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Chapter 1

INTRODUCTION

This report describes work completed on Grant 3-35372, Task A, in
the 1974-1975 fiscal year.

Work in progress in the 1973-1974 year was continued on the use of
the 8x8 Walsh transform for ;he encoding of visual channel data of a
geostationary orbiting experimental satellite, Emphasis has been placed
on the use of the data for meteorological purposes using both visual and
computer interpretation. Only those methods which are judged to be readily
adaptable to satellite ha;@ware within the very near future are considered-
in these studies.

Chapter 4 presents work done on the éhoices of encoding the 8x8 Walsh
transform array and their effect on performance. Attention has been paid
to the preservation of pertinent detail in the various typés of imagery
impogtant to meteorological interpretationé as well as to those methods
applicable to a mechanization of this approach.

Chapter 3 presenté work done on the investigations of the use of
symmetry classifications in Walsh transform encoding. Both the theoretical
considerations giving rise to symmetry conditions and the results of forced
symmetry are given.

The results of both Chapters 3 and 4 are supported with computer results
and photoéraphic reconstructions resulting from computer simulations. This
ﬁortion of the work is now essentially complete,

Chapter 2 presents work done on the Advanced Very High Resolution
Radiometer (AVHRR) problem for Tiros N. An approximation is made to the

given MIF data for the radiometer. From this an instantaneous field of



view (IFOV) is defined. Bounds on the optimum performance for estimating
step radiance changes are derived assuming a step radiance level change and
a S/N ratio normalized to the step change. Some work on algorithms for

an eé%imator is also included.

Two papers prepared for external publication based on our past work

are included in the appendices.



Chapter 2

ESTIMATION OF RADIANCE STEP SIZE WITHIN A LIMITED IFOV FOR AN AVHRR

Development of radiometers with greatly increased spatial resolution,
particularly in the infrared, raises questions on the estimation of peak
detected radiance levels within a restricted number of instantaneous fields
of view (IFOV). Therefore an investigative effort has been directed toward
the estimation of the peak detected radiance value given a very restricted
time (or spatial) limited observation interval. An objective of this study
is that if given the net modulation transfer function (MIF) of the scanner
system and the signal-to-noise ratio , how wéll can the peak value be estimated
from measurements within oniy one or two IFOV's. We assume here that the
radiometer has been viewing a long uniform cloud deck and suddenly encounters
a clear and complete break in the cloud deck. Later approaches can take such
effects as cloud layers, cloud edges, etc. into account in the analyses.

This work is directed specifically to the known requirements for the
TIROS N spacecraft. Specifications of TIROS N which are pertinent to this
work are listed in Table 2.1 [from GSFC Specifications, July 1974]. A con-
version chart based on these specifications and relating spatial frequency at

the subsatellite point to the satellite scanner frequency is shown in Figure 2.1.
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Table 2.1

AVHRR Specifications for TIROS N

Nominal orbit: circular, altitude of 450 + 50 n mi
Scan system rotation rate: 360 rpm

Radiometer resolution (IFOV): 0.59 n mi @subsatellite point
Quantizing accuracy: . 10-bit (1:1024)

Max. sampling rate/channel 40 kHz

Max. step overshoot: / 2%, with less than one cycle "ringing"

Modulation Transfer Function (MTF)

for specified subsatellite
target size: 1.00 @11.8 n mi , 0.75 @1.18 n mi

0.50 @0.88 n mi, 0.30 @0.59 n mi
Min. target contrast for 0.59 n mi

resolution: 30:1

Max. radiance input 80-1007% Albedo
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The problem described in the preceding paragraphs is basically a problem
in the dynamic (transient) behavior of the scanner response. It is complicated
”By the fact that the observable data is sampled and limited by the MTF of the
system. A model for simulation of the overall problem is shown in Figure 2.2.
The detector noise is assumed to be a zero-mean Gaussian white noise source
with a specified variance. Aperture and optics effects are restricted to those
described by the MIF, and cloud edge effects and transmission noise are second-
order effects and can be neglected in a first approach to the problem.

Because the data is sampled, a pre-sampling filter is used prior to the
sampling operation to reduce the effects of épectral fold-over or aliasing..
This filtering operation will have phase as well as magnitude effects on the
spectral components of the signal whereas the MTF will weight the magnitudes
only. Therefore we begin by considering several different pre-sampling filters
and then the effects of the required MTF will be similar to a second filter
placed in cascade with the pre-sampling filter.

Let the frequency transfer function of the pre-sampling filter be H(w).
The impulse response of the filter is the inverse Fourier transform of H(w):

h(t) Fl {H(w)}

h(t) 2-%-[(” H() exp(jtw)de (2.1)
It is assumed that H(uQ-describes a low pass filter.

The frequency at which Hdn) is down from H(0) by 3 dB is labelled as the
-3dB bandwidth, B. The rise time, tr’ of the system response is that time
required for the output to go from 10%Z to 90% of an output level change
resulting from a step input. For low pass filters of order greater than

second order, a fairly good approximation to the rise time is:

£ (28) "1 (2.2)
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For linear systems, the rise time can also be expressed as that time required
for the indefinite integral of the system impulse response to go from 10% to

90% of its final value. This can be expressed as:

t Cad
! ° h(t)dt = 0.1 J h(t)dt;
(o] (o]

t, o
f h(t)dt = 0.9 [ h(t)dt;
(o]

t =t -t : (2.3)

-

The effective width, A, of the impulse response will be taken as a

measure of the IFOV of the system. On a mean-square basis, we define A as:

1/2

e 2 2
oA ]: (t-t)“ |h(t)|“dt , 2.4)
k I; Ine) | %ae
where t is the mean delay time defined by:
ke fw tlh(t)lzdt' '
t =g 5 . (2.5)
J |nh(e)|“at
o .

Combining Equations 2.3 and 2.4, a fairly reasonable approximation is
that: :
A%t (2.6)
) r
so that Equation 2.2 can be rewritten as:
A% (28)72 @.7
The specification of an IFOV of 0.59 n mi therefore sets the minimum presampling

filter bandwidth at about 0.85 cycles per n mi, Note that it is actually

\
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the combination of the MTF of the optics and the presampling filter which
must meet this condition.
Signals passing through the filter must also meet the requirements of
the sampling theorem. Choosing fS to be the sampler frequency (i.e., repetition

rate), we insist that:
fS > 28 ' (2.8)

It is convenient to normalize this by defining a dimensionless parameter k
such that:

k = fs/(2B) 5 (2.9)
For a Nyquist (minimum) sampliﬁg rate, k = 1; for all practical systems, k > 1.

A primary consideration in sampling theory is the relative amount of

spectral fold-over or aliasing which occurs when input signals are not
sufficiently band-limited prior to sampling. Consider the magnitude frequency
transfer functions of three typical fifth-order presampling filters as shown in
Figure-2.3. All three are normalized to their -3 dB bandwidths and the corre-
sponding transfer functions can be found in [Stremler, Redinbo et al. 1974,
p. 3-9]. A convenient measure of the relative amount of aliasing energy present
is [ibid., p. 3-14]:

ws/2 i .
w28 (0w - w )dw
y s

% aliasing = (2.10)

o
we/2Z

J ® w2S (w)dw
o Yy

where Sy(w)_is the power spectral density of the signal at the sampler and W,
is the sampler frequency in radian frequency. ‘

As the worst-case assumption, we let Sy(w) represent white noise filtered

by the presampling filter so that:

2
Sy(w) = NO|H(w)l €2.11)
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Converting to a discrete frequency (integer) parameter n and shifting the
frequency axis for convenience in using numerical computation procedures,

‘Equations 2.10, 2.11 become:

W 2 2
L (n-M/2)7|H(n + M/2) |
n=1

M/2

L oflum|”

n=1

% aliasing = (2.12)

where M is the (integer) sampling frequency.

Results of the computation of Equation 2.12 for the three filter
characteristics shown in Figure 2.3 are shown in Figure 2.4 énd displayed as
a function of: k = fS(ZB). ‘While the advantages of the sharp cutoff
Chebyshev filter are obvious here it must be remembered that these filters
also héve considerable step overshoot and ringing. Therefore the relative
amount of aliasing is but one of several constraints on the problem. Tor
a given type of filter, larger values of k are advantageous. However, the
conseq;ence of larger values of k are that more bandwidth is needed to transmit
the digitally-encoded values, and some compromise is usually necessary. For
example, the choice for the SMS-I visual scanners is: k = 500/450 = 1.11.

The problem of aliasing is brought up here because the choice of the
sampling parameter k has another effect on the problem und;r consideration.

From Equations 2.6, 2.7 we have that A % t. G (2B)“1 and from Equation 2.9

we have: fS = k(2B). The number of sample points available in the observed

Y *
data at the estimator during one IFOV is then: .
b 1/(2B)

Therefore there are only k sample points available in each IFOV. In a typical

situation k would be chosen between about 1.1 and 1.5. This places a rather

* The bandwidth of the MIF is about one-half that assumed for the pre-sampling
filter so this result is a pessimistic one, .
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severe constraint on the problem under consideratioa because there are only
a few sample points availgble. The more conventional type of estimator uses
‘gultiple sample points to computs covariance matrices and then proceeds to

estimate future values based on past history. In contrast, we are required

to make estimates based on 1-3 sample points.

This problem would be extremely difficult.under the above conditions were
it ﬁot for the fact that there is some a priori information available--the
system impulse response, Our approach has narrowed to the use of as much of
this a priori information as possible rather than to rely on the more general
adaptive computational techniques. Because everything in the system is
linear and time-invariant, our approach here is in the use of linear time-
invariant systems.

One method which lends itself to this>approach is that using least-squares
filtering. A possible model for the problem under consideration is shown in
Figure 2.5. The noiseless input signal f(t) is observed through a system
whose desired impulse response is p(t) and is compared, on a mean-square error
basis, to the signal plus additive noise when observed through the actual
system. If the statistics of the signal and the noise are stationary (at
least wide-sense stationary), the problem can be formulated in terms of their
power spectral densities.

We shall designate the operation of convolution by " @ '"; referring to
Figure 2.5, the ideal filtering of the signal is:

z(t) = f(t) ® p(t) $ (2.14)
We assume that the signal and the noise are statistically independent and

additive:

yle) = £(t) + u(E) €2.15)
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The filtering performed by the response q(t) of the actual system is time-

limited to (0,T) so that:

x(t) = [a(t) @ y(©) ]S, (2.16)

This integral equation is difficult to solve exactly for the finite
limits [Van Trees, 1968; Sage and Melsa, 1971]. Therefore we assume a high
S/N condition and allow observations of past data. Within these restrictions,

Eq 2,16 can be rewritten as

x(t) = {q(t) rect[(t-T/2)/T]}® y(t) (2.17)
where ‘ -
1, |t/T| < 1/2
rect (t/T) = '
0 otherwise
and the mean-square estimator is described by r(t); its output is the
estimated value:
g(t) = x(t) ® r(t) (2.18)

We now let p(t) = g(t) for all t. (We could also include a predictor

>

here if we are not willing to allow some delay to obtain our estimate.)

The error in the estimate is:

e(t) = z(t) - g(t)
e(t) = £(t) @ p(t) - q(t)rect[(t-T/2)/T] D y(t) @ r(r)
e(t) = £(t) ® p(t) - h(t) ® y(t) |
where:
h(t) = q(t)rect[(t-T/2)/T] ® r(t) (2.19)

Next the autocorrelation of the error can be written in terms of the auto-
and crosscorrelations of f(t), y(t). Taking a Fourier transform yields an

equation in terms of the power spectral densities:
S (W) = S, [P(w)]? + S () |[HW)|? - S (w)P(u)HE* (W)
€ f y fy
*
- Syf(m)P (w)H(w) (2.20)

The optimum choice of H(w) [and therefore of R(w)] minimizes the mean-square

error:
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l 00
€2 = Eg'f_w S _(w)dw (2.21)

This is 'now set up in a fairly standard problem in least-squares filtering

for which the solution can be expressed as [Brown, 1963]:

Sf(w)
Sf(w) o Sn(w)

H(w) = P(w) (2.22)

Relating this to the problem at hand, the required estimator filter is:

Sp Q(w) - L
Sf(w) + Sn(w) Q(w)exp (-jwT/2) & TSa(wT/2) :

R(w) =

where: Sa(x) £ (sin x)/x. The resulting minimum mean-square error is:

=z 1

B

o  S_(w)S_(w)
f f e B |Q(w) |2dw (2.24)

o Sz @ + 5_(w)

For step function input signals, Sf(w) = S/w% where S is indicative of
signal strength. Also let Sn(w) = N (a constant) with signal and noise

uncorrelated. Then Equation 2.24 simplifies to:

€? = ;—n Lo E%I‘I—N—J |QCw) | 2du ey (2.25)
where Q(w) is the overall frequency transfer function of the scanner response.
For high S/N ratios, the miniTum mean-square error is therefore determined only
by the overall system frequency transfer function Q(w) and the narrower (i.e.,
less bandwidth) the transfer function Q(w) the bettér were it ;;t for the fact
that the spatial resolution is correspondingly degraded. 0f course, a larger
and larger delay time in the estimation is also encountered but we have not

placed a restriction on this here. For low S/N ratios, a first-order filter

which is dependent on the value of S/N is also present to help cut down the

\
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effects of the noise. (This is a result of the assumptions made earlier and
can be.disregarded here.). Note that this approach does not state if the
~optimum filter is actually realizable or not but it does yield a minimum
error if such a system could be realized with linear time-invariant systems,

The above approach was selected because there are so few data points
available and maximum use of all a priori information is desirable. Steps
to compute minimum mean-square errors are quite straight-forward, but some
difficulty may arise in actually synethesizing an optimum filter.

