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ABSTRACT

We have studied rain rate estimation using data from the subset
of Nimbus-7 SMMR (Scanning Multichannel Microwave Radiometer)
channels close in frequency to the channels to be used on the
DMSP SSM/I (Special Sensor Microwave Imager) --except for the 85
GHz channel for which there is no SMMR analog. We concluded that
SSM/I rain estimates should be within 137 of SMMR estimates in
accuracy, and somewhat better if 11 um IR data were used with
it. A potential problem raised in this research is the
Possibility that the coefficients of the regression equations
used to recover rain rates from brightness temperatures are
"unstable". A means of dealing with this is suggested.
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HICROWAVE-INFRARED RAIN ALGORITHMS FOR THE SSM/I

1. Introduction

This report summarizes the results of research aimed at
further development of methods of inferring rainfall over ag-
ricultural lands using remotely sensed data in the microwave
portion of the electromagnetic spectrum. Specifically, having
noted the success of the methods developed for the five-fre-
quency dual-polarized channels of the SMMR instrument on Nim-
bus-7, we have assessed the prospects for similar success us-
ing the SSM/I instrument to be flown soon on a DMSP space-
craft. Because the SSM/I channels are near the SMMR channels
in frequency, we have carried out our work using actual SMMR
data. Table 1.1 1lists the characteristics of SMMR. However,
the SHMR channels are not all represented by analogous SMM/I
channels as shown by Table 1.2. For the 85.5 GHz SSM/I chan-
nel there 1is no history of available satellite observations
- from SMMR, or elsewhere.

Our main objective is to find out whether the perfor-
mance of SSM/I should be expected to be comparable to SMMR as
a rain measuring instrument. The worK contained in this re-
port also considers whether 11 pm infrared channel data could
be used to enhance the performance of the microwave instru-
ment. This question has received relatively 1little attention.

In order to improve the flow of the text one of our
pProcedures, variable transformation, has been rationalized in
an appendix. Similarly, because our methods are statistical
and have generatéd much tabular material, longer tables not
requiring immediate inspection have been placed in an appen-
dix. Most of the tables, however, are at the end of the sec-
tion in which they are introduced. Figures have been placed

similarly.



Table 1. 1.
SMMR Characteristics

Freq. Polar- Footprint T Acc. T Res.,
GHz. i1zation (Km by Km) Deg. X Deg. X
6. 63 h and v 121 79 2.0 0. 51
10. 69 h and v T4 49 2.0 0. 72
18 h and v 44 29 2.0 0. 89
21 h and v 38 25 2.0 1. 01
37 h and v 21 14 2.0 1.23
Table 1. 2.
SSM/1 Characteristics
Freq. Polar- Footprint T Acc. T Res.
GHz. ization (Km by Km) Deg. K Deg. X
19. 35 h and v 70 45 1.5 0. 80
22. 24 v only 60 40 1.5 0. 80
37 h and v 38 30 1.5 0. 60
85.5 h and v 16 14 1.5 1. 10
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2. Background

Electromagnetic radiation interacts with precipitation
as well as the gaseous components of air --including the mois-
ture required to form precipitation. The interaction proces-
ses include emission, absorbtion and scattering. Although the
fundamental theoretical principles are well understood, the
application to rain clouds is difficult. [See, for example,
Ulaby et al., 1984; Ishimaru, 1978; Fang and Chen,i982; Fung,
1982; Ishimaru et al., 1984; and many others] Consequently,
it is fair to say, success in theoretical analysis of
environmental observations requires artful use of approxima-
tions. [See Weinman and Davies, 1978; Savage, 1976, 1978; Wu
and Weinman, 1985; Olson, 1985; and others.]

In this situation empirical studies play a dual role.
First, They either give a directly useable answer --an obser-
ved relation between radiation and rain-- or they may suggest
that there is no simple answer. Fortunately, the ™"no-answer"
result has not Dbeen obtained as Table 2.1 1illustrates.
Second, the observed relations represent a body of facts .which
may constrain the theoretical approximations even if the ob-
servations are not useful directly.

It is interesting to note that the theoretical results
have treated ensembles of precipitaing model clouds --systems
whose parameters are specified a priori. The modelled
radiative transfer results are treated somewhat like empirical
studies to obtain the desired rain-radiation relationships
[e.g. Wilheit and Chang, 1980].

Infrared (i1 ym window) data has been much studied for
rain estimation but without concurrent use of microwave data.

IR methods are reviewed by Barrett and Martin [1981). Micro-

wave rain studies in the SMMR context may be found in Spencer
et al. [1983a,b,c] and Spencer and Santek [1985].




Table 2. 1.
Rain Estimation SKill Exhibited with SMMR Datal

Season Ho. Records Variance Explained
Spring 4753 39. 4 %
Summer 4663 63.1 %
Fall 2615 56.5 %

! pata in the table are from Spencer [1984].
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3. General nature of model studies

Because of the interplay of theory and data, it 1is
useful to introduce here a few illustrations of expected rela-
tions between microwave temperature and rain rate from one of
the newer calculations. This will suggest some approximations
and notation to be used Dbelow.

Fig 34 and Fig 3.2, plotted from the tabulated model
results of Wu and Weinman, [1985] are prototypical. The fol-
lowing features are of interest. At low rain rates over a
land Dbackground the brightness temperature first increases
with rain rate to a maximum value which varies with frequency.
The maximum brightness temperature is greater at lower fre-
quencies (except near 21 GHz) and the rain rate corresponding
to the maximum is higher at low frequencies. HNote that these
curves assume a constant value of land surface emissivity for
all frequencies shown and both v- and h-polarization. Usual-
ly there are both frequency and polarization variations in e-
missivity, so that the low rain rate ends of the curves would
. not necessarily approach a common origin. These details are
not important to the present discussion.

The bottom panel of Fig. 34 1is an alternate presenta-
tion of the same information as given in the top panel. There
are several reasons for using the square root of the rain rate
as the rain variable. Most rain occurs at low rates. That
is, the distribution function is very peaked near zero and has
a long tail as shown in Fig 3.3, which also shows how the dis-
tribution appears when the square root function is used. Sta-
tistical techniques which we shall use below may give undue
emphasis to the small number of high rain rate events in the
data set if the rain rate itself is used. Also validity tests
assume that residuals from fitted curves are normally distri-
buted. This, it turns out, is more nearly the case if a power

less than one of the rain rate is used. This will be discus-



sed elsewhere in this report.

At present we are interested in a feature which can be
seen clearly in Fig 3.2, that the right hand, or "above maxi-
mum temperature” branch of the curve is more nearly linear for
the square root function. This affords some simplification of
the treatment of the data if this functional variation is a
good approximation. On the other hand, analyses which are
linear in the rain rate and the brightness temperature admit a
principle of superposition. Accordingly, an average rain rate
could validly Dbe —calculated from average Dbrightness
temperatures over an area --independently of the size of the
area. Superposition eliminates some ambiguity due to the so-
called beam filling problem [Spencer, 1986].

In the end, as the reader will discover below, we have
elected to mix our analyses --sometimes using the rain rate,
sometimes the square root of the rain rate, and in a few in-
stances other the natural logarithm of one plus the rain rate.

