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1. OVERVIEW

This interim report reviews progress on a rainfall estimation program
begun in 1973 in collaboration with NOAA's Experimental Meteorology
Laboratory.* The aim of the program is to develop and apply a method for
estimating GATE-area rainfall from geosynchronous satellite images. Its
basis is a pair of observations familiar to cloud watchers, that in general
thick cumulus clouds reflect more light than thin cumulus clouds; they also
tend to be wetter. Hence, for cumulus clouds of a given size viewed from a
satellite, the higher the brightness, the heavier the rain.

Going one step further, many observers have noted a time dependence in
the relationship between rainfall and cloud brightness. Two clouds of the
same area can have quite different rain rates if one is young and the other
old. For cumulonimbi--the most important tropical rainmakers--rainfall is
heaviest in the earlier stages of evolution, before cloud area peaks. Our
method therefore incorporates stage of development in addition to cloud brightness
and area as estimators of rainfall. These relations are illustrated in Figure 1.

Activity in the program is shifting from development toward the second
program objective--estimation of rainfall in the GATE area. Before such
estimates can be made it is necessary to recalibrate the method from the
ATS visible images used in its development to the SMS visible and infrared
images which cover the GATE area. The cloud area-rainfall relationships
developed for Florida must also be tested and modified as necessary for the

GATE area. For this we plan to use as ground truth calibrated radar data

*

The Experimental Meteorology Laboratory has been merged with the
National Hurricane Center to form the National Hurricane and Experimental
Meteorology Laboratory. Our collaboration is with the Cumulus Group, NHEML.



from two GATE ships, the Researcher and the Oceanographer. In the sections
which follow we review the status of the method. This review is followed
by results of ATS-SMS equivalence measurements. We present results of
comparisons between radar images and SMS visible and infrared images over
Florida, then describe tests designed to assess accuracies of the method in

the estimation of GATE area rainfall.

IT. METHOD

Earlier contract reports (Martin and Sikdar, 1973, 1974) describe the
development of this method. A recent comprehensive account is given in an
NHEML Technical Note, "Rainfall Estimation from Geosynchronous Satellite
Imagery During Daylight Hours," by Woodley and Griffith (manuscript, 1975);
this Note also describes many tests of the method.

" When this work began in 1972 data were available from the third
Applications Technology Satellite (ATS-3) and from two 10-cm radars in south
Florida. These data became the base for establishing cloud brightness
thresholds distinguishing wet and dry clouds, also for deriving time dependent
relations between cloud area and echo area, and between cloud area and
volumetric rainfall rate.

Taking advantage of EML's summer convection experiments, special radar
and satellite data sets were gathered for the summers of 1972, 1973, and 1974.
These include digital radar tapes from the National Hurricane Center WSR-57
radar (1973 and 1974), and digital satellite tapes from ATS-3 (three summers)
and from SMS-1 (1974). Jlor selected days radar images were matched in time
to satellite images, then displayed as a registered sequence on a video
display and processing device. The corresponding satellite images were

navigated, remapped to the scale and projection of the radar images, and



displayed as a sequence on adjacent frames. Clouds and corresponding echoes
were outlined for computer measurement of areas. Sample plots of cloud area,
echo area, and volumetric rainfall for an ATS-3 cloud are given in Figure 2.
Combining such measurements for many clouds, and normalizing cloud and echo
area, gives the curve--called a cloud-echo area diagram--needed for estimating
rain from a series of measurements of cloud area. With the provision of
digital radar data we began to calculate volumetric rainfall as well as

echo area. A second type of curve--referred to as a cloud area-rainfall
diagram--relates cloud area to volumetric rainfall rate, so eliminating the
intermediate step involving echo area.

In developing such diagrams we prefer to work with digital magnetic tape
rather than photographic hard copy data: the digital tape format gives us
better resolution, tighter control on signal levels, and greater flexibility
in formatting data for display. The advantages this offers in measurement
accuracy and precision are very important, for they substantially reduce the
level of noise in our measurements, and therefore the number of measurements
needed before the signal can be well and truly separated from the noise.

Measurements are made on the Man-Computer Interactive Data Access System
(McIDAS). This is an image storage, display, and processing system
consisting of four sections--data archive, data access, video display, and
operator console--each linked to and controlled by a central, dedicated
computer. Details of system configuration and operation are given by Smith
© (1975) and Chatters and Suomi (1975). Capabilities used in this program are
the following:

(1) Variable rate, variable length movie loop display of image sequences.




(2)

(3)

(4)

(5)

(6)

(7)

This facilitates identification and tracking of discrete cloud-echo
systems.

Instant, infinitely variable black and white and color enhancement.

Enhancement further aids identification and tracking of discrete

cloud-echo systems.

Rapid frame load. Images found to be out of registration can be

reloaded at the proper locations—--one minute or less per frame.

Independent signal tracks, instant transfer, and dual image display.