The above analysis has not specifically considered the effect of the
optical system MIF although it was realized that the presampling filter
must be chosen within the constraints of the MTF. Table 2.2 summarizes the
given data points on the MTF and the use of the frequency scaling factors

shown in Figure 2.1 to yield the scanner frequencies.
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TABLE 2.2

MTF Data and Frequency Scaling for TIROS N

satellite frequency in kHz

MTF A, B = 1/2A, 400 n mi 450 n mi 500 n mi
value n mi c/n mi orbit orbit orbit
1.00 11.8 0.0424 0.639 0.719 0.799
0.75 1.18 0.423] 6.390 7.189 - 7.987
0.50 0.88 0.5682 8.568 9.639 10.710

0.30 0.59 0.8475 12.780 14.377 ~ 15.975

A computer program was.used to fit the data points supplied and listed'
in Tables 2.1, 2.2 to a ratio of tenth-order Chebyshev polynomials. Making
use of the fact that the MIF must be an even function of frequency, the
resulting best fit (on a minimum mean-square error basis) yields the following

transfer function:

2 4 6 8 10
5 a + azf + aaf + a6f + a8f + alOf (2.26)
Hl(f) —'b + b f2 + b f4 + b f6 + b f8 + b flO
o 2 4 6 8 10
for lfl <0.9, where:
a = 1.000 b -= 1.000
o o
a, = -0.01879 b2' = -0.1262
a, = -7.2737 N b4 = 9,4875
ac = 20.1259 b6 = —22.4532 A
ag = -21.1560 b8 = 21.8397
ajg = 7.8307 : b10 = =7.7560

and f is the spatial frequency in cycles per n mi. A plot of Equation 2.26
and the given data poiﬁts is shown in Figure 2.6. Effects of the MIF will be

included in future work using this frequency transfer function.

\
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Because no data was given outside the range: lf] <0.9 cycle per n.mi.,

a simple exponential was fitted at that point so that:
'Hl(f) = 1.4033 exp (-1.7839f) (2.27)

for |f| >0.9 cycle per n.mi. Using Eqs 2.26, 2.27, the impulse response

hl(t) and step response of the MIF data is calculated:
-1
h (e) = F © {5, (D)} (2.28)
and:
t
unit step response = J hl(T) dt (2.29)

These are shown in Fig. 2.7.

Use of Eqs 2.26, 2.27 also permits us to calculate the mean-square
error for an optimum estimator. We assume a step signal plus zero-mean
white Gaussian noise., It is convenient to normalize the noise so that
ko is equal to the signal step amplitude, For uncorrelated_signal and

noise, we can then rewrite Eq. 2.25 as:

e I _2_2_J ' 1 : lQ(£) |2 af , (2.30)
k™ ‘o k"+(2nf) <

Results of a numerical evaluation of this equation when evaluated for the
given MIF data over a range 0-1 cycle per n mi is shown in Fig., 2.8,

From these results, it will require a normalized signal-totnoisé
ratio of about 30 to make an estimate within 0.1% of the true vglue. This
agrees with our earlier assumption of a relatively high S/N ratio.

The optimum minimum-mean-square algorithm requires an estimate of the
S/N ratio and the observation interval. The former is not crucial and we

can assume a high S/N condition. It is sensitive to mismatches in the
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length of the observation interval since this sets the gain of the estimator.

At this point it is advantageous that the samples are taken fairly far
apart. The estimator algorithm thus will yeild solutions which are consid-
erably in error if one allowable increment in the observation interval is
erroneously made. So we simulated the mismgtch conditiogf, The simulation
results are discussed below. l

Let t=T be the observation interval for which the estimator is
designed. Let t=To be the actual observation interval assuming that there
is no uncertainty about the observation interval. 1In general To is a
random parameter and so the probability that To + T has to be considered.
For a non-adaptive estimator which does not estimate To’ T is a constant,
pbssibly arrived at through the use of éome 'a priori' information. The
condition To *T iSéimulated for various assumed values of T, and To is used
~as a parameter for a given value of T. Also to study the worst case, a peak
signal (unity) to rms noise (standard deviation of noise) ratio of 10 has
been used in the simulation. The error in assuming an S/N of 10 when one
uses Eq. 2.17 is not considered to be significant.

While adding uncorrelated Gaussian noise, we considered the models in
Figure 2.2 and in Figure 2.5. The former model corresponds to the case of
adding detector noise while the latter corresponds to the case of noisy
input. For the model in Figure 2.2, the simulation results are obtained for
the following cases: g

1. The case of addition of noise for all time, and

2. The case of addition of noise only over 0 < L_i T, while the

unit step response of Q(w) for t> To is assumed to be the unit

step response at t=1‘o in accordance with Eq. 2.17.
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For the model in Figure 2.5, agaiﬁ simulation results are obtained
for the following cases.

1. The case of addition of noise response to the unit step

response of Q(w) for all time.

2. The case of addition of noise response to the unit step
response of Q(w) only over 0 < t j_To while the unit response
of Q(w) for t> To is assumed to be the unit step response at
t=T; in accordance with Eq. 2.17. F a

The following may serve as aids for easy recognition and interpretation
of the simulation results. |

Model Al: Cgse (1) of model in Figure 2.2

Model A2: Case (2) of model in Figure 2.2

Model Bl: Case (1) of model in Figure 2.5

Model B2: Case (2) of model in Figure 2.5

- Sampling period in the time domain corresponds to a spatial sampling
period of 0.068129 n.mile.

- Sampling period in the frequency domain corresponds to a sub-
satellite point spatial frequency sampling period of 0.007167 cycles per
n.mile. |

- The effective width of the impulse response q(t) is about 6
samples. | X

- The autocorrelation function of the white Gaussian noise generated
for the simulation is assumed to be an impulse of strength oi situated at
the origin and so Sf(w) =N = oi. Note that ci is the variance of the

Gaussian noise.

- The signal-to-noise ratio assuming a unit step input is l/on.
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-~ The overall mean squared error between the ideal step response
and the estimated step response is normalized by dividing it by the average
energy of the finite duration step response used in the simulation,
namely 0.785.

- The optical transfer function Q(w) is non-zero over the spatial
frequency range 0_5[f[§ 7.34 cycles per n.mile.

- The values of the ideal unit step response of Q(w) that are of
interest in the simulation are tabulated below.

TABLE 2.3

STEP RESPONSE DATA OF OTF

Sample -
Number 1 2 3 4 5 6 7 8

Unit Step
Response
Value 0 0.018 0.035 0.057 0.084 0.120 0.166 0.225

Sample
Number 9 10 11 12 13 14 15 16

Unit Step
Response
Value 0.300 0.390 0.490 0.592 0.685 0.762 0.824 0.872

- For each simulation the values of T,To énd é/N are specified and the
corresponding normalized mean squared error is shown. T and To are specified
in terms of the number of samples since the sampling period (= 0.068129 n.mile)
and the unit step response value at the sampling instants are known. For
example, T=10 implies that the estimator is optimum if the true observation
is 10 samples. A family of graphs showing the relation between the normalized
mean squared error (MSE) and S/N with T, or the "mismatch' as a parameter is

desirable. But the range over which the MSE varies is so large that a linear
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scale for MSE is not desirable nor is a logarithmic scale. As has been
mentioned earlier, the sensitivty of the MSE to the mismatch between T and
To is more serious and the effect of the noise even for an S/N ratio of

10 is tolerable. The simulation results verify these conclusions. Hence a
table showing the relationship between the normlalized MSE and the S/N
ratio for T=10 with To as a parameter is presented for the model Al
estimator (Table 2.4). Then assuming an S/N ratio of 10 different mis-
match conditions are simulated for different values of T and the corre;-
ponding normalized MSE values are tabulated in Table 2.5.

From Table 2.4, it is observed that the noise alone by itself is not a
serious limitation to the estimation accuracy. But a mismatch by one or
two samples introduces a significant estimation error even for a high S/N
ratio. The steady state estimator output is found to be considerably in
error when compared to unit. Also a decrease in S/N ratio for a given
mismatch does not alter the % MSE significantly. In viéw of these results,
we assumed an S/N ratio of 10 for all the 4 models and simulated mismafch
conditions for different values of T. The results are shown in Table 2.5

From Table 2.5, it is observed that for a given T and To such that
T=T°, the models A2 and A4 give rise to negligible estimation error. This
can be anticipated because the noise influences the data only over the
duration 0 < t < To. On the otherhand, for a given T and T° (T + To)’ all
the four models give rise to nearly the same estimation error. Thus we
verify that the uncertainty associated with the vélue of To can lead to
significant estimation errors if an adaptive estimator capable of estimating

To is not employed.



TABLE 2.4

% MSE OF MODEL Al ESTIMATOR
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T=10
S/ T
Ratio ™C 8 9 10 11 12 13
N
30 17.90 5.40 0.039 6.71 27.00 57.20
25 17.91 5.41 0.055 | 6.73 27.05 57.224
i

20 17.94 5.44 0.083 6.755 | 27.07 57.268
15 18.00 5,55 0.142 6.810 | 27.11 57.358
10 18.16 5.66 0.300 6.960 | 27.24 57.59 °




TABLE 2.5

% MSE OF ESTIMATOR FOR FOUR MODELS
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S/N Ratio = 10
To
8 9 10 11 12 13 14 15
T
Model Al 6.15 | 0.51 9.14 41.39 96.00
Model A2 | 6.16 | 0.009 | 9.127 | 40.00 | 95.86
’ IModel Bl 6.754 | 0.762 | 10.07 41.97 97.22
Model B2 6.167 | 0.017 9.15 | 40.90 96.00
Model Al 18.16 | 5.66 0.30 | 6.960 27.24
Model A2 17.89 | 5.378 0.008 | 6.662 26.95
X Model Bl 18.163| 5.965 0.478 | 6.918 26.22
Model B2 17.890| 5.41 0.006 | 6.66 27.00
Model Al 15.37 4.44 | 0.207 4.50 15.86
Model A2 15.20 4.26 | 0.009 4.283 | 15.63
N Model Bl 15.38 4.50 | 0.322 4.67 16.08
Model B2 15.19 4.26 | 0.016 4.31 15.65
Model Al 11.87 | 3.11 0.145 2.58 8.35
Model A2 11.75 | 2.99 - 0.011 | 2.43 8.19
& Model Bl 11.88 | 3.166 0.238 2.70 8.50
Model B2 11.75 | 2.98 0.018 | 2.437 8.20
Model Al 8.18 1.953 | 0.120 | 1.39 | 4.22
Model A2 8.10 1.856 | 0.015 1.275 | 4.10
" Model Bl 8.215 2.00 0.195 | 1.481 | 4.325
Model B2 8.09 1.856 | 0.019 1.278 | 4.102
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It is also noted that the estimation error for a given mismatch between
»AT and To depends on T i.e. smaller for higher values of T.

Since the different mismatch conditions are equally likely if no "a
priori" information about T, is available, the estimation érror is averaged
for each of the possibilities a) |T—T°|=O b) IT—T0|=1 c)lT-T°|=2
(actuaily the estimation MSE is not an even function of T-T
but depends on T). Table 2.6 has the averaged % MSE for different values
of IT—TOI. |

To give an idea of the berformance of'the different estimators, we have
plotted in Figure 2.9 the estimated step response corresponding to Models Ai
and Bl along with the ideal step respomse for T = 10, To = 10 and S/N Ratio = 10
(The continuous curve corresponds to Model A, while the dashed curve corres-

1

ponds to Model Bl). The estimated step response corresponding to Models A2

and B2 have not been plotted as they very closely follow the ideal step response.



TABLE 2.6

Averaged 7% MSE of Estimator for

Different Values of |T—To|

S/N Ratio = 10

IT—TOI Averaged 7% MSE
(No.of Samples) Model Al Model A2 Model Bl Model B2
0 0.2564 0.0104 0.399 0.076
1 4.541 4.445 4.72 4.451
2 16.53 16. 44 16.90 16.543
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CHAPTER 3

USE OF SYMMETRY RELATIONS IN WALSH TRANSFORM CODING

A major problem in the design of image coding systems for the high
resolution visual channels of a geostationary orbiting satellite or, for
that matter, any digital communication link, is finding a coding method
which will minimize the number of code symbols required to describe an
image without degrading the quélity of the image beyond certain fidelity
limits. It is also highly desirable to have a coding method which is less
sensitive to channel errors and one which is easy to implement.

