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ABSTRACT

For the 1979 summer MONEX, satellite data (both TIROS-N and GOES-I)
are used to describe the atmospheric energy balance components for the
onset period, 11-20 June. Top of the atmosphere and tropospheric
radiational components, and moist static energy components for the Arabian
Sea and its littoral are calculated. Top of the atmosphere longwave,
shortwave, net radiation, and albedo calculations are generated from
calibrated GOES-I imagery for the southern Indian Ocean, 0° to 30S and 40E
to 80E. Tropospheric radiational components are calculated using the
Chou-Arking algorithms with relative cloudiness (GOES-I) and temperature
and relative humidity (TIROS-N) serving as input. In addition, moist
static energy component calculations are based on vertical temperature and
moisture profiles (TIROS-N) and cloud-drift winds (GOES-I). Relative
cloud cover is a primary factor in affecting the radiative balance of the
earth-atmosphere system. The divergence of moist static energy at low
‘levels was found to 103 larger than either the advective or local rate of
change component. Temporal and spatial analyses were generated for the
onset period, and the data are available to users on computer compatible

tape in grid format.
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105 INTRODUCTION

During the Summer Monsoon Experiment (SMONEX), a sub-program of the
First GARP Global Experiment (FGGE), multispectral scanning radiometer
(MSR) and radiation flux measuring instruments were flown on the NASA
CV-990 aircraft over India, Saudi Arabia, and the Arabian Sea. In addi-
tion, dropsondes were deployed from aircraft. The MSR, radiation flux,
and dropsonde measurements provided the ground truth needed for precise
interpretations of satellite radiance observations in terms of surface
temperature fields, vertical temperature profiles, and regional radiation
budgets.

The research work included in this report was carried out in two
stages. During the first stage (under NSF grant #ATM;801—4892) of the
effort attention was focused on careful and detailed calibration of GOES-I
measurements of reflected shortwave and emitted window infrared radiances
using in situ aircraft MSR measurements and TIROS-N longwave flux (Virji,
1982). The derived calibration relationships were used to estimate the

"spatial and temporal distribution of the radiation balance of the earth-
atmosphere system over the Arabian Sea and its littoral during the omnset
phase of the 1979 summer monsoon (11-20 June 1979). The results of this
analysis were presented in a paper (Smith, et al., 1981) at the
Tallahassee FGGE/MONEX conference. Based upon the results, a second stage
of the research effort was begun on 1 June 1982 (under NSF grants
#ATM-8205-386 and #/ATM 8342-619). This document summarizes the effort
during the second stage of the analyses.

The research effort focused on (i) a full documentation of the high
resolution earth-atmosphere (E-A) radiation balance components (Virji et

al., 1982; Appendix A), and (ii) estimation of tropospheric and surface




energy balance components (both radiative and thermodynamic) for the
Arabian Sea and surrounding region for the onset period. The evolution of
tropospheric radiative and moist static energy balance components is
emphasized in this report. Manuscripts of papers for publication in
refereed journals (in draft form) are included in the appendices.

A detailed analysis for the onset phase of 1979 summer monsoon over
the Arabian Sea region has been completed. The study could not be
extended to the established and break phases of the monsoon as continuous
satellite (GOES-I) data in the infrared channel was unavailable after 21
June 1979 due to satellite sensor malfunction. No analysis over the
Tibetan Plateau region was attempted either because of problems related to
1imb darkening effects at the periphery of the GOES-I visible image.
Instead, the spatial domain of the analysis for the onset phase was
extended over the Southern Indian Ocean to 30° S latitude and 40°E and
80°E longitude. For this region, the earth-atmosphere (E-A) radiation
balance components were derived in a similar manner as for the Arabian Sea
' region analysis contained in the Atlas (Virji et al., 1982; Appendix A).

The balance of this report discusses the main results of the com-
pleted analyses for the onset phase over the Arabian Sea region (Section
II.A). The results of the E-A radiation balance analyses for the southern

hemisphere are discussed in Section II.B.

II. SUMMARY OF WORK COMPLETED
A. ARABIAN SEA AND ITS LITTORAL

15 Earth-Atmosphere Radiation Budget Analysis

The published Atlas (Virji et al., 1982) based on this analysis is

included in Appendix A. A detailed description of the analyses can be



found therein. Briefly, what is included are hourly analyses of longwave
flux, albedo, absorbed solar, and net radiation derived from calibrated
visible and infrared GOES-I satellite imagery on a 2° x 2° latitude-
longitude grid for the period 11-20 June 1979 for the Arabian Sea and its
littoral. 1In addition, daily averaged analyses for the variables men-
tioned above are available for the ten day period. Diurnal variation of
the E-A radiation balance components during the 1979 monsoon onset phase
can be obtained from virtually any location within the analysis grid.
Mean diurnal variations in the radiation balance components for the onset
period at five selected locations are included in the atlas. There may be
some inherent navigation and line offset problems between visible and
infrared images from the GOES-I satellite. This offset over the ten day
period averaged less than 2 pixels/day. Hence, the offset error is
minimal compared to the large-scale (8 km resolution and 2° x 2° grid
spacing) analysis performed.

A total of 250 copies were printed of which 120 were disseminated to
"both domestic and international MONEX researchers. This data is also

available on computer compatible tapes to researchers at a nominal charge,

mainly for the cost of the magnetic tape.

20 Tropospheric Energy Balance Analysis

Table 1 shows a schematic of equations and data used. Part 1 of
Table 1, the E-A radiation budget analysis, provided good estimates of the
top boundary conditions. The next step was to calculate tropospheric
heating. As indicated in Table 1, vertical profiles of temperature and
humidity for local noon conditions were derived from the TIROS-N sounder

data using the iterative retrieval algorithms with a statistical first




guess (Smith, 1983). Cloud drift winds at 1000 GMT (Young et al., 1980)
and relative cloud cover (Virji and Herman, 1984; Appendix B) were used
together with the retrieved temperature and humidity profiles to compute
both the tropospheric radiative heating and the moist static energy
balance. The terms described in this section will be discussed under two
major groups:
(a) Tropospheric radiative heating analyses
(Foy» F

LW)

(b) Moist static energy balance analyses

[E 8, v - v

The terms not discussed are the vertical advection of moist static energy
[/(3w/3) Q (dp/g)], latent heat, and sensible heat release as they were

not directly calculated from our data.

a. Tropospheric radiative heating

The three state parameters which affect the radiation balance within
the atmosphere are temperature, humidity, and cloudiness. While
cloudiness can change extensively in the summer monsoon region of the
Arabian Sea, temperature and relative humidity profiles undergo relatively
less fluctuation from one day to another. Therefore, knowledge of the
relative cloudiness is crucial in defining the shortwave flux (FSW) and
longwave flux (LLW) within the atmosphere, as will be discussed later.

A detailed explanation of the derivation of cloudiness during the
onset phase is given in the Virji and Herman paper found in Appendix B.
Briefly, the model used a bi-dimensional histogram based on infrared

brightness temperature and reflectance (derived from visible digital




counts) to specify cloud types and their altitudes. It was assumed that a
given cluster of brightness temperature and reflectance classes could be
assigned common cloud height, amount, opacity, and thickness. For each
2°x 2° grid box a two dimensional histogram was constructed and from these
histograms four cloud types were identified as: low (950-700 mb), middle
(699-400 mb), high (399-100 mb) and cumulonimbus (950-100 mb). The
analysis was done once per day around 1000 GMT over the Arabian Sea for
the ten day onset period (11-20 June 1979). Relative cloudiness was not
calculated for 13 June because the infrared sensor malfunctioned for an
eleven hour period during the day. Some shortcomings inherent in this
technique are (i) maximum cloudiness of 100% per grid box (mo vertical
cloud stacking), (ii) ignoring semi-transparent clouds (e.g., thin
cirrus), and (iii) using the plane parallel model which ignored the fact
clouds have different shapes. An example of relative cloud cover for 20
June is shown in Figure 1.