A radar sequence and corresponding satellite sequence can be loaded
opposite one another on separate video tracks and individually enhanced.
Transfer from one to another is instantaneous--a single key-in is all
that is needed; simultaneous display (through an interlacing of alternate
picture elements) is accomplished by hitting another key. The
association of particular clouds with corresponding echoes is made

easier and more accurate.

Brightness normalization. Visible images can be brightness normalized

to a standard (operator specified) sun-satellite geometry. Effects of
changing sun angles are made negligible over a period (up to 8 hours)
comparable to the lifetimes of small mesoscale convective systems. This
normalization scheme is described in Appendix B.

Draw mode. Outlines can be drawn to the irregular shapes of clouds and
echoes, for precise measurement of areas.

Area statistics. Results of an area measurement (maximum brightness,

latitude and longitude, and area above up to eight operator specified
brightness thresholds) appear in seconds on a CRT at the operator's

console. Results can be checked as measurements are made. Area
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statistics and cloud outlines are stored on file. They can be printed,
written on tape, or displayed for editing as overlays on the original
image. Overlapping outlines, omissions, and other mistakes can be found

and corrected immediately.

III. ATS-SMS EQUIVALENCE

In order to combine area statistics from ATS and SMS data, we need to
relate the respective digital levels used as thresholds to define clouds.

Since ATS-3 data are brightness normalized to a Florida reference point in
space and time (Miami-25%3'N,80°15'W,2 Jul 1973,1716 Z) and SMS-1 to a GATE
reference point (center of B-array-08°30'N,23°30'W, 4 Aug 1974, 1330 Z) we
only need relate levels once.

This problem could be approached from an instrument design and
signal chain point of view. We chose instead to work with the data itself and
employ a measure used in our rain estimation--cloud area above a threshold bright-
ness. The advantage of working with the digital data is that one is downstream
of any undocumented influences on the signal. An area approach is superior
to one involving single pixels because the effects of differences in sensor
resolution and of differences in response among the eight SMS visible channels
(Bauer and Lienesch, 1975) are averaged out.

To equivalence digital levels through area measurement we find a large
cloud or cloud cluster viewed by both satellites within a few minutes of each
other. Images from each satellite are normalized to their respective reference
points. Then with closed brightness contours, equivalent levels will enclose
equal areas.

Results for the three days analyzed are seen in Figure 3. Each curve

represents the correspondence of ATS-SMS digital brightness for equal areas



of a single cloud. Curves for the same day tend to cluster. The strong
concavity of curves for four clouds on day 181 is a result of slow sensor
response on ATS to decreasing scene brightness, when the satellites scanned
unusually bright clouds contrasting sharply with a dark cloud free background.
Excepting these concave curves, the curves for day 248 tend to be higher than
those for other days. There are two reasons for this: ATS signal levels, as
measured by alpha values (see Appendix A), had dropped some 20 percent; and,
second, for the clouds selected the effect "striping'" - uneven response of
the seven operating visible channels on SMS - was particularly strong (Bauer
and Lienesch, 1975; see also Figure 4).

Also shown in Figure 3 is a theoretical curve obtained by equivalencing
ATS-3 brightness levels to SMS-1 brightness levels through the normalization
tables of brightness versus optical thickness for each reference point (see
Appendix B). This curve is similar in shape and position to the area equiva-
lence curves.

It is the first set of curves, for day 181, that contributed most strongly
to the selection of 172 digital counts as the level which best matches the ATS
digital level of 60 previously used for defining clouds. Later results, from
day 191 especially, indicate a lower level might be better. We will return
to this point in the discussion of cloud area and rainfall comparisons.

This procedure establishes a correspondence between normalized ATS-3
and SMS-1 data for a portion of the summer period, 1974. To legitimately
extend this to 1973 ATS-3 data, it must be established that the ATS-3 signal
was constant from 1973 through this period in 1974. Evidence that this is
true (except for day 248, as noted previously) is presented in Appendix A.

It is also implied in this approach that SMS visible channel signal levels

held steady over the comparison period. Calibrations made for four widely



spaced days in the summer of 1974 show a 25 percent variability. This is
consistent with indications based on ground station monitoring that signal
levels on the visible channels of SMS remained essentially constant over
the period of GATE (Goddard and Remondi, 1975; Bauer and Lienesch, 1975).
IV. SMS-RADAR COMPARISONS

A key step in extending rain estimates to nighttime hours is adapting
the method to infrared data. To do this we have repeated for two days the
satellite-radar sequence comparisons over Florida, this time using SMS
rather than ATS images (Figure 5). Although the primary purpose of such
comparisons is to establish cloud area-echo area-rain volume relations for
infrared data, SMS visible cloud areas also are compared with echo areas.
These comparisons enlarge the data base for specifying the cloud area-echo
area-rain volume relation, serve as a verification case for the ATS-SMS
brightness equivalence relation, and provide a background for analyzing the
infrared sequences.