Out of the possible encoding methods for satellite scanner system

some important methods are DPCM (Differential Pulse Code Modulation),

transform coding, and interpolative coding. In DPCM encoding, the
differences between adjacent brightness levels are encoded rather than

the levels themselves, thereby resulting in savings in bandwidth. DPCM

could be performed in both dimensions for transmitting two-dimensicnal
images. Interpolative encoding uses nonuniform sampling methods for band-
width compression. The disadvantage in this method is that it is difficult
to efficiently multiplex several channels. Greater bandwidth reductions
than DPCM can be obtained by transform coding techniques. This method also
provides certain immunity to channel errors without significant image

degradation. It is self multiplexing when applied to a visual scanner which
has several parallel channels. '

Figure 3.1 shows the block diagram of a generalized transform image

coding system. Radiance samples of the image are converted into the
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IMAGE —»— TRANSFORM > QUANTIZER > CODER
P INVERSE RECONSTRUCTED
N - - [—>
ERRORS —> A DECONER TRANS FORM IMAGE

Figure 3.1 Image Transform Coding System.

|
- ) ] - {

transform domain using a suitable transform. Transformed samples are then
quantized and coded for transmission from the satellite or over a digital
link. Received data are decoded at the receiver and an inverse transforma—
tion of the decoded data gives the reconstructed image. Now the question
arises -- What transform do we use? Do we have a choice? In order to
answer these questions we must specify some criteria such as minimum
cumulative mean-squared error in the transform domain, minimum cumulative
spatial error, etc..

Some of the useful transforms treated in the literature are the
Hadamard-Walsh, Haar, Haar-Hadamard, Slant, Slant-Haar, Discrete Cosine,
and Kahunen Loueve transforms. Only the Walsh transform is discussed in

this report. The sequency-ordered Walsh transform is used here, where
sequency has the meaning of the number of zero crossing (si;n changes)
over the interval.

How do we get more bandwidth reduction by transmitting the transformed

samples? It is found that most of the energy is concentrated in the lower

sequencies and very little energy is contained in the higher sequencies.
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Hence only the lowér sequencies are transmitted Qithout greatly affecting the
quality of the recons;ructed image. If the transformed samples, i.e.
sequency coefficients, are correlated it is not necessary to transmit all

the éoefficients. We can take advantage of possible symmetry properties

in the tranform domain to eliminate redundancy in transmitting the
coefficients of the tranformed image samples, thereby resulting in a
greater bandwidth reduction.

Suppose that a two-dimensional image is to be transmitted efficiently
from the satellite scanner to the receiving ground stations using transform
coding techniques. Let thevsampled brightness levels of the image to be
transmitted be arranged in a NxN data matrix. Let [X] be the input data'
matrix and let [Y] be its two-dimensional Walsh transformed output matrix.
Then we can write: | |

[¥] = £ [ [X] (W] (3.1)
where [W] is the Walsh matrix of order NxN. We are interested only in
the symmetry relations between the off diagonal terms having the same
horizontal and vertical sequencies, but in the reverse order. Let (i,3) be,
respectively, the horizontal and vertical sequency number of [Y]. Then we
need to know the symmetry relations between the sequency pair S(i,j); S(j,i),
where 'S' stands for the sequency. Sequency pairs S(i,j); S(j,i) are said to
be "symmetric" if they are equal both in magnitude and in sign. They are said
to be "antisymmetric" if they are equal in magnitude but opposite in sign. All
other caées are said to be "unsymmetric". It is not always pbssible to
have perfectly symmetric or antisymmetric [Y] if the input is not totally
symmetric. However, it is more useful to know whether the individual
sequency pairs are symmetric, antisymmetric or unsymmetric. If they are

found to be symmetric then there is no need to calculate the other
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corresponding sequency component associated with that particular
sequency pair. Thus if we know the symmetry conditions for sequency
pairs beforehand then we could test for them while we are computing

the ;ransform itself. Because the sequency coefficients are projections
of the data on the corresponding Walsh basis function, the symmetry
condiFions for a particular sequency pair depend upon certain of the
Walsh functions. In general, the symmetry conditions for the sequency
pair S{i,j), S(j,i) depend upon the Walsh basis function obtained by
performing Walsh modulo addition of the basis functions for i and j:

Depends
I ey o eyt e P
on

Symmetry <S(i,j); S(j,i)> Basis (iewj) (3.2)

where Walsh modulo addition is defined as:*

+ 0 +=+4; - 06 - =+
w w

+8 -=-; -0+
W W
Alternatively, if we express the sequency numbers (i,j) in binary form then
the -‘Walsh modulo addition becomes modulo 2 addition. For example, the
symmetry relations for sequency pairs S(6,3); S(3,6) depend upon the
basis function obtained by adding Walsh modulo the basis functions
Wal (6,m) and Wal (3,m):

++ - -+ 4+ - - Wal (3,m) -
+ -+ - -4+ -+ Wal (6,m)
+--+-++ - Wal (5,m)

Alternatively, -

J > sequency 3 in binary - 011 ® :
2

i + Sequency 6 in binary - 110

sequency 5 in binary - 101

* This truth table can also be obtained using an "exclusive nor" binary

operation. 3
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Thus the symmetry relations between the sequency pairs (S(6,3); S(3,6))
depend upon the Walsh ba51s function Wal (5,m).

"In order to find out the exact symmetry dependence we need to consider
two cases. The first case involves the sequency coefficients having zero
as one of their sequency numbers. These coefficients would be those in
the first row and first column of the output matrix [Y]. The second case
treats all other off-diagonal sequency pairs. Because most of the low
sequency coefficients are coded and transmitted the first case is more
important to us than the seceond case. .

For the first case in general the symmetry relations are obtained by
first obtaining the Walsh basis function on which they depend. For the
sequéncy pair (S(0,3); S(j,0)) the basis function is 0 ®,jp where j is
j expressed in binary form. Note that j runs from 1 through N. Let us
call this basis function a "dependence basis function." Having obtained
the éasis function on which the symmetry relations depend, we sum the
data values in [X] lying at the intersection of rows obtained from the
locations of 1's in the dependence basis function and the columns obtained
from the locations of -1's in the dependence basis function. Then we
equate this sum to the corresponding sum obtained on the’transpose of
the input matrix [X]. The difference between the two sums gives the
symmetry difference of that particular sequency pair. If we interchange
the role of 1's and -1's, i.e., select the rows corresponding. to locations
of ~-1's éﬁd columns corresponding to locations of 1l's, we get the
antisymmetry difference of that particular sequency pair. It can also

be shown that:

Sequency Symmetry Difference = I rows - I columns
1% i's

Sequency Antisymmetry Difference = £ columns - I rows
1l's 1's
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where 1's and -1's refer to locations of 1's and =1's in the dependence
basis function of that sequency pair. Because the row sums and column
sums are obtained during the calculation of the Walsh transform co-
‘efficients, we can test for the symmetry relations simultaneously. The
symmetry and antisymmetry relations of the sequency pairs having at

least one of their sequency numbers as zero are important because the
symmetry relations for the higher order sequency pairs depend upon these
lower order sequency pairs. The dependence basis function as we have
noted earlier is the basis function obtained by adding modulo two the
sequency numbers expressed in binary form of the particular seQuency

pair (S(j,i); S(i,j)) under investigation.lvThis dependence basis function
resulting from modulo two éddition is always one of the (N-1) basis functions
considered for the symmetry relations of those sequency pairs having

at least one zero sequency number. Thus for the higher sequencies:

Sequency Symmetry Difference = I rows - X columns (3.3)
1l's 1's

+ other terms due to higher sequencies

Sequency Antisymmetry Difference = I columns - I (3.4)
1's -1's

+ other terms due to higher sequencies
where 1's and -1's refer to the locations of 1's and -1's in the dependence
basis function. Other terms differ for every pair under
consideration. The classification "other terms'" can be obtained as follows:

"Other terms" = -2 (terms off the cross diagonal). (3.5)
TErys that are mentioned above are the same terms used in the evaluation
of symmetry relations of the lower sequencies lying in the first row and first

column. Thus we have defined symmetry relations for all the sequency
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pairs of the output matrix [Y]. As the order of the matrix N is increased
we have to take all péssible cross diagonals. For example, in the 8 x 8
case if we divide the 8 x 8 [Y] matrix into four quarters then each quarter

is a 4 x 4 array of sequency coefficients.

CROSS
DIAGONALS

K= = o -

Figure 3.2 The Cross Diagonals of the Walsh Transform Array.

Cross diagonals are formed as shown in Figure 4.2. We collect only

the points lying off the cross diagonals. i
What is the error in forcing magnitude symmetry between sequency
coefficients pairs on the reconstructed image? Certain Apollo VI series pictures

are selected for this purpose (see Fig. 3.3). Picture size taken is 512 x 512

»
¥

(40 n. mi. x 40 n. mi.). Each is divided into 8 x 8 blocks throughout. A
two dimensional 8 x 8 transform is performed on each of these blocks and
the Walsh coefficients are forced to have magnitude symmetry by averaging
their values and preserving the sign. For example, the sequency pair

(s{i,3); S(j,1i)) is forced to have magnitude symmetry such that:



-2-934

AS6

b) Original Apollo

a) Original Apollo AS6-2-877

1-1469

ASH-

Apollo

d) Original

ASK=2-1430

Apollo

Original

c)
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a) Lower right quarter of b) Upper right quarter of
original Apollo AS6-2-877 original Apollo AS6-2-934

c) Central right quarter of d) Lower right quarter of
original Apollo AS6-2-1430 original Apollo AS6-2-1469

Figure 3.4
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|s(1,9)] = 1S3, | = 1/2 [|s(i,3) |+| sG] 3.6)

where g(i,j) is the new value of the sequency after forcing the magnitude
symmétry. Then an inverse two dimensional 8 x 8 Walsh transform is per-
formed to reconstruct the image. As can be seen from the reconstructed
images (Figure 3.5) there is very little degradation in the reconstructed
picture quality as a result of forcing the magnitude symmetry. Then the
histogram of probability of having unsymmetric, symmetric and antisymmetric
sequency coefficient pairs over an 8 x 8 block is computed and the results
are shown in Figure 3.6. A tolerance of 0.1250 is allowed where 0 is the
standard deviation of that particular sequency pair. As noted from Figuré
3.6 the probabilities in all three cases are nearly the same, meaning that
all three types of symmetry cases are équally likely. The Walsh transform
distributes the coding error over the whole reconstructed data matrix [X].
Becgpse the magnitude symmetry (which includes both symmetry and anti-
symmetry) is more likely, the error seen in the reconstructed image is
not significant. ]

Walsh power spectra of selected Apollo VI pictures are run using
512 x 512 data and yielding a 256 x 256 power speétrum matrix. The
power spectrum here is the sequency ordered power spectrum. Power spectrum
photographs are shown in Figures 3.7,3.8. These photographs reveal some
circular symmetry which motivated our study of the symmetry properties of
Walsh transform. ¢

In conclusion, symmetry properties of the two dimensional Walsh sequency
coefficients are studied and relations developed to test the symmetry and
antisymmetry difference. This computation could be done simultaneously

with the transform.
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If the input data matrix [X] is totally symmetric, then the transformed
output matrix [Y] is also totally symmetric. However, it is possible for
. some of the sequency pairs to be symmetric or antisymmetric even though the
input data [X] is not symmetric as the relations for symmetry and anti-
symmetry depend only upon the sums and differences in particular regions
fixed by the sequency pair. It is thus the collective behavior of input
brightness levels in certain regions which determine the symmetry and anti-
symhetry of the transformed brightness levels. Error in forcing the
magnitude symmetry between sequency pairs is analyzed using computer runs
and plots and reconstructed pictures. Histograms of symmetric, anti-
symmetric and unsymmetric coefficients are computed and the results
plotted. Finally, sequency-ordered power spectral photographs of Apollo VI

pictures are shown and reveal fairly circular symmetry.
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" FIGURE 3.5
FORCED WALSH SYMMETRY RECONSTRUCTIONS
OF SELECTED PHOTOGRAPHS FROM APOLLO VI

Notes:
1. Each quarter-picture is 512 x 512 samples; full photograph scaling
(1024 x 1024) is approximately 170km x 170km.
2. The following abbreviations are used:
a) URQ means "upper right quarter",
b) CRQ means "central right quarter",

c) LRQ means "lower right quarter".

3. Sequency-ordered Walsh coefficients of an 8 x 8 array (only 16 coef—.
ficients are selected and retained for transmission) are forced to have
magnitude symmetry about the principal diagonal of the matrix Y. This
is done by averaging the magnitudes of the coefficients on either side

of the diagonal while preserving their sign.
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a) Apollo AS6-2-877 b) Apollo AS6-2-934
Quarter Picture: LRQ Quarter Picture: URQ

c) Apollo AS6-2-1430
Quarter Picture: CRQ
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FIGURE 3.6. HISTOGRAMS OF SYMMETRIC, ANTISYMMETRIC, AND UNSYMMETRIC
WALSH COETFICIENTS OVER A 8 x 8 BLOCK OF APOLLO AS6-2-877
PICTURE.

NOTES: Tolerance used = 0.125¢

where

0 = Averaged standard deviation of the sequency
coefficients averaged over three pictures
(pictures 877, 934, 1064)

1. Histogram of Unsymmetric coefficients.

2. Histogram of Symmetric coefficients.

3. Histogram of Antisymmetric coefficients.

-y
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Notes:

1.

