch
Nip = Ny
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Nyz = €N,
Nyy = N, (108)

LY

g5 = eNg

-€R7

-ens

Yoo

where

€ =Max |N |
1,3 4

Let the variables vy and B N be assumed in the form

. (108a)

2
ui u10+ cwn + € u12+ cor

2
By =Bt esu + € 812 + .. (109)
such that
81

3 (T) = 0 (110)

Substituting Eqs. (108} and (109) in Eqs. (102-107) and separating the co-

efficients of co. el, cz, etc., it can be seen that the zeroth order response
is given by

B0 = O @)
Tyope + (T Tpuy, = V'E,

Ty0p0 = @100 = VE, (112)
f3‘.“30 -\

After some involved algebra and the use of Eq. (110), it can be seen that the
predicted response from the higher order perturbation equations has essential-
ly the same characteristics as that obtained by the straight forward pertur-
bation scheme explained in the preceding section. Thus, the method of the
most likelihood estimates suffers from the same drawbacks as those of the per-
turbation method.

THE METHOD OF STOCHASTIC EIGENVALUES

According to this method, the deterministic solutions of Eq. (1) are to
be obtained first. Stochasticity is then imposed on these solutions to esti-
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mate the behavior of the asystem which was random from the beginning. Although
this method is not exact, it is much simpler than the methods previously dis-
cuseed.

For example, the approximate deterministic response of a three-axes stabi-

lized satellite is given by
t A'fi
w,=f —=dt ,1i=1,2,3 (113)

1 % 4

Hence, assuming A'E, to be a constant, the mean values and the variances of wy
are given by [16]

T'ii
Bo) st 1)
1
E(u} = (0)%¢? (115)
where
e -
2 1 ¢ fl)z"n + 1?‘44
== —— ]
L L+M,
2 1 “'fz)?"zz + ig"ss
f.
05 == [—=2 ] (116)
2 2 2+ n
2 2t ¥y
— -
2 1 @ f3)2“33 + Ii"se
BT =2 }
1 1+ My,

In deriving Eq. (116), it was assumed that ¥y and 6i are Gaussian random variables.

For the case of a spinning satellite with Tl - 'fz = %Ty T'-J = 0, and

constant values of T'?l and 7‘?2. the deterministic amplitudes and frequency of
oscillation of wy and w, are given by

Preq.[wll - Pteq.[uzl = u,

N, ',
Mmp.[u)] = =—= = == (117)
Y3 T2
1] 1
AEAE

Amp. [w,] = = ® =
2 Tw, 1,0
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when ul(o) - 02(0) =0,

Hence, the growth rates of the amplitudes and frequency are described by
the variancea, which axe

B{{Freq. 0,11} = B{{Freq.[s,]1} = (o5)%¢? 1)
TvF 02,22
('%,)%2¢% + alu
2 1 2”3 55
B{[Amp.[w,])°} e 55 | 1
1 I:QZ ) 02 + ogtz
(119)
TV 12,.2,2
E{ [Amp. [, 11} = 2= - 'fl)zq’t 2+2n2n“
Iln a + o5t

From Eqs. (114) and (115), it is seen that the approximate predictions
for the responses of three-axes stabilized satellites are quite satisfactory.
Equation (118) approximately predicts the frequency growth phenomenon. Equa-
tion (119) predicts that, when t is small, such that o4t is small compared to

R, the variances are of the form

" 222
(A'f 0.t
2 1 273
E{ [Allp.[ul]] } = ‘1——2n2 [———-—-—-—2
2

+M (120)

|
Q 55

But for large values of t, the variances will reach a constant value. This is
given by

A
2 2.2
E([Alp.[wlll } = (Tﬁ) . (121)

The prediction of an initially growing variance finally levelling off to
a constant value 18 satisfactory and is corroborated by analog simulations.
The only protlem with Eqs. (120) and (121) is that these equations predict a
lower growth rate and a lower value of the asymptotic variance ae Q becomes
large, In this respect, Eqs. (120) and (121) differ from the Fokker-Planck
formulation and the analog simulations which give higher growth rates and
higher values of the asymptotic variance for larger values of Q.

P

ANALOG SIMULATION

The results of simulation of the satellite response, as given by Eq. (1),
can now be presented. The simplified system block diagram is shown in Figure
1. This system was programmed on an AD-256 (Analytical Dynsmice-256) analog
computer. The white noise {nputs 1, and &,;, i = 1-3, were obtained from a
coupled SDS~930 (Scientific Dats Syitm-ﬁo) real time digital computer. A
high frequency RO (Repetitive Operation) clock circuit from the AD-256 was
used to trigger a pseudo-random number generating program in the SD5-930., Sam-
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ples of twenty such pseudo-random pumbers were used to form a Gaussian white
noise sequence with a zero mean value and suitable peak values. Six such in-
dependent noise sequences were continuously generated in the 3NS-930 and fed

to the AD~256 through six DAC (Digital to Analog Converter) lines. One test
line was also used to interrupt the SDS-930 and change the peak values of the
noise sequences. A sample of the noise sequences y , 1 = 1-3, 1s shown in
Figure 2 at a high brush recorder speed. At any mitant of time, the frequencies
of generation and the peak values and, hence, the bandwidth of all uy and 61

i = 1-3, wvere maintained equal. Thus, §,, 1 = 1-3, are similar in nature to
that shown in Figure 2, although all six noise sequences were independent of
each other,

Let r be the ratio defined by

t = [Peak value of y, and §,, 1 = 1-31/?3 (122)

1)
vhere I, is the nominal moment of inertia about the spin-axis. Brush records
of the 31mlated angular velocities wys Wy, and s for different values of

r and Q, are shown in Figures 3-15. The values of r and Q, corresponding to
each of these figures, are tabulated in Table 1. 1In all cases the initial
values of vy and w, vere taken to be zero.

Table 1: Index to the attached figures showing ssmples of the sto-
chastic satellite responses.

Values of r 1 1 1
r-ﬁ-0.083 t-3-0.166 r-;-o.zs
Values of Q,
rad. /sec.
Figure Nos. Figure Nos. Figure Nose.
Fast spinner: @ = 1.0 3,4 5 6,7
Slow spinner: Q = 0.5 8 9 10,11
Three-axes stabilized: 12 13 14,15
Q=0.0

EVALUATIONS AND COMPARISON

The results of the analog simulation will now be evaluated and compared
with the predictions of the analytical methods discussed earifer,

The first important result of the simulation study is that, in every case,
the responses grov with time, The growth phenowmenon is predicted by all four
of the analytic methods only for the case of a three-axes stabilized satellite.
This was true because, 1f § » 0, Eq. (1) leads to a perturbed equation givem by
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Iimi - A'fi s 1 =1,2,3 (123)

Responses given by the cclutions of Eq. (123) are the integrals of A'f and,
hence, must grow linearly with time, even 1f X'T; are equal to zero. ~But,

in the case of spinning satellites, only the Fokker-Planck formulation pre-
dicts an initial exponential growth. The perturbation method and the most~
likelihood approach predict a constant variance. The stochastic eigenvalue
method also predicts a linear growth rate which, however, is inversely propor-
tional to Q2. Looking at Figures 4, 8, and 12, or at Figures 5, 9, and 13,

or at Figures 7, 11 and 15, it is seen that the variances increase with &.
Thus, at this point, the Fokker-Planck formulation is apparently the best of
the theories under consideration.