Results for the visible cloud-echo comparisons are surveyed in Figure
6a and b, showing two clouds from the 14 that were tracked on day 216
(4 August), and Figure 7a and b, showing two clouds from the 9 that were
tracked on day 248 (5 September). We note from these two dozen cloud plots
that cloud area tends to peak earlier, by up to one hour, at higher brightness
levels. Likewise, echo area peaks earlier at higher brightness (reflectivity)
levels, and in general leads cloud area by up to one hour. Integrating
these phase effects of echo area in rain volume produces a distinct phase
difference--typically one half to one and one half hours--between maxima
in volumetric rainfall and cloud area . Volumetric rainfall plots tend to
be skewed toward the right, indicating that growth occurs over a shorter
period than dissipation. Cloud area plots show little tendency to skew;

their shape is like a Gaussian curve. These features were also characteristic



of cloud-echo area plots for ATS-3.

Analyzing the infrared cloud-echo sequences proved to be more difficult.
Brightness was insufficient as a criterion for selection of precipitating
convective clouds. Through comparisons with visible pictures, cloud growth
was found to be an effective secondary criterion for eliminating passive
cirrus. Because of the much inferior resolution of the infrared sensor (a
factor of 8 less than visible resolution), and the strong obfuscating effect
of cirrus at infrared wavelengths, only large or isolated convective
systems could be followed through most of their lifetimes. In a few
instances of cloud merger it was apparent from visible and infrared images
that shearing cirrus formed a bridge between systems which convectively
were well separated (see Figure 5). One result of these effects is a
reduction in the number of trackable clouds from visible to corresponding
infrared sequences. Coverage also tended to be less complete, because the
larger and longer lived infrared clouds more often extended outside the
radar arca; the compensation for this was longer infrared sequences. Although
available visible images were referred to for guidance, no attempt was made
to isolate and follow exact infrared counterparts of the visible clouds that
had already been tracked.

Plots of infrared cloud-echo area and volumetric rainfall, presented in
Figures 8a and b and 9a and b show that there do exist consistent relations
among infrared cloud area, echo area, and volumetric rainfall. These relations
resemble those found for visible clouds. The principal differences from the
visible are larger ratios of infrared cloud area to echo area (and rainfall) and
a skewing of cloud area toward the right. Clouds in the infrared also are

indentified at a later stage in the evolution of the convective system, usually



after rain had begun falling.

Infrared cloud areas referred to above are defined by the 160 digital
count level. This was selected as an approximate match to the level, 172
digital counts, used to define clouds in the SMS visible [which in turn
corresponds to the ATS-3 60 digital count level selected on the basis of
precipitation probability (Martin and Sikdar, 1974)]. The 160 level also
offers a compromise between the area truncation observed in '"crowded'" clouds
at lower levels (Figure 9b), and the time truncation typical at higher levels.
In our SMS data it typically lies within the region of strongest brightness
gradient along the edge of anvils in tropical cumulonimbi.

The match of these two levels can best be seen in plots of area for
individual clouds followed in both visible and infrared* (Figure 10). Visible
cloud area has a flatter curve that tends to cover more of the rainfall
profile.

Cloud plots for 4 August and 5 September are summarized as cloud area-
rainfall diagrams in Figures 11 and 12. Patterns for visible clouds are
similar on both days. Peaks in area normalized volumetric rainfall are
left of center, confirming the phase lag of cloud area to rainfall noted
earlier. Clouds are picked up at or slightly after the time rainfall
begins; typically, rainfall ends long before the cloud has disappeared.

For this threshold brightness (172 digital counts) three fourths or more of
the total cloud rainfall occurs before cloud area peaks. One noteworthy
difference between the two days is the higher ratio of rain volume to

maximum cloud area on 4 August--clouds of a given area on this day were wetter.

*
The number of such clouds is relatively small because of the aforementioned
differences in sensor resolution and cloud sensitivity.



The infrared distributions are flatter and lower. The absence of a
well defined peak indicates that the phase relation between maximum rainfall
and maximum cloud area is more variable than for visible clouds. It is
also clear that clouds are being picked up after the onset of precipitation.
As in the case of the visible plots, 4 August shows a higher ratio of rain
volume to maximum cloud area than 5 September.

An explanation for this difference between 4 August and 5 September lies
in a stronger shear on 5 September. Vector differences of the 850 mb and
200 mb winds were of magnitude 23 m s_l on 4 August and 35 m s—1 on
5 September. Marwitz (1972) and Foote and Fankhauser (1973) find that in
cases of moderate to strong shear the precipitation efficiency of Great
Plains thunderstorms is inversely related to vertical shear of the horizontal
wind. In fact we find this dependence of rain volume to wind shear in
comparisons between 1973 and 1974 cloud area-rainfall curves. The cloud
area-volumetric rainfall curve based on 1973 data is higher than either of
the 1974 curves. Vertical shear was correspondingly lower, averaging 16 m s-l
from 850 to 200 mb.*

These observations indicate that vertical shear can be a large modulating
influence on rainfall in tropical cumulonimbi; hence an adjustment to
rain estimates might be needed under conditions of weak or strong shear
(as measured by soundings, cloud tracer winds, or the ellipticity of cirrus
plumes). Curves for both years are combined (ignoring shear differences)

in a single cloud area-rainfall diagram shown in Figure 13.