3.

0
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FIGURE 3.7
SEQUENCY-ORDERED WALSH POWER SPECTRA
F SELECTED PHOTOGRAPHS FRCM APOLLO VI

Data quantization is 8 bits and linear with transmissivity of a

positive transparency.

The zero-sequency ("d.c.") terms are suppressed in these spectral

reconstructions.

The following abbreviations are used:

a)
b)
c)
d)
e)
£)

ULQ means
URQ means
LLQ means
LRQ means
CLQ means

CRQ means

"upper left quarter",
"upper right quarter",
"lower left quarter",
"lower right quarter",
"central left quarter",

"central right quarter".

Each quarter-picture is composed of 512 x 512 spatial samples; each

‘spectral reconstruction is 256 x 256 points.

Full photograph scaling (1024 x 1024) is approximately 170km x 170km.
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‘ FIGURE 3.8
SEQUENCY-ORDERED WALSH POWER SPECTRA
. OF SELECTED PHOTOGRAPHS FROM APOLLO VI

1. Data Quantization is 8 bits and compressed by a square root law.
2. The zero sequency ("d.c.") terms are suppressed in these spectral
reconstructions.

3. The following abbreviations are used:

a) ULQ means "upper left quarter",

b) URQ means '"upper right quarter',

c) LLQ means "lower left quarter",

d) LRQ means "lower right quarter",

e) CLQ means "central left quarter",

f) CRQ means "central right quarter".

4. Each quarter-picture is composed of 512 x 512 spatial samples; each spec-
tral reconstruction is 256 x 256 points.

5. Full photograph scaling (1024 x 1024) is approximately 170km x 170km.
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g) Apollo AS6-2-1467
Quarter Picture:

i) Apollo AS6-2-1484
Quarter Picture:
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h) Apollo AS6-2-1469
Quarter Picture:

j) Apollo AS6-2-1484
Quarter Picture:
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CHAPTER 4

ENCODING STUDIES USING TWO-DIMENSIONAL WALSH TRANSFORMS

The following serves to summarize our efforts on the encoding schemes
for the eight visual channels of the geostationary Synchronous Meteorological
Satel;ite (SMS), with particular emphasis on the work done after our report
dated July 1, 1974 (also see Chapter 3). Selected pictures from Apollo VI
have been encoded using the Walsh Hadamard Transform (WHT) and suitable
quantization procedures have been studied. The pictures reconstructed using
the various quantization procedures are shown to demonstrate an appreciable
savings in bandwidth. Some new results are also presented. The feasibility
of implementing the hardware on board the satellite for the proposed encoding
methods is also discussed.

A simple block diagram of the WHT encoder is shown in Figure 4.1. Here

TWO-

SOUI;CE DIMENS TONAL >!  FILTER ' > QUANTIZER |}——>
S NxN WHT '

1]
Ua]
Hh

Figure 4.1 Block Diagram of the WHT Encoder.

X is the NxN image matrix containing the desired picture elements (pels) and

~

Y is the NxN coefficient matrix containing Walsh coefficients:
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Y=1/N.-WXW Wilev 1)

where N = 8 for our proposed encoding schemes. The fiiter serves to
deiete the Walsh coefficients that are very small and therefore contain
little significant information required fér reconstructing the original
image matrix X. (The filter in Figure 4.1 simply multiplies the elements
yij by either zero or one and so is not a filter in the conventional
sense). The filtered version of the Walsh coefficients Yig (ke = 0,003.50
N-1) are quantized for transmission through a digital communication
channel using PCM. The received coefficients §kz of g are decoded and
then used to obtain a close approximation to X using the inverse

transformation:

X=1N .wiuw %.2)
In order to reproduce X with negligible degradation in the reconstructed
image quality, the filter and the quantizer have to be suitably chosen.
Such choices are investigated and the results are presented below.
| The 16 Walsh coefficients shown in Figure 4.2 (i.e., the region bounded
by cross-hatched lines in Figure 4.2) are selected for encoding based
on their Standard Deviation (SD) over an ensemble of 49,152 subpictures of

8 x 8 size (3 pictures: AS6-2-877,-934,-1430, each of 1024 x 1024 size)*.

* See Appendix C of our final report dated July 1, 1974 for a detailed

discussion on the selection criteria. :
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HORIZONTAL SEQUENCY
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Figure 4,2 Selected Walsh Coefficients.g

Another equally good choice is shown by the diagonal‘lines in
Figure 4.2 and the difference between the two choices in terms of encoding
performance is quite insignificant. Each of the selected Walsh coefficients
assumes values over different ranges. The first-order Probability Density
Functions (PDF) for different coefficients are shown in Appendix C of our
final report dated July 1, 1974. From the point of view of implementation,
we impose the constraint that only one quantizer with characteristics
symmetric about zero is to be used.

In o?der to quantize each of the selected coefficients with negligible
quantizqgion error, the coefficients have to be suitably scaled before
quantization. The choice of suitable Scale Factors (SF) and the type of
Quantizer (QTR) are studied through computer simulation and the simulation

results are presented.

"Sequency" here is defined to be the number of zero crossings.
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Without any elaboration we state that for good subjective quality
reconstructed images,.it is desirable that [Andrews, H.C., 1970]:
1. For a given spatial sequency, the low amplitudes or values
have to be more finely quantized;
2. For a given amplitude, the higher sequency coeffic£ents have
to be more finely quantized.
If each of the coefficients is divided by its corresponding S D
and the resulting coefficients are quantized by a quantizer which has
closely spaced output levels for lower amplitudes and reiaﬁively coarsely
spaced output levels for higher amplitudeé, then requirements (1) and (2)
are almost met and the résulting reconstructed image quality will then be
predominantly influenced by the low pass filtering (Figure 4.1) in the

transformed domain. But such a procedure requires a priori the § D's of

the encoded Walsh coefficients. So an expression of the form:

6;(k,1) = a exp[-(k*+?)b] (4.3)
where 6y(k,l) denotes the estimate of the S D of the Walsh coefficient
with horizontal sequency k and vertical sequency £, is fitted to the
actual computed ensemble S D's. It is found that such a fit is a
reasonably good fit to the computed S D values.

The choices available for the quantizer are uniform (i.e. outputs
are uniformly spaced), non uniform,and piecewise uniform quantizers. The
quantizer outputs and the number of outputs have to be chosen so as to
satisfy the chosen fidelity criterion (e.g. maximum entropy, minimum
mean-squared error, etc.).

The input to the quantizer is the set of the scaled zero-mean Walsh
coefficients with S D of unity and so the input is a random variable which

takes on a wide range of values that are the set union of the values assumed
\
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by the individual Walsh coefficients. From histograms of the Walsh coef-
~ficients, the PDF of the input to the quantizer is estimated to be Gaussian
with a SD of nearly unity. Hence a uniform and a non uniform quantizer
are designed which give rise to very little distortion and are also
matched to the statistics. The number of quantizer output levels is
fixed‘at 64 (6 bits) to conform to the present A/D converter in the SMS-I.
Another quantizer of interest is the SMS quantizer already in use in
the SMS. It has a square-root-type companding law (See Philco-Ford Phase
C design report, Volume I, June 30, 1971).which is desiréblelin view of
our requirements (1) and_(Z) for good quality picture production. It is'’
implemented as a piecewise uniform quantizer on board the satellite.
Because the hardware has been built for the SMS quantizer, the proposal
of a quantizer of the SMS quantizer type does not call for a new hardware
design.
We now outline the different encoding schemes that are used to encode
selected portions of the four Apollo VI pictures: AS6-2-877, -934, -1430
and AS6-2-1469. First the validity of the choice of the 16 Walsh coefficients
in Figure 4.2 is demonstrated by reconstructing the pictures using only the
16 Walsh coefficients in Figure 4.2 with no quantizat;on of the coefficient
amplitudes. Other choices of encoding the Apollo VI picture AS6-2-877 using
24 and 32 coefficients are also compared to illustrate the degradation caused
by Walsh.domain filtering. Next the choices of the SF's and, QTR's are studied
by scaliﬁg and quantizing the 16 retained Walsh coefficients in Figure 4.2.
The degradations introduced by the Walsh domain filtering and the quantization
operations can thus be isolated. Certain definitions to aid recognition of

the encoding schemes are given below.
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4.1 Scale Factor (SF)

Type 1: The set of S D's of the Walsh coefficients computed only over
one picture.

For example, when type 1 SF's are used to encode the 16 Walsh coefficients
of the 8 x 8 subpictures of AS6-2-877, the S D of each Walsh coefficient
computed over only the picture AS6-2-877 is used as a scale factor for that
particular Walsh coefficient. Hence the type 1 SF's are adapted to the
particular picture that is being encoded and so the set of type 1 SF's used
to encode the picture AS6-2-934 will be different from that used to encode
the picture AS6-2-877.

Type 2: The set of S D's of the Walsh coefficients computed over an
ensemble of the three pictures AS6—2—87?, =934 and AS6-2-1430 (3 x 128 x
128 = 49,152 subpictures of 8 x 8 size).

This set of type 2 SF's is the same for all the four pictures AS6-2-877,
=934, -1430 and AS6-2-1469. This is a more realistic set of S D values
because each of the pictures occupies only a fraction of the whole scene
scanned by the satellite.

Type 3: The set of S D's in Equation 4.3 obtained by fitting an
expression of the form:51exp[—(k2+£2)b] to the set of type 2 S D's.

The computed values of a and b are:

a 51.20 - (4 .4a)

>

0.189 . ' (4 .4b)

b
fhe set of type 3 SF's is used to encode the Walsh coefficients of the
subpictures of AS6-2-1469 whose statistics are not considered in the
computation of the type 2 S D's. Thus an a2 priori knowledge of the set

of S D's of the Walsh coefficients is not required and the set of type 3
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SF's may be used for a variety of scenes.

4.2 .Quantizer (QTR)

Y

Type A: A set of 32 uniformly spaced output levels on either side of
zero (total of 64 outputs).

The output levels are so chosen as to minimize the mean squared error
(MSE) between the input, whose first-order PDF is assumed to be a zero mean
unit variance Gaussian, and the quantizer output. The optimum spacing of
the quantizer outputs has been computed té be 0.10376. The associated
MSE is 0.0009161234. -

Type B: A set of 32 non-uniformly spaced output levels on either
side of zero (total of 64 outputs).

Again, the output levels and also the corresponding thresholds are
so chosen as to minimize the MSE between the input and the output. The
thresholds and the corresponding outputs are not shown. The optimum
(in the minimum MSE sense) non-uniform quantizer also gives rise to nearly
the maximum output entropy. Unlike the type A uniform quantizer, the type
B non-uniform QTR has closely spaced outputs for small input amplitudes
and relatively coarsley spaced outputs for large input amplitudes. Thus
the subjective quality of the reconstructed image may be expected to be
slightly better than that of the image reconstructed using the type A
QTR. Thg'MSE of the type B QTR is 0.000522732, about 055 ti;es the MSE
of the type A QTR. But the type B QTR is harder to implement than the
Type A QTR and a comparison of the reconstructed pictures will determine
whether the additional complexity associated with implementing a type B

QTR can be tolerated.
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Type C: A set of 32 non—uniformlf spaced output levels on either i
side of zero (total of 64 outputs)

The type C QTR, also referred to as the SMS QTR, differs from the
type B QIR in that the input is first passed through a square root type
compander and the compander output is quantized to 32 uniformly spaced
outputs. It has been implemented on board the SMS as a piecewise uniform
QTR. The associated MSE lies between the MSE's of the type B and
the type A QTR's. The type C QTR also possesses the desirable characteristics

of having closely spaced outputs for small input amplitudes.

4.3 Simulation Results

This describes some of the simulation results using selected Apollo VI

-picture data and the transform encoding methods described above.

Effect of Walsh domain filtering:

Comparison of Figures 4.5(a) and 4.6(a) reveals that Figure 4.6(a) is
nearly as good as Figure 4.5(a) and that the effect of retaining only the
32 largest variance Walsh coefficients is insignificant. Comparison of
Figures 4.6(a) and 4.6(b) reveals that thelattérh;s suffered a very small
(hardly noticeable) loss in resolution and that anearly faithful reproduction
of the original image is possible retaining only the 23 largest variance
Walsh coefficients. Figure %.6(c) corresponds to a choice of 19 coefficients
which are nearly the 19 largest variance coefficients. 1In Fiéure 4.6(&) the
absence of high sequency coefficients shows up when one observes that the
contours enclosing very small clouds are approximated by abrupt steps. This
is analogous to reconstruction of a continuous curve from closely spaced

‘points on the curve using a zero-order hold. Yet the shape of the contour
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is preserved because the size of the subpicture is quite small (8 x 8).
Because we do not take into account the correlation between the last
colﬁmp (or row) of a subpicture and the first column (or row) of its
adjacent subpicture, there is an abrupt change in the average or DC
level across the boundary between any two adjacent subpictures. This
"checkerboard" effect can be minimized by averaging the brightness in
the vicinity of the boundary between two adjacent subpictures.