Fig 3.4 is an idealization of Fig 3.1 and Fig 3.2 which
we shall use Dbelow. There is a similar curve for each fre-
quency, § and polarization state, (h or v)., The main simpli-
fication is that the two branches of the curve are taken to be
straight lines in the right panel. C* is the land brightness
temperature, C is the zero-intercept of the high rain rate
branch, which has a constant slope, q, in the right panel.
Tmax is the maximum brightness temperature which occurs for a
low value of the rain rate, ~1 to 3 mm/h for 18 and 37 GHz.
The difference between the maximum brightness and the surface
brightness is 4T. The quantities C¥ C, q, and Tyayx are all
functions of polarization, h or v, and frequency, #. To de-
note these dependencies we will use a subscript.
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Fig. 3.1 Brightness temperature variations as functions of
the rain rate and the square root of the rain rate for sev-
eral frequencies. All curves shown are for horizontal pol-
arization. Polygonal lines have been drawn between points
extracted from tables in Wu and Weinman [1984].
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Flg. 3.2 Llinear lidealizations of brightness temperature
functions. The points are from Wu and Weinman [1984].
Stars represent horizontally polarized 18 GHz brightness
temperature, crosses 37 GHz horizontally polarized bright-
ness temperature. In the top panel the points are plotted
against the rain rate, R. The lower panel shows the same
polints plotted against the square root of R. Straight lines
have been drawn between the maximum brightness temperature
points and those corresponding to 48 mm/h to lillustrate how
well we might expect a linear curve to fit the portions of
the_curves above the maximum brightness temperature points.
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Brightness Temperature as a Function of
The Square Root of Rain Rate
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Filg. 3.4 Idealization of brightness temperature variation
with the square root of rain rate and parameter defintions.
Cj 1s the lIntercept at Q-0 of the linear extrapolation of
the high rain rate branch of the curve, which has a slope q.
C* is the observed mean brightness temperature for Q-0 and
1s used to define the lintercept of the low rain rate segment
which connects it to the maximum brightness temperature,

Sq. Root of Rain Rate

Tyax- The difference between Ty,y and C* is dT.
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4., Retrieval methods

One class of rain estimation methods is associated with
the concept of inversion. First, one performs a series of
radiative transfer calculations for a family of model systems
in the forward direction. That 1is, one calculates the
brightness temperatures, Tg; (where 1:37h,v, 2iv, 18h,v for
the channels we will be using) based on assumed parameters of
the scattering and emission of the system for a prescribed
rain rate. The rain rates are varied among the model family
members to achieve the best agreement between the set of
theoretical Tgj and the observed Tpgj. These optimal
pParameters are the retrieved rain rates.

Ideally , with complete and perfect data the retrieval
would Dbe a well-posed mathematical process. In practice the
problem is underdetermined. In part this may be because there
is noise added to each measurement (resulting in possibly
inconsistent data), partly it is because only a few channels
are measured and our understanding of the physics is limited.
In any case for these, and more deeply rooted reasons, remote
sensing solutions are not necessarily unique. This is the
reason that constraints must often be imposed --to make sure
that the "correct" solution is chosen. -

One means of devising these constraints is to obtain
data sets covering ranges of the conditions under which one
intends to apply the retrievals, and to relate the {Tpgj] em-
pirically to a set of rainfall measurements. In other words,
one obtains Tpgj(R), brightness temperature as a fﬁnction of
rain rate, R.

In this report we will discuss empirical brightness
temperature vs. rain rate relations from an amalgamation of 25
data sets wused previously in studies presented by Spencer
[1984]. The over-all set includes +three seasons (spring,
summer, and fall) taken from portions of 25 SMMR passes over



the United States. It consists of approximately 12 000 data
"records" each containing a radar-derived rain rate for
"truth" in addition to SMMR brightness temperatures. For
further discussion see Spencer’s paper cited above.

The radar data was obtained from microfilm records of
the displays of operational radars. These images were then
digitized on a uniform grid. The data have several non-ideal
characteristics which must be noted. Each film record
displayed at most seven radar reflectivity levels, each inter-
preted nominally as one of seven rain rates, in mm/h, which

are:
o, 4, 17, 42, 85, 147, 190

This ordering of discrete levels results in a standard error
of about 60%Z --even if no other source of error is present.
For rates under about 44 mm/h the error is about 2.5 mm/h.
Rain rates other than those in the above 1list enter only
through area weighted averaging over the 20 Km by 20 Km areas
of each grid cell. Nevertheless, the "magic numbers" (0, 4,
17, ..) persist in the data. This results in "a jagged
frequency distribution of rain rates with a notable peak at 17
mm/h. This data set focussed on ;'rainy" cases. Further,
since rain rates above 42 mm/h are rather rare, and there is a
very large peak at zero, the shape of the frequency distribu-
tion requires attention.

If we smooth out the subsidiary peaKs in the distribu-
tions we note the features commonly found: the very large
peak at zero, mentioned above, and a very long "tail". Finally
it is significant that rain rates are non-negative. wWe show
in Appendix A that the "magic number" rain rates are an
annoyance, but probably not a serious issue in our statistical
interpretation of the data. The peak at zero, the error which
grows linearly with rain rate and the non-negativity are of



greater concern, as they could affect the results of the
regression procedures we Wwill use as well as significance
tests.

The conventional prescription for "pathogenic" data
distributions 1is to transform the original variable, R, to
another, Q, for which the distribution has a more desirable
shape. (See Appendix A and Johnson and Wichern [1982].) If
there is particular interest in regression, we try to find a
transformation, such that both Q and the whole set of residu-
als of Q from the truth data, have normal distributions and
further that the variance of the residuals is approx‘imately
constant --not a strong function of Q.

For the present data sets two simple transformations
were found which meet these objectives somewhat better than

the original variable, R (rain rate). These are,
Q@ = JyR and L = In( R + 1)

Further details may be found in Appendix A. Also, for the
additional reasons discussed in Sec. 3, regressions linear in
Q = R, rather than R are conv‘;nient.

' The constants and coefficients obtained by regression
for each channel form a "data set" having a length of 25.
These may be found in Table B., Appendix B. The results are
summarized in Table 4.1 and Table 4.2 for the regressions on
Q. These 25 determinations can then be analyzed for
correlations between the constants C; and Cj* and the slopes
qij=dTgj/dQ. The mean values, variations and 1ntefre1ations
among the 125 Cj, Ci* and q; in these relations might be taken
to circumscribe the allowable radiative transfer model. The
relationships of these parameters to others shown in further
tables can be seen in Fig. 3.4, which illustrates them
schematically. Because of the varying size and validity of
the data sets, some of the combined analyses (shown in Table



41 and Table 4.2) have been weighted by the standard errors
of each parameter.

Even a very quick examination of Tables 4.4 and 4.2 (as
well as others to follow) reveals that the parameters
introduced in Fig. 3.4 are not "well determined"” in the sense
that the spreads, as shown by the standard deviations, the in-
terquartile ranges, or the extreme ranges, are large relative
to the means. Thus each parameter is characterized by a
statistical distribution of values. HNote that these distribu-
tions are mostly quite sKewed or asymmetrical. (Positive
skewness denotes a "tail" extending to higher values --to the
right in a conventional plot; negative sKewness extends to the
left --toward 1lower , or more negative, values. Kurtosis
describes how pointed or flat the peak of the distribution is.
(Large Kkurtosis signifies a pointed central maximum. A normal
probability curve has a Kurtosis of 3.0, to which the
"standard values" are referred.)