*The 1973-1974 area-rainfall difference was observed in spite of the bias
towards smaller SMS cloud areas implicit in selection of 172 rather than some
lower digital level as equivalent to 60 digital counts ATS. Thus the use of
a relatively high 172 digital count level was more than compensated by
stronger shear in 1974.
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V. GATE PROCESSING

There has long been evidence of measurable differences between
precipitation processes over land and sea. Early results from GATE indicate
quite distinctive aerosol, cloud, and echo characteristics in the GATE
area (Weickman, 1975; Simpson and Simpson, 1975; Scherer, personal communication,
1974). Although land-sea differences have not been apparent in the cases
already analyzed over and adjacent to Florida, observations from GATE argue
compellingly for limited testing before the method is used routinely
to estimate GATE area rainfall.

The ground truth for such a test must come principally from the GATE
5-cm radars--no other measurement comes close to matching the time and
space scale of the satellite. We plan to process digital data from one or
two of the GATE radars just as we have for the NHEML radar, matching a
several hours long radar sequence to the corresponding satellite sequence.
Rainfall will be estimated independently for a range of well defined
convective systems appearing in both the radar and satellite sequences.

The results will determine adjustments or modifications to the method as
it has been configured using Florida ground truth.

A prime candidate for this test is 5 September (day 248), one of the
most active of all GATE days in the B-array. Five September is one of two

priority days selected by CEDDA for carly processing of Oceanographer and

Researcher digital radar data. Present schedules call for delivery of
processed tapes to the National Weather Records Center in June 1975, thus
they should be available for analysis very early in fiscal year 1976. Five
September has also been selected by SSEC for analysis as a wind set day,

hence much of the SMS data for that day is already navigated and available



on save tapes. It is known to be of very high quality. Since the radar
data are not needed for making the satellite estimate of rainfall, this

part of the test is underway.

VI. SUMMARY
Several importént steps have been taken this year.

« At NHEML the Cumulus Group has extensively tested a cloud area-echo
area relation based on visible data from ATS-3. They found that the
method: provides daytime rainfall estimates accurate to a mean absolute
factor of 1.5.

« At SSEC a tentative calibration has been established between Florida
cloud brightness in ATS-3 and GATE area cloud brightness in SMS-1.

With this calibration the ATS cloud area-echo area-rainfall relation
can be modified for use with visible data from SMS-1.

* The first two infrared image sequences have been analyzed. 1In spite of
differences in sensor resolution and response, these pictures contain
the information needed to extend the cloud area-echo area-rainfall
from visible images to infrared images, and thus to achieve full day
and night coverage in rainfall estimation.

- These steps lead us to the last step prior to routine use of the method
"4n estimating GATE rainfall: testing (and fine tuning) the GATE area SMS
cloud area-echo area-rainfall relation against GATE ground truth. This
test, and the processing to follow, are the subject of a follow-on

proposal covering work in fiscal year 1976.
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Figure 1

Full resolution visible image from SMS-1 centered on Miami,
Florida; 1830 Z 5 September 1974. Echoes are found in the
brighter cloud areas. Bright clouds without echoes show signs
of decay; for example, the cloud in the center has a long
southward pointing cirrus plume and is declining in area.
(Rows and columns of white dots top and left side result from
noise in the archived data; several missing lines appear as a
dark horizontal band.)



CLOUD | DAY 178/73

- 25,000
—— CLOUD AREA (levels 60 & 80)
----- ECHO AREA (level 8)
--=-= RAINFALL
20000 | - 200000
15000 } < 15,000
)
N
3 mn
3 £
& E
-
& g
< s
10,000 410000 &
5000 - -1 5000
0 = “::’n 2 [ 2 1 I ) - O
400 1500 1600 1700 1800 IS00 2000  2I00

TIME (2)

Figure 2 History of one south Florida cloud followed in ATS-3 images
from 27 June 1973. Curves show area at two brightness levels
60 and 80 digital counts, echo area, and volumetric rainfall.
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Figure 4 Blow-up of SMS-1 cloud used to equivalence levels on 5 September
(day 181) 1974. Light and dark stripes of multiples of eight
lines indicate a nonuniform response of the visible VISSR
sensors to incident radiation.
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Figure 6 Hlstorles of two south Florida clouds followed in SMS-1 visible
images from 4 August 1974. Cloud area, echo area, and volumetric
rainfall are shown. Numbers next to cloud area curves represent
digital counts. The curves for echo area correspond to rain
rates of <1, 2, 12, and 38 mm/hr.
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images from 5 September 1974.
a. Cloud 1
b. Cloud 6
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Figure 7 Histories of two south Florida clouds followed in SMS-1 visible

See Figure 6 for further information.
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Figure 8 Histories of two south Florida clouds followed in SMS-1 infrared

images from 4 August 1974. See Figure 6 for further information.
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Figure 10 Histories of two south Florida clouds followed separately in
SMS-1 visible and infrared images.
a. Cloud 10, 19 (visible),104 (infrared); 4 August 1974
b. Cloud 6, 106; 5 September 1974
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Figure 12 Cloud area-rainfall diagrams for clouds followed in infrared
SMS images. Clouds are defined by the 160 digital count contour.
For further information see Figure 11.
a. 5 September 1974
b. 4 August 1974
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APPENDIX A
ATS-3 Calibration