Figure 4.9(a) is probably the limit to the extent of Walsh
filtering. The undesirable "checkerboard" effect is due not only to
the absence of high sequency components but also to the abrupt change
in the average brightness'écross the boundary between adjacent sub-
pictures. Nevertheless, it is deemed that the recognition of the
existence of minute details is more important to the human observer than
the actual minute details themselves and so no meaningful, essential
information is lost for visual interpretation due to the Walsh filtering.
Also it is possible to estimate, with moderate estimation error, the missing
high sequency coefficients from the encoded lower sequency ones and an
image enhancement is also possible. However, these techniques have not
been experimentally verified by us through simulation.

It is concluded that a 4:1 bit reduction is possible (i.e., 2 bits/pel)
without loss of any significant detail in the Apollo VI pictures. All the

aforementioned comments also apply to Figures 4.10(a), 4.11(a) and 4.12(a) when
one compares them with Figures 4.5(b), 4.5(c) and 4.5{d), respectively. The
objectionable "checkerboard" effect is clearly visible in Figure 4.11(a)

(note that Figure 4.5(c) has a lot of minute details), just visible over

some portions in Figure 4.12(a),and not at all visible in Figure 4.10(a).
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For Figure 4.11(a), some form of image enhancement is necessary; yet the

existence of detail is clearly recognized in Figure 4.11(a).

Effect of the choice of the SF's:

To observe the above effect, it has to be isolated from the Walsh
filtering effect, as only 16 out of the 64 Walsh coefficients are selected
and quantized. So all the reconstructed pictures referred to hereafter
in this section have to be compared with Figures 4.9(a), 4.10(a), 4.11(a5
and 4.12(a).

Comparison of each of the Figures4.9(b), 4.9(c), and 4.9(d) with
Figure 4.9(a) reveals that with adequate quantization guaranteed by way
of the use of the'type B QTR, the choice of the type of SF's has
practically no effect on the quality of reconstructed pictures. The
same comments hold good for Figures 4.10(b), 4.10(c), 4.10(d), and Figures
4.11(b), 4.11(c) and 4.11(d). Because the type 1 SF's are adapted to the
particular picture being encoded and the fact that the type 2 and type 3
SF's are as good as the type 1 SF's, the type 1 SF's are'not essential
and so need not be considered. The type 3 SF's are particularly attractive

because noa priori knowledge of the SD's of the Walsh coefficients is assumed.

Effect of the choice of the QTR:

In this section only the type 2 and the type 3 SF's are used in the
encoding of the 16 selected Walsh coefficients. Comparison of each of the
Figures 4.9(c), 4.9(e) and 4.9(f) with Figure 4.9(a) reveals that there is
practically no difference between the quality of these reconstructed pic-
tures, as the quantization is adequate and nearly optimally done. Hence

the added complexity in implementing the type B QTR need not be tolerated
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as the type B QTR has no significant advantage (in terms of the quality
of the reconstructed picture) over the other QTR's. Further reduction
in the number of QTR output levels or different unequal length code-
words for each Walsh coefficient are other possibilities to be considered
for bit reduction. The latter is deemed to be too complex to implement
while the former method is not desirable unless more high sequency Walsh
coefficients are also encoded.

Present SMS visual channels use a 6-bit QTR of the same kind as the
type C QTR considered here. Hence a QTR with 6-bit outputs (or 64 output
levels) is recommended. Instead of consi&ering a trade off between the
number of encoded Walsh coefficients and the number of QTR outputs (assuming
equal length code words), it is considered better to use a QTR with 6-bit
outputs and utilize the correlation between the different Walsh coefficients
to estimate the missing high sequency Walsh coefficients from the encoded
ones,

The previous comments are applicable to Figures 4.10(d), 4.10(g),.4.10(h)
and Figures 4.11(d), 4.11(g) and 4.11(h). In Figures 4.9(g) and 4.9(h) the
type 3 SF's have been used. Comparison of Figures 4.9(g) and 4.9(h)
with Figures 4.9(e) and 4.9(f), respectively, reveal that all the above
conclusions on the effect of the type of the SF's and the QTIR's on the
quality of the reconstructed pictures are verified. The same conclusions
hold good for 4.10(e), 4.10(f), 4.10(h) and 4.10(g) and Figures 4.11(e), 4.11(f),
4.11(h) and 4.11(g) Further verification of the above conclusions on the
effect of the type of QTR used is done by comparison of Figures 4.12(a)
4.12(b) and 4.12(c). Hence, on the basis of the above conclusions, we

recommend the use of the type 3 SF's and the type 3 QTR.
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4.4 Further Results

A two dimensional NXN WHT can be done using a one dimensional N2 X N2
WHT. The use of one dimensional N2 X N2 WHT instead of the two dimensional
NxN WHT has many advantages from the implementation point of view even
though the number of operations is the same in both cases. In general, a
two dimensional 8 x 8 WHT requires 384 operations (additions and subtractions)
using the Cooley-Tukey matrix factorization algorithm. If only the 16
coefficients in Figure 4.2 are encoded, then only they need be computed
and this results in a saving of about 42% of the original 384 operations.

The same saving is achieved in the one dimensional 64 x 1 WHT.

The correlation between the Walsh coefficients of 8 x 8 and 4 x 4 suﬂ-
pictures is studied using suitable models for the first and also the second
order statistics of the data. (In particular a two dimensional wide-sense
Markov sequence is assumed for a model). It appears that the two dimensional
8 x 8 WHT is very effective in obtaining nearly uncorrelated Walsh coefficients
because the off-diagonal terms in the covariance matrix of the Walsh c&efficients
are quite small. This leaves some doubt whether it is possible to estimate
with some confidence the missing coefficients from the encoded ones. Further
experiments are necessary to clarify this point, although it is to be borne in
mind that the model used need not be suitable for all ciésses of subpictures.-
As discussed in Chapter 3, the conditions required on the data-or image
matrix:érfor the magnitudes of some of the Walsh coefficients of the tgansformed
matrix Y to be equal to those of their transpose elements in‘g; are not severe

and are satisfied by a significant number of subpictures. Therefore we can

modify the magnitudes of the retained Walsh coefficients (i.e., ykz) as:

7"l = 19" gl = 12 Lyl + vy | (4.5)
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while the signs of the y'kz's (modified ykz's) are the same as those of the
en 8

' Then we do the inverse WHT to see the effect on the reconstructed

pictures. Comparison of the reconstructed pictures in Figs. 3.5(a),(b),(c) with
the corresponding pictures in Figures 4.5(a), 4.5(b) and 4.5(c) reveals

that the assumption in Equation 4.5 has resulted in negligible degradation,

if any, of the quality of the reconstructed pictures. Hence only the
coefficient y'k‘E and the signs of Ykﬂ and sz need be encoded and it is not necessary
to encode both Yy and Yok Suitable encoéing schemes may be.designed to

utilize the above result. More work is needed in this regard.

Finally, a brief discussion of the feasibility of the implementation
of the WHT on board the satellite is in order. Figure 4.13 has the block
diagram of one of the eight identical visual channels. Each one of the
eight channels is periodically sampled every 2us (sampling frequency = 500 KHz).

So at the end of 2us eight samples (one from each channel) have been taken.
For implementing a WHT, the current system may require a few modifications.

The pre-sampling filter low pass filters the video data to cut down the
bandwidth as otherwise the aliasing error will be significant at this sampling
rate. Since filtering is done in the Walsh domain, a pre-sampling filter may
not be necessary. Perhaps the sampling rate may have to be increased slightly
to reduce aliasing. See particulary [1973 SSEC Report] for recommendations on
sampling rate. Since the sampling rate is tied to the satell%te spin rate
which is fixed, a pre-sampling filter is necessary to minimize aliasing. Assume
for the present that the sampling period is 2us. We propose a "64 x 1 dimensional
WHT processor'" in place of an 8 x 8 two dimensional WHT processor. A 64 x 1 one
dimensional WHT processor is a special purpose digital system that accepts 64

samples and outputs the scaled versions of only the selected Walsh coefficients.
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It takes 16 Us to obtain 64 samples (8 samples from each of the 8 channels) .
Computation of all the 64 Walsh coefficients requires a total of 64 log2
64 = 384 additions or subtractions using the fast WHT and also frequent
transfer of data from one storage element to the arithmetic unit and vice
versa. So the logic circuitry that performs these computations has to be
integrated if possible on a single silicon chip to avoid interconnections
and the associated propagation delays. Also the choice of the devices and
circuits may be made by emphasising if necessary speed of operation rather
than power consumed during switching.

It is possible to reduce the number éf additions or subtractions by
computing only the coefficients to be encoded. As has been mentioned
eariler, for the two dimensional WHT zonal coding procedure (4:1 sample
reduction factor) in Figure 4.2, only 222 additions or subtractions are
required as compared to the total 384 operations, a reduction of about
427 of the total number of operations. A similar reduction is possible
for the 64 x 1 one dimensional WHT. It is difficult to determine whetﬁer
the WHT operations can be done in real time or not. If not, a data buffer
is required to store and process the data and the size of the buffer is
determined by the sampling period (2us) and the speed of computation of
the WHT. But Elliott [Elliott, A.R.,Y.Y. Shum, 19737] claims that computation
of 64 Walsh coefficients can be accomplished in less than 200 nanoseconds using
a high speed digital integrated circuit. Also "in place" algorithms that
“utilize the same memory elements that store the original dat; for storing
intermediate results and eventually the Walsh coefficients can be used

to reduce additional storage requirements. Other researchers have developed '

hardware to implement two dimensional WHT in real time and some of them have

developed the hardware which are suitable for implementation on board the
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satellite. Habibi [Habibi, A., and W. K. Pratt, 1974] discusses briefly
the hardware for implementing a DCT by sampled analog operations using
charge coupled devices and surfaée acoustic wave devices. All of the above
researchers using a WHT use a two dimensional WHT. But use of a corres-
ponding one dimensional WHT can reduce equipment complexity considerably.
In view of the above references, we conjecture that a real time implementa-
tion of the 64x1 one-dimensional WHT on board the satellite is feasible

with very little or no buffer storage. Also, Harmuth [Harmuth, H. F., 1972]

mentions the possibility of a faster compﬁtational procedure using a
logical Walsh transform.

- The quantization of the selected WHT coefficients poses no problem
from the implementation point of view as a bipolar version of the SMS
quantizer is easy to implement.

The WHT has some advantages over the current system used in the
SMS. Since the WHT coefficients are obtained by linear combination of
the samples which are corrupted by the additive PMT noise, the transform
process may average out the PMT noise. In particular the zero sequency
component yOO can be expected to be much less immune to the DMT noise and
the reconstructed subpicture can be expected to be less noisy. If only 16
of the 64 coefficients are chosen for encoding, they may be transmitted

at a slower rate (1/4 of the SMS sampling rate).
Obviously it is not possible to consider all implementation complexities.
An attempt has been made only to demonstrate the feasibility of the WHT on

board the satellite based on the SMS system constraints and the experiences

of other researchers.



a) Lower right quarter of b) Upper right gquarter of
original Apollo AS6-2-877 original Apollo ASA-2-934

c) Central right quarter of d) Lower right
original Apollo ASA-2-1430 °

quarter of
original Apollo AS6-2-1469



a) Reconstruction of Fig. 4.5a
using only the 32 largest-variance
Walsh coefficients in Fig. 4.4a
(no quantizer used)

c) Reconstruction of Fig. 4.5a
using only the 19 largest-variance
Walsh coefficients in Fig. 4.4c
(no quantizer used)

FIGURE

4

b) Reconstruction of Fig. 4.5a
using only the 23 largest-variance
Walsh coefficients in Fig. 4.4b
(no quantizer used)

d) Reconstruction of Fig. 4.5a
after filtering by simulated SMS
optics

.6



a) Reconstruction of Fig. 4.5a

using only the 23 Walsh coefficients
in Fig. 4.4b, NOPT QTR

b) Reconstruction of Fig. 4.5b

using only the 23 Walsh coefficients
in Fig. 4.4b, NOPT QTR

c) Reconstruction of Fig. 4.5c¢
using only the 23 Walsh coefficients
in Fig. 4.4b, NOPT QTR in Fig. 4.4b, NOPT OTR

d) Reconstruction of Fig. 4.5d
using only the 23 Walsh coefficients

FIGURE 4.7



b) Reconstruction of Fig. 4.5a

a) Reconstruction of Fig. 4.5a

using only the 16 Walsh coefficients
in Fig. 4.4d, Type 1 SF, Type B QTR

sing only the 16 Walsh coefficients

in Fig. 4.4d (no quantizer)

u.

d) Reconstruction of Fig. 4.5a

c) Reconstruction of Fig. 4.5a

ing only the 16 Walsh coefficients
in Fig. 4.4d, Type 3 SF, Type B QTR

us

using only the 16 Walsh coefficients

in Fig. 4.4d, Type 2 SF, Type B QTR

FIGURE 4.9



e) Reconstruction of Fig. 4.5a . f) Reconstruction of Fig. 4.5a
using only the 16 Walsh coefficients using only the 16 Walsh coefficients
in Fig. 4.4d, Type 2 SF, Type A QTR in Fig. 4.4d, Type 2 SF, Type C QTR

g) Reconstruction of Fig. 4.5a h) Reconstruction of Fig. 4.5a
using only the 16 Walsh coefficients using only the 16 Walsh coefficients
in Fig. 4.4d, Type 3 SF, Type A QTR in Fig. 4.4d, Type 3 SF, Type C QTR