A second interesting result, discernible from Figures 3, 7 and 11, is
that, with time, the response amplitudes reach a stable value. Such stable
values are predicted directly by the stochastic eigenvalue method. The per-
turbation method and the most-likelihood approach also yield the same result
if it is assumed that these methods are valid only for the asymptotic case.

It is to be noted that the Fokker-Planck formulation can also be made to
yield this result, alghough not as directly as the other methods. To do this,

let the solutions of “200 and H020 as given by Eq. (74) be considered:

M =C + exp[% aloﬂzt](chosznt +D

200 sin2qt} + Gl(t)

2
(124)

M =C- 1 2
HOZO c exp[z ‘10“ t]{chosZGt + D,sin20t]} + Gz(t)

2
The expounential terms in H200 and HOZO appear with opposite signs.

According to Eq. (124), one of the variances must grow and the other de-
cay with time. Thus after a certain time, one of these variances will tend
to be negative. But variances are by definition non-negative quantities.
Hence, D1 and D2 are to be taken as non-zero until one of the variances first
becomes zero. Dl and Dz should then be set equal to zero in order not to have
negative values of ﬁZOO and "020' This procedure yields the prediction that

the response amplitudes become stable after a certain time, which is in agree-
ment with the simulation results.

The last obvious result obtained from the simulation is that, for a given
value of 1, the variances and the growth rates increase with r. This is ex-
pected, both intuitively and rationally, and all four theories predict it.

A comparigon can nov be made of the theoretical methods, based on purely
analytical grounds. The strength of the Fokker-Planck method lies in the fact
that it does not require either uncoupling or linearization of coupled non-
linear systems such as that of Eq. (1). The statistical moments of all orders
are obtained directly as the solution of a coupled linear set of equations.

Hence, digital computer methods can be used easily to solve such equations.
The other three methods are based on initial linearization and possible un-
coupling. This linearization results in a loss of useful statistical information.
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There are, however, some disadvantages of the Fokker-Planck method. The
primary disadvantage is that all statistical moments are coupled. Hence, vhen
the number of dependent varisbles is large, the resulting set of equations is
more 80, even if the third and higher order moments are neglected. This method
then requires some foreknowledge of the higher order moments and the statistical
forms of the input random functioms.

In view of the above discussion, the following conclusions can be made:

i)  The Fokker-Planck formulation yields the most complete information
on the responses of a satellite with random disturbing torques and stochastic
moments of inertia.

i11) Por & satellite with very small inertia noises, the spinning configu-
ration is better than a three-axes stabilized configuration. The reverse is
also the case.

1i1) In all cases, the responses have an initial fast rate of growth.
But after some time, this growth rate falls off, leading to a constant variance
level depending on the variances of the input disturbing torque and on the mean
moments of inertia of the satellite.
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STABILITY AND CONTIOL OF FLEXIRE SATELLITES
PARY 1 - STABILITY

T. C. Huang and Aniruddha Das

ADSTRACT

This investigation has two distinct parts. In this first part the eaviron-
mental and control torques experienced by a satellite are assumed to be random
80 88 to account for the inherent errors in the control systems and the lack
of axact models of the environmental torques. It has been shown that under this
assumption the required stability criteria of a satellite is quite different
fros that obtained by a deterministic approach. It has also been shown that
a8 flexible three-axss stabilized satellite can be made almost certainly asyspto-
tically stable, vhile the same is not trus for a flexible spinning satellite.

NOMINCLATURE
AR

A, 1 ~1-5

[Ai]. i=1-5

(8,1, [3,]

bys by
fc]

Ci. ie1-10

RRRRE

£(t)

Composite body of a flexible satellite.

Mstrices associated with the equations of wotion of the flex-
ible slements; Eqe. (3), (49), (53) - (57).

Matrices similar to [Al.]‘ Eq. (44).

Radius of the cylindrical rigid core of the assumed satellite
configuration; FMg. 2.

Norsalizing factor of the joint probability density; Eq. (17).
Additional composite bcdy for a flexible dual-spin satellite.

Matrices associated with combined equations of motion of the
satellite; Eqe. (5) - (7).

Zlements of Iy X4y Eq. (38).
Stochastic system matrix; Eqs. (21), (27).

Cosfficients of the characteristic Bq. (71); Eqs. (74) - (77),
(80), (85), (86).

Elements of Eggr i1 = 1-4; Eq. (39).
Deterministic forcing function; Eqs. (S), (10).
Elements of LIV FTR Zq. (38).

Deterministic environmentsl torqus vector on the satellite;
BEqs. (4), (45), (50).
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{c)

hix(t)]

(1]

(1

1,1.,1

x’ Ty 3

J

J*

Jn

"1' {=1-4
(N1, 1 = 1-4
o]

(e

[Pi]' i =15

[Pi]. ie1-5

p;. 1= 1-4

(Ql

Qij v 1,3=1-6

sbl' { =14
(83}

AN
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Stochastic control matrix, Rqs. (21), (26).
Elements of coefficient matrix defined by Eq. (63).
Deterministic observed function of x(t); Eq. (13).
Identity matrix.

Moment of inertia matrix of the nominal configuration of the
satellite.

Diagonal elements of [i]; Eq. (52).

The joint probability demsity of (z-z), (v-w), (f-f) and
(x(0) - x(0)), Eq. (17).

Funct ional defined by Eq. (17a).

Funct ional defined by Eq. (18).

Lengths of flexible beams of the satellite.
Submacrices of (3 17'; Eqs. (20), (29).

Null matrix.

Covariance matrix of [x(0) - x(0)}; Eq. (12).

Matrices sssocisted with the angular momentum equations of the
flexible satellite; Eqs. (4), (50).

Matrices similar to lPt“ Eq. (45).

Eigenvalues of [-l;llzl.

Exponents of the assumed beam displacement function; Eq. (42).
Covarience matrix of [u(t) - E(:)]; Eq. (19).

Elements of the characteristic matrix of Eqs. (49), (50);
Ks. (70), (7).

Gensralized position vector of the flexible elements of the
satellite; Eqs. (3), (4), (49), (50).

Vector, similar to q; Bqs. (44), (45).
Time dependent part of Yoy Bq. (42).
Covariance ratrix of [z(c) - 2(t)]; Eq. (14).

Displacement vector of the center of mass of the flexible sa~
tellite from {ts nominal position; Eq. (63).
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g SR i = ]1-4 = Nominal position vectors of the spring-mass-demper systems;
Eq. (38).
Iy i = 1-4 = Nominal position vectors of the beam-end masses; Eq. (37).

[SK], K = 1-3 = Coefficient matrix; Eq. (67).