The procedure described in the Lquivalence Scction gives o relationship
between normalized ATS-3 and SMS-1 brightness levels for three particular
days in 1974. 7To extend this relationship to 1973 ATS, it must be shown that
the ATS signal strength was the same in 1973 and on these davs in 1974,
Calibration of the ATS-3 sensor, which is described more fully in Appendix B
Section IID, requires selection of a very bright cloud. The ratio of
theoretical brightness for a model bright cloud at this location to measured
brightness oi the actual cloud is the calibration factor, alpha.

One source of variation in alpha is caused by line to line signal
fluctuations. In 1973 ATS data, some lines were brighter than their neighbors
over the width of a cloud. To use measured brightness from such a line would
give an artificially low alpha. Deciding when a line falls in this category
and when it should be avoided introduces some subjectivity. Another source
of variability in alpha results from selected clouds not all being of model
optical thickness, which has a brightness of 3% below the limiting brightnes
value and corresponds to a geometric thickness of 14 km or 40,000 ft. Since
clouds do approach a limiting brightness (see Appendix B), one would expect
a clustering on the low end of the alpha range. The actual variation of
alphas is shown for the 1974 days in Figure 14.

The first alpha measured from 1973 data gave a value of 19 for day 222
for a small sample. Data from other days subsequently showed 18 was a better
value and that was taken as the best value for 1973 days. In 1974, a value
of 17 was found for each of three days, and 21 for a fourth day. Considering
typical scatter in alpha measurements, 18 and 17 are essentially the same

value, but an alpha of 21 is definitely a change.
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Thus we conclude that the ATS-3 signal strength remained essentially
constant from the beginning of summer 1973 until shortly before 5 September
1974 when it dropped.

Is it legitimate to combine 222/1973 data with the rest of our 1973
ATS-3 and 1974 SMS-1 data since an alpha of 19 was used for its normalization?
To answer this, a normalization was done from our lowest sun angle (at 1430 Z)
to our ATS reference point with alphas of 17 and 19. Then from the brightness
vs. area graph of a typical cloud, the error in area was calculated and
plotted in Figure 15. For the brightness level utilized in our size normalized
rain volume-cloud area diagrams used in rain prediction, the error was 2%.

The error was 8% or less for all but our highest level we measure, and

that level's error was 25%.
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APPENDIX B

BRIGHTNESS NORMALIZATION OF SATELLITE IMAGES
by Frederick Mosher

L INTRODUCTION

Brightness normalization is removal of the effects of changing angles
of illumination on observations of satellite images. Meteorological satellites
such as the SMS/GOES and others presently provide high resolution visible
images of the earth on a routine basis. These images provide the coverage
and resolution necessary for quantitative measurements of convection and
properties associated with convection such as rainfall estimation. However,
quantitative analysis methods which use the brightness of the cloud in the
measurements are faced with the problem that as the sun changes its position,
the changing angle of illumination causes a brightness change of the clouds
in the image. This brightness change caused by the sun's movement must be
removed so that brightness changes caused by convective growth or decay can
be accurately measured. The problem of brightness normalization was addressed
in the workshop on Meteorology of the Near Future Prospects of Image Pattern
Recognition sponsored by the National Science Foundation on 11 November 1974.
The final report of the workshop states:

"The effect of the angle of illumination on observations is fairly

well understood from a theoretical point of view. The effects of

this on the observations from space are not adequately considered.

The removal of this effect from the observed data is a complex

and involved procedure. As the science evolves the effect will

have to be removed to permit a clearer study of the underlying

meteorologic phenomena. It should also be possible to obtain

some information from shadow effects when they are known. The

committee felt that it will be necessary to find a way to remove

the illumination effect in the very near future."
IT. SCATTERING FROM CLOUDS

The light received by the satellite has been scattered by the droplets

in the clouds. The visible light scattered by clouds depends upon several
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variables:

a. The droplet size distribution and shape of the cloud particles

b. The number density of the scattering particles in the cloud

c. The cloud thickness

d. The angular conditions of the measurement system (the zenith angles
of the sun and the sensor, and their relative azimuth angle)

e. The shape of the cloud.

A. Normalization Procedures

In quantitative studies of convective cloud growth ideally only
one of the variables should change at a time. The normalization procedure
should correct for all the changes of the variables except the one which is
under study. However since information on the states of all the variables
is generally not available at the satellite, some of the variable effects
must be parameterized in any normalization technique.

There have been several approaches to parameterizing the variables of
the cloud scattering problem in the development of normalization procedures.
The simplest approach has been to neglect all the cloud variables and
assume that the clouds are perfect isotropic reflectors and obey Lambert's
law. The intensity of the reflected light will vary as the cosine of the
solar zenith angle for an unchanging cloud. Martin and Suomi (1972) have
shown that the tops of cumulonimbus clouds display a Lambertian behavior, and
a cosine correction can be used to normalize the brightness of thick
cumulonimbus clouds.