FIGURE 4.9 (cont'd)
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a) Reconstruction of Fig. 4.5b b) Reconstruction of Fig. 4.5b
using only the 16 Walsh coefficients using only the 16 Walsh coefficients
in Fig. 4.4d (no quantizer used) in Fig. 4.4d, Type 1 SF, Type B QIR

TR ARSI - AR
c) Recénstruction of Fig. 4.5b d) Reconstruction of Fig. 4.5b
using only the 16 Walsh coefficients using only the 16 Walsh coefficients
in Fig. 4.4d, Type 2 SF, Type B QTR in Fig. 4.4d, Type 3 SF, Type B QTR

FIGURE 4.10
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e) Reconstruction of Fig. 4.5b
using only the 16 Walsh coefficients
in Fig. 4.4d, Type 2 SF, Type A QTR

g) Reconstruction of Fig. 4.5b
using only the 16 Walsh coefficients
in Fig. 4.4d, Type 3 SF, Type A QTR

FIGURE 4.10

f) Reconstruction of Fig. 4.5b
using only the 16 Walsh coefficients
in Fig. 4.4d, Type 2 SF, Type C QTR

h) Reconstruction of Fig. 4.5b
using only the 16 Walsh coefficients
in Fig. 4.4d, Type 3 SF, Type C QTR

(cont'd)
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a) Reconstruction of Fig. 4.5c
using only the 16 Walsh coefficients
in Fig. 4.4d (no quantizer)

c) Reconstruction of Fig. 4.5c
using only the 16 Walsh coefficients
in Fig. 4.4d, Type 2 SF, Type B QTR

FIGURE

b) Reconstruction of Fig. 4.5c
using only the 16 Walsh coefficients
in Fig. 4.4d, Type 1 SF, Type B QIR

d) Reconstruction of Fig. 4.5d
using only the 16 Walsh Coefficients
in Fig. 4.4d, Type 3 SF, Type B QTR

4.11



e) Reconstruction of Fig. 4.5c f) Reconstruction of Fig. 4.5c
using only the 16 Walsh coefficients using only the 16 Walsh coefficients
in Fig. 4.4d, Type 2 SF, Type A QTR in Fig. 4.4d, Type 2 SF, Type C QTR

g) Reconstruction of Fig. 4.5c h) Reconstruction of Fig. 4.5c
using only the 16 Walsh coefficients using only the 16 Walsh coefficients
in Fig. 4.4d, Type 3 SF, Type A QTR in Fig. 4.4d, Type 3 SF, Type C QTR

FIGURE 4.11 (cont'd)



a) Reconstruction of Fig. 4.5d
using only the 16 Walsh coefficients b) Re§2252;§§tig: ;é ;:%;hhézszicients
: : us
in Fig. 4.4d (no quantizer used) in Fig. 4.4d, Type 3 SF, Type A QTR

c) Reconstruction of Fig. 4.5d d) Reconstruction of Fig. 4.5d
using only the 16 Walsh coefficients using only the 16 Walsh coefficients
in Fig. 4.4d, Type 3 SF, Type B QTR in Fig. 4.4d, Type 3 SF, Type C QTR

FIGURE 4.12
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CHAPTER 5

. CONCLUSIONS

Based only on the MTF data, a minimum-mean-square-error estimator
can provide estimates of radiance step changes based on one or two IFOV's.
A normalized step signal to rms noise of about 30 is required to make the
measurement to an accuracy of 0.1%. The most important parameter is the
correct number of observation (sample) points because the algorithm must

tailor its response based on.this parameter. Therefore the problem becomes
more one of estimating the correct observation interval and the compound '
problem quickly becomes complex. The motivation here has been to provide
some bounds on the performance.

Encoding using the two-dimensional Walsh transform is efficient in
bandwidth conservation and the 8 x 8 transform seems to be well suited for
this purpose. The coefficient selection and quantization rules developed
here are easy to implement and provide good and consistent performance
without the hazards of adaptive processing using on-board computers. The
symmetry relations permit increased efficiency and the use of the one-
dimensional processing scheme developed here for the two-dimensional Walsh

transform holds promise for satellite applications. The required

implementation steps are well within current satellite technology.

2
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APPENDIX A

GROUND MAPPING RESOLUTION ACCURACY OF A SCANNING
RADIOMETER FROM A GEOSTATIONARY SATELLITE
by

Mohsen A. Khalil, Ferrel G. Stremler, and Robert J. Parent

Abstract
Measures of the spatial and spatial rate (frequency) mapping of scanned
visual imagery from an earth reference system to a spin-scan geostationary
satellite are examined. Mapping distortiohseuuicoordinate inversions to cor-
rect for these distortions are formulated in terms of geometric transformations
between earth and satellite frames of reference. Probabilistic methods are
used to develop relations for obtainable mapping resolution when coordinate

inversions are employed.
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I. INTRODUCTION
Use of the spin-stabilized geostationary satellite for scan-type imag-
ing is of continuing.importance in remote meteorological sensing. Satellite
measurements made using the spin-scan principle are in terms of angular dis-
placements of thevsatellite whereas global measurements are usually referenced
in terms of longitude and latitude. Here we examine the relationships between
the two frames of reference and the inherent accuracy limitations and distor-

tions introduced in the coordinate transformation.

The spin-stabilized geostationary satellite is placed iﬁ”a synchronous
orbit approximately 22,300 miles above the earth's surfacé. At this altitude,
its orbital angular veloc%ty matches the rotational angular velocity of the
earth so that its position relative to feétures on the earth's surface is fixed
if its orbit is truly equatorial. The éatellite is rotated about its axis,
which is perpendicular to the orbit plane, at a constant angular rate such that -
a perpendicular to the spin axis scans across the earth's surface along an east-
west or west-east (eéuatorial) line. The azimuth of the scan angle measured
from the line joining the centers of the earth and satellite is labeled as the
angle B in Fig. 1. An optical aperture and lens on the satellite is used to
focus radiation received from sequential elements of a scan onto a photomulti-
plier tube. The resulting electrical signal is filtered, sampled and digitized
for transmission to a ground terminal. To scan the earth's surface in latitude
as well as longitude, a stepping mirror deflects the received radiation in the
instantanéous field of view (IFOV) of the satellite at a différent angle on

each rotation. This mirror tilt angle is labeled as the angle a. A series of

successive scans can be used to reconstruct a replica of the observed scene in

terms of the angles o, B.

Imagery on the earth's surface is measured in terms of a longitudinal

angle 6 and a latitude angle ¢. These angles are measured in the earth's frame

\
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of reference. The transformation between the two.reference systems is quite
linear for small nadir angles from the subsatellite point and becomes quite
noqlinear near the earfh's perimeter viewed from the satellite. Some of
these 'effects have been investigated previously for the ATS series of
geostationary satellites and were reported in some unpublished work [1]. Some
relations of viewing angles in the earth's frame of reference have been pub-
lighed recently in a note by F. Smith [2]. The purpose of this work is to ex-
tend some of these results with ‘particular emphasis on a sensitivity analysis
of the coordinate transformation between frames of reference in the presence
of spatial errors. This has application to the use of co¥éuter methods for
use of transformations to remove geometrical distortions from imagery vieQed

from a geostationary satellite.

II. GEOMETRICAL SCALING AND DISTORTION EFFECTS
In this section we develop geometrical relations between the earth co-
orainétes and the satellite coordinates and the rate of éhange (frequency) be-
tween them. The derivation is‘restricted to the case of a spin-stabilized
geostationary satellite gnd a spherical earth.
The earth coordinate system is measured in terms of a longitude angle 6
and a latitude angle ¢. The satellite coordinate system'is measured in terms

of a spin-scan angle B and a mirror tilt angle a. The satellite scanner meas-

ures the incident radiation in terms of a, B and this can be used to estimate

the imagery in 0, ¢. However, B is constant so that unequal amounts of time
are spent.in different parts of the hemisphere, resulting in a nonuniform spa-
tial resolution. Two items of interest are the coordinate mapping from (a,B)
into (6,¢), and the frequency conversion factor from one reference system to
the other.

Let R be the distance between the centers of the earth and the satel-

lite and r be the radius of the earth, as shown in Fig. 2. Also, let R1 be
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the distance between the observed point on the surface of a spherical earth

and the satellite. In equation form, this can be expressed as:

R, = R cosa cosB - Yr4 - R? sina - R? cos?a sin’B (1)

The satellite scanner senses incident radiation in the (a,B)-frame of
reference. Imagery is measured in the (0,¢)~-frame of reference. The mapping
between the two can be expressed as:

€ sind

sina = (2)
Yl + g% - 2¢ cos¢$ cosb
. € cos¢$ sinb
tanh =g - € cos¢ cosf . (3)

In these equations, € is the ratio of the earth radius to the radius of a, geo-

stationary orbit:
€ = r/R = 0.151 ' A | " (4)

A spherical earth is assumed and for the mapping of a point on its surface to be

visible from the satellite we insist that the following inequality holds:

cosf cosd > € ‘ (5)
In the neighborhood of the subsatellite point (i.e., that point at
which: 6 =0, ¢ = 0), the measured imagery in (o,B) can be interpreted direct-

ly in terms of (6,¢), the constant of proportionality being the constant:

(1-e)/e. Thus we can write:

[(1-€)/ela »> ¢
(6)

[(1-€)/elB > 6 :

This mapping is quite linear for small nadir angles from the subsatellite point
but becomes quite nonlinear for large angles. The transfer characteristics
corresponding to Eg. 6 are shown in Figs. 3, 4.

The net effects of these nonlinecarities in mapping can be portrayed by
tracing the loci of constant o and the loci of constant B in the (6,9) coor-

\

dinate system. Curves of constant a may be obtained from Eq. 2 and curves of
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constant B may be obtained from Eq. 3. The resulting loci are shown in Fig. S.

Geometrical distortions in this uncorrected mapping procedure are small for

angular differences less than about 30° from the subsatellite point bﬁt ﬁeéome
appreéiable for larger angular differences. Because the relative values of q,

B are generally known, a computer algorithm can be employed to remove these
distortions on a point-by-point basis as the data is received serially. There
are limitations to this procedure, however, and we shall examine these in a
later section.

Another set of equations can be derived geometriéa}ly for the transforma-
tion of measurements in the (a,B) frame of reference to the (8,8) frame of
reference. However, it is easier to make use of reciprocity and it turns out
that the desired relations can be written down by observing the following

N

interchanges:

a4—>¢ A

B <> 0 ' | (7)
rHRl

Thus the corresponding set of relations from the satellite coordinates to the

earth coordinates is, using Egqs. 2, 3:%

R, sina sina -
sing = =X (8)
YRZ + Rf = 2RR; cosa cosB =
where
Y = RI/R (9)
and
R, cosa sinB ——— $
tanb = Y > (10)

R - R1 cosa cosB i 1l - Y cosa cosB

A typical satellite scanner consists of an optical system to image the
instantaneous field of view (IFOV) and Step the azimuth scan in fixed incre-

ments of o and followed by a detector of visible or infrared radiation. The

* This seemingly very simple expression may be deceptive; recall tha+
Y is a function of a, 8.
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output of the detector is an electrical signal whbse amplitude is proportional
to the incident radiance from within the IFOV. After band-limiting with an
electrical filter, this signal is sampled, digitized and multiplexed with other

signals before transmission of the data to a ground terminal.
= .

As the satellite rotates about its spin axis with fixed énéular rate,
an item of interest is the phase velocity scaling between a point source on
fhe earth's surface and the resulting frequehcy content in the satellite scan-
ner electrical signal. For convenience, we normalize this to the subsatellite
point. The relative phase velocity factor T at any point on the surface of

the hemisphere in terms of a, B is [3]:

YVez - sinZa

2

I' = -
(1-€)Ve? - sina - cosZa sin‘B

(11)

Using Egs. 2, 3, we can reference this to the earth coordinate system and the
corresponéing result is shown in Fig. 6.

If the scanning aperture of the satellite were infinitesimally narrow,
Fig. '6 exhibits the variation of the conversion from spatial frequency content
on the earth's surface to electrical frequency as a function of position; Des-

ignating spatial frequency content by fo the resulting scanner signal frequency

f 1is then:
s
fS = (1—e)BRFf° (12)

For a satellite spin rate of 100 rpm and fo measured in cycles per ne*mi, Eq.

12 becomes: =

-~

f = 0.202x10% I'f (13)
S (o] ’

Typical values for fo are on the order of one or two cycles per n.mi. This
result indicates that high freéuency response is necessary to reconstruct im-
agery accurately at angular separations more than about 30° away from the sub-
satellite point as a result of the rapid increase of I'. This mode of operation

is referred to as the bandwidth-limited case. N
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The preceding analysis assumed an infiniteéimally narrow scanning aper-

ture. In practice, the limits on scanner spatial resolution are determined

.more by the scanning aperture than the electrical bandwidth. In the aperture-
limited case, the increase in scanning phase velocity is offset by an increase
in the projected scanning aperture. Thus the spatial frequency response of
the scanner is constant with angle and Fig. 6 may be interpreted as the increase
of minimum detectable size with position. 'Early geostationary satellite scan-
ners (e.g., ATS-1) were aperture-limited and used electrical bandwidths wider
than the maximum aperture response. Recent trends (e.g., SMS-I) have been to
match the electrical bandwidth to the aperture response. 'Geometrical distor-
tions, in contrast to minimum spatial resoiution, are also present but may be

removed using a computational algorithm to remedy the distorted data format il-

lustrated in Fig. 5.