Even a casual examination of Table B.i, Appendix B,
suggests that there are correlations among the gq’s and the
C’s. This conjecture is borne out and quantified in Table
4.3, which is a correlation matrix. A simplistic interpreta-
tion is that the "brightness temperature of rain" at a partic-
ular rain rate has a tendency toward constancy. The land sur-
face brightness temperature, which is partially observed at
very light rain rates and at heavier rain rates through
incompletely covered pixels, actually varies somewhat indepen-
dently. However in our curves, which were fit to data subject
to the condition that R 2 i1 (or Q ), the constant terms in
each of the 25 data sets do not represent a typical surface
emission temperature for that data set as one might expect.
Rather, the constants are just the zero-intercept of the ex-
trapolated rain rate greater than one mm/h branch of the curve
as shown in Sec. 3. In a sense then, because no data were
used with Q@ or R ¢ 1, the constants reflect the statistical



determination of the quantity
Ci = [ Tpi@N) - qy@:1) ]

Thus one should expect the slope coefficients (@j) to be cor-
related with the C’s.

The single most interesting feature among Tables 4.1-
4.7 relates to Tpyay, (Table 45), and is further illustrated
in Fig. 441 (for i = nh37). This variable 1is more normally
distributed than C; (Table 4.1), Ci" (Table 4.4), or 4T;
(Table 4.6) based on the sKewness and Kurtosis values. In
addition, based on the variance values,the relative spread is
less.

Tmax has been used in connection with choosing thresh-
hold brightness temperatures for rain/no-rain descions. Thus
it 1is of special interest for this reason, in addition to
separating the two branches of the Tpgj(R) or Tgj(Q) curves.
Consequently, we have briefly investigated whether any natural
variations of Tpmax,j can be accounted for operationally. For
this purpose possible correlations with C; are of no use,
since this quantity is an artifact --not an observable or
measurable one. On the other hand, one can quite naturally
interpret Ci* as representing a meaningful geophysical parame-
ter. It is Jjust the surface brightness temperature. This can
be estimated from surface thermometric temperature and micro-
wave emissivity, €j. The surface temperature,Tg, may be ob-
tainable from weather reports or from climatology. In some
cases Tg might be found from surrounding microwave data from
areas Known to be non-raining as indicated by the absence of
clouds in visible and/or infrared satellite images. Table 4.7
lists the correlations between the Tyax’s and the C;*'s which
are large enough to warrant further study.

The quantity 4T, displayed in Table 4.6, can be inter-

preted as an estimate of the characteristic slope of the low



rain rate branch of the Tpgj(R), or Tpgjij(Q) function --on the
assumption that these functions can sensibly be approximated
as linear and have their maxima near imm h-!, This may be a
fairly good approximation for 37 Ghz, but is unlikely to be
valid at the 1lower frequencies. The available truth data is
inadequate to 1investigate empirically the detailed shape of
this branch of the curve. Radar data contain almost no
information on rain rates less than 4 mm/h due to the digital
encoding scheme used. Consequently, reliance on theoretical
guidance or intuition may be required. Nevertheless dT; 1is
valuable for evaluating one constant associated with the low
R branch once the shape of this branch is selected, as it is
automatically in the forward radiative transfer problem when
one selects a specific model.



Table 4. {.

Statistical Properties of the Cj-Values

h, 37 v, 37 v, 21 h, 18 v, 18
Unweighted statistics
Variance 63. 15 30. 99 29. 68 93. 32 49, 34
Std. Deviation 7.95 5. 57 5.49 9. 66 7. 02
Range 32. 63 19. 70 22. 56 39. 20 26. 23
SKewness 0. 41 0.10 0. 31 0. 34 0. 00
Std. Value 0. 84 0. 20 0. 64 0.70 0. 00
Kurtosis 2.72 2. 09 2. 75 2. 614 2. 26
Std. Value -0. 29 -0.93 -0. 26 -0. 40 -0.76
Mean 260. 00 268. 00 262. 62 251. 15 259. 91
Weighted values
Mean 260. 96 268. 07 263. 86 256. 45 262. 00
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Table 4.2

Statistical Properties of the qj-Values

h, 37 v, 37 v, 21 h, 18 v, 18
Unweighted statistics
Variance 6. 55 5. 15 2. 45 6. 10 3. 34
Std. Deviation 2. 56 2. 27 1. 57 2. 47 1. 83
Range 10. 54 8. 85 6. 52 i2. 12 8.70
SKewness -0. 75 -1.08 -0.53 -1.29 -0. 09
Std. Value -1.53 -2. 21 -1.09 -0. 53 -1.29
Kurtosis 3. 34 3. 61 3. 00 5. 98 4. 42
Std. Value 0. 31 0. 62 2. 19 3. 04 1. 45
Mean -3. 22 -3. 23 -0. 60 -~ 0.43 -0. 05
Weighted values
Mean -2. 86 -3.08 -0. 54 0. 07 -0. 15




Table 4.3
Correlations Among The C; and the qj

Slopes, qj Constants, Cj

v37 h37 v2i vi8 his8 v37 h37 v2i vi8 his8
v37 1.00 0.97 O0.74 0.52 0.40 | -. 569 -.66 -.48 -.39 -.50
h37 O0.97 1.00 0.77 0.57 0.12 | -.614 -.69 -.51 -.44 -.55
v2i O.74 O.77 1.00 0.89 0.18 | -.54 -.55 -.61 -.52 -.51
vi8 O0.52 0.57 0.89 1.00 0.22 | -.53 -.52 -.63 -.64 -.57
his 0.10 0.12 0.18 0.22 1.00 | -.45 -.49 -.53 -.48 -.49

......................... :_-_-__-___-..___-_-___..---
v37 -.59 -.61 -.51 -.53 -.45 | 1.00 0.90 O0.88 0.92 0. 87
h37 -.66 -.69 -.55 -.52 -.49 | 0.90 1.00 0.91 0.86 0.96
v2Yi -.48 -.54 -.61 -, 63 -.53 | 0.88 0.91 1.00 0.93 0.94
vi8 -.39 -.44 -.52 -.64 -.48 | 0.92 0.86 0.93 1.00 0.93
ni8 -.50 -.56 -.54 -.57 -.49 | 0.87 0.96 0.94 0.93 1.00
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Table 4.4
Statistical Properties of the C;*-Values

h, 37 v, 37 v, 21 h, 18 v, 18

Unweighted values

Variance 119. 66 35. 05 43, 93 198. 39 71. 31
Std. Dev. 10. 94 5.92 6. 63 14, 08 8. 44
Range 42, 34 42, 34 26. 98 52. 99 29. 53
SKkewness -0. 43 -0. T4 -0. 42 -0. 31 -0. 51
Std. Value -0.87 -1.51 -0. 85 -0. 62 -1.05
Kurtosis 2. 62 2.59 2. 75 2. 31 2. 26
Std. Value -0.39 -0. 42 -0. 26 -0. T4 -0. 75
Mean 249. 20 261. 11 258. 35 242. 56 255. 04
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Statistical Properties of Ty,x ;:=Tpj (R=1)