The relative cloudiness and the satellite (TIROS-N) derived tempera-
’ fure and humidity profiles were used as input to calculate shortwave and
longwave cooling in the troposphere through the application of radiative
transfer calculations as formulated by Chou and Arking (1980, 1981).
Surface albedo (a necessary additional parameter) was obtained from a
minimum albedo image derived from a sequence of GOES-I visible satellite
images at local noon time for the center of the analysis area. Here, for
a series of images (in this case, ten days worth) the lowest digital count
at each pixel location was saved resulting in a picture with all the
clouds removed (except for persistent clouds associated with orography and

sea breeze, and contamination and sun glint) as seen in Figure 2.




The radiative transfer calculations were carried out for nine layers
between 1 mb and the surface for the infrared portion of the spectrum.
The shortwave calcﬁlations also consist of nine layers, but the output
parameters saved were the incident shortwave at the top of the atmosphere
(SFI), the amount absorbed at the top of the atmosphere (SFT), and the
amount absorbed at the surface (SFS). All calculations were made once per
day (near local noon, 0900 GMT) on a 2°x 2° grid covering the Arabian Sea

and its littoral for the ten day period, 11-20 June 1979.

(1) Longwave cooling

The results discussed here, are the cooling rates at the top of the
atmosphere (or in the uppermost layer), longwave cooling at the surface,
and profiles of cooling rates for selected locations. Figures 3a and b
show the outgoing longwave radiation in the uppermost layer as measured by
the Chou-Arking algorithm (a) and the independent analysis contained in
the GOES-I radiation Atlas (Appendix A) for 20 June 1000 GMT. The two
' independent analyses compared well not only in location of maxima and
minima, but also the absolute values. This close agreement between the
two independent calculations existed for all ten days.

A comparison between Figs. 3a and 1 shows the close correlation
between relative cloudiness and outgoing long wave radiation at the
uppermost layer. There was a close correlation between high clouds
(Fig. lc) and Cb's (Fig. 1d) and the major minima found in longwave flux
analysis (Fig. 3a), whereas the mid (Fig. 1b) and especially the low level
(Fig. la) analyses did not have a direct influence in the amount of
outgoing longwave radiation for the uppermost layer in the atmosphere.

This pattern was repeated throughout the ten day onset period.




Figs. 4a, 4b and 4c show outgoing, downward, and net longwave radia-
tion respectively at the lowest level (1000 mb) for 20 June 1979. The
relationship of relative cloudiness (Fig. 1) and outgoing longwave
radiation (Fig. 4a) was not as straight forward as was depicted for the
uppermost layer (Fig. 3a). Yet, an area of minimum values of upward-
directed longwave radiation was seen along the west coast of India. This
area was evident throughout the ten day onset period only changing in
absolute value. Downward-directed longwave flux (Fig. 4b) for the lowest
layer also showed a complicated relationship with relative cloudiness.
Generally speaking, where total (total = low + mid + high + Cb) relative
cloudiness was a minimum, downward flux was also minimum and vice versa.
There was also a relative maximum of downward-directed longwave flux
located over north central India which showed up for each of the ten days
of the onset period changing only in absolute magnitude. The net longwave
flux (Fig. 4c) showed a gain in longwave radiation for the lowest layer
over western India. This feature persisted during the ten day analysis
beriod. Generally, over the remainder of the analysis area, negative net
longwave radiation was found except for a small area over the eastern
portion of Saudi Arabia, and this only occurred during the time when a
cyclone was located in that area.

Calculated profiles of infrared radiation cooling rates at selected
grid locations at the end of onset phase for 20 June 1979 are shown in
Fig. 5. Profile A is located off the west coast of India in an area of
convection (14 N, 70E); profile B was located near the southern edge of
the analysis area in relatively clear air (4N, 74E). For this day, a
cyclone is located along the coast of Saudi Arabia and an intense

convective system is just off the west coast of India (Profile A), while




Profile B is imbedded in an area of anticyclonic flow at low levels and
confluence at upper levels south of the southern tip of India. Both
figures display the upward directed (UF), downward directed (DF), and the
net (UF-DF) longwave radiation vertical profiles, where a positive value
indicates a net cooling and vice versa for a negative value for that

level.

(2) Shortwave cooling/heating

0f the three output parameters for short wave radiational heating,
the terms discussed here are shortwave absorbed at the top of the
atmosphere (SFT) and shortwave absorbed at the surface (SFS). As with the
infrared cooling, the Chou-Arking algorithm based SFT (Fig. 6a) was in
good agreement with the independently calculated absorbed shortwave
radiation (Fig. 6b) from the MONEX radiation Atlas (Appendix A). Although
the absolute value comparison was not as good as for the longwave cooling,
the major features (locations of absolute maxima and minima and the
" overall patterns) corresponded well.

Figs. 7a-e show the evolution of SFS for every other day of the ten
day period. Over the Arabian Sea off the west coast of India absolute
values of 500 w/m? occurred at the beginning of the period and decreased
to values of 100 w/m? by 20 June. There was a net decrease of absorbed
short wave at the surface as one progressed through the onset period over
Saudi Arabia due to the tropical depression over Oman. Values of SFS were
less over India than over Saudi Arabia for any given day.

Since values of longwave and shortwave radiation cooling/heating at

the surface and top of the atmosphere were available, net radiative




heating at these two levels and by the troposphere could be estimated.

These calculations are not presented here.

b. Moist static energy balance analysis

The moist static energy of the atmosphere (Q) is comprised of three
components:

gz + CpT + Lq
1 2 3

Terms 1 and 2 are defined as the dry static energy (or potential energy
plus enthalpy) and term 3 is latent energy.

The terms discussed in this section are the horizontal flux
divergence

1v-(vQ) (4B
P g

and the local rate of change term

90y dp
1)

The vertical advection term

2 dp
IEE

was not calculated because we did not have good estimates of w.
The flux divergence term can be broken down into two component parts:
2w - > d
[ve(vQ) B = s(ven)q B+ s(w) v R
g g g
P P P
1 2 3
an advective component (3) and a divergent component (2). Cloud drift
winds derived from the GOES-I Indian Ocean satellite (Young et al., 1980)

and temperature, dewpoint, and geopotential height from TIROS-N radiance

information (Smith, 1983) were used to calculate these terms for a two




layer atmosphere. The lower layer was from surface to 500 mb and the
upper layer from 499 to 10 mb. Each analysis was performed once per day
(near local noon) on a 2°x 2° grid resolution for the period 11-20 June
1979.

Fig. 8 shows low level advection of moist static energy for every
other day of the onset period. Over the ten day period, there was an
overall increase in gradient especially over the western Arabian Sea and
eastern Saudi Arabia. Along with this the positive maxima increased from
a value of 125 w/m? to over 300 w/m? on 20 June, while the minima
generally maintained the same magnitude throughout the onset period.
Except for the period around 14 June, no real significant maxima (or
minima) occurred over the southern portion of India and Sri Lanka. On 18
and 20 June an area of positive advection occurred which is closely
associated with the onset vortex approaching the east coast of Saudi
Arabia.