S = Covariance matrix of [f(t) - z(t)]; Eq. (16).

8 = Generalized velocity of the flexible elements; Eq. (8), (11).

T = Terminal point of controlling time interval.

T = Terminal point of the time interval in which the maximum like-
1ihood estimates are required.

T‘ = Total kinetic energy of the flexible satellite,

t = Time.

s = Augmented control torque vector; Egqs. (5), (9).

uk = Control torque vector; Eqs. (4), (45), (50).

X = Stochastic system state variable; Eqs. (21), (24).

x = Deterministic system state variable; Eqs. (5), (8).

xbi' i =« 1-4 = Displacement vector of beams.
Yagr i = 1-4 = Components of 131; Eq. (41).
* , 1= 1-4 = Displacement vector of spring-mass-damper systems.
Yoo i = 1-4 = Displacement vector of beam-end masses.
2 = Stochastic forcing function; Eqs. (21), (25).
= Observed values of the state variables; Eqs. (13), (19), (23).
a = Characteristic values of Eqs. (49), (50); Eq. (70).

[ak], k = 0-3 = Coefficients of structural equations; Eqs. (64) ~ (68).

8(t) = Dirac's delta function.

8 = Relative angular displacement vector of A* with respect to B*,
A = Lagrangian multiplier and state variasble; Eqs. (18), (22).

n = Lagrangian multiplier; Eq. (18).

u:“ = Coefficients of structural equations; Eqs, (64) - (66).
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Tbij « Bean displacement mode parameters; Eqs. (46), (47).

Ty = Spring-mass-damper displacemsnt mode paramsters; Eq. (48).
X a2 = Nominal angulsr velocity vector of the satellite.
| « = Perturbed angular velocity vector; Eq. (Z).

[l = Angular velocity vector of the sstellite.

Jnx = Angular velocity vector of A%.

gi = Angular velocity vector of B%,

OPERATORS

") = Time derivative; -d-% .

(" = Transpose.

(-) = Vector cross product operator; Bq. (69).

O = Mean value.

Q = Vector.

Det. { ) = Determinant of the matrix.

E[] = Statistical expectation.

Tr. [ ] = Trace of the matrix.

INTRODUCTION

The primary requirement of an artificial satellite is that it should be

¢ capable of precise orientation in space. This capability is determined mainly
by the stability and controllability of the satellite vhen viewed as a dynamic
system. A large nusber of investigations have been made in the area of flexible
satellite dynamics, But several interesting questions on the stability and
controllability of flexihle satellites have not been examined in sufficient de-
tail. The present study looks at two of these questions:

(&) What are the stability criteria of flexible satellites in the
presence of errors in the controlling torques and largely unknown
environmental torgques?

(b) For a given control system, and for a given nusber of torquing
jets, is it possible to increase the controllability of a flexible
satellite by monitoring the deflections of the flexible elaments?

In the first part of this study it will be shown that, in the presence of
random errors in the external torques on a flexible satellite, the stability
criteria are far more restrictive than those deduced fros a deterministic
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approach. The second part of this study will present reasons for an affirma-
tive answer to question (b).

As mentioned earlier, deterministic criteria for the stability of flexible
satellites have been studied extensively [1-4], It must be noted that, to ac—
count for errors in the external torques acting on the gsatellite, these torques
and the dynamic state variables of the satellite model must be treated as
stochastic variables. Several studies [5-7] on the state identification prob-
lem have been done. These studies generally assumed Gaussian distributions
and used Kelman filtering techniques. Using methods simdlar to that given in
Ref. [8], equations of motion and the stochastic angular velocity response of
flexible satellites have been computed in Refs. [9.)3j. But the problem of
comp:~ing the stability characteristics of various satellite configurations
subjectod to random excitations has not been investigated.

DETERMINISTIC EQUATIONS OF MOTION

Foraal deterministic equations of motion of a flexible satellite can be
established. The stochastic stability boundaries can be determined only when
these equations are available.

Le: w*(t) be the angular velocity vector of a flexible satellite. For a

single body satellite, wk(t) 1s a (3x1) vector. For a dual-spin satellite with
tvo main composite bodies (A* and B%), w*(t) is usually taken as

W (®) = [k, w0, 8O W

In the above equation, Q’A‘ and El*! are the (3xl) angular velocity vectors of the

composite bodies A* and B*; while 8 is the (3x1) relative angular velocity vec-
tor of the body A* with respect to B*. Let 2 be the constant vector of the
nominal values of w®(t), such that the perturbing angular velocity vector w(t)
is defined by

w(t) = wk(t) - Q (¢))
Let the motions of the flexible elements of the satellite be represented by

the generalized (nxl) position vector q(t). With these definitions, the equa-
tions of motion of the flexible elements can be expressed in the following form:

(A JEE) + [A)(@,0,2,6)13(8) + [Ay(us8,8,8)1a(8)

= (A3 + [Ag(,2,0) Jule) 3

Similarly, the equations for the conservation of angular momentum of the compos-
ite bodies of the satellite can be shown to be of the form:

(P 19(e) + [P)(w,,8)1(t) + [Py(@,0,8, 5 (0)

= [P Jut) + [Pgw,,0) Jult) + uk(t) + £4(t) @)
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vhers u*(t) and f*(t) are the controlling and environmental torque vectors, re-
spectively.

Detailed msthods of developing Bqs. (3,4) are given in Refs., [1-4] and es-
pecially in Refs. [11,12], Eqs. (3,4) provide the complete set of equations
of motion of the flexible satellite. Equation (3) coatains 'n' scalar equa-
tions, such that the matrices {A ], [:3] and [A,] are square. Equation (4) cox=
tains either three or nine equations dépending On whether the satellite is of
a single body or a dual-spin type.

Equations (3,4) can be combined in the form

[8,)x + [By]x = u(t) + £(t) 4))
where, defining [I]) to be the identity matrix,
- b
P‘ -Pl
[31] - AA -Al 0 6)
LO 0 1 )
PS —Pz -93
3,0 = [ A -& -A m
LO -1 0
() = [w(t), s@), g)1F (®
u®) = (W@, 0, 01" ®
£() = [£*(v), 0, 0)7 (10)
and
() = g(t) an

Equation (5) is the required differential equation describing the determinis-
tic motions of a flexible satellite.

STOCHASTIC EQUATIONS OF MOTION

The stochastic equations of motion of the flexible satellite will now be
obtained following the method shown in Refs. [8,9].

Let it be assumed that the initial values, x(0), have a Gaussian distribu-
tion with & known mean value, X(0), and a known covarisnce matrix, [Po], given by

[7y] = B{[x(0) - 2(0)][x(0) - X(©®)]") a2

Here the operator E denotes statistical expectation. Let x(t) be monitored on
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the Earth by measuring a varisble z(t) where the mean vilue, Z(t), of z(t) is
related to x(t) by

Z(t) = hlx(t)] 13)
Let it also be assumed that the variables z(t), u(t), and f(t) are Gaussian

with known mean values and covariance matrices R(t), Q(t), and S(t), respec~
tively. Hence, assuming zero lag, wve get

E{[z(t) - Z()1[z(1) - (11T} = R(t)8(e-1) (14)
E{{u(®) - T(®) [u() - TOIT} = Q(e)§ (t-1) as)
E((£() - F@®)II£(D) - T} = se)6(t-1) (16)

where u(t) and z(t) are the mean values of u(t) and f(t), respectively.