Table 4.5

h, 37 v, 37 v, 21 h, 18 v, 18
Unweighted values
Variance 41, 50 21. 29 21.76 72. 48 37. 00
Std. Dev. 6. 44 4,61 4, 66 8. 51 6. 02
Range 28. 14 18. 28 20. 12 35. 60 23. 60
SKewness 0. 61 0. 24 0. 59 0. 44 0. 15
STd. value 1. 24 0. 49 1. 21 0. 89 0. 30
Kurtosis 2.94 . 2. 94 3. 10 2. 72 2. 59
Std. value -0. 06 -0. 06 0.10 -0. 29 -0. 41
Mean 256. 78 264. 76 262. 02 251. 57 259. 86
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Table 4.6
Statistical Properties of dT=Tg; (R=1)-C;"

h, 37 v, 37 v, 21 h, 18 v, 18

Unweighted values

Variance 87. 90 35. 39 33. 32 140. 15 58. 314
Std. Dev. 9. 38 5. 95 5. 77 11. 84 7. 64
Range 36. 38 24, 95 22. 54 49. 61 32. 55
SKewness 0. 24 0. 42 0. 48 0. 08 -0.10
Std. value 0. 49 0. 86 0. 99 0. 16 -0. 20
Kurtosis ~2.32 2. 85 2.72 2.43 2. 59
Std. value -0. 69 -0. 15 -0. 29 -0. 58 -0. 42
Mean 7.59 3. 65 3. 67 9. 02 4. 82
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Table 4.7

Correlations of the Tysx’s with the C;*’s

TMAX, i
v,37 h,37 wv,2f v,18 h, 18

| |

v, 37 | 0.38 0.43 0.47 0.47 O.44 I

h, 37 | 0.25 0.52 0.50 0.39 0.53 I

Ci* wv,21 | 0.29 0.50 0.52 0.42 O0.51% |
v, 18 | 0.38 -0.50 0.52 0.48 0.50 I

h, 18 | 0.27 0.54 0.52 0.40 O.55 |

| - |
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5. Direct or forward regression methods.

A second approach to the remote sensing problem seekKs
to avoid the necessity for accurate radiative transfer models.
Instead, a direct statistical approach is used. In one of its
simplest forms one forms a lJinear regression equation for R
(or Q). e.g.

R = Ly [a3Tpi]l + «p

The «j are determined by least squares, or some other
method of statistically fitting a suitable data set. However,
we Know that in the problem at hand a single linear equation
is unlikely to prove satisfactory because of the two-branched
nature of the functional relation between Tg; and R (or Q)
that is predicted theoretically. Something additional may be
required to remove the ambiguity when applying the regression
relations.

If it 1is Known whether, or not there is significant
rain, one can proceed. One method of resolving this ambiguity
'~ is to use of a simple discriminator which acts as a "switch"
Another approach is to apply an additional data set to the
problem which does not share the same ambiguity.

For example, it has been found that polarization of the
microwave brightness provides useful discrimination [Spencer,
1984). Using statistical techniques one can construct "class-
ification functions" for use as discriminators as we shall
discuss Dbelow. To some degree the infrared radiahce data
available from weather satellites can remove the ambiguity --
at least in one direction. One is quite confident that the
absence of cloud indicates that there is no rain. Additional-
ly, cloud height, thickness and appearance are useful for dis-
criminating between convective rain and stratiform rain. The
former is more 1likely to be associated with the higher rain



rate branch, and the latter is often associated with the lower
rain rate branch. Because, there is overlap in the rain rates
Produced by these two types of rain systems, misclassi-
fication errors are only modestly reduced, not eliminated.

With the foregoing discussion in mind concerning the
limitations of linear models (which ignore the double branch-
ed nature of the Tgj(R) functions), we shall nevertheless pre-
sent the results from a sequence of such models. This will be
followed Dby results from models incorporating several forms of
discrimination. For this purpose a special data set was con-
structed. This data set was designed specifically to realis-
tically address the discrimination issue. Because the rela-
tive content of difficult cases was intentionally enriched in
comparison with other data sets from which results have been
reported, the results may appear less impressive.

Sets of registered images were displayed on a video
monitor. Each set consisted of an image of Tpg; for i={37h,
37v, 2iv, 18h, 18v} as well as radar images as digitized by
Spencer [1984), and the infrared window channel from GOES.
Data were selected over the coverage afea on a 2 latitude by
2 longitude grid without regar&. to rain, cloud or any other
conditions. Next, areas were sampled in which the radar
indicated significant rain rates. In order to eliminate
spurious degrees of freedom, care was taken that these samples
were not taken too close together. Presumably cloud physical
Parameters, such as drop size distribution, thickness, and
temperature are correlated over significant distances within a
given cloud, so that this extra care may be required to insure
independence. After this, data were selected from areas close
to and surrounding the significant rain samples, but which had
light rain rates. Finally, data at points for which the radar
indicated no rain were chosen "intimately" near the rain
areas.

Thus, the data set is biased toward the difficult
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cases. Consequently, as mentioned above, results from the re-
gression models (e.g. standard errors of estimate, correlation
coefficients etc.) may not appear as impressive as previously.
However, because the data set 1is "tuned" to eliminate the
trivial cases the resulting models should perform better 1in
non-trivial cases.

Insight into the general nature of the data is readily
obtained from the correlation matrix displayed as Table 5.1.
Further insight can be gotten by 1looking at partial correla-
tions (shown in Table B.2, Appendix B, for several subsets of
variables). These measure the relationships between pairs of
variables while controlling for the possible effects of the
other variables. This 1is wuseful for wuncovering both un-
suspected, or "hidden" relationships, and spurious ones. Our
purpose 1is to get 1insight 1into the strength of IR data
relative to microwave data.

The simplified exegesis of Table 5.4 and Table B.2 is
this: IR is the Dbest single channel, although it is not
indespensible.

The 1linear model results are summarized in Table 5.2.
The coefficients and more detailed results are in Table B.3,
Appendix B. Table 5.2 strongly suggests that the 18 GHz
channels contribute little to the skill of 1linear models, as
we have tested them on this data set oriented toward the
discrimination problem. One might surmise that the principal
utility of 18 GHz would be in the determination of higher rain
rates which are not adequately represented in the data. This
could have been anticipated on the basis of the results in
Sec. 4 which found an 18 GHz channel sensitivity less than
expected on the basis of the Wu and Weinman models.
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Table 5.1
Correlation Matrix for Microwave, IR and Rain Data

R Q IR v37 h37 vai vis8 his

R 1.00 0.93 -0.42 -0.42 -0.32 -0.28 -0.1T7 -0.12:

Q 1.00 -0.48 -0.43 -0.32 -0.29 -0.18 -0.13
IR 1.00 0.45 0.34 0.39 0.29 o0.23
v37 1.00 0.92 0.84 O0.71 O0.72
h37 1.00 0.81 O0.77 0.85
vei 1.00 0.81 0.814
vis 1.00 0.86
his - 1. 00




Table 5.2

Performance of Linear

Hodels

Model® Std. Error of R2 (Adjusted for
Variables Estimate of Q Degrees of Freedom)
v37, h37, v2i, 1. 350 0. 243
vi8, his
v37, h37 1. 378 0.211
IR i. 366 0. 224
v37, h37, IR 1. 306 0. 291
vi8, his8, IR 1. 368 0. 223
V37. h37’ val.
vi8, hi8, IR 1. 278 0. 321

%¥A11 models incorporate a constant term.
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6. Models with simple discrimination.