There is, however, considerable evidence in the literature that
neglecting all the variables and assuming isotropic reflectance can lead to
erroneous results. Bartman (1967), Ruff et al. (1968), and Brennan and

Bandeen (1970) have experimentally measured the scattering from clouds.
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They found clouds generally show an anisotropic reflectance pattern which
varies with solar zenith angle. Normalization procedures based on this
empirical data base have been developed by Sikula and Vonder Haar (1972).
The main problem with this type of normalization has been the limited amount
of empirical data available. Since empirical data on the variation of the
reflectance pattern which is caused by variations in cloud thickness is
generally not available, the normalization procedures based on empirical
data generally have neglected the effects of cloud thickness. Studies by
Mosher (1974) have shown that different thicknesses of clouds will require
different normalization corrections. The brightness contrast in a cloud
was shown to vary as a function of the scattering geometry, implying that
different thicknesses of clouds scatter light differently.

To overcome the limitations imposed by a restrictive data base, the
normalization procedure which has been developed in this study makes use
of a theoretical multiple scattering model to generate a large data base
for a large number of possible sun and observation angles. Data was
generated for 16 different thicknesses of clouds.

B. Multiple Scattering Model

The multiple scattering program which was used to generate the data
base of cloud reflectance patterns was a doubling method model developed
by James Hansen of NASA's Goddard Institﬁte for Space Studies. The details
of the model are published in the January 1971 issue of the Journal of

Atmospheric Sciences. Results from the model are published in the November

1971 issue of JAS (Hansen, 1971, a, b).

The doubling method works for a plane-parallel homogeneous cloud.
Numerical computations begin with a layer of such small optical thickness
that scattering and transmission can be described by single scattering

theory. The cloud thickness is built up by putting two layers together and
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computing the interactions that take place. The process of taking two
layers, computing the transmission, reflection and interaction, combining the
two into a single layer and then repeating the process for the new layer is
the "doubling" procedure. By doubling, the thickness of the cloud increases
by a factor of two after each computation, so very thick clouds can be
generated quickly on the computer.

The single scattering phase function used as input to the multiple
scattering doubling program was Deirmendjian's C-1 cloud model phase function.
The forward scattering peak of the phase function was truncated and spread
by the multiple scattering model (Hansen and Pollack, 1970). Conservative
scattering was used with the local single scatter albedo set to unity.

The multiple scattering model as originally configured had the surface
under the cloud as a perfectly absorbing black surface not accepting any
other lower surface. While land and sea surfaces are dark compared to
cloud, they are not entirely negligible, particularly for thin clouds.

In order to include the sea surface brightness, the assumption was made

that the light reflected from the sea was small compared to the light
reflected from the thicker clouds, so that the energy which was lost by

the light coming from the sea through the cloud toward the satellite did not
interact with the light scattered originally in the cloud. The cloud
scattering and the sea surface reflectance were computed separately and

the results added.

The sea surface brightness was computed using sea surface albedo values
from Payne (1972). Payne performed an extensive experimental study of
the albedo of the sea surface from a fixed platform and published tables of
sea surface albedo as a function of the sun's altitude and atmospheric

transmittance. To use these tables, the downward flux through the clouds
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and the atmospheric transmittance was computed. The flux impinging on the
sea surface was then multiplied by the approximate albedo value to give a
value for the flux propagating upwards from the sea surface. This upward
flux was used as a new source of radiation and the directional transmittance
to the satellite was computed using the multiple scattering program.
The intensity of the sea surface was then added to the intensity of the
cloud. Figure 1 shows the graph of intensity versus optical thickness with
and without the sea surface brightness. As can be seen from the graph,
the effect is significant for thin clouds.

The Rayleigh scattering of the atmosphere has been neglected in
these calculations because its effect is smaller than the other effects.
The sea surface brightness, as seen in Figure 1, is approximately .08.
The brightness due to Rayleigh scattering for this geometry is .018, a
factor of four less.
c. Parameterization of Variables

The amount of light scattered from real clouds depends upon the
droplet size distribution of the cloud, the number density of scatters,
the cloud thickness, the angular geometry of the sun and sensor, and the
finite shape of the cloud. Some of these variables can be measured and used
in the normalization, but others must be parameterized.

The physical thickness and the number density of the droplets can be
combined into the single variable of optical thickness:

T =KZ; K = op

T = optical thickness

Z = physical thickness

K = extinction coefficient

0 = scattering cross section

p = number density of scatters
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The optical thickness T of a layer is such that unit radiation normally
incident upon the layer is reduced by single scattering in passing through
to e-T. The optical thickness, rather than the physical thickness, has been
used in all the multiple scattering calculations since it combines the effects
of the variables of number density and scattering cross sectional area.