The most obvious difference between the low level advection and upper
' ievel advection of Q (Fig. 9) was the lack of definition of the upper
level analyses. The low level component was 10 to 102 times larger than
the upper level component.

The low level flux divergence of moist static energy is shown in
Fig.10a-e. Generally, convergence dominated the central region of the
Arabian Sea, while divergence although relatively weak occurred over the
subcontinent of India for the ten day onset period of the 1979 Indian
summer monsoon with the exception of 18 June. Except for 12 June, weak
convergence was observed over Saudi Arabia probably associated with the
heat low. The convergent/divergent patterns tended to align themselves in

zonal bands for the first five days and in longitudinal bands for the

10




five final days. Divergence of Q at low levels was observed for the ten
day period over the Horn of Africa maintaining a relatively constant value
throughout the onset.

In contrast to low level, upper level divergence of Q (Fig. lla-e)
showed a divergence zone over the Arabian Sea, and the Indian sub-
continent was under the influence of convergence, although at times was
not well-defined and weak (e.g., 12 June). There was a rapid northward
transition of the maximum band of divergence between 14 and 16 June.
During the first four days of the onset, the maximum band was below the
island of Socotra (13.0N 53.5E) and the orientation was from southwest to
northeast. By 16 June the band moved north of Socotra and changed
orientation from northwest to southeast. Upper level analyses displayed a
consistent signature of divergence along the west coast of India for all
days. In summation, the upper and lower divergence of Q analyses showed
vertical cells with rising motion over the eastern Arabian Sea and
despending motion over western India and Saudi Arabia.

Fig. 12a-e shows the low layer evolution of the local rate of change
of moist static energy term for the ten day onset period. The patterns in
these fields are complex. A consistent positive local rate of change
along the northern fringes of the Arabian Sea occurs from 16 to 20 June in
parallel with the intensification of the onset vortex.

As in advection, a comparison of low versus high local rate of change
showed the low level parameter to 10 to 10%? larger in absolute value than
the upper level local rate of change. This term for upper layers is not
discussed here. The total local rate of change (low + high) strongly
relfects the pattern of the low level component during this onset period

of the 1979 Indian monsoon.
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One point which has been carried through this discussion of moist
static energy budget analyses is the relative magnitude of low level
versus upper level. In each of the three cases the magnitude of the low
level analyses was 10 to 102 larger in absolute value than its upper/level
counterpart. The latent heat term (LQ) was the main contributor to this
factor. A scale analysis of the various terms shows that the flux
divergent component is on the order of 10%? to 10® larger than advection
component (Virji et al., 1982; Appendix C) in absolute value and of the
same order of magnitude for the local rate of change of moist static
energy for the ten day onset period. The moist static energy budget
is dominated by the flux divergence of Q and the distribution of the low

level moisture for the 1979 Indian monsoon.

B. SOUTHERN INDIAN OCEAN

For the southern Indian Ocean (area of coverage was approximately 0°
to 30°S and 40°E to 80°E) calculations for the earth-atmosphere radiation
J Balance components were generated for the ten day (11-20 June 1979) onmset
period. The same calibration equations, which were used in the Arabian
Sea calculations (Virji et al., 1982; see Appendix A), were also used for
the Southern Indian Ocean. This resulted in hourly as well as daily
analyses of the same parameters (albedo, long wave flux, absorbed solar,
and net radiatiomn).

One difference between the Arabian Sea and southern Indian Ocean E-A
analyses, was the lack of extreme values for the four parameters. This
may be due to the fact that the southern hemisphere at this time was

receiving less incoming solar radiation than the northern hemisphere. 1In
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addition, there were few organized convective systems passing through the
analysis area.

Figs. 13a-e and l4a-e show the evolution of the daily averaged fields
of albedo and long wave flux respectively, for every other day of the
onset period. From the albedo fields two convective systems located just
north and south of the equator and either side of 67°E longitude were seen
to move through the analysis area in an eastward direction. By 18 June
the convective systems had exited the area. Of note was that the northern
system tended to decay during its transit while the southern cluster was
intensifying. This was also brought out in the long wave analyses (Fig.
l4a-e). The northern fringes of a cold front passed through the analysis
area during the Indian monsoon onset period. The first indications of
this front were seen on the l4th of June (Fig. 14b), and its signature was
seen to move eastward through the remainder of the period. Very little
deep convection was associated with this front as is brought out by the
long wave flux analyses showing a minimum of high, cold clouds. The cold
'ffont was also well-defined by the daily net radiation analysis for 18
June (Fig. 15).

In summary, the E-A radiation fields for the southern Ihdian Ocean
lack the definition which was displayed in the Arabian Sea analyses. Yet
significant weather systems were accounted for in this radiation budget

analysis (e.g., the cold front passage).

III. CONCLUSIONS
For the ten days of the onset of the Indian monsoon, we have
described the evolution of the relative cloudiness over the Arabian Sea

and its littoral and found it to be an important parameter affecting the

13




radiative balance of the earth-atmosphere system. An inspection of the
moist static energy balance components shows that the divergence component
was shown to be a factor 10°® larger in magnitude than either the advective
component or the local rate of change term. In the low tropospheric layer
(surface to 500 mb), the latent energy was found to play an important role
in determining the moist static energy balance.

One goal of the grant was to provide satellite derived data sets and
analyses which could be readily used by researchers in their
investigations of the onset of the Indian monsoon. This to a large extent
was successfully accomplished. The analyses described above are available
in grid point format on magnetic tape or hard copy form in the Earth-
Atmosphere Radiation Atlas (Appendix A). Throughout this effort, the
different data sets (e.g., radiation parameters, moist static energy
analyses and relative cloudiness) were kept compatible with each other
so they could be readily combined for easy calculations and manipulations.

We have produced a temporally and spatially complete analysis of the
radiative and thermodynamic heating of the troposphere during the onset
period. Further, we have developed algorithms which use satellite
information to determine cloud cover, and the regional energy balance for
the unique region of the developing onset vortex. Finally, portions of

this work are being written up for publication in refereed literature.
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Table 1

SATELLITE DERIVED EARTH AND ATMOSPHERE ENERGY BALANCE
~ COMPONENTS DURING THE SUMMER MONEX
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EARTH-ATMOSPHERE RADIATION BALANCE FROM GEOSTATIONARY SATELLITE DATA
FOR THE SUMMER MONSOON ONSET REGION
1. Introduction

During the 1979 Summer Monsoon Experiment (MONEX) radiometers were flown
aboard the NASA CV-990 aircraft to calibrate the narrow angle spectral-window
scanning radiometer aboard the GOES-1 geosynchronous satellite stationed over
the Indian Ocean. The purpose of the calibration was to enable accurate
diagnoses of the detailed radiation budget characteristics throughout the life
cycle of the summer monsoon circulation. GOES-1 measurements are ideal for
this purpose because they possess both high spatial and high temporal
resolution (1 km in the visible and 8 km in the infrared, half hourly sampling
frequency). The interpretation of these data in terms of radiation budget
parameters requires relationships for transforming the narrow spectral band
narrow angle directional measurements of reflected and emitted radiation in the
visible and infrared spectral window regions (0.5-0.9 ym and 11-12 um,
respectively) into broadband (0.2-4 ym and 4-100 um) angularly integrated
radiation fluxes of reflected solar and emitted terrestrial radiation. Such
algorithms are presented in section 2. Estimates of the components of the
earth-atmosphere radiation balance and top albedo obtained from application of
these algorithms to the GOES-1 radiance data for the period 11-20 June 1979
form the basis of this atlas.