Precedent [Spencer et al. 1983; Spencer, 1984] as well
as preliminary examination of the data suggest that two simple
variables should be valid discriminators. The first one is
the 37 GHz polarization, Pgzq, defined as (Tv37-Th37). A
threshhold function S3z7 is defined as:

1 for P37 ¢ Pihresh

SapiBarl ™
o otherwise

The second discriminator is an infrared threshhold function,

SIR(T-Tthresn) defined as:

1 for TR ¢ Tthresh
S(T1R) =
O otherwise

The physical concept which underlies Sz is that upwelling
radiation from 1land is slightly polarizéd, from water Dbodies
markedly polarized, while wet land is an intermediate case.
Water surfaces--and wet land--tend to 1looK radiatively cold
like rain, which depolarizes upwelling radiation, although ice
is thought to contribute to polarization by scattering. In
the investigations cited above it was concluded that a value
of about 15° for Pinhresh €ave satisfactory results for the
elimination of "wet" surfaces. In the case of S(Tigr), a
number of investigators have concluded that clouds warmer
than 270°K are unlikely to rain and that raining clouds are
usually colder than -20°C (253°K). As a specific example
consider the rain rate algorithm of Robertson [1985), shown in
Fig. 6.1. Roughly speaking the onset of rain is very near
250°K, with only a very slight "tail" extending to about 2559,
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This has also been investigated extensively by the present
investigators as well as many others [Barrett and Martin
1981). The effects of S37 and S(Tygr) are illustrated in Fig.
6.2, which should be compared with Fig. 3.3.

We have defined a family of functions resembling the
shape of the negative of Robertson’s curve. One of these is
shown as an example if Fig. 6.3. The equation defining these
is:

HTirpTthresh) = S(TIR)(TiR-Tthresh)

Table 6.4 shows how these t-functions correlate with the two
precipitation variables Q and R. Surprisingly, for Q the
maximum is only approached at 275°K. In reality, the
threshhold effect is nil in this case--very 1little data is
being excluded. On the other hand, the maximum for R is at
about 252°9K, very near the expected temperature. Note,
however, that even in this case the maximum is not pronounced.
Thus, it turns out that threshholding Tjygr is wunlikely to
materially change mean or mean square error values of rain
rate determinations. It will reduce the tendency linear
models have for producing negative rain rates. The difference
between the R and Q vs. Tir Dbehavior arises because Q gives
greater relative weight to low and moderate rain rates. These
are more likely to occur at comparatively warm temperatures.
It is also quite interesting to note that the
correlation of S(TyRr) -- which can take on only the. values O
or { -- with Q@ can be as high as 0.41 for Tir Vvalues around
250°K. This is shown in Table 6.2. If a sequence of linear
models in t-functions is generated for various Tinphresn Values

" the results of Table 6.3 are obtained. Based on this table we

concluded that any Ti¢nhresh Value between 250° and 270° could
be adopted with a similar effect. In the examples to Dbe
discussed below we have inclined toward the high end of this
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range. This is "“conservative" in the sense that less data is

subject to truncation. In passing we note that the "best" of
these equations for R is,

1.1969 - 0.2227 - t(TyR,250) for TR ? 2509
(o} for Tigp ¢ 250°

Fig. 6.4 shows the distribution of Pzp-values with rain rate,
R, in the data set. Visual inspection of this figure suggests
that there is no reason to select a value other than 15°C
brightness temperature difference for Pinresh:

Now that definite values have been adopted for Tinhresh
and Pihreshs We can proceed to investigate a sequence of
models with discrimination as mentioned above. The variables
will be drawn from the set: (T3z7y, T37h,» Tasvs Tisvs Tisn
'T1Rs TIR,270), S37(P37)l. In this 1list, and subsequently we
omit the subscript "B" from brightness temperature when the
meaning 1is clear. One consistent way to incorporate the
effects of Sgzq(P37) and ¢t(TyR,270) is to multiply each of the
other variables (including the constant term) by them, or in
effect by their product,

Sw = S37'S(TIR)

The effects of this combined threshholding are illustrated in
Fig. 6.5. The regression results are summarized in Table 6.4.
Not surprisingly, best results are obtained by using all
"channels" in the data set. Further, comparison with Table
5.2 establishes that this type of simple discrimination has
not (even slightly) improved the results as was anticipated
above, in the discussion of Table 6.i. For reasons which will
be apparent in Sec. 9, we have not included more detailed
results in an appendix as we did for the simple linear regres-
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Table

6. 1

Correlation of The t-Functions
With Rain Variables,

Q and R

Correlation Coefficent

Tthresh R Q
230 -0. 408 -0. 385
235 -0. 419 -0. 407
240 -0. 425 -0. 420
245 -0. 433 -0. 436
250 -0. 437 -0. 448
255 -0. 437 -0. 455
260 -0. 435 -0. 459
265 -0. 435 -0. 467
270 -0.433 -0. 471
275 -0. 420 -0. 475




Table 6.2
Correlation of S(T¢nresn) With R and Q

Correlation Coefficient - -

Tthresn R Q

230 0. 360 0. 375
235 0. 353 0. 374
240 0. 365 0. 390
245 0. 368 0. 408
250 0. 354 0.416
255 0. 336 0. 394
260 0. 327 0. 405
265 0. 324 0. 406
270 0. 317 0. 396
275 0. 314 0. 392
280 0. 294 0. 376

Table 6. 3

Results from a Sequence of Linear Models for R
Using t-Functions for Various Tinresn Values

Tthresh 8td. Error of Est. Corr.
230 6. 483 -0. 408
240 6. 427 -0. 425
250 6. 386 -0. 437
260 6. 392 -0. 435
270 6.398 -0. 433
280 6. 444 -0. 420
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Table 6.4
Performance of Nonlinear Models