Let the maximum-likelihood estimates of the response of the satellite be
required in the time interval [0,T]. In view of the definitions given above,
the joint probability demsity, J, of (z-z), (u-uw), (£-I) and [x(0) - X(0)] is
given by

*
3 = atlexp(- )] an
where J* is defined as

3* = [2(0) - ZO 1721 2O - ZO)]

+ 15 e - 201 RO 1Tz - 1)
+ [u® - 7017 O 17 ue) - 7(©) 7a)

+ 150 - IO 13017 E© - T©) a
and 'a*' is the normalizing factor.
The maximum-likelihood estimates can be obtained by maximizing the proba-
bility density J. In other words, we minimize the functional J*, subject to

the comstraints that Eqs. (5), (13) be satisfied. This is done by defining
J** by the relntion

Jek e 304 2 7 GIE® - B@])

+ 27 [x+ l;l(lzg-g-_f.)])dt 18)

and minimizing J** by considering x(0), z(t), u(t), £(t), x(t) and the La-
grangian vector multipliers u(t) and A(t) as the independent variables.

It will now be assumed that

ROVPESR




2(t) = hlx(t)] = x(¢) (19)
which msans
B (20)
=

With this assumption, the variational equations obtained by minimizing J** are
expressed as

X(®) = [CIX(®) + [CTa() + 2(x) @1
AM =0 2
and
x(0) = 3(0) + [PO]A(O) 23
where
@ = (x(0), AT (24)
2 = 3 1@, - ¥ () @5)
- ]|
B
[6) = (26)
(4]
-1 -1 -1.T
-i's, s
() @2n
! 151112)’

Equations (21-23) are the required stochastic differential equations of motion
of the flexible satellite.

STABILITY CRITERIA

The stochastic Bq. (21) haes twice as many scalar equations as the deter-
ministic Eq. (5). The deterministic equstions are stable if the eigeuvalues

of [-311!21 have nagative real parts. The stochastic equations are stable if

all the eigenvalues of [C] have negative real parts., If there were no errors
involved with u(t) and f£(t), the matrices (Q] and [S] would be null matrices.
Consequently, Eq. (21) would degenerste into Eq. (S).

The hypothesis of this study is that {Q] end {S] are not null matrices,
but have positive elements which are very smsll compared to those of (B.] or
[lzl. Hence, half of the eigenvalues of [C] will be almost equal to th* aigen-




i

S i T IR B AT R DI T s N

55

values, Py of [-51152] and the other ha'i will be almost equal to Py - Tnat
the eigenvalues of [C] lie symmetrically ahout the imaginary axis can be veri-
fied by noting that
Tr[C] = 0

-1 .T

and that the eigenvalues of [Bl BZ]
-1

[-B, B,].

are equal and opposite to those of

In view of this, it is evident that Eq. (21) is always unstable. Even if
the real parts of p, are zero, the instability will be caused by the multiple
roots. Thus, accor{ung to the classical meaning of the term, no stability cri-
terion exists for the stochastic Eq. (21). The physical reason behind this is
that the probable errors in the dependent variables accumulate with time. This
accumulation causes the maximum-likelihood estimates to be asymptotically di-
vergent, even if the deterministic Eq, (5) is stsble. The growth phenomenon,
for s satellite in which the vector x(%) is measured at discrete intervals of
time, is illustrated in Figure 1. Let the mean values of x(t) be considered
to be given by the solutions of Eq. (5). Let the variances of x(t) be compu-
ted from the differences of the values of x(t) computed from Eqs. (5) and (21).
The error functions computed from these mean values and variances are shown at
three instants of time in Pigure 1. In Figure 1A, there is a data input and
the computation cycle has been started. Hence the error distribution curve
has a high peak. The variances here correspond only to the measurement errors
of the variables x(t). In Figures 1B and 1C, it is seen that the height of the
error function becomes shorter and shorter, although the mean position givea
by Eq. (5) approaches the origin. In Figure 1C, the error function is very
flat just before the new data input. It becomes sharp again just after the new
data input when a new computation cycle is started.

Since Bq. (21) is necessarily unstable, the stociastic stability cirteria
for a flexible satellite must be formulated in a particular manner. The sto-
chastic stability criteria of the response of a flexible satellite are those
which make

(a) the deterministic model given by Eq. (5) stable, and
(b) the growth rate of the stochastic model given by Eq. (21) a minimum.

In the absence of further information about the covariance matrices Q, R and S,
these two requirements are met if the real parts of pjy are equal to zero.
Thus, a flexible satellite will be called stochastically stable if w1l the eigen-

values of [-31132] are purely imaginary. It is i{ntevesting to note at this
point that a perfectly rigid satellite satisfies this requirement.

Specific stability criteria can be obtained for a satellite when the ele-
ments of [51) and [le are known. For this, a particular satellite configura-

tion has to be assumed. In the absence of such a specific configuration, sev-
eral conditions sufficient to make the Py putely imaginary can be established
in termm of the matrices [Al] and [Pil. { = 1-5, vhen the matrices are square.
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SUFFICIENT CONDITIONS

) Tha suff. ‘ent condition for the py to be -urely imaginary, the matrix
[3;112) wu.t be -atisymmetric. Let [Al’ and [Pil, 1 = 1-5, be aquare
matricesn. Let [l;"] be given by

N N O
-1
(B)7" = | N, ¥, 0 (28)
0 0 1

Comparing Bqs. (6) and (28), the matrices '1' { @ 1-4, are given by
-1, ,~1
) =7, - PiA A,

o,] = (A, - APl 37t
2 s ~ M RS 9
1
1

- -1
(N;] = [PA AP ]

- -1
(v,) = [A‘P‘LPl-All .

Hence from Eqs. (7) and (28), [l;llzl is given by
[N PgHIASL  -[N Py, ] - [N P3RA,)
-1
(878} = | [MPgH AT -[N .24 -INP ALY (30)
[o] {-1] {o]
To have 13;132] antisymmetric, the required conditions become
'IPS + IZ‘S =0

“JPZ + leZ LRY

u1P3 +HA, - 0 (31)

LR St

lle + lh - .3P5 + .‘AS .

§
)
%
Iy
H
-
S
i
i

-
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Eliminating Ny, 1 = 1-4 from Eqs. (29) and (31), the required sufficient con-
ditions are finally obtained as

(p,] = [P)] (32)
A5} = [A;] (33)
(p,] = - (2A7'A,) (34)
(A,) = - [AATMA) 35
(pg] = (PA'A,) (3)

The stochastic stability criteria given by Eqs. (32-36) are much too re~
strictive and it will be almost impossible to obtain a practical design of s
satellite satisfying these constraints. For example, Eq. (33) requires that
the natural frequencies of the flexible elements of the satellite should be
equal to unity. This is not a feasible constraint.