The effect of variations in the particle size distribution on the inten-
sity of light reflected from clouds is minor. The wavelength of the light
is on the order of .5 microns. The particle size distribution of clouds have
radii on the order of 5 to 10 microns (Diem, 1948). The droplets are very
large compared to the wavelength of the light being scattered. The single
scatter phase function has a very large forward scatter peak. Hansen (1971b)
has shown in the near infrared that variations in the size of the particles
do not greatly influence the multiple scattering intensities when the particles
are large compared to the wavelength of the light. Figure 2 shows for visible
light the variations caused by differences in the particle size distribution for
4, 7, and 10 micron average radius particles. The phase functions for these
particle distributions were generated by a Mie scattering program developed by
James Hansen, NASA/GISS. The particle size distributions of each had a variance
of .111. The particle size distribution used was a variation of the gamma
distribution (Hansen, 1971b). The vertical axis in Figure 2 is intensity in
theoretical units for an input flux of m, while the horizontal axis is optical
thickness. The sun and the sensor both had a zenith angle of 0°. A 12 micron
average radius particle size distribution was also computed, but its curve
for Figure 2 was indistinguishable from the 10 micron curve. Consequently,
for this study the variation of intensities of scattered light caused by
variations in the particle size distribution has been neglected. The 4 micron

average radius distribution of Diermendjian was chosen to represent all clouds
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satellite, and the position of the sun. Since a wind measurement using cloud
tracers already requires an accurate navigation of the satellite, the information
required to calculate the angle of the measurement is readily at hand.

In determining the scattered intensity of the cloud, the variables have
been réduced to optical thickness and angles. The effects of particle size
distribution are small and tHe effects of finite size of clouds have been neg-
lected. The determination of cloud thickness, and the implied normalization
which takes place, can be performed by taking the intensity measurement from

a calibrated satellite and converting it to optical thickness through use

of the tables of intensity versus optical thickness generated by the multiple

scattering program.

D. Calibration of the Satellite Sensor

Although controls on sighal level are better for SMS/GOES than for
the early Applications Technology Satellites (ATS), in performing quantitative
radiance calculations, such as determination of cloud thickness, there still
is a need for calibrating the satellite. In order to calibrate a satellite
in orbit, a landmark of known brightness must be found. Previous attempts

at calibration include using the moon (Hansop and Suomi, 1968), White Sands,

and théESouth American salt flat Salar de Uyuni (Griffith and Woodley, 1973).
Calibrations using these landmarks have been hampered by the lack of detailed
knowledge of the bi-directional reflectivity characteristics of these
landmarks.

This study has taken a different approach at calibration of satellite
images. Figure 3 shows an example of intensity versus optical thickness for
the case of a solar zenith angle of 35°, satellite zenith angle of 20°, and
relative azimuth angle of 50°. As can be seen from the figure as the cloud

becomes very thick, the intensity starts to approach a limiting value. The
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including cirrus. Cirrus should be able to be represented by this distribution
since it appears that as the particle sizes increase over 10 microns, no
appreciable change in the reflected intensity occurs.

The effects of the finite shape of the clouds is largely unknown. The
plane-parallel cloud which was used in the theoretical multiple-scattering
doubling program had no horizontal limits. Experimental measurements of
scattering from clouds such as Bartman (1967) and Brennan and Bandeen (1970)
generally use stratus type clouds which also have no horizontal limits. For
clouds with vertical extent approximately equal to their horizontal extent,
such as cumulus clouds, some light energy should be lost or gained through the
sides in addition to what comes through the top and bottoms. McKee and Cox (1974)
have performed a study on the effects of the finite shaped clouds by using a
Monte Carlo multiple scattering program on a cube. The angular resolution of
their s;udy was limited to light leaving the top, side, and bottom of the cube.
Their results show that the upward reflected light from the cube is about 257%
less than for the semi-infinite cloud. However, their angular resolution was
not sufficient to distinguish between the intensity of light coming from the
top center and the intensity coming from the top edges. One would expect

more light to escape from the edges than from the middle and a gradient of

brightness should be established due to the light escaping out the sides.
Unfortunately, there is presently no data avaiable on this problem. Conseq-
uently, for this study, the intensities from the doubling program, which uses
a semi-infinite horizontal extent cloud, will be used. There will be some
errors at the edges of the clouds, but hopefully the errors at the centers of
the clouds will be small.

The variable parameter of the angles of the sun and the sensor can easily

be calculated with the knowledge of the position of the cloud, position of the
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fact that clouds become intensity saturated and reach a limiting value has
been the basis for a satellite calibration technique. Using the multiple
scattering program, it was determined that the optical thickness 512 has a
brightness which is within 3% of the ultimate limiting brightness. A cloud
with optical thickness 512, droplets of 10 micron diameter, and droplet
density of 250 droplets/cm3 (as is representative of a heavy convective cloud)
would have a physical thickness on the order of 14 km or 40,000 feet. Conse-
quently, if edge effects can be neglected, any well-developed thunderstorm

or tropical cloud cluster should have an intensity within 3% of the brightness
of an infinitely thick cloud observed under the same sun and satellite angles.
Small variations in the physical thickness should not make much difference in
the brightness of these very thick clouds.