Model® Std. Error of R* (A4j. for
Variables Estimate of Q Dec. of Freedo-)

v37, nh37, vai,

vi8, his, S37,

t(Typ, 270),

[TiRr' S) 1. 303 0. 294

V37, H37, vai,
V18, H18, s37,

t(TyR, 270) 1. 305 0. 292
v37, nh37, S3v,

t(TyR, 270) 1. 327 0. 268
v37, nh37, S3q ’ 1. 370 0. 221
v37, h37, vis8,

hi8, S3q 1. 348 0. 244
837, [Tigr' S) 1. 328 0. 267
t(TyR, 270), 837,

[Tir® S) 1. 39¢ 0. 196
vi8, his8, t (TR, 270),

837, ([TIRr'S) 1. 392 0. 195
vi8, hi8 1. 555 0. 000
vi8, hi8, S3q 1. 509 0. 054

*All regression equations include a constant term (in addi-
tion to S37 when it is shown in the variable 1ist). The
microwave channels are all implicitly operated on by S37.
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Flg. 6.1 Rain rate as a function of 11 ym IR temperature
as given by Robertson [1985]. '
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Flg. 6.2 Effects of threshholding. The top left panel 11-
lustrates the distribution of values of Q observed in a
sample data set when S37 = 0, the right panel shows the dis-
tribution for S37 = 1. (The total data set would be the
*sum” of the histograms.) Ideally, fewer Q-0 cases would
survive in the right panel and fewer Q>0 in the left. The
lower panels, for IR temperature, show more effective re-
moval of the Q-0 cases and less leakage of Q>0 linto the Q@:=0
class (on the left).
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Fig. 6.3 A t-function for a threshhold value of 250 K.
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Flig. 6.4 Observed distribution of 37 Ghz polarization as a
function of rain rate. This filgure in accord with Flig. 6.2

suggests that 37 GHz 1s not an extremely efficlent discrimi-
nator.
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Flg. 6.5 Effects of combining the polarization and IR
threshholding. More than half the Q=0 cases would be
screened out with relatively little leakKage of Q@>0 cases in-
to the Q-0 class.
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7. Use of statistical classification functions.

In this section we discuss further work on the data set
treated above. Each "data vector" (TIR'T37h.....T18v) was as-
signed to a rain class, or group, according to the scheme,

Group 1: If R is Dbetween O and 1
Group 2: If R is under 5, & over |
Group 3: If R exceeds 5

This resulted in the grouped data characteristics shown in
Table 7.4. The coefficients of the discriminant functions are
shown on the left in Table T7.2. In order to discuss the
relative importance of the various variables in the discrimi-
nation process, it is simpler to 1look at the coefficients
which would result if each variable were used in its standard-
ized form. That is, if we were to remove the mean and divide
by the standard deviation. Thus standardized variables all
have the same mean (zero) and standard deviation (one). The
corresponding coefficients of the standardized discriminant
functions (which appear at the right in Table 7.2) are thus a
direct measure of the "power" of an observed variable in
influencing the predicted variable. -
Because three groups were used there are two
discriminant functions. The first one accounts for 97.51Z of
the variance accounted for by both and has a canonical
correlation of 0.52614. Hence, it 1is moderately efficacious.
The second function, on the other hand, is pfactically
useless. Inspecting the standardized form coefficients for
the first function, we conclude that three variables are
important: Tigr, Ty37, and Tpyg. Since there is only one
useful function, it must be admitted that it amounts to little
more than a linear regression equation with another
transformation of the rain variable. Consequently, it does



not appear to be a valuable adjunct for use with a linear
regression equation on Q or R as we had hoped. It is
redundant. Nevertheless, Fig. 7.4 illustrates the rain class-
ification according to this function.

In working with a number of files of data on discrimi-
nation functions not incorporating infrared data, we found
that the canonicél correlations were often somewhat higher
than reported here (~0.7 wusually). This certainly does not
confirm a "negative impact" of infrared data. We suggest four
explanations. First, this 1lesser value of the canonical
correlation 1is a measure of the relative difficulty of our
specially prepared data set. Second, although these various
data files wusually give similar canonical correlations, the
discrimination functions themselves presented a surprising
variability. This is because the very high correlations among
the microwave channels render the determination of the
regressions somewhat wunstable. Thus, functions having quite
dissimilar coefficients could really Dbe substantially similar
in terms of a hypothetical "principal component."

A principal component analysis disclosed that the
"first" component, ©4, accounts for 84.8Z7 of the var;ance in
the standardized 18, 21 and 37 GHz channels. This component
is a nearly equally weighted sum of all. the channels (when the
variables are expressed in standardized form). The second
component, ©p, accounts for only 7.6Z of the variance of the
standardized microwave data. But it contains more information
on rain (i.e. the variable R) than the first principal compo-
nent. Together these two components account for 75/ of the
total rain variation explained Dby all five of these channels.
Including a third component raises this to 897Z. Thus The five
channels are more or less equivalent to two or three indepen-
dent variables. The first three principal components, in

terms of the standardized brightness temperatures, wj, are:



91 = 5 4591’37h + . 442“’37v + . 451“21" + . 448“181‘1 + . 437“1817
©p =-.333n37n - .623w37y - .01TWpqy + .414M4gn + .573Wygy
©3 = .472n37n - .075W37y - . TiSwpyy + .480Wygn - . 175Wygy

A third explanation for variation in the discriminant
function coefficients may Dbe the differing sensitivities and
calibrations of the radars used in these various subsets of
data. A fourth reason may lie in the differing bacKground
conditions effected by the underlying surfaces. Although an
observed data record for rain almost always shows contrast
with a nonraining data record, that contrast (which is what
the statistical analysis "sees") depends as much on the
nonraining bacKground as on the rain. This deserves further

attention.



Table 7.1

Characteristics of Grouped Data

Group 1 Group 2 Group 3
Group counts
227 82 90

Group Means
TiR 262. 03 240. 78 230. 78
Ty37 273. 38 268. 31 262. 30
Th37 263. 78 258. 48 252. 71
Tvai 270, 62 267. 61 264, 51
Tyvis 271. 09 269. 28 266. 01
This 261. 96 260. 23 257. 20

Group Standard Deviations

TIR 29.78 21. 02 18. 84
Ty37 10. 30 11. 58 11. 59
Th37 i 15. 60 14. 75 12. 68
Tva1 9. 58 8. 90 7.10
Tvis 13. 56 8.53 7. 81
This 15. 08 13. 30 11. 12




Table 7.2
Coefficients of Discriminant Functions

Variable Non-Standardized Standardized

First Function

TIR 0. 02580 0. 671170
Ty37 0. 07531 0. 818617
Th37 0. 00300 0. 044420
Tyay -0. 00165 -0. 014752
Tvia -0. 00852 -0. 098490
This -0. 03267 -0. 045380
Constant -16. 31700 0. 000000

Second Function

TIR -0. 02479 -0. 644622
Ty37 0. 02603 0. 282904
Th37 0. 08457 1. 253340
Tvai -0. 05379 -0. 480700
Tvis : 0. 06446 0. 745065
This -0. 07904 -1. 100210
Constant -5. 17104 0. 000000
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Fig. 7.4 Rain classification by the first discriminant
function. Each point is encoded with its rain class. All
the Class-1 points lle in the bottom row. The x-axlis 1s the
value of the discriminant function. For the rain parameter
on the y-axis we have used Q, the square root of the rain
rate. Consequently, the railn classes are perfectly dis-
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8. Comparison of SMMR Performance To the SSM/I Channels

We approach the question of SSM/I’s performance in the
simplest way. Using the 25 data sets from three seasons
(studied previously by Spencer, [1984]), we 1look at the
differences in performances of "best" linear regression models
for each data set. This method was used because it iIs primar-
ily a test of potential performances of channel differences,
rather than a search for the single best algorithm. We have
studied the algorithm gquestion in other sections of this
report. In large part the differences in the retrieved
regression coefficients for the various files in the total
data set are due to the non-uniqueness arising from the inter-
channel correlations. Thus, there are usually several algo-
rithms which will work --we choose to compare best ones for
individual cases. Similarly, differences in the sets of coef-
ficients from file to file when the same set of channels is
used, appear for the reasons stated in Sec. 7 for variability
in discrimination functions. Wentz [1985] argues that stable
algorithms are best obtained from what he terms "determinstic"
systems.