In spite of these drawbacks, Eqs. (32-36) do provide several guidelines
for satellite design. It can be easily verified that Eqs. (34-36) are satisfied
identically by a three-axes stabilized satellite in which all subbodies have
undamped, purely elastic mountings. A spinning or a duasl-spin satellite, even
if it is free of damping, generally does not satisfy Eqs. (34-36). Equation
(32) 1s satisfied by all types of satellites in which there is an axis of sym-
metry, and in which the flexible elements are so constrained that the center
of mass moves only along the axis of symmetry. Hence it can be claimed that,
among satellite designs with comparable mass, stiffuess, damping and covariance
matrices, a symmetric, three-axes stabilized satellite is likely to have the
lowest error growth rate.

A SPECIFIC CONFIGURATION

The conatraints given by Eqs. (32-36) are too restrictive because, in their
derivation, no attention has been paid to the zero elements of the matrices in-
volved. To utilize the location of the zero elements in the matrices [B ) and
[B,], a particulrr satellite configuration (shown in Figure 2) will now "be con-
sidered. The sacellite consists of a rigid cylindrical body with four beams,
four beam-tip masses, and four spring-mass-damper systems, placed symmetrically
as required by Eq. (32). The beams are perpendicular to the axis of symmetry
and are assumed to be axfally rigid. The spring-mass-damper systems are assumed
to be constrained to move only parallel to the axis of symmetry., These assump-
tions lead to a large number of zeros in the matrices (lll and [lz]. making the
algebraic manipulations considerably simpler.

The major dravback of any stability analysis with a particular satellite
configuration is that conclusione drawn from it cannot be extended to other
configurations. The method of modelling and analysis of the satellite configu-
ration (shown in Pigure 2) that has been used in this study partially overcomes

>3 A G S . ] Ceew e v B .,l P S Y
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thie disadvantage. In this method, the locatica of zerce in [l1] and ['z] re-

main unchanged when the numbers of beams, tip-mssses, or spring-mass-damper sys-
tess are changed.

THE DYRAMIC MODEL

Let 'a’ be the radius of the main rigid body and £,, { = 1-4, be the lengths

of tha hmams. Let 5ﬂ and g i e 1-4, be the nominal position coordinates

of the beam-tip mssses and the spring-msss~damper systems, respectively. Ac-
cording to the choice of coordinate axas shown in Figure 2, we have

Iy = ey, 0, 007

T
2 - [01 ‘("‘-2)| 0)

'ln

("
£y [-(sey, 0, 0)F
I = [0, (a2, O)F
Lat it be defined that

g = By 00 o)
T

Igp = 100 =fp0 o,] .
T

Eg3 = [-b30 0v o5l

Tg = 104 £ o)

Let x be the distance along the axes of the besms measured from the fixed ends.
Let ’-rt(t)' lu(:.:) and z&(t). { = 1=§ be the deflections of the beaw-tip
nasses, the beams, and the spring-mass-damper systems, respectively. According
to the previously assumed constxsints, let it be defined that

1,0 = (o, yﬂ.z(t). yﬂ.s(t)lr
Lo = ly 5 1(80, 0, ¥, s o |
L‘,s(t) = [0, ’rJ.z(t)o ",3.3(:) ]'l'

24(®) = Iy 1(0, 0y vy )
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T (0 = 10, 3 (x0), ) ()T

Xy (x0t) = [’bz.l("t)' 0, yhzd(x.t)]'r

“0)
xba(x.:) = [0, ’b:,z("‘)' yb3.3(x.t)lr
Zyo(xit) = Iy, (00, 0, 3y, s(x,001"

and
13,(0) = 10, 0, y, ()7 1)

Equations of motion in the coordinates w, y and Y44 for 1 = 14,

r1.3* Tbi,3
J = 1,3 are obtained using the method shown in Ref. [1]. The space dependence
of these equations is eliminated by assuming
Ypi J(x.t) - [qb1’j(t)][exp(p;X) - pix-1] (42)
’

and applying the Galerkin's method [1,11). The space-dependent ehape func-
tions in Eq. (42) are assumed to be known and correspond to those of a canti-
lever beam with a tip-mass.

At this point, the boundary conditions
* - -
yri'J(t) = lexp(pfty) - p.ty llqM'J (43)

are applied, and the equations of motion reduce to the form
[AJIE'(6) + [A5(@,@a@t) 4" (8) + [A}(ws8,0,8) )" (2)

= [Ag)i(e) + [Ag(w,B))u(t) (44)

(P11g' (8) + [P3Curias®,t) 14" (6) + (PY(uuiuRue)1g" (8)

= [P la(t) + [Pg(w,d)Jult) + u*(t) + £4(t) (45)

vhere q'(t) consists of the non-zero elements of (" and Yag® { @ 1-4. The

set of Eqe. (44) and (45) is of the order of 27. It 1s still quite difficult
to extract ..y meaningful analytic stability criterion out of this set.

It i{s nov assumed that there exists certain unknown constants t and

Tar 1% 174, 3 = 1,3, such that biJ

"p12%1,2 © "p21%2,1 © T532%3,2 © Tbe1%s,1 (46)

Tp13%1,3 © 523%2,3 * "533%3,3 ° Tbe3%be,3 “n

e



and

Tar?a1 ° d2¥a2 ° av’as © “alas (48)
The values of 'Mj and Tyy Con be obtained from the eigenvectors of Iqs.

(44), (45). But it is not our intention at this point to look for eigenvalues
and eigenvectors of Eqs. (44), (45). Substituting Eqs. (46), (47), and (48)
into Eqe. (44) and (45), the equations of motion of the satellites are reduced
to the form

(A,19(8) + [A,14(e) + [Aj]g(e) = [AJ6 + [Agle 9
and
[P19(e) + [B,1a(e) + [Plg(t) = [P lu + (Pglu + ua(e) + £4(c)  (50)
vhere
a(e) = [ygys Qg 20 1‘,1.311 (51)
It should be noted that q(t) given by Bq. (Si) is a (3x1) vector and all

natrices “1] and [Pil. 1 = 1-5, are (Ix3) matrices. The Bqs. (49), (50) now

form only a ninth order set of ordinary differential equations. This great re-
duction was made possible by the assumptions of Eqs. (46), (47), (48). It should
also be noted that, irrespective of the number of beams or spring-mass-demper
systems introduced at the initial stages of the dynamic modelling, Eqs. (49)

and (50) can alwsys be made a ninth order set by suitably sugmenting the equa-
tions in [qe. (46), (47), and (48).