It is intended that this atlas be used as a reference for the evolution of
the earth-atmosphere radiation balance during the onset phase of the summer
monsoon. The atlas provides (a) hourly and daily averaged fields of the top
radiation balance components and (b) mean diurnal variation characteristics of
these parameters. GOES-1 VIS/IR imagery is also included in order to relate

the evolution of the monsoon cloud cover to radiation balance. The flux data
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has been interpolated, gridded and analyzed for easy inspection of the
satellite derived radiation balance components. Computer tapes containing the
complete data set are available from the Space Science and Engineering Center

at the University of Wisconsin-Madison.

2. Algorithms

The NASA CV-990 aircraft flown during MONEX carried narrow band and
broadband, narrow angle, directional radiometers (Smith et al., 1978) and
broadband flux radiometers (Ackerman and Cox, 1980) to enable:

a) The calibration of the GOES-1 0.5-0.9 um detector digital output in

terms of the reflectance of solar radiance within this spectral band.

b) The specification of different relationships, dependent upon earth

surface and cloud condition, between earth atmosphere reflectance

observations in the GOES 0.5-0.9 um region and the broadband reflectance
observed over the 0.3-4 um region.

c) The specification of a relationship between broadband directional

reflectance measured at small local zenith angles and broadband angularly

integrated albedo.

The relationships provided by (a)-(c) above are used to determine
instantaneous or temporally averaged albedo and absorbed solar radiation from
the GOES-1 visible channel data.

The GOES-1 infrared window (11-12.5 um) observations are calibrated in
terms of total outgoing longwave radiation flux using a relationship based on
simultaneous GOES-1 and TIROS-N multi-spectral (HIRS) radiometer data. The
TIROS-N multi-spectral water vapor, carbon dioxide, ozone, and window radiation

emission measurements over the 3.7-16 um region were transformed into total



terrestrial flux values spectrally and angularly integrated using a
relationship based upon theoretical calculations. GOES-1 IR data was not
calibrated using the aircraft pyrgeometer flux measurements directly because of
the problem of registering the fields of view of the narrow angle satellite
radiometer and the wide angle aircraft pyrgeometer and because of the
significant contribution to the total outgoing longwave flux from the upper
troposphere and stratosphere above the aircraft. Intercomparison of the
TIROS-N longwave flux estimates with high altitude longwave flux observations
by pyrgeometers aboard the CV-990, however, compared to within 5% over a wide
range of homogeneous surface conditions (i.e., cloud-free desert, cloud-free
ocean, and extended cloud).

The relationships between the GOES-1 radiometer data and shortwave and
longwave fluxes were obtained using data from several CV-990 flights over a
variety of surface and cloud conditions (e.g., desert, vegetation, ocean, and
opaque and semi-transparent cloud). Table 1 summarizes the characteristics of

these flights.

TABLE 1
CHARACTERISTICS OF CV-990 FLIGHTS USED FOR CALIBRATION ANALYSIS
Date Flight Origin Objective
May 14 10 Dhahran Saudi Arabia

Land/Sea Heating
Differential (Albedo of Desert and Ocean)

June 5 15 Bombay Albedo Survey of North-Central India
(Albedo of Vegetated Terrain)

June 12 18 Bombay Land/Sea Heating Differential Along
N-S Meridian (75E) (Albedo of Ocean
and Terrain)

June 15 20 Bombay Monsoon Flow
Pattern (Albedo of Clouds)

June 18 22 Bombay Monsoon Flow
Pattern (Albedo of Clouds)



vi

The selection of time and space coincident aircraft, GOES-1 and TIROS-N
radiation observation values was accomplished using the Man-computer
Interactive Data Access System (McIDAS) developed by the University of
Wisconsin (Suomi and Menzel, 1980). The GOES-1 and TIROS-N images, coincident
in space and nearly at the same time as CV-990 flights, were stored in sequence
in McIDAS for processing with the aircraft information. The aircraft flight
track was superimposed on the images at 10 minute time intervals using the
McIDAS graphics capability. Nearly colocated aircraft and satellite data were
then selected manually by placing a cursor on the TV image of the satellite
data at the appropriate position along the aircraft flight track. The manual
selection of the space and time coincident data insured that the viewing
conditions were homogeneous with the area encompassing the fields of view of
the aircraft and satellite borne radiometers.

Table 2 shows the linear regression equations and their standard errors of
regression used to describe the relation between the various radiometric data.
It is noted that only relations (1) and (4) depend directly on the GOES-1 data.
Relations (2) are achieved from the multi-spectral radiometer (MSR) 0.3-4.0 um
and 0.5-0.9 um (matched GOES-1 filter) directional radiances observed from the
CV-990 and relation (3) is obtained from CV-990 MSR 0.3-4.0 um directional
radiance observed at small view angles and simultaneous 0.3-4.0 um flux
pyronometer observations. Relation (4) is obtained from nearly colocated

GOES-1 and TIROS-N infrared radiance observations.
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TABLE 2
RESULTS OF REGRESSION ANALYSIS USED TO DETERMINE GOES-1
ALBEDO AND LONGWAVE FLUX CALIBRATION RELATIONS

Equation N RMS CC Condition
1: rg=0.0000164Cg—0.00077 116 0.052 0.98 All
2: (a) rb=0.749rg+0.01747 65 0.003 0.99 Ocean
(b) rb=0.736rg+0.02385 55 0.007 0.99 Thin Cloud
(c) rb=0.600rg+0.08849 48 0.012 0.99 Thick Cloud
(d) rb=0.840rg+0.03116 32 0.007 0.99 Vegetation
(e) rb=0.781rg+0.08399 92 0.003 0.99 Desert
3: =1.l74rb 91 0.023 0.99 All
4:' F=0.5430Tg4+44.538 83 12 w/m? 0.99 All

C = the square* of the digital brightness (0-255) obtained from the GOES-1
visible channel detectors divided by the cosine of the solar zenith angle
and earth-sun distance factor.

= reflectance for the GOES-1 spectral region (0.5-0.9um) as measured from

& cv-990.

broadband (0.3-4.0 um) reflectance as measured from CV-990.

broadband angularly integrated albedo as measured from CV-990.

longwave radiation flux (w/m?) as measured from TIROS-N.

GOES-1 brightness temperature (°K)._8 -4

Stefan-Boltzman constant (5.66 x 10 w/mz—deg ).

number of observations used to obtain linear fit.

root mean square deviation of data from linear fit.

= correlation coefficient.

* The digital brightness count is generated from a function of the square root

of the detector output (radiance).

a}
|

The relationships (1)-(3) are applied to the GOES-1 visible channel data
in a step-wise fashion to estimate the shortwave flux reflected to space from
the area viewed. After equation (1) is applied to the linearized GOES-1 digital
data (digital count squared divided by the cosine of the solar zenith angle and
the earth sun distance factor), the appropriate relation between broadband and

GOES-1 narrow band reflectance is chosen on the basis of: (a) land or ocean,
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(b) the GOES-1 reflectance value (the result of equation (1)), and (c) the
corresponding GOES-1 infrared brightness temperature value. The thresholds
used to specify the appropriate relationship are given in Table 3.