The calibration procedure used in this study involved selecting a very
bright thick cloud and assigning it an optical thickness of 512. The ratio of
the theoretical intensity of a cloud of optical thickness 512 to the measured
intensity of the very thick cloud was designated the calibration factor alpha
(). With this calibration factor, any measured intensity can be converted

into theoretical units by multiplying it by alpha.
ITI. BRIGHTNESS NORMALIZATION PROGRAM

By use of the data generated by the multiple scattering program,
measured intensities of clouds can be converted into optical thickness.
The parameter optical thickness is independent of sun and satellite angles,
and as such, it is a normalized parameter. To convert to a normalized
brightness, the optical thickness can be converted back to intensity for
a standard sun, satellite geometry.
A. Segmenting the Image

Satellite images, such as the SMS and ATS images which have been used
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in the normalization studies, have a very high resolution so that there
are a very large number of pixels in each image. 1If each image pixel were
to be handled separately, and new normalization information were to be
calculated for each pixel, the computer time would become excessive.
To get around this problem, the normalization program segments the image
into boxes no larger than 1° of latitude square. The assumption is made
that the zenith angles of the sun and satellite are constant over this
segmented box. Hence a conversion table of brightness to optical thickness
can be computed at the center of the box, and this table can than be
applied to all the pixels within the box.
B. Method of Computing Optical Thickness

The optical thickness of a cloud is determined from the brightness of
the cloud. A multiple scattering program using the doubling method developed
by James Hansen of NASA/GISS was used as the source of data for the conversion
between brightness and optical thickness. Since the McIDAS Datacraft
computer used in the brightness normalization processing is too small to
run the multiple scattering program, a large table of 77,824 intensities was
generated on the University of Wisconsin's UNIVAC 1110 and stored on the
McIDAS digital disk. This represents all possible combinations of 16 solar
zenith angles, 16 satellite zenith angles, 19 relative azimuth angles, and
16 optical thicknesses. The received SMS visible data has a six bit word
with a square root digitization. In order to deal with a linear brightness
scale, the SMS data is squared, causing a 12 bit word. The large table
of intensities has been multiplied by a scaling factor of 3166.9 prior to
storage so that a 12 bit integer word which matches the SMS intensity
resolution can be achieved. Other satellites, such as the ATS, which have

a linear digitization with less than a 12 bit word can use the tables directly.
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The normalization program first determines the solar zenith angle,
satellite zenith angle, and the relative azimuth angle for the center of
the segmented box. The conversion of any visible pixel in that box from

brightness to optical thickness is done by using the large table

of intensities. Since the table onlfwholds data at finite angles, an inter-
polation must be performed in order to obtain the optical thickness for a unique
set of input angles. The program first generates a table of 16 intensities

for 16 standard optical thicknesses by doing a linear interpolation from data

on the digital disc. The intensity of any intensity I which is a function of
sun angle 60, satellite angle 6, azimuth angle ¢, and optical thickness 1 can
be determined by

3L\ do oI ) de 3T\ d a1\d i
I = [£2 Hf 22 # (22199 O fRlhdr
(6,6 ,6,7) (ae) (ae ) @ <a ot * e
0 q),¢,T o/ 8,¢,T ¢ GO,G,T 6,6°,¢ ( T oi¢1’T1)

with I ' being known. .
(61’601’¢1’T1)

For a constant optical thickness the intensity I can be obtained by finite dif-

ferences as

- AIf(0-8)) ol ‘(q}—q)l) + AL [ (4-¢))
(o]

I =
(6,6 ,4) ~ 40 T 1o ,0
¢
In the partial derivatives, i.e AX h i
» 1.e., 75 s the quantities 6 and ¢ are held
0 ¢ °
o
constant. Since there are only values of I at finite values of 601 and 602,

¢, and ¢zavailable on either side of 60 and ¢, the finite values closest to

0 and ¢ were chosen for the derivatives. The calibration factor of the visible
sensor is then used to convert the observed brightness into the same units

as the intensities on the digital disk. Then a linear interpolation is performed
on the table of 16 intensities for 16 standard optical thicknesses to convert

the observed brightness into optical thickness.
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However, when the calibration factor a has been determined by using
thick convective clouds, as just described, there exists a possibility that
the finite size of the cloud affects the calibration. A study by
McKee-Cox (1974) showed that light does leak out the sides of finite cubic
clouds. Figure 4 shows a graph from their report showing the comparison of
the infinite horizontal extent cloud and the finite cubic cloud using a
Monte Carlo multiple scattering technique. When the doubling method
multiple scattering intensities used in this study are converted into the
directional reflectance to conform to the convention of McKee and Cox,
the doubling results agree closely with the infinite case of the Monte
Carlo results. A study by Mosher (1975) on the determination of infrared
emissivity of clouds using the visible brightness indicated that the
calibration factor o determined by bright clouds might be too high because
of the problem of light escaping from the sides of the clouds. 1In the
brightness normalization program, the calibration factor a can be lowered
by the user. This has the effect of lowering the intensity vs. optical

thickness curves toward what might be expected of finite clouds.
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