Deterministic systems have n relevant physical
variables measured by n channels which have prbjections onto
the physical variables and a significant degree of channel-to-
channel linear independence. On the whole, we Dbelieve that
i8h, 18v, 2iv, 37h, and 37v form such a set for three physical
parameters, since we were able to form about three useful
principal components in Sec. g5 The two wGHz' channels
together provide a measure of the upwelling emission and
polarization of the surface, 2iv GHz a measure of moisture,
while the "sum" of the 37 GHz channels provides the emission
of the precipitation sized drops, and their difference
provides a measure of the polarization of the overlying ice

layer. In this view The SSM/I complement of channels is



adequate--the extra channels on SMMR extraneous. Even when no
extra channels are 1included, uniformities in one of the
physical variables over one of the small data sets (or fliles),
as well as differences 1in calibrations of the radars used as
"truth® may induce variations in algorithm coefficients since
the system is then over determined and unstable. Therefore,
the pooled data set for determining a universal algorithm
should span the entire range of variations in the physical
variables. Even 80, as we discuss in Sec. 9, some special
treatment may be required. There is a way of removing the
overdetermination without throwing out data from any of the
channels

The results are summarized in Table 8.i, while the de-
tails of the regressions are given in Table B.4, Appendix B.
The table shows that the subset of SMMR channels which are
analogous to SSM/I channels gives results quite comparable to
the whole set of SMMR channels. The bottom line entries of
the table suggest differences the order of ten percent in
standard error of estimate. |

Table 8.2 is based on summer data files, for which GOES
11 pm IR data were included in each record. This table
indicates that IR augmented SSM/I results should not be sig-
nificantly different than SMMR --even if the new 855 GH=z
channel is not used.

‘Recalling the discussion in Appendix A, we note that
the variance of the residuals, and therefore the standard
error, is not constant. This 1is especially true for the
variable R. Consequently, the standard errors in Tables 8.1
and 8.2 are more representative of the standard error near

zero rain rate.
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Summary Comparison of Simulated SSM/I and SMMR Channels

Table 8.1

Season Sq. of Correlation Std. Error of Est.
SSM/I SMMR 7/ Diff SSM/I SMMR 1/ Diff
For The Variable R
Spring 0.162 0.239 -32 1.524 1.435 6
Summer 0. 332 0. 349 -5 1. 637 1.488 10
Fall 0.445 0,567 -27 1.977 1.626 22
Three Seasons 0. 313 0. 385 -19 1.713 1.516 13
For The Variable Q
Spring 0.166 0.239 -31 0. 528 0. 492 7
Summer 0.225 0.263 -14 0.533 O0.511 4
Fall 0.471 0. 491 -4 0. 621 O0.551 13
Three Seasons 0.287 0. 331 -13 0.561 0.518 8




Table 8.2

Summary Comparison of SMMR and Simulated SSM/I Plus IR

Square of Corr.

Standard Error

SMMR SSM/1+ SMMR SSM/1+
For The Variable R
Weighted Means 0. 3955 0. 4000 i. 538 1. 543
Mean Difference 0. 00449 0. 00473
RMS Difference 0. 03506 0. 05610
Mean / Difference 1. 135 0. 308
RMS 7 Difference 17. 7 3. 85
For The Variable Q
Weighted Means 0. 3878 0. 42105 0. 474 0. 458
Mean Difference -0. 03329 0. 01581
RMS Difference 0. 04623 0. 02401
Mean 7 Difference -T7. 904 3. 335
RMS / Difference 11.0 5. 06
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9. Discussion of the stability of the regressions

At several points in the two previous sections we have
alluded to the possibility that the mutual correlations of the
predictor variables might render the regression coefficients
"unstable". We will discuss this problem briefly in this
section. The material 1largely follows Marquardt and Snee
[1985). Their article contains further references.

To counter colinearity of the predictor variables

three Kinds of procedures have been used:

(a) Stepwise regression including forward selection and backK-

ward elimination.
(b) Best subsets regression.

(c) Biased regression, including ridge regression, generalized
inverse and latent root regression.

The first two (methods under (a) and (b)) reduce colinearity
simply by eliminating offending variables from the equations.
Marquardt and Snee contend that if the variance inflation
factors or VIFs (to Dbe defined) are large, use of Dbiased
estimators (i.e. (c)) is a Dbetter alternative than eliminating
variables, which (after all) also removes data.

In their development, variables are transformed to stan-
dardized form by subtracting the mean and dividing by the
standard deviation as we discussed in Sec. 7. In the regres-
sion equations the coefficients, or rather the estimates of
the coefficients B; have an uncertainty, or variance, repre-

sented by,

Var(Bj) % Oa[Riil'i/[(n-i)Sia].
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in which o is the standard deviation of the observation error,
Ry;-! the i-th diagonal element of the inverse of the correla-
tion matrix R;yj of the predictor variables, n the sample size
and s; the standard deviation of the i-th (non-standardized)
variable. (Double subscripts or square brackets are wused +to
distinguish the correlation matrix from the rain rate variable
R.) The [R)™! factors clearly show that the uncertainty in the
regression coefficient 1is an increasing function of the
multiple-correlation, or "multicolinearity" of the predictor
variables. The factor Rj;™! is the variance inflation factor.
To summarize, the VIF measures the collective impact of the
correlations of all j-variables (i not equal to J) on the i-
term regression coefficient. Clearly if the variance of B 1s
large, the least squares fit i1is unlikely to perform well on
new data--especially data outside the realm of the learning
data set. The technique of reducing the ill-conditioning Dby
discarding variables is based on the view that a predictor 1is
either "good" or "no good." Marquardt and Snee suggest that a
little bit of all the variables 1s better than all (of some)
or none (of others).

In order to understand their solution, it is necessary
to recall that 1least squares 1is an unbiased estimate. It
turns out that one can sometimes obtain a blased estimate
which has less varilance than least squares. (See Fig. 9.1.)
One method, ridge regression, often achieves a major
improvement in over-all variance by allowing a little Dbias.
In effect, one performs a least squares solution for the
coefficient vector not with Jjust the correlation matrix
[R1J1=[R]. but rather with [Rijl + e[aij] = [R]) + ©[I) for
e 2 0.

If © = 0, we obtain the usual least squares estimate.
The ridge estimate gives ti:e smallest regression coefficlients
consistent with a given level of lIncrease in the residual sum

of squares. The variance decreases as © increases. The bias
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increases as © increases. Since the total mean square error
is the sum of the variance and the square of the bias, there
is some value of © for which the sum of squares of the
coefficients --the square of the "length of the coefficient
vector"-- 1s a minimum.

Because the predicted variable is given as [Zj (BjXj)),
that is as a linear transform of the Bj, the variance of the
predicted variable will be a minimum when the mean square
error of the coefficients is a minimum. These remarks follow
only when standardized variables are used of course.