TABLE 3

CRITERIA FOR SELECTING PROPER RELATION BETWEEN BROADBAND
AND GOES-1 VISIBLE BAND REFLECTANCE

Reflectance/IR Brightness Temperature Condition

Equation Condition Land Ocean
2(a) Ocean rgSO.lS
2(b) Thin Cloud 0.28<rg§0.50, Tg<290 0.15$rg$0.50
2(c) Thick Cloud rg>0.50 rg>0.50
2(d) Vegetation rg50.28, T82290
2(e) Desert 0.28§rg§0.50, Tg2290

The result of equation (2) is then used in (3) to obtain an estimate of
the albedo, A. Subsequently the reflected solar flux is calculated using the
relation

F_=AI pd (5)
where Io is constant, 1375 w/m® (Hickey et al., 1980), d is the earth-sun
distance factor (square of the ratio of the solid angle subtended by the sun at
the time of the observation and the annual mean value), and H, is the cosine of
the solar zenith angle at the location of the viewed spot. The longwave flux,
FL, is then estimated using equation (4). Spatial averages of the 8 km
resolution values over 250 x 250 km areas are then calculated. For each 250 km

area (approximately 2° x 2°) the absorbed solar radiation flux

FA = Iouod - Fs (6)
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and the net radiation flux,

R =¥ = F )]
are calculated. Daily average values are obtained from an integration of
hourly results.

It is noted that for the region analyzed, the variability in the GOES
infrared radiance observations due solely to view angle variations (i.e., limb
darkening) is negligible and therefore not taken into account. Also,
variations in the visible channel radiance due to the angular dependence of
target reflectance is not taken into account because this variability is small
compared to the reflectance variability within and among the 250 x 250 km
sample regions due to cloudiness. For the Arabian Desert, which is generally

devoid of cloudiness, the implicit diffuse scattering assumption is valid

because of the sand surface.

3. Analyzed fields for the monsoon onset region

a. Hourly fields

All data from 26°N to Equator and 46°E to 84°E were analyzed on a 2° x 2°
grid. No analysis was performed when hourly GOES-1 data was unavailable. Such
instances are labelled as "NO DATA" in this atlas. The few cases when the
satellite imagery was of questionable quality due to bad scan lines are
labelled as "?." The times of unavailable and questionable satellite products
are listed in Table 4. Out of a total of 240 time periods analyzed from 11-20
June 1979, the satellite products were missing or of questionable quality

around 6% of the time.



TABLE 4
A Listing of Unavailable or Questionable
GOES-1 VIS/IR Data During the Onset Period

DATE HOUR STATUS OF
1979 (GMT) GOES-1 DATA
June VIS IR
11 00 N N
01-04 N
14-15 N N
13 06-15 Q
16 N N
15 13 Q
16 10 N N
18 11 Q Q
19 10 Q Q
N: No data Q: Data quality questionable

The analyzed hourly radiative flux fields for the above period are shown
in Plates 1-240. These fields depict the evolution of the earth-atmosphere
radiation balance components during the formation of the onset vortex of 1979
summer monsoon. The well defined hourly variability in the structure of these
fields describes the diurnal modulation of the flux parameters. For five
selected locations, the average diurnal variation in the top radiation balance
parameters during the onset phase is shown in Plates 251-252. These locations
were selected as representative of the general conditions over the Saudi
Arabian desert, the clear region in north central Arabian Sea, the Indian
sub-continent, the equatorial trough region, and the low level jet region off
the Somali coast.

b. Daily averaged fields

The hourly flux values were integrated and analyzed to obtain the daily
averaged top radiation balance components. The mean top albedo represents an
integration of seven consecutive hourly top albedo values per day, centered
around the local noon hour at 12°N, 65°E. In contrast, the daily average flux
values represent an integration over all hours of the day. For the few cases

when the hourly data was unavailable or of questionable quality, the flux
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values were interpolated from the nearest available hourly data before
performing the integration into daily averages. As the GOES-1 infrared
radiance data for the first 5 hours of 11 June 1979 were unavailable, the daily
averaged flux values for this day may not be very reliable at individual grid
locations.

The daily averaged fields of the radiation balance components for the
monsoon onset phase are shown in Plates 241-250. A description of the
evolution of the major features of the radiation balance components based upon

these fields is given in Smith et al. (1981).
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Abstract

Regional cloud distribution parameters for the Arabian Sea region during
the onset phase of the 1979 summer monsoon have been derived through analysis of
bi-dimensional radiance histograms constructed from near local noon visible and
infrared imagery from GOES-I. The technique and its limitations are discussed
and the derived cloud distribution statistics corresponding to low, medium, high

and cumulonimbus categories are presented.



1. Introduction

One objective of the 1979 Monsoon Experiment (MONEX) was to document the
pattern of heating fields over main heat source and sink regions for various
phases of the summer monsoon. A necessary ingredient for fulfilling this objec-
tive is the knowledge of cloud distribution over these regions. The cloud cover
associated with the rapidly evolving onset vortex during the monsoon onset phase
had a pronounced effect on the magnitude and spatial pattern of the earth and
atmosphere radiation balance (Virji et al., 1982). Whereas few systematic con-
ventional observations of cloud type, relative cover, top and bottom pressures
were made over the Arabian Sea during the field phase of the summer MONEX,
analysis of satellite imagery provides perhaps the best means for determining
the regional cloud distribution parameters. This study examines the feasibility
of such an approach.

Several investigators have considered the question of cloud classification
from satellite imagery (Minnis and Harrison, 1983; Desbois et al., 1982: Smith
et al., 1981; Fye, 1978; Reynolds and Vonder Haar, 1977). The usual technique
for determination of cloud heights and amounts from satellite imagery involves
objective analysis of multi-dimensional radiance histograms extracted from the
imagery. The problem is to separate the many radiance classes of the histograms
into cloud types, relative cloud cover, and to assign appropriate cloud top and
base levels. A simplification generally made is that all observations producing
a certain set of reflectance and brightness temperature values are assumed to
result from a common cloud height, amount, and opacity. A schematic illustra-

tion of the resulting general empirical relationship between infrared and visual

gray shades for various cloud and surface types is shown in Fag. 1.
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Information on cloud types, depths, and amounts for various cloud modes are
deduced from the radiance histograms using as empirical relations those formu-
lated by Reynolds and Vonder Haar (1977) and Mosher (1976). The procedure used
here to interpret the radiance histograms into information on cloud parameters
has been summarized in Smith (1978). Realistic estimates of the relative accu-
racies to be expected from such analysis on a regional basis at a given time are
5% in cloud cover and 1 km in cloud top altitude.

During 1979, the GOES-I satellite was positioned at the equator and 58 E
longitude. The infrared sensor (0.5-0.9 ‘m) on board malfunctioned after 21
June 1979, but concurrent radiance observations in the visibe and infrared
channels are available for the onset phase of the 1979 summer monsoon and pro-
vide an opportunity to use the bi-dimensional histogram technique to deduce
cloud distribution parameters during the evolution of the onset vortex over the
Arabian Sea region. The purpose of this note is to report on cloud distribution
ddring this period derived from the high resolution GOES-I imagery.

The analysis of bi-dimensional histograms from GOES-I satellite visible and
infrared imagery for the onset phase of the 1979 summer monsoon is discussed in
the next section. Estimates of the cloud distributions for the 1979 monsoon

onset phase analyzed on a two degree grid are presented in Section 3.