Let it be assumed that the moment of ineriia matrix, [1], of the satellite
is giver. by

I, o0 o
1) - 0 s2
(1) o 1 (52)
0 0 1

The linsarized form of the matrices “tl and [P‘l. 4 @ 1-5, can thea be shown
to be as follows:

1 3 ‘
0 (w12 “811%127821 %12’ °
3 1 3
(A = 83319 0 (by13-832%p13 9
1 ‘ .
(ug)~8y3¥gy 0 “832¥q4)




(a,] =

[A,)

[A

4]

(A

(r,)

L 0

‘6 0
(82,9383

2 4
(3)384375)

I 0

0 0 4
(5)48,1%873851753))

0
“%281

0
12821
o

(s‘

s 6
0 -2t 8ty °
0 0 0
2
M 0 0
Va1
[ 2 7 )
0 b1 811%b12 82112
2
0 ° ¥b13
3
u (1] 0
| Pa1
[ 9
0 0 ¥p12
s 5 0
Yp13 ¥b13
s 6
‘a1 a1 o
- 7
0 0 0
6 7
“13% Mgy O
7 8
baty a®s 9
[ o 4 0 0 &
(0)383575))’ 92821 (°13‘32's13)]
0 4 0 0 4
(3;383375)) a8 (a)38427523)

[

0
237%23832)

0 ‘
(a)485;7513) | B

(4]

e g ot
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(54)

(55)

(56)

(s"n

(58)

(59)




1.3 2 3,3
(S73%923839) %871 (53;%93383))
o | et b3 1 1 3 2

[?3) (S13%o1383y) iy Syossy) | % (60)

0 0 0
(r,1 = (1) (615

~

[rg) = A1) - (1 8. 62)

The undefined constants introduced in Eqs. (53) - (62) are defined by the fol-
lowing relations:

8, o0 © %Yi,2
= |8y ©O O %1,3 (63)
0 83, 833 Ya1

vhere I, is the aiaplacement of the center of mass of the satellite from its
nominal “positin, i

L - - 3 0 - S .
Wp12%rs * Teii1,2 T Mb12%e,1 t ¥b12fe,2 * Yp12t-1

+ “:1z;c,z + l‘;12"c.1 + “:1z'c,2 + Vg1 %3 (6)
":13;51.2 + ”:13‘51.3 - “:13;c,3 + gyl * Yy a2
* Vp1gits * Y0 (65)
“:1;41 * i Vava “:1;c.3 + vy ¢ gy
+ ey + b3y (66)
%3 - [i)e + 'c.xl“ijlg + 'c.zl°:1’9 : 'e.3[°:j’! + ’dl‘s:jlg
+ Gpp,2i50gle + oy 587w + [57,0d - Lo )F, 6"

vhere T is the kinetic energy functionsl [1) of the satellite. The operator

-
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(.) on any (3x1) vector v is defined by

0 -vy v,
ve v, 0 -y (68)
v, v 0

wuch that the cross-product between any two arbitrary vectors u and v is given
by

gxy_-;!--;g (69)

Analytic search for the eigenvalues of Eqs. (49) and (50) 1is now quite
easy, because these form only a ninth order set. As in the elements of the
matrices [Ail and [Pi]' i = 1-4, these eigenvalues are functions of the unknown
a1’ The method of analysis to be adopted now is to obtain

the stability criteria in terms of Tbij and Tait

of all criteria such that the resulting criteria become independent of KN
and T,..
di

constants Tb 13 and t

Then we must obtain the union

1)

EIGENVALUE EQUATIONS
The characteristic equation in o for Egqs. (49) and (50) is given by
[ 2
[Pg+oP, ] ~[Py+oE +a°P, )
Det. 2 =0 (70)
[A5+uAa] —[A3+aA2+a All

With the help of Eqs. (53) - (62), it can be seen that BEq. (70) is of the form

[0, @ 0 o5 ]
Qi QB 0 Q Qs
Det. C0 % PG 0 gy
0 0 9, 0 g O
% % 0 G 0 G
%1 %2 O Q% 0 Qg

It can be verified that tiie locations of the zeros of the matrix in Eq.
(71) remain the same even if the number of beams or spring-mass-damper systems
are increased.
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Equation (71) can be factorized into
9 Y2 Yy Y

Det. 6 [Q43Q35-Q33QI‘S) =0

Thus, the characteristic equations become
(Q430357033%5) = 0 12)
and

Det. -0 (73)

Equation (72) yields three roots of o and the other six roots are obtained from
BEq. (73). Ome of the roots of a from Eq. (72) is identically equal to zero,
The other two roots of Eq. (72) are given by the equation

2
Cja" +Ca+Cy=0 (74)

where
1 3 4 9 ,4 0 0
Cy = [T, Gy 578110127821 Mp12) + Py1253270138117%23821)]  U79)

[~ (76)

5 6
PR CTUS PR PSPy

2 7 8
C3 = (127811127821 M12) an
Hence the requirement of purely imaginary roots leads to the conditions

C,=0;Cy/C, 20 1£c1¢0. (78)

Expanding Eq. (73), the resulting equation in a is obtained as

ca® +ca+c

4 3 2
4 5 63 + C7a + Cau + Cgu + °10 0 (79)

To eimplify the expressions of Ci, i1 = 4~10, let it be assumed *hat

|
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12 77 532 "n21 T T Tear f Th13 T T b33 P Tb23 T T Tpas ?

T T

a1 "™ " Y43 F Taz " T Tgs (79a)

This assumed mode corresponds to that which, in terms of pointing accuracy,
ve are most interested. This mode leads to pure rotational motions of the rigid
core about its center of mass. With this assumption, the coefficient C, 1is
given by 9

- - - 1 -
c (1,-1)(1,-T )03ud1ub13 + 2b1ub13 3523(1x 1,)

+

3
2“3(‘d2/‘d1)fz“b13[I 513 21(I 1]

+

3 S w3 waul 2

a {“ “b13“c11[$23(I ST - Sy L] - 1085 (i kg HRgky gigy))

-Q {u uz (- ) + u7 TG {238 ¢ + st (I.-1.)1}
41"p13° 13 a1¥p131%1y 23 1

+

4 6
8 ASh (T )("dl i13*0¥13ha) - 3"d1ub13[Iys32+sl3(lz_ly)]

+

S 7 4 8 6
((“d1“b13*“b13“dl Mp1atar~ b13"d1’(523 o 21 13)

7 6 34 41
+ (“dl“b13 “p13¥d 1)‘523513+532511 s13523*'521 31)1 (80

Expressions for the other coefficients in Eq. (79) are similarly obtained.

For the roots of a in Eq. (79) *- Le purely imaginary,

Cg - c7 - c9 -0 (81)
Examining Eq. (80) and similar expresrions for c and C, it becones evident
that Ey. (81) can be satisfied for arbitrary values of Z 1f and
only if
2
Ry = uy; = 0 (82)

Equation (82) is another proof of our previous claim that stochastic stability
is possible only for undampe? ihree-axes stabilized satellites.

