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Introduction to Filters

A. A Ladder Network

Consider the infinite ladder and let the impedance across ab be

b -

represented by zo. To determine z0 we notice that this infinite network

is unchanged if one more section is added to the front end, thus

or
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if z1 = iwL and z2 1/iwC then z = E— . The first term 5

is just one half the impedance of the first element. It is simpler to redraw
our infinite network as follows

z z z z 4 z
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Then the impedance across alb, zO1 = %»— EZL— . Now there are two

interesting cases: (1) if w2 < %E-then z is real and continuous absorption

of energy occurs (ie. the current penetrates far down the line) or (2) if

2 i .
w >-EE then z0 1s imaginary and we see no such propagation.

B. Filters

Suppose we hook up an AC generator across ab and wish to determine

the voltage across the nth section of the infinite ladder.
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Vv z
ol 1- L= o = propagation factor.
Vn %0

The voltage after the nth section is

AC voltage across ab.

For our LC ladder

vi/c - sz‘/4 - i wL/2

\/L/C - w2L2/4 + i wL/2
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For w < Ve the magnitude of the voltage zcross each section is the same
only the phase changes; for w > Vo the voltage {Jecreases by the factor o

which is less than 1. Thus we have a low pass filter with the following

propagation factor.
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If we interchange L's and C's then we have a high pass filter.
Whatever happens at w for low pass occurs at %-for high pass. To translate
this behavior to a finite network end it off with an impedance equal to
the characteristic impedance zo. In practice it is not possible to exactly
reproduce z for all frequencies, but it is often possible to do so for a

certain range of frequencies. For example the L-C ladder tied off with

a resistance R = VL/C behaves much as we have described the infinite L-C

ladder.

Different Types of Filters

C. Response Functions

A response function is defined as the ratio of the output voltage

to the input voltage. All response functions are ratios of polynomials

in s = iw with real coefficients -
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Any response function can be expressed uniquely in terms of its poles
and zeros to within a constant factor. For a transfer function of the above

form there are p + q + 1 independent coefficients which are used to specify

component values in the filter.

D. Different Tradeoffs in Filter Design

To achieve as close to possible an ideal frequency response

{
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various tradeoffs come into consideration. One common criterion, called

the maximally flat criterion, is that as many of the derivatives of [R(iw)l
at w = 0 as possible should be equal fo zero. Application of this criterion
leads to Butterworth filters, which have monotonically increasing

attentuation, good phase characteristics and low passband losses, but the

cutoff is not sharp.
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The maximally flat phase criterion requires that derivatives of the phase

angle of R(iw) at w = 0 beyond the first derivative should be zero (1St

derivative of ¢, %%, is called the delay).



Application of this criterion leads to Bessel filters, which have excellent

transient response but poor frequency selectivity.
<
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The previous criteria stressed behavior at w = 0. The Chebycheff criterion
holds that all frequencies in the passband are equally important.
Attenuation and attenuation ripple are permitted in the passband, but

the maximum attenuation is limited to whatever the designer feels he can

tolerate. The Chebycheff filter achieves greater sharpness at the cutoff.

IR chey!

5 Pole Bessel Filter

E. Bessel Filter

The Bessel polynomials in the variable-% are defined by

n

s (nt+k)!
Ly =

yn\s) z

k=0 (n-k)!k!(2s)k

The polynomials of interest are derived from above by letting

h_(s) = s" y (l) = g sk
n n's k=0 A ’



and the transfer function is then given by

a

=*0—. =
R(s) hn(s) ; R(0) =<1 .

For a 5 pole filter, we have the coefficients

a, = 945
a; = 945
) a, = 420
ag = 105
a, = i5
a5 =1,

and the pole locations
q = -3.646739
= =3.351956 + i 1.742661

q, . = -2.324674 + i 3.571023,
4,5 x

and the configuration

C = .0667
L A 1
s . 2 L. = .1948
I }-——W-mj 2
€, Log,.L cl:‘L__ " c, = .3103
L4 = ,4215
C5 = ,6231



The loss in dB for the 5 pole Bessel filter can be written

Loss = 20 loglolR(s)l

20 log, 7 42 = 3 52.1/2( "
[945-420w"+15w")2 + (945w=105w 4x>)2 ]
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F. Conversion From Low Pass to Band Pass
A low pass filter is characterized by some distribution of poles and
zeros with symmetfy about the real axis. If the axis of symmetry is moved

to some frequency Wy then Y will replace zerc in the filiter response



characteristics and a bandpass filter results. Realizing that each pole

has a complex conjugate pair, we find that the appropriate transformation
)

is w
s->:—+—9-
o S :
Since we now have two poles for every previous one, the bandpass filter

will have twice as many components as the prototype low-pass filter. This

comes about since

1
s(l/w0

sL » sL + 2
L)

which implies that each inductor is transformed into an inductor in series
with a capacitor of l/wozL farads. A similar analysis shows that each
cépacitor is parallel resonated by an inductance of l/wOZC henrys. Note
that the above trénsformation is not perfect. The pass band is symmetric
geometrically, not arithmetically. If w, and w, are the edges of the

pass band, then the band center is at Wy = lewz and not at Wy = (w1+w2)/2.

Thus to convert the 5 pole Bessel low pass filter to a band pass

one

(a) determine the desired bandwidth Wo = Wy =Wy and the desired

center ‘frequency v = /wlwz

(b) change the bandwidth of the low pass filter to Vo

(¢) perform the low pass to band pass transformation on the network.

Specifically to convert the 5 pole Bessel 3 db cutoff from 2.42 rad/sec
(wﬁax,LP) to 26000 Hz and .026 Hz (fmax’BP and fmin,BP) write

Vip =‘¢Tmax,Bmein,BP fBP _ ¢%max,Bmein,BP
; —_—
“max,LP  “max,BP  ‘min,BP |/£ fpp

max,Bmein,BP



and change the components so that the circuit looks like
L4 C4 L2

I>“,—/m~l
C5 L__ L.5 C3:£ %L3 C1

Then the loss curve will have the following form

c
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L5 =1/w

= 1/w0?
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G. References on Filters
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(2)
(3)
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Feynman, Lectures on Physics, Vol. II
«
Ludkin, Filter Systems and Design

Weinberg, Hughes Aircraft Company Technical Memo #427

Geffe, Simplified Modern Filter Design