2. Data and Analysis

The onset of the 1979 summer monsoon occurred during 11-20 June. For this
period, hourly full resolution two channel Visible Infrared Spin-Scan Radiometer
(VISSR) imagery for the region bounded by the equator to 28 N and 48 E to 84 E
was displayed on the Man-computer Interactive Data Access System Data Access
(McIDAS) facility at the University of Wisconsin-Madison. The GOES-I VISSR

observations were calibrated using in-situ radiance measurements made by NASA
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CV-990 instrumented aircraft in order to obtain representative measurements of
reflectance from the satellite data (Smith et al., 1981). The reflectance (rg)
for the GOES-I spectral region 0.5-0.9 m was obtained from the calibration
relation:
To ™ 0.0000164 Cg - 0.00077

where Cg is the square of the digital brightness count (range 0-255) from the
GOES-I visible channel divided by the cosine of the solar zenith angle and the
earth-sun distance factor. The brightness temperature was determined from the
standard calibration of the GOES-I infrared channel supplied by the National
Environmental Satellite, Data, and Information Service (NESDIS). With the
exception of poor quality infrared data between 0600-1500 GMT on 13 June 1979
all data at resolution 4 mi. from near local noon hour over the central Arabian
Sea (approximately 1830 GMT) was used in the bi-dimensional radiance histogram
analysis described below.

V For each consecutive two degree square box within the study domain, a two-
ﬁihensiona1 histogram of reflectivity and brightness temperature was computed.
The four mile resolution data yielded a total of over 900 pixel values in each
grid box along the northern edge of the domain and over 1000 pixel values in
each grid box along the equator. The histogram values were coded in frequency
class intervals of 10% units of reflectivity (visible grayshade) ranging between
0-100% and 10K degrees brightness temperature (infrared grayshade) over the
total range 190-330 K. For typical 2 X 2 degree regions around selected grid
points within the study domain shown in Fig. 2 (labeled A-F), the corresponding
bi-dimensional histograms are displayed in Fig. 3. The clusters over different
frequency classes in these examples corresponding to different cloud types con-
form with the schematic representation of Fig. 1.

The sea surface reflectivity under clear sky conditions (e.g., Fig. 2,
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location A), is generally less than 10%, except in regions of specular reflec-
tion over the ocean. Land surface under similar conditions has higher reflec-
tivity (greater than 15%) and generally higher brightness temperature (greater
than 300 K). Exceptions could be land/sea areas under cloud shadows or where it
has recently rained. Topography variations can cause further indeterminancy in
the bi-dimensional radiance histogram frequencies. Most of the terrain within
the study domain is under 3 km altitude, an exception being the northeastern
corner where the permanent snow cover over the Himalayan mountain ranges would
be in the high reflectivity and low surface temperature classes of the histogram

The 1large variability in the histogram frequencies depending upon the
variety of surface and atmospheric conditions observed by the satellite is
evident in the radiance histograms shown in Fig. 3. In particular, the radiance
frequencies are spread over a broad spectrum of histogram classes at those grid
locations where several cloud types are present (Fig. 3D0). Several relative
méxima can be identified in the cases corresponding to a mixture of different
cloud types. A reduction of this spread into distinct clusters of observations,
assuned to result from similar cloud height, amount, and opacity, can be
achieved in several ways. For example gaussian distribution type least square
fits have been used (Smith, 1978; Desbois et al., 1982). For the purposes of
this preliminary analysis, the following somewhat simpler and faster approach
was used.

An iterative search of the entries in the radiance histogram was used to
identifies principal and other local maxima. On the first pass, all entries
adjacent to and including the principal maxima were summed at the class location
of the maxima. The adjacent class entries were then set to zero. In subsequent
passes, maxima in descending order were similarly processed. Allowance was made

for two or more adjacent classes being equal, in which case the order of adding
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the entries into a maxima was decided by the relatively larger sum computed.
Ten iterations were generally sufficient to reduce the entries into distinct
classes accounting for over 99% of the total population of the histogram.
Remaining entries (totaling less than 1%) were merged into the nearest cloud
category.

An empirical calibration (table 1) of the bi-dimensional radiance histogram
classes was used to assign cloud top and bottom pressure levels and thus appro-
priate vertical depths to the various cloud types. This calibration procedure,
discussed by Mosher (1976) and Peslen, 1980, has been successfully used during
the operational cloud tracking program of MONEX to assign pressure heights to
the cloud wind data. The essential steps are as follows. First, optical thick-
ness is computed from the observed visible brightness. The cloud depth is then
calculated from the relation T=0pz, where T is the optical thickness, z is the
physical depth, * is the scattering cross-section typical of the cloud type, and
P is the number density of cloud particles. The plane-parallel doubling model
of Hansen (1971) is assumed to be valid for the tropical standard atmosphere and
the standard drop size distribution given in Deirmendjian (1969) is used. The
minimum and maximum levels are set at 950 and 100 mb, and earth's surface tem-
perature value for the calibration is fixed at 305 K. The resulting calibration
is summarized in Table 1 where cloud top and bottom pressure levels are shown as
a function of reflectivity and cloud top temperature.

The assumptions implicit in the conversion of the histogram categories into
cloud depths 1imit the accuracy of the method. In particular, the use of the
plane parallel model ignores the fact that clouds have different shapes. The
leakage of radiation from the sides of finite clouds is not taken into consider-
ation and the resulting indeterminacy in the cloud depth estimates can be signi-

ficant (Suchman et al., 1981). Therefore, in this study the cloud types of
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figure 1 are combined into four general categories corresponding to low, medium,
high, and cumulonimbus clouds. This combination reduces some of the indeter-
minacy. The final product of the analysis for the selected cases from Fig. 3 is
shown in Table 2. A careful comparison of the derived cloud populations over
the region with ground based observations is not possible in view of sparse
surface based observations. Few available ship and aircraft observations during
this period seem to indicate that the above analysis produces a reasonable
depiction of the cloud layers present. A comparison of this analysis with the
nephanalysis of the Air Force Global Weather Central is currently in progress.

Note that when only two-dimensional radiance histograms based on visible
and infrared imagery are used to compute cloud depths, semi-transparent clouds
such as thin cirrus (emissivity <<1) can be misclassed due to infrared flux
upwelling through the cloud, as is the case at location F (Fig. 2). In this
case a small amount of thin cirrus cloud (around 5%) was present and misclassi-
fied as cumulus. Use of additional channels (e.g., water vapor channel, 5,7-7.1
m) can help reduce such indeterminacy (Desbois et al., 1982). However, for
GOEé-I data, we are restricted to availability of observations in only two
Channels.

An obvious problem in satellite determination of cloud parameters relates
to the fact that overcast sky conditions at A/higher Tevels mask clouds at lower
levels, Though several different cloud ty;es can be recognized in the histo-
gram, it is very difficult to delineate clouds which in reality are vertically
stacked. A satisfactory resolution of this difficulty has not yet been
achieved. The above deficiencies of the model should be kept in mind during the
following discussion of the ‘regional cloud distribution during the onset phase

of the summer MONEX.




3. Cloud distribution

During the beginning of the onset of the 1979 summer monsoon, a major cloud
cluster formed on 12 June at 8-12 N/75 E within a well defined 700 mb shear line
(Sikka and Grossman, 1980). This shear line intensified and moved northward
over the next two days. Concurrently, a significant increase in cloudiness
occurred around 8-15 N/55-80 E leading to the formation of the onset vortex at
10 N/70 E. A tropical depression formed in the central Arabian Sea during 16-18
June which over the next four days drifted gradually northwestward toward Oman.
Well defined cloud clusters developed within the vortex near 19 N/85 E toward
the end of the onset phase.