Another item of interest is the required antenna pointing angle from
the earth to the satellite. Following Smith [2] we defipe an azimuth angle A
such ;hat A is zero when the antenna is directed towards the north when in the
southern hemisphere and directed towards the south in the northern hemisphere.
The elevation angle to a geostationary satellite above the horizon is e, as

seen from the earth site. The angles 6, ¢ are the longitude and latitude rela-

tive to the subsatellite point. The values of A and e can be computed from:

_ tan® (14)
tan A = sing
A cosO cosd - € (15)
Yl - cos?6 cos?¢ ¢

Loci of constant A and of constant e can then be .computed from:

r - '
e | tanb (16)
¢ s | tan AJ

and the geometrical equivalent to Eg. 15 [2]:

¢ o COS—]' —sin[e + Szz;;(s cOS e)]] (17)
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A plot of the loci of constant A and-constant e, as given by Smith [2], is

shown in Fig. 7. This plot is important to us here because it portrays the

~ angle of perspective (e) for mapping imagery on the surface of the earth. Use

of Egs. 2, 3 also permits us to refer the angles to the satellite coordinate
frame of reference, as shown in Fig. 8. Note that although the ioci of con-
stant A and constant e are quite orthogonal for mappings.near the subsatellite
point,‘there is an appreciable amount of cross-coupling effects for elevation

\

angles less than e % 30°,

IIX. MEASUREMENT ACCURACY

The position of a ground site may be measured either in the earth or satel-
lite coordinate system. For a given measurement in one of the two reference
systems, the other set of coordinates may be obtained by using the geometrical
conversion developed in the previous section. Naturally, disturbances exist
either in the enviromnment or in the satellite systgm itself. Some of these
disturbance sources and effects are slowly-varying and can be detected (e.q.,
navigational and orbital variations) and corrected with appropriate computer
instructions. Others, however, can best be handled as random disturbances or
inaccuracies in the satellite frame of reference (e.g., non-ideal optical re-
sponse, bandwidth limitations, etc.). These effects limit the attainable map-
Ping resolution even though the required geometrical corrections are made.
Here we shall look at some o§ these problems using probabilistic methods.

We assume that the longitude 6 and latitude ¢ within a Fpecified region
on the earth's surface are represented by the independent random variables Xe,
x¢, respectively. The positions in the satellite coordinate system a«, B are
random variables because they are functions of Xe, X1. For notational sim-

¢

plicity we use 6, ¢ for Xe, X¢ whenever it is not confusing.

Within the line-of-sight restriction of Eq. 5, the satellite angles

(x,B) are single-valued functions of the earth coordinates (6,¢). Using the
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well-known rule for the transformation of random variables [4], the joint den-
sity function of a, B can be expressed in terms of the joint density function

of 6, ¢ as:

-

’

1
P, B(G,B) = TE?ETETT‘FG’¢(6.¢) (18)

where J is the Jacobian of the transformation as given by:

a3 |
300,95 =90 % : (19)

8 28

26 a¢

and Egs. 8, 10 can be used to substitute for 8, ¢ in the right-hand side of
Eq. 18. .

While this presents a formal solution, it is complicated and not very
convenient for the problem at hand. Because a computation only of the first
two moments will suffice, we instead resort to an approximation of the first
two moments. Let g{ } represent a single-valued function; then the first mo-

ments of 6, ¢ are (where E{ } denotes the expectation operator):

g Ee{g(e.¢)}

(20)

Ny E¢{g(9f¢)}

If p(6,¢) is centered near Ng s n¢, and g(6,¢) is "smooth" in the vicinity of

this point*, we can write [4]:

-

5 1 32g 32%qg 3%g
E{g(6,9)} = g(ne.n¢) +* 3 [“zo 392 t 2y, 30 99 + Uy, 292 (21)

where the joint central moments H are defined by:

kr

= k _ r
ey = B{ (xg-ny) (%,-n,) } . (22)

In a similar manner, an approximation to the variance is:

2 )
2 fa 5 % 29
09(6,¢) B [80] Hap ¥ [a¢] Moo ¥ 2 39 3¢ M1 (23)

* Typical aperture responses — both optical and electrical — tend to
easily satisfy these criteria.



We have:
- g2 - 2
and. because Xe and X¢ are independent, it follows that:
uli =0

For convenience in handling the problem beyond this point we make the assump-

tion that the variances in 6, ¢ are equal:
8 ool w2 ’ (24
Oe 0¢ g ' ) ( )

Checking the assumptions made here by using a two-dimensional Gaussian joint
density function for 6, ¢ using the extremely large value of ¢ = 10 milliradians
(about 80 n*mi at the earth's surface) reveals that the approximate evaluation

of the first and second moments can be applied in this problem even to this ex-

tent within an accuracy of +0.3%.

3.1 Analysis of the Scan Tilt Angle, «

If we expand a(6,9¢) in a series about ne, n¢, we find that a can be con-
sidered a linear function of 6, ¢ in a range of *7° around ne, n¢, and within an

error of less than one percent. Thus we can write:

2 . B e B ‘ T
a(6,p) = a(ne,n¢) t 36 (6 ne) + 39 (¢ n¢) (25)
where i
da _ -€2 sinod sin¢ cos¢
22 = 26
20 YZ(YZ_EZ sin2¢)% (26)
§5_= e(y2 cosp - € sin2¢ cosb) 27)
3¢ v2(y2=€e2 sin2$)”?

For small angular displacements on the order of tens of milliradians a(6,9)
may be considered as a smooth, slowly-varying function and we can use Egs. 26,

27 in Eq. 23 to give:

' 2 A :
62 = 0282[(Y2 cos) - € sin2é cosB)” + (¢ sin® cosd sing) 2] (28)
a .

Y*(y? - €2 sin?¢)
where y is the normalized distance between the satellite point and the speci-

fied position and is given by Egs. 1, 9, or the alternate form:

Y2 =1+ €2 - 2¢ cos® cos¢ (29)
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The ratio oa/c is the decrease in mapping source spread on the earth's

surface as observed and measured in the satellite coordinate system. It is

convenient to normalize this ratio by referring it to the earth coordinate sys-
tem: '(Y/e)ca/o so that it is unity at the subsatellite point. A normalized
graph is shown in Fig. 9. Note that the plots have been truncated at earth

tangency points (cf. Eg. 5).

‘We shall define the bias in the mean as:
Aa(B,¢) = E{a(xe,x¢)} - a(6,9) (30)

Evaluating the second partial derivatives of a(6,4) and using ‘Eq. 21, we have:

o2e sind[(y2 - €2 sin2g)

2v*(v2 - €2 sin2¢)’/?

[(y + 3ey? cos® cosé - 2e2 cos?p sin?¢)
2v% (y2 - €2 sin2¢) /2

Aa(el¢) = =

> eyz(cose - € cosda)(y2 cosd - € sin2¢ cosf)
27“(72 - g2 sin2<!a)3/2
¥ g2 sing¢ cosz¢ sin20 (3y2 - 2¢2 sin2¢)] ]

2y* (y2 - €2 sin2¢>)3/2

(31)

A graph of Eq. 31 is shown in Fig. 10. The bias is always negative, quite non-
linear in 6 along lines of constant latitude and becomes quite linear for rela-

tive longitude angles greater than 30°.

3.2 Analysis of the Spin Scan Angle, B

A similar procedure may be followed to evaluate the moments of B. Again,
if we expand B in a series about ne, n¢, we find that B is smooth and slowly

varying in the vicinity of (n,,n,). The approximate evaluation of the moments

6" ¢
applied to a may be applied as well to B within almost the same accuracy. Thus

we have:
BLO.6) = Binguny) + 55 (0-ng) + 28 (oo ) (32)
where
9B _ € cosd (cos® - £ cosd) (33)
96 1 - 2¢ cosB cosp + €4 cos¢ .
3B - £€sinf sing ’ : (34)

" 1 - 2e cosB cos¢ + €2 cosZe

Qo
-
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Using these in Eq. 23, we obtain:

2 = ozezlsinze sin2¢ + cosz¢(cose - € cos¢)2]
B (1 -— 2e cos® cosd + €% cos?¢)?

(35)

A graph of Eq. 35 is shown in Fig. 11. Again it is convenient to normalize to

the earth coordinate system by introducing y (cf. Eg. 29). Note that, in con-
trast to the result for the tilt angle, the variance of B is not monotonic.

It is éroportional to B in the range 0-42° in 6 and inversely proportional to
B for higher values of 6. iAlso, it is proportional to B in the range 0-47° in
¢ and ipversely proportional to B for higher values of ¢. This unusual behav-
ior is the result of a twisting of the angplar perspectivé befween the two co-
ordinate systems.

We define the bias in the mean of B to be:

AB(6,9) = E{B(xe.x Y} - B(6,4) (36)

¢

and use of Eg. 21 yields:

o2e sinb (cosd - € cosh + g2 sin2¢ cos¢)
(1 - 2e cosO cos¢p + €2 cos<¢)?

AB(6,¢) = - (37)
A graph of Eq. 37 is shown in Fig. 11. The bias in the mean of the spin scan
angle is proportional to sinB and because B varies only over small angles, the
bias in B is proportional to the value of R. ]

The bias in the mean, the variance, and the joint density function of a
and B all depend on the variance of the given density function and on position,
i.e., on the coordinates 6 and ¢ of the position, which are in turn the means
of the ra?éom variables Xe and X¢, respectively. ¢

Basicglly, the same approach can be followed to solve for the transforma-

tion of random variables from the satellite to the earth coordinate system. In

other words, the problem would be to find the joint density function, the bias

~in the means, and the variances of 6 and ¢ for a given disturbance of a known

density function with zero mean and a given variance ¢2 in o and B.
\
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IV. MAPPING RESOLUTION

The geometric transformation from the earth coordi;;te system to that
of a spin-scan geostationary satellite was described in section 2. In many
cases’'the mapping in a, B can be interpreted as a linear mapping of a scene in
6, ¢ when the angular differences from the subsatellite point are small and
the geometric distortion is tolerable. An inverse transformation can be made
to remove the geometric distortion and this could be accomplished ideally were
it not for the fact that errors and inaccuracies occur in the measurement.
These errors may arise from short-term satellite pointiﬁg inaccuracies, optical
response limitations, bandwidth restrictiqns, etc. We as;ume that these inac-
curacies can be described in terms of second moments abéut the true pointing
angle. The standard deviation of these inaccuracies is a measure of the map-
Ping resolution in the (a,B) coordinate system.

In the previJLs section we used an approximation for the variation of
9, a?d g for a circular source ( of radius ¢ ) positioned at 6, ¢ on the
earth's surface. As observed, however, there is a twisting or rotational ef-

fect between the two coordinate systems for large values of 0, ¢. Therefore

we define a tangential measured source spread function o, as:

Ot = V(o§+c§)/2 . | . (36)

A second measure of source spread function is taken alcong the great cir-

cle which includes the line from the satellite and the observed point. This

measure o is found by the projection of the circular source o through the

>
¥

angle e defined in section 2. Using Eq. 15 we can write:

o =0 sin[tan‘l[ Sosb goed =8 ]] : (37)
Y1-cos?8 cos?¢

Equation 37 arises as a direct result of the oblique angle of observation in

the measurement.
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We also define an rms satellite measurement inaccuracy about the true
pointing angle by os- It is convenient to normalize 0y by referring it to ¢
at the subsatellite point. Therefore we define O in terms of a parameter k

such ‘that:
os = ko[e/(1-€)] _ (38)

where k is the ratio of the rms satellite measurement inaccuracies to the source
spread 0. Both are measured at the subsatellite point and the factor [e/(l-€)]
in Eq. 38 refers oy to the earth coordinate system scaling.

The mapping procedure assumes a circular source at 8, ¢ of spread o which
is measured in a, B. The measured source'spread isvoa, 0B and inaccuracies in
the satellite measurement have a spread o- The inverse transformation can now
be performed to yield the desired reconstruction. Note that the transformation
from (0,¢) to (¢,B) varies with angle but O is assumed to be constant and is
not dependent on a, B.

" As a measure of how well the inverse transformation can be accomplished

in a mean-square sense, we define a tangential mapping resolution factor as:

o

p, = /I¥KZ autilis ., (39)
/oﬁ+o§ )

where the factor vV1+kZ is used to normalize Py to unity at the subsatellite

point. In a similar manner, we define a normal mapping resolution factor as:

) (o]
P, = VIS et | (40)
ovl"l.‘}-o'S

These two mapping resolution factors have been chosen in such,a way that they
are always perpendicular and are normalized to unity at the subsatellite point.
It can also be shown that pt 2 pn.