If it is advantageous to use the ridge regression tech-
nique, there is a procedure to aid in the selection of the
bias parameter, 6. This procedure, called the ridge trace, is
a plot of the regression coefficients for the standardized
variables form of the regression over a range of values of © -
-usually in the interval Dbetween O and {. If the predictor
variables are highly correlated the VIFs are large and the
coefficients will change rapidly with small values of © then
gradually stabilize and change only slowly with further
increase of ©. The © value at which the coefficients ¥Tirst
stabilize indicates the desired set of coefficients.
Fortunately the exact value is wusually not critical as the
sums of the squares of the coefficients often have a rather
flat minimum as © changes.

Now that we have concluded this rather Drief
discussion, we ask the rhetorical question: Do we need to use
ridge regresion? To answer we shall look at Rj;~!, the VIFs.
In the case of the predicted variable R with no threshholding,
they are: 133 for TR, 13.2 for Tg3rp, 10.8 for T37y, 55 for
Tp4ys 7.6 for Tygn, and 4.6 for Tygy. T is very stable, the
others are only moderately unstable. The ridge trace in Fig.
9.2 shows fairly rapid changes in four of the coefficients for
© less than about 0.20 or 0.25. Thus, it may Dbe of some
interest to consider the set of regression coefficients for
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one of these values (say © = 0.25) as a reserve model should
the ordinary least squares model appear to fail when presented
with "new data". Because the coefficients (Table B.7) relate
to standardized variables based on the training data set, this
model would Dbe written,

R = I [BloR mi’JoR + Ave(R)

However the standardized brightness temperatures (mwj) must be
defined in terms of the mean and standard deviation of the
learning data set --the data used to derive the coefficients.
Thus we denote them by wj’. Similarly, Ave(R) is the average
value of R in the learning set and OR the standard deviation
of R on the learning set.

Because the correlation matrix for the predictor vari-
ables is the same, the results for Q (also shown in Table
B.7.) and R are qualitatively similar. The ridge trace for Q
is shown in Fig. 9.3. The Q-model could be expressed as,

Q = Iy - [BI'Q ¥i‘log + Ave(Q)

When the ridge trace procedure was tried on the
variables multiplied by the threshhold functions as discussed
in Sec. 6, it was found that the coefficients underwent very
large and rapid changes for extremely small values of 6.
Initial values of the coefficients were well outside the range
-3 to +3. When standardized variables are being used both the
Predictors and the predicted variable have typical magnitudes
of 1, Coefficients greater than +3 or less than -3 suggest
that the predictions are based on a relatively small differ-
ences among relatively large numbers. Terms in the regression
equation are nearly canceling each other. This itself




indicates instability for small perturbations of the
coefficients.

Investigation revealed that [Rn]‘1 attained very large
values (~2000) for several channels. That is, the matrix was
i11 conditioned. The reason for this is that multiplication
of all channels by the common factor Sy, introduces artificial-
ly high mutual correlations among all the variables, so that
all elements, Rjj of the- correlation matrix exceed 0.99 in
absolute value. Thus, this variable transformation introduces
instability into the regression coefficient determination. wWe
conclude that this method of applying threshholds ought not to
be used without compelling Jjustification. Thus we do not
report the values of these coefficients here, only the ridge

traces shown in Figs. 15 and 16.
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10. Recommendations: An algorithm for SSM/I

At this point we can formulate and specify a set of
algorithms for SSM/I.

When superposition is not important, or when the ob-
Jjective 1is to optimize more widespread rains at lower rain
rates, we recommend using a regression equation for Q with
analogs of the set (Tygr, Tgjy (1=37v,h; 21iv; 18v,h)] as vari-
ables. The regression coefficients are to be determined with-
out the use of threshholding. However, when appropriate we
recommend including a 260°K threshhold on Tygr and a 15°
threshhold on T37y-T37h. This would take the form of multi-
plying the regression estimate by an Sy-form function. Rain
rate is then obtained by squaring Q. If superposition 1is im-
portant, as when compounding several rain events for a season-
al mean for example, threshholding is not recommended as it
will induce a bias in the means and error statistics.

We recommend an equation directly for R using the same
set of channels given above for Q. These coefficients also
are to be determined without the use of threshholding. This
form is to be used when more intense rain events are encoun-
tered, the events are smaller so that beam f£filling and the re-
quirements of superposition require more attention. As for Q,
threshholding may be used to suppress negative rain rates for
a single event, but must not Dbe used when averaging data.
When used, threshholding 1is accomplished by multiplication by
Sy Pposteriorly as for Q. This recommendation is made with
some reluctance due to non-normality of the R residuals and
other matters discussed in Appendix A.

We have two real alternatives with respect to choosing
the coefficient sets: least squares regression or ridge re-
gression. We display below the least squares coefficients as
"first choice" --but not without hesitation. For one thing,
we Know that the 18 GHz coefficients are not well determined
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and it is demonstrable that these variables are not contrib-
uting much to predictive sKill (Table 5.i). In addition since
these channels are correlated with the others, they contribute
to 1instability. Ridge regression could preserve the small
contribution made by the 18 GHz channels and maintain stabili-
ty. So, we also display coefficients for ridge regression as
a "back-up" set should least squares clearly fail.

The two threshhold functions referred to above, are

combined into a single Sy defined as,
Sw = S37(P37)S(1R)

The least squares expression for Q is,

Q = [10.216-0.0667TIR—0.0477T37h-0.0274T37v
+0.0192T 54y +0.0260T g -0.0032Tgy1Sw

The least squares expression for R is,

R = [48.644-0.0523T1R-0.1841T37,-0.1420T37y
+0.1375T 21y +0.0807TTygp-0.0126T gy]1Sy

The ridge regression expressions for Q and R are given
above, The values of the coefficients for © = 0.25 are:

Bn37,q@ = -- 1059 Bh37,R = -- 1331
Bv37,q@ = -. 2533 Bv37,R = -.2512
Bvay,q = - 0431 Bvay,R - -. 0461
Pnis, @ = * 1621 Bnis,R = *+. 1825
Bvig,@ = + 0503 Bvig, R = *+. 0481
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BIR. Q = - 2898 BIR, R = S, 2400
Ave (Q) = +1.203 Ave(R) = +3.968
oqQ = +1,.589 OR = +7.090

The expressions for the standardized temperature +variables
are:

Th37’ = (Tp37-260. 398)/15. 446
Ty37’ = (Ty37-269.837)/11. 749
Tya1’ = (Typy-268.622)/9.2610
Thig’ = (Tnig-260.531)/14.017
Tyig’ = (Tyyg-269.571)/11.709
miR’ = (TR -250.614)/29. 262

It 1is hardly necessary to point out that due to the
SMMR-SSM/1 frequency differences, differences in antenna
beamwidth, polarization isolation and sensitivity the given
sets of coefficients are departure points. One should expect
modification as new data sets become available. o

10-3




11. Concluding Discussion.

A great deal of statistical research material was gen-
erated in this program which has not been explicitly dis-
cussed. Such a discussion would be tedious, at best. There-
fore, we simply note a few highlights from the material pre-
sented together with subjective opinions based on all the
work.

The background of this work was the discovery that SMMR
data from HNimbus-7 "worKked". Simple forward linear regres-
sions produced results well beyond initial expectations over
land for convective rain. The opportunity of extending the
several year time series of Nimbus-7 data with the SSM/I on a
DMSP spacecraft suggested that capabilities of the correspond-
ing microwave channels should be