The satellite derived cloud distributions are shown in Figures 4 and 5.
for various cloud types at the beginning and end of the onset phase are shown in
F?EEZ 4 and 5. The zonally averaged total cloud cover (Fig. 4) is seen to
evolve northward over the Arabian Sea. While no significant change in the total
cover occurred around the Horn of Africa (figure 5), the percent cover in the
southwestern sector along the region of the low level jet axis underwent at
least a two-fold increase during the onset phase. The cloud cover associated
with the tropical depression which drifted to OGman by 20 June contributed to the
100% increase in the cover over this region of the Saudi Arabian peninsula. In
contrast, in the region of the onset vortex, the total cover increased by at
least two-fold. Concurrently, the total cloud cover over central India also
increased two-fold, while southward over Sri Lanka, the total cover remained the
same as at the beginning of the onset phase.

The breakdown of the total cover into various cloud types at the beginning
and the end of the onset phase is also shown in Fig. 5. The northward
transition of various cloud types as the onset phase progressed is clearly

evident. In particular, a substantial increase in low level cloudiness occurs
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in the western Arabian Sea in the region of the mean low level jet axis.
Elsewhere, the signal in the low level cloudiness may have been obscured by
increases in cloudiness at higher levels. The maxima in middle level cloudiness
occur primarily along the boundaries of the regions of deep convection. The
high level cloudiness represents the cirrus outflow from the cumulonimbus clouds
and is maximized towards the end of the onset phase over the entire region
consistent with the increase in the convective activity as the onset progressed
northward. Perhaps the most interesting distribution is that of cumulonimbus
clouds. At the beginning of the onset phase over the Arabian Sea (June 12), no
two degree square region contains 100% coverage of the cunulonimbus-type. In
contrast, at the end of the onset (June 20), 100% coverage occurs at a number of
grid Tlocations in the two convectively active regions of the onset vortex and
the tropical depression.

The evolution of these convective regions is easily evident on a composite
plot of the regions where significant cumulonimbus occurrence takes place (Fig.
6). Here, maximum values of cumulonimbus coverage taken from daily analyses at
Tocal noon have been replotted in sequence for each of the ten days of the onset
phase. Besides the northward transition and increase in the cumulonimbus activ-
ity, two major regions of intense convection (Cb clusters) are evident from the
beginning of the onset phase. The western Cb cluster was easily tracked on a
sequence of images of the last five days of the onset as it developed into a
tropical depression which drifted toward the coast of Oman. Considering the
high-frequency pulsations in the cumulonimbus activity (more frequent than once
a day), the depiction of cumulonimbus clusters in the eastern Arabian Sea are
not reflective of continuous transitions, but generally represent descrete

development of the intense convective activity progressively northward.



4. Further Remarks

The caliberated data from GOES-1 satellite during the 1979 monsoon onset
period has been used to specify evolution of cloudiness distribution. The
derived distribution has further been utilized together with thermodynamic state
parameters to estimate tropospheric radiative heating distribution, a report on
which is under preparation. The 2X2 degree cloudiness distribution parameters
described for the period 11-20 June 1979 are available on computer compatible
tapes at the Space Science and Engineering Center at the University of

Wisconsin-Madison.
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Figure Captions

Fig. 1:

Rig. 2:

Fig. 3:

Fig. 5:

Fig. 6:

A schematic illustration of the general emperical relationship
between infrared and visual grayshades corresponding to various
cloud and surface types (adapted from Fye, 1978)

GOES-1 visible and infrared satellite photographs over the Arabian
Sea for 1000 @GMT, June 20, 1979, Locations A-F refer to the
bi-dimensional histograms shown in Fig. 3.

Histograms of temperature (degrees Kelvin) versus reflectivity
(percent) corresponding to the locations A-F identified in Fig. 2.
Zonally averaged total cloud cover along selected latitude bands
in the Arabian Sea region during the onset phase of the monsoon.
Breakdown of cloud cover into various types for June 12 and
June 20, 1979.

Evolution of principal cumulonimbus clusters during the monsoon
onset. The center of maximum cumulonimbus cover is shown as a
star or a circle. The coded numbers (xx-yy) correspond to the

percent x 10 cover (xx), and date (yy) during June 1979.
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TABLE 1

AN EMPIRICAL CALIBRATION OF BI-DIMENSIONAL RADIANCE HISTOGRAM CLASSES
INTO CLOUD TOP AND BOTTOM PRESSURE LEVELS (AFTER MOSHER, 1976)

CLOUD TOP

PRESSURE: 107 137 174 220 274 336 412 498 608 738 918

(mb)

REFLECTIVITY (Z) CLOUD BOTTOM PRESSURE (mb)
95 950 950 950 950 950 950 950 950 950 950 950
85 .950 950 950 950 950 950 950 950 950 950 950
75 890 911 934 950 950 950 950 950 950 950 950
65 392 433 474 526 580 637 702 766 861 950 950
55 243 283 330 379 438 502 570 648 757 909 950
45 191 227 271 322 378 441 515 595 704 848 950
35 157 192 233 283 338 401 476 558 671 809 950
25 135 169 206 255 311 375 452 538 646 781 950
15 114 146 185 230 285 345 423 511 615 645 928

CLOUD TOP TEMPERATURE

(deg. K) 195 205 215 225 235 245 255 265 275 285 295

TABLE 2
CLOUD DISTRIBUTION AT THE SELECTED LOCATIONS

SHOWN IN FIGS. 2 AND 3

CLOUD TYPE 2 CLOUD COVER AT LOCATIONS
A B c D - E F
LOw 0 52 0 30 15 23

(950-700 mb)

MIDDLE 0 0 0 112 85 0
(699-400 mb)

HIGH 0 0 6 8 0 0
(399-100 mb)

CUMULONIMBUS 0 0 94 19 0 0
(950-100 mb)
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SATELLITE DERIVED EARTH AND ATMOSPHERE ENERGY
BALANCE COMPONENTS DURING THE SUMMER MONEX

H. Virjil, W.L. Smithz, A.J. Sch einerl, L. Hermanz,
1 and P. Menzel
Space SCQence and Engineering Center and
and “Ness Development Laboratory,
University of Wisconsin-Madison, U.S.A.

The paucity of conventionally observed meteorological data over
the monsoon region has been a major factor in the lack of
understanding of the evolution of the earth and atmosphere energy
balance over key monsoonal heat source-sink areas. The geostationary
and polar orbiting satellite measurements obtained over the MONEX
region during 1979 offer a unique opportunity to study the evolution
of the energy budget over these areas. This report describes an
ongoing research effort aimed at the determination of the large scale
components of the earth and atmosphere energy balance using satellite
measurements as the primary data. :

All basic data is derived from full resolution GOES (Indian
Ocean) VISSR imagery and TIROS-N sounder observations. Appropriate
algorithms developed for use with the satellite measurements are used
to derive high resolution fields of the components of radiation and
heat budget for the onset, established, and break phases of the 1979
summer MONEX. The satellite derived estimates are carefully evaluated
against available conventional surface based and dropsonde
measurements in order to ensure reliable definition of the heating
functions at the earth's surface and within the atmosphere.