A plot of the loci of Egs. 39, 40 is shown in Fig. 13 for the case of
k2 =1 (i.e., mean-square satellite measurement inaccuracies equal toc mean-

square mapping source size). A second plot for the case of k2 = 0.10 is shown

\
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in Fig. 14. Using é criterion of 0.9 for the mapéing resolution factor, we
conclude that the rmg ;pread function of the satellite measurement inaccuracies
must be on the order of Y10 less than the minimum IFOV resolution size for ac-
ceptaﬁle reconstruction out to about 50° from the subsatellite point. A plot -
of maximum angle from the subsatellite point for acceptable reconstruction
within given values of normalized resolution factor is shown in Fig. 15. Figs.
13, 14 can also be used to determine asymmetry in the residual distortioh in-

troduced in the mapping.

V. CONCLUSIONS

Mapping from a spherical earth to a.spin—scan geostationary satellite
is single-valued but not iinear except for small angles. Variation in scanning
velocity results in variation of measured frequency content and the system may
be limited by electrical bandwidth unless it is aperture-limited. T;ansforma—
tions were developed and could be used to remove effects of\geometrical distor-
tion'on a point-by-point basis. :

The capability of making corrections for geometrical distortions is lim-
ited by the inaccuracies of the instrument in the satellite. Two measures of
mapping resolution Py pn were introduced which were not sensitive to rotational
effects between coordinate systems. Based on a mean—squ;re criterion, satel-
lite measurement inaccuracies on the order of l/fia-times the minimum IFOV

resolution size are required_for good image reconstruction out to about 50°

from the subsatellite point.

-
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FIGURE CAPTIONS

Figure 1 Satellite Coordinate Frame of Reference

Figure 2 Earth-Satéllite Geometry ‘

Figure 3 Characteristic Transfer Curve of the Spin-Scan Angle

Figure 4 Characteristic Transfer Curve of the Scan-Tilt Angle

Figure 5 Mapping from Earth Coordinates to Satellite Coordinates

Figure 6 Normalized Scanning Phase Velocity

Figure 7 Mapping from Earth Antenna Coordinates to Geostationary Satellite

in the Earth Coordinate System [2]

Figure 8 Mapping from Earth Antenna Coordinates to Gébstationary Satellite

in the Satellite Coordinate System

Figure 9 Variance of the Scan Tilt Angle Measured in the Earth Coordinate

System

Figure 10 Bias in the Mean of the Scan Tilt Angle

Figure 11 Variance of the Spin Scan Angle Measured in the Earth Coordinate
System
Figure 12 Bias in the Mean of the Spin Scan Angle

Figure 13 Loci of Fixed Resolution Normalized to the Subsatellite Point;

g =0
S

Figure 14 Loci of Fixed Resolution Normalized to the Subsatellite Point;
as = ¢/Y10

-

Figure 15 Maximum Allowable Angle from Subsatellite Point for Acceptable

Image Reconstruction
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Fig. 2
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QUANTIZATION OF PMT SIGNALS FOR
METEOROLOGICAL SATELLITES

by

Ferrel G. Stremler

William R. Bryson

Abstract

Quantization rules are examined for a satellite radiometer in the visual
range. Effects of photomultiplier tube noise on the detection of cloud
brightness levels are of particular interest because the expected radiance
levels are high. Effects of area integration are considered to improve the

probability of detection at high radiance levels.
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I. INTRODUCTION

Visual scanners in early geostationary orbiting satellites used analog
traqsmission techniques. However, more recent geostationary orbiting satel-
lites - (e.g., SMS-I) use digital techniques after quantizing the detected ra-
diance levels, prior to multiplexing and transmission to a ground terminal.
Some consequences of the quantization rules are investigated with an emphasis

on how they affect various users of the data for meteorological purposes.

II. SOME CHARACTERISTICS OF RADIOMETER SIGNALS AND NOISE

The detector commonly used for visual scanners is the photomultiplier
tube (PMT). It is sensitive and réliable;‘it also has the characteristic that
the detector noise power is proportional to the incoﬁing radiance level. We
assume that this detector noise is the limiting condition in the visual image
transmission for a given spatial resolution. |

Within this assumption, the detector'noise characteristic significantly
influgnces the quantization'rule employed for the scanner. One commonly-used
criterion is that the quantization rule should yield a uniform probability
den51ty function (pdf) at the output. In the absence of_z.priori information
on the statistics of the expectéd signal, this criterion yields a square-root
quantization rule for the PMT. Such a rule provides very good radiance level
discrimination at the low levels at the expense of rather poor discrimination
at the high levels. It is the type currently in use in such satellites as

SMS-I.

An-estimate of the statistics of typical data can be determined from

photographs, A typical cloud pattern photograph taken on the Apollo VI mis-

sion is shown in Figure 1.* The transparency for this photograph was scanned

* Apollo VI transparencies are courtesy of the NASA Manned Space-
craft Center, Houston, Texas 77058.
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and digitizea (linez~ -ith respect to transmissivity) to 8-bit accuracy using
1024x1024 non-overla: ing samples. The corresponding histogram, plotted to a
logarithmic ordinate, is shown in Figure 2.

* Based on studies of this and cther photographs from the Apollo VI mis-

sion, it turns out that the bimodal shape of the histogram exhibited in Figure 2

is quite typical. The maximum at the lower levels results from the average

.

radiance levels of the earth's surface. The maximum at the higher levels re-
sults from the radiance levels from the clouds. Variations in the brightness
of the clouds and the darkness of the background may cause this pattern to
spread out, incident lighting angle changes may cause levél shifts, and the
proportions of cloud cover to backéround area may result in relative chanées
in the proportions between maxima. However, the bimodal sﬁape is typical
throuéhout these variations. Important'signal information is contained in the
range near the maximum at lower levels if one is interested in details on the
earth's surface and is contained in the range near the maximum at higher levels
if one is interested in cloud pattern details. Obviously, the PMT detector is
more ideally suited to the former than to the latter.

At this point one can apply a method described by Max [1] to determine
the optimum quantizer rule. The method is based on a mean-square €rror cri-
terion and the signal and noise statistics. The numerical procedure is not
easy, however, and requires lengthy computational methods. In addition, not
all input signal levels may be of equal importance to the user.

The latter point is particularly true in multiple-user systems. Some
of the meteorological users of SMS-I data include visual photo classification
and interpretation, correlation between sﬁccessive frames for determination
of relative cloud motion;, and estimation of cloud brightness levels. The first

use is quite tolerant of adjacent-level errors and coarse level increments at

high radiance levels. Good performance for the second user is primarily
\
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dependent on retention of good spatial (edge) response and moderately good level
discrimination at the lower radiance levels to locate recognizable landmarks for
frame alignments. The'third user needs data in only the top 15-20% of the ra-
‘diance level range and is quite tolerant of some loss of spatial detail. The
latter is very susceptible to quantization choices which affect the higher lev-
els. Because this is a problem with existing scanner systems, we shall investi-

gate this Problem in more quantitative detail.

III. -PROBABILITY OF ADJACENT-LEVEL ERROR
As a model for the PMT, we assume that the maximum,useable signal level
is 5000 times the minimum signal level (i.e., a 74 dB dynamic range). Thg
noise is assumed to be an additive conditional Guassian random process with
zero mean and a standard deviation of: _
¢ = k/5 ' o W
where S is the signal level and k is a parameter of the PMT used.
~ A criterion of performance is the net probability of error resulting
from deteétor noise. However, this will depend somewhat on the signal statis-
tics, so instead we consider the probability of adjacent-level errors assuming
equal a priori adjacent signal ievel probabilities. On a comparative basis, this
will normally be proportional to the net probability of érror for picture data.
For a linear quantizer‘with quantizing level increments of A, the pro-

bability of an adjacent-level error, Pgr is:

_ © 1 -x2 _ A
p. =2 f v, . d exp[ang dx = erfc{zv/7 c} ; (2)

A/2

where o is given by Eq. 1. A graph showing pe versus signal level for a 6-bit

linear quantizer, within the above dynamic range restrictions, is shown in

Figure 3, 2
A nonlinear quantizer whose level increments are tailored to yield a

uniform output noise pdf for a PMT results in a square-root quantizatiocn rule.
\
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For the above dynamic range and 6-bit quantization, each of the 64 levels will
be spaced by approximately 1.25 ¢ so that the resulting probability of adjacent-
level error is, from Eq; 2, a constant given by:

¢ p, = erfc(0.442) = 0.53 . ' (3)
This is also shown in Figure 3. Use of this nonlinear quantizer, however, re-
sults in only 6 quantizing steps within the top 15% of the range. This com-
pares to 8 quantizing steps in the top 15% of the range using the linear quan-
tizer. The probability of an adjacent-level error for the linear quantizer in

this part of the range is (on a single-point basis) about 73% (cf. Figure 3).

IV. AREA INTEG;?ATION VS NOISE EFFECTS

The square root quantization rule yields a uniform rms output detecﬁor
noise level per quantization step and therefore a constant probability of ad-
jacent-level error. At high radiance levels, however, the quantization steps
bgcome quite coarse and this may seriously éegrade attempted measurements at
these- levels. On a single-point (i.e., single resolution element) basis it
may be aréued_that the probability of error becomes so ﬁigh as to make any
meaningful measurements impossible anyway. This may be true for a single res-
olution element but such measuréments as cloud brightness generally involve an
area covering several resolution elements. Thus we next‘investigate what ef-
fect an area integration has on reducing the probability of error.

Relatively little information is available on this question [2,3] and so
a closed-circuit television system was used to investigate.* Geometric shapes
(mostly squares) with different numbers of resolution elements and of different

contrast ratios were placed against a uniform background. This was used as the

subject for a closed circuit television camera, as shown in Figure 4. A second

s

* The choice of a television system was a natural one because we cur-
rently use television monitors to display cloud patterns from geostationary
orbiting satellites.
. \
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closed-circuit camera was focused on the screen of a television monitor which
was tuned to an empty channel. This supplied a source of random noise in the
measurement. |

- The outputs of both televisior éameras were added using a television
waveform and then recorded on videotape. The S/N ratio was obtained by ob-
serving the composite picture signal level and the average noise level. The
S/N ratio was set equal to zero at the point where the composite signal was
not quite visible in the noise.

The resulting videotape was played back and stopped repeatedly using a
"hold-frame" switch. This latter step eliminated time-inéegration effects in
observations of fixed patterns in time-varying noise. The smallest detectable
areas visible for each cogérast ratio and S/N were recorded. The order was in-
terch&nged and many measurements were made. The results were averaged in an
attempt to make the results as objective as possible. All measurements were
made above the resolution limits of the system. The normalized results when
plott;d to a log-log scale are shown in Figure 5. A straight-line fit is also
ihdicated.

These tests give an indication of the tradeoffs between area integration
(i.e., target size) and detectable signal level. For example, the probability
of adjacent-level error of the highest level using a 6-bit linear quantizer in
additive conditional Guassian noise is, from Egs. 1, 2:

¥, = erfc(0.226) = 0.75 . (4)
Assuming that all of the noise which limits the detection is PMT detector noise,
an increa;e in one order of magnitude in target area gives (cf. Figure 5) about
a 3 dB improvement so that the new probability for adjacent-level error is:

p. = erfc[V2 (0.226)] = 0.65 . (5)

Thus the linear quantization rule can result in more information at the higher

levels, even though the noise levels are high, as long as the patterns of in-

\
terest are relatively large.
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Finally, a word should be added about what.may appear to be abnormally
large probabilities of adjacent-level error. For a 6-bit linear quantization
rule, the probability of an adjacent-level error is not detectable using film
or television monitoring. For example, a high-quality film transparency is
capable of reproducing about 5 bits of inforﬁation per sample point while photo-
graph prints and b/w television are more on the order of 3-4 bits. Also, the
probability of errors for levels more removed than the adjacent levels decreases
rapidly so that a picture with an adjacent-level probability of error of 50%
actually may look quite good to the observer, particularly if the contrast is

high. Therefore these measures are used on a comparative basis.

v. CONCLUSIONS":

Photomultiplier tube noise power increases linearly with input radiance
level. Based only on noise statistics, a square-root quantizaticn rule there-
fore yields a uniform output probability density. Signal statistics from broken
cloud’ patterns result in a bimodal probability density. However, the varia-
tions from scene to scene make it difficult to design a system solely on the
basis of the signal statistics. The square-root quantization rule gives best
level discrimination in ranges Qhere the data is of least meteorological value
and penalizes attempted measurements in the upper part of the range. It has
been shown that linear quantization in the upper part of the range results in
higher noise levels on a single—point basis but area integration can be used

to reduce the equivalent noise level.
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Figure Captions
Altocumulus cloud pattern over the Pacific Ocean off
the coast of Mexico; Aﬁollo AS6-2-1429; scale is approximately
170x170 km.
Log-histogram plot of Apollo AS6-2-1429 data using 8-bit linear
quantization and 1024x1024 samples.
Probability of adjacent-level error for a 6-bit linear and a 6-bit
square-root-law quantizer in the presence of conditional Guassian

PMT noise.
Experiment to determine area integration and S/N ratio tradeoffs.

Average number of resolution elements visible vs S/N ratio.
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