THREE-AXES STABILIZED SATELLITES

For a three-axes stabilized satellite, the constraints given by Eq. (78)
are almost always satisfied. Also for this configuration,

«=C,=C =0 (83)

=6 =C=C"Cp

Cs

B —

B A TSN £
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such that Eq. (79) becomes
4 2
a [CG+C4° ]=0 (84)

Hence the required stability criteria are

0<C= leyudllullan + 2”1"\;13 LS + ¥alSa + Iystﬂ‘:ﬂtn
+1 “:1“:13 :3 + (31013 -~ Yare1a) 115 :3 Sa53) (89
and
0<Cg=1 513“31%13 +1 521“31"513 LRI
+ 2ojup LSy, + ley("‘gl”tn + gy - (86)

Constraints given by Eqa. (85) and (86) can be satisfied usually without great

difficulty, irrespective of the values of TMJ and Tag* This is due to the

fact that Ca and 06 are mainly the mass and stiffness terms of the satellite

model. Hence, it can be concluded that three-axes stabilized satellites are
more li’kely to be stable under random environmental and control torques.
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STABILITY AND CONTROL OF FLEXIBLE SATELLITES:

PART 1II - CONTROL
T. C. Huang and Aniruddha Das

ABSTRACT

This is the second part >f an earlier investigation. In thie¢ section, it
is demonstrated that, by monitoring the deformations of the flexible elements
of a satellite, the effectiveuess of the satellite control system can be in-
creased considerably. A simple model of a flexible satellite had been analyzed
in the first part of this work. The same model has been used here for digital
computer simulations.

NOMEN CLAT URE

[A'], 1 = 1-5 = Matrices governing the equations of motion of flexible struc-
1 8
tural elements of the satellite; Eq. (1)

[Bi], i = 1,2 = Matrices governing the satellite motion; Eqs. (3,7,8).

(é(t)] = Upper (3x3) left corner submatrix of [O(t)]lBi]-l.
£ = External forcing function; Eq. (6).
i* = External torque vector on the satellite; Eq. (2).
[1] =~ Identity matrix.
[K] = System fundamental matrix; Eq. (22).
(l(l) = Matrix defined by Eq. (28).
n = Number of scalar elements in g°'.
[0} = Null matrix.
(Pi], { = 1-5 = Matrices governing the rotational motion of the satellite;
‘ Eq. (2)
; q', {qi) = Generalized structural position coordinate vector.
45 = Jencralized pogsition coordinate for the ith beam.
T = Terxzinal time for optimal control.
t = [ime.

10
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U = Torque magnitude parameter, defined by Eq. (25).

Y, (“1) = Generalized control vector; Eqs. (5), (22).

u* = Control torque vector on the satellite; Eq. (2).

31, {uj} = Various control torque functions; Eqs. (14) - (21).
x = State vector; Bqs. (3), (4), (22).

Yy = Uncontrolled response; Eq. (22).

Yy = Position vector of the ith spring-mass-damper system.
Y = Pogition vector of the ith beam-end mass.

AR, U;} = Control system parameter; Eqs. (24), (26).

uk, {u;} = Relative control torque magnitude vector; Eqs. (24), (27).
T = Dummy time variable.

(6] = Pundamental matrix of "‘i’_llnil‘ Eqs. (9), (10).

[01]. i = ]1-4 = Component matrices of [¢]; Eq. (11).

w, {wi) = Angular velocity vector of the satellite; Eqs. (1), (2).
_ugi. (mj} = Various simulation responses of w; Eqs. (14) - (21).
INTRODUCT ION

In the first part {1) of this study, the question of stochastic stability
of flexible satellites was discussed. Specific stability criteria were devel-
oped for a simple flexible model of a satellite (shown in Figure 1). In this
part of the study, we determine whether it is possible to increase the pointing
accuracy of a satellite by observing the deflections of the flexible elements.
To do this, we use the same satellite configuration (Figure 1) and the theore-
tical model developed in Ref. [1].

Likins and Fleischer [2] have shown that the flexible elements of space-
craft can have a destabilizing influence. They have shown a method of design-
ing a proportional linear control system employing root-locus plots and eigen-
value analyses. The control loop gains in [2] were based on a dynamic model,
using hybrid coordinates, of a spacecraft containing long flexible beams. An
essentially similar spproach was employed by DiLorenzo and Santinelli {3}.

Here also a linear proportional control system was designed by considering the
equations of motion of the spacecraft along with those of the flexible elements.
The spacecraft model in {3} consisted of a rigid body with two spring-nass
systems .

In this study, s time-optimal 'bang bang' control policy has been assumed.
The method of calculating the control torques is essentially the same as that
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given in Ref. [4). Full details of the computation of control torques are pre-
sented in Ref. [5]. Apart from the conirol policy, this analysis differs from
Refs. [2,3) in another important aspect. In the analyses of Refs. [2,3], the
deflections of the flexible elements are not observed. Hence, zero initial
deflections and velocities of the flexible elements are inherently assumed.

The present method can accommodate arbitrarily large initial conditions of the
flexible elements of the satellite.

THEORETICAL BASIS OF COMPARISON

The theoretical analysis and comparison of the satellite responses is
based on the dynamic model explained in Section 6 of Ref. {1]. It was shown
there {1] that, by using the Galerkin's method, the deflections of the flex-
ible elements of the satellite are governed by purely time-dependent generalized
position vectors, gbi(t). lﬂ(t) and !ﬂi(t)‘ It was also shuown that these vec-

tors can be condensed subsequently, and reduced to a vector q'(t) by applying
suitable boundary and continuity conditions, Usually the number of elements
in g' i8 much smaller than that in the set [gb!. Logo z‘n]‘r.

Let w(t) be the angular velocity vector of the satellite. Let u*(t) and
f*(t) be the control torque and environmental torque vector on the satellite.
i Given these definitions, it is well known [1,6,7) that the satellite response
: is governed by a pair of matrix equatioms of the form

(419" () + [A3(w,0)1g" (8) + Laj(u,t)]g" (©)

[A] Ju(e) + [A](w) Ju(e) ey

and
[P11G(e) + [P5(u,e)]g" () + [Py(a,e) g’ (1)
= [Pjlate) + [P{(w) lule) + wr(t) + £2(t). 2)

Equation (1) governs the flexible motion of the beams, spring-mass-dampers, and
beam-end masses of the sstellite model. Equation (2) is based on the principle
of conservation of angular momentum of the satellite. If g'(t) {s s (nxl) vec
tor, then there are 'n' scalar equations in Eq. (1). Equation (2) alvays has

¥ three scalar equations. Equations (1) and (2) correspond to Eqs. (44) and (43)
of Ref. [1].

Equations (1) and (2) are now combined together to form one first order
equati.n givea by

[B]1x(t) + [B]x(e) = u(t) + £(0) 3
where

2= (030" “

R B L B T i 1 ] ]

N N Iy
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u lg*.Q_.QlT )

L= (£%,0,0)" ()
)1 -13)) (0]

1= [}l -1 (0} ™

[0) (0] (1]

and

[1py)  -(e3) -7y
| (B3] = [1A3] -[A3)  -(AY) ®
(o1 -1 (o)

Let [¢(t)] be the fundamental matrix of the homogeneous eguation

x = -1 By 1x ®

such that the sulution of Eq. (3) is given by

x(6) = [8() ]x0) + SE[9(t-0)11B]]7 [u(¥) + £(0) ]t . 10)
Let [#(t)] be composed of [Ol(t)}, !02(t)], [03(t)] and [0“(t)] such that
(o] 16,1 [9y)

(3x3)  (3mm) (3an) (11)
[¢] »
[0‘]

[20 x(2n+3) )

when w(t) and ' (t) are (3xl) and (nxl) vectors, respectively. Then the equa-
tions corresponding to w(t) can be separated from Eq. (10) in the form

w(®) = [4()]a(0) + [0,0)1g"(0) + [#,(t)]g'(0)

+ 1y [B(e-1) 1{u(x) + £4(1) Jdr (12)

vhere [i(t)] is the (3x3) upper left hand corner submatrix of [0(!)1[3;]-1.