The framework for the determination of the various energy balance
components using satellite measurements is summarized in Table 1. The
components considered as significant include: (a) at the top of the
atmosphere, outgoing longwave flux, absorbed solar, and net radiation;
(b) within the atmosphere, heating by shortwave and longwave
radiative processes, dry convection, shallow and deep moist
convection, sensible and latent heat fluxes from the earth's surface,
and large-scale condensation; and (c) at the earth's surface, net
radiation, fluxes of latent and sensible heat, and conductive heat
fluxes into the surface.

Most of the effort to date has been devoted to (i) careful
calibration of the GOES satellite VISSR measurements with in-situ MSR
measurements obtained from CV-990 aircraft flights during the onset
period of 1979 summer monsoon, (ii) determination at high temporal and
spatial resolution of the components of the top radiation balance over
the Arabian Sea and its littoral during the onset phase, and (iii)
development of appropriate algorithms to retrieve profile soundings of
temperature and moisture for the above region and to compute the
atmospheric and surface heating components during the onset phase.

The results of the top radiation balance analysis from-calibrated
VISSR data are described in Smith et al., 1981. The following
discussion is restricted to only a few examples of the energy budget



components derived for 1000 GMT on 20 June 1979. These illustrate
that the satellite derived estimates provide a physically consistent
description of the earth and atmosphere energy balance over the
Arabian Sea and its littoral.

An analysis of the daily outgoing longwave flux at the top of the
atmosphere for 20 June, 1979 during the onset period is shown in Fig.
A. Satellite imagery for this day (not shown) indicates that the
tropical storm associated with the developing onset vortex had moved
onto coast of Oman and was dissipating, while the convective activity
over the deepening onset vortex low was centered around 30 N, 70 E,
just off the southwestern coast of India. The analysis of outgoing

- longwave flux clearly_ reflects the synoptic situation, with low values
of less than 150 W m - over the areas of major cloudiness associated
with the onset voEEex. High values of outgoing longwave flux (values
exceeding 300 W m ~) exist over the Saudi Arabian desert.

While only one example of an energy balance component at the top
is shown, all components listed in Table 1 have been computed at
hourly intervals on a 2°x2° grid. An atlas of this unique data set
for the onset phase is under preparation.

Examples of precipitable water (W) in the atmospheric column and
vertically integrated total horizontal flux divergence of moist static
energy, are shown in Figs. B, and C, D, E, respectively. Precipitable
water and moist static energy have been calculated at mandatory levels
from TIROS-N sounder data and horizontal divergence fields have been
derived from GOES cloud winds obtained by Young et al., 1980.

The precipitable water content pattern (Fig. B) shows good
correlation with the ambient low level flow pattern. A maximum of W
is located along the axis of the low level Somali jet. Maxima of
total horizontal flux divergence of moist static energy integrated
through the atmospheric column occur over Saudi Arabia and the western
coast of India (Fig. C). This heating component for a two layer
atmosphere (surface-500 mb shown in Fig. D and 499-100 mb shown in
Fig. E) clearly shows that the maxima over Saudi Arabia is confined to
the lower tropospheric layer while that over western coast of India is
located primarily in the upper tropospheric layer. In contrast,
horizontal heat flux convergence is evident in the lower layer over
the eastern Arabian Sea and in the upper layer over the Saudi Arabian
desert. Considering the ambient tropospheric flow patterns in the
lower and upper layers, a direct coupling between the heat fluxes from
the developing heat low over Saudi Arabia and the intense monsoon
onset vortex near the Indian coast is indicated. This result is in
agreement with other studies of the interaction between the Saudi
Arabian heat low and the monsoon onset-type vortex over eastern
Arabian Sea which were based on sparse conventional surface-based date
(see for example, Ramage, 1966). A detailed analysis of the evolution
of this tropospheric link between the above key heat source regions
for the summer MONEX period is being carried out using the satellite
data.



Radiation heating is another important tropospheric energy
balance component. Preliminary estimates of the tropospheric cooling
rates due to IR irradiance for the 20 June 1979 conditions (clear over
Saudi Arabia and India, partly cloudy over the Arabian Sea) for
typical 2°x2° grid box are plotted in Fig. G. These cooling rates
were calculated using the algorithms due to Chou and Arking (1980, 81)
together with temperature, humidity profiles obtained from TIROS-N
data and cloud distribution for the Arabian Sea case derived from an
analysis of VISSR imagery. In the case shown in Fig. G, complete
cloud cover over Arabian Sea between 800-900mb and 200-300mb layers
was prescribed. The resulting profiles are comparable to those
obtained from analyses of ship based observations obtained during the
summer MONEX by the Soviet ship network.

Examples of surface radiative heating fields are shown in Figs. F
and I. TIROS-N satellite derived water vapor profiles and VISSR based
estimates of cloudiness and surface temperature have been utilized to
determine the outgoing longwave flux component shown in Fig. F. As
expected, the values of this radiative component are relatively
uniform and lower over the Arabian Sea compared to the surrounding
land area. Highest values of outgoing longwave flux occur over the
Saudi Arabian desert and over northwestern India.

The net shortwave radiation at the surface is calculated using
the algorithm developed by Gautier et al. (1980). This simple
physical model in which Rayleigh scattering is taken into account,
requires specification of water vapor absorption in cloudy and clear
regions. TIROS-N sounder data were used for this purpose. In
addition, the surface albedo estimates shown in Fig. H were derived
from VISSR imagery for local noon conditions using minimum brightness
normalization technique. Low surface albedo values of less than 3%
are found over most of the Arabian Sea. A localized region of about
10% albedo in central Arabian Sea is due to sunglint effect which is
not completely removed by the minimum brightness normalization method.
High surface albedo values of 25-40% are found over the Saudi Arabian
desert. These satellite derived estimates are in fair agreement with
numerous surface based measurements.

An example of a calculation of the daily net shortwave radiation
at the surface based upon the algorithm due to Gautier et al. (1980)
using the surface albedo values of Fig. H and water vapor profiles
from TIROS-N sounder data is shown in Fig. I. Low values (less than
90 wm °) occur under the cloudy zones in the onset vortex region.
Over clear oceanic regions in northern Arabian ea, the net shortwave
radiation at the surface averages about 330 wm ° which represents an
attenuation of about 70 wm - (17%) by clegr atmosphere from the
absorbed solar radiation of about 400 wm ° at the top of the
atmosphere. This value of attenuation due to clear air column is
reasonable in view of numerous ground based and aircraft measurements.
High values of net shortwave heating of the surface also occur over
the desert regions of Saudi Arabia, as would be expected.

v

While some of the analyses presented abovetiégpreliminary and the

techniques for determining various heating functions are undergoing
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refinement, it is evident from the foregoing that the satellite
derived estimates yield a physically consistent description of the
large scale components of the earth and atmosphere energy balance over
the Arabian Sea and its littoral.
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Figure A: Outgoing longwave flux (top) in wm—z, Figure B: Precipi_t_ible water in mm
Figure C: Horizontal flux divergence of moist static energy in wm

Figure D: same as in C except for sfc<500 mb, Figure I_Eé same as in C except for
499-100 mb, Figure F: Outgoing longwave flux (sfc) wm
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Figure G: Tropospheric cooling rate (deg C/day) over Saudi Arabia,
Arabian Sea, and India on 20 June 1979 at 1000 GMT (see text for details)
Figure H: Surface Albedo (%), Figure I: Net SW at sfc (x2 wm—z)