1t should be noted that previous investigations (2,3]) were concerned main-
ly with the determination of lol(t)] and [B(t)] and then with the approximation
of Bq. (12) by

T A A RS
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§1(0) = a5(0) = 0.01 ; q§(0) = 0, § #1,2.

The complete numerical experiment is performed through the following
steps:

Step 1: A tims interval [0,T] in which the controis are to be effected
is fixed. In this case T was taken as 5.0 secs.

Step 2: The satellite is assumed to be ri;idi and without contrecls, such
that w(t) is given by the solution w'(t), of the equation
eyl oy 1
(pilu () + [Pglu () + £4(c) = 0 . (14)
Bquation (14) 1s integrated and the responses wi(t) and w;(t) are
plotted in Figure 2.
Step 3: The satellite is assumed to be rigid and subjected to a time-op-~

timal 'b.n!-bmg' control, ul(t), such that w(t) is given by the
solution w?(t), of the equation

(B2 + [p31l(0) + u'(0) + f2() = 0 . (%)

The gl(t) are computed so as to yield 22(1') = 0 by the method
shown in Appendix A. Equation (15) is integrated and the res-

ponses wf(t) and wi(t) are plotted in Figure 3.

Step 4: The sgtellite is assumed to be flexible, without control and
vith q'(0) = q'(0) = 0, such that w(t) is given by w’(t). Here

W) = (0,010 + S§ (B0 M (DT (16)
The responses ui(t) and wg(t) from Eq. (16) are plotted in Figure 4.

Step 5: The satellite is assumed to be flexible, with §'(0) =q'(0) = 0.
The satellite is subjected to the control torque gl(t) computed
in Step 3, such that w(t) is given by _agl‘(t), wvhere

G0 = (4,100 + /5 [B-D)£2(1) + doiere . an
The responses u‘;(t) and m;(t) from Eq. (17) are plotted in Figure
S.

Step 6: The satellite is assumed to be flerible, vwith §'(0) - 1' ©) =0,

and subjected to a time-optimal 'bang-bang' control, 22(1) » such
that w(t) is given by gs(t). vhere

S = (0O + 7§ Be-0ligao + e . as

T R
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The u?(t) are computed 8o as to yteld S -0 by the method

shown in Appendix A, The responses w) (t) and w) (t) from Eq. (18)
are plotted in Pigure 6.

Sten 7: The satellite {s assumed to be flexible, with q'(0) ¢ 0 ¢ g°(0)
and without control, such that w(t) is given by 56(t). vhere

W) = [0(010(0) + [9,()13'(0) + [8,(£)]g" (©)

+ f; [B(t-1))[£2(D) }dr . (19)

The responses w;’(c) and wg(t) are plotted in Pigure 7.

Step 8: The satellite is assumed to be flexible, with q'(0) ¥ 0 ¢ g'(®)
and subjected to the control torque u?(t) computed in Step 6,

such that w(t) is given by _u_a7(t). vhere
W7(e) = [8,(6)1u(®) + (4,83 13" (0) + [95(t} g’ (O)

75 G- 110 + A Jar (20)
The responses uz(t) and u,Z(c) are plotted in Tigure 8,

Step 9: The satellite is assumed to be flexible, with ¢'(0) ¢ 0 ¢ ¢'(0).
It is also subjected to a3 tin-optiul 'bnng—bnng control,

u (t), such that w(t) ts given by w (t). vhere
w¥e) = [0,()1u0) + [4,()13"(0) + [#3(2) 1" (0)
55 =D () + 20 (21)

The *orques 23“) are also computed to yield g‘(‘r) = 0 by the
method shown in Appendix A. The responses w:(t) and u:(t) from
Eq. (21) are plotted i{n Figure 9.

COMPARISON AND EVALUATION

One important resuit ot the simulation, as seen from Figures 2 and 3, is
that the control sequence u (t) is very effective on the rigid -odel of the sa-

tellitc. But Fgure S shows that, for the ssme values of w(0), u (t) produces
unwanted non-zero values of w(T) vhen it is spplied to the “flexible satnllite mo-
del, although g(O) and g(0) are assumed to be zero. Thus, another important

result, presented in Figures 5 and 6, shows that 32(1) is more effective than
gl(t) when a flexible satellite model is considered. Up to this point, thenm, ve
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have essentially the same conclusion as that in Refs. [2], [3], that for a flex-
ible satellite the control should not be based on a rigid model., The difference
between Refs. [2], [3] and the present study is in the adopted control policy.

'Bang-bang' controls have been used here instead of linear proportiomnal contrcl.

The most important results are presented in Figures 8 and 9. When the
q(0) and gq(0) are observed and found different from "ero uZ(t) does not lead
to the required zero values of w(T). In contrast, u; 3(t), which 18 based on the
observed values of g(0) and q(0), ylelds zero values of Q(T) Another point
to be considered is the divergence of w(t) from zerv in the two cases. The

maximum divergence of w(t) and gz(t) is 11.0 x 10-1‘ rads/sec, while that with

ga(t) is only 7.0 x 10-4 rads/sec, This bears out the theo-etical claims that
a control based on Eq. (12) is mcre effective than one based on Eq. (13) and
that the effectiveness of a control system can be greatly improved if the de-
flections of the flexible elements of a satellite are observed.
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APPENDIX A

The method of computing the time-optimal control torques for a system
given by

x(t) = 3(6) + g n(e-1) Julr)dr (22)
is now presented. Reference [S] prescnts computing algorithms and other de-
tails of the method. Im Eq. (22), x(t) is the output vector of the system,

u(t) 18 the cor.rol vector, and x(t) and [K(t)] are known vector and matrix
functions of the time, t.

It {8 assumed that, for a given t = T, u(t) should be such that
x(T) = 0 (23)

and |u(t)] for all t is a minimum. Thus, the minimum time problem is converted
to the equivalent minimum control effort problem. The solution for u(t) is
then given by {5].

uj(t) - u(’r)u; sgn[i A;Kij (1-t) ) (24)

where
T

U(T) = 1.0/ [l;in § ‘o Ii A;xij('r—rndr] (25)
such that

i A;yi('r) - 1.0 (26)
and

R 1 BT @20

T
[Kllij =/ [K“(t-T)] sgn [E X:‘KU(T-T)]dT (28)

The summation convention of repeated indices is not to be used in Eqs. (24)
to (27) above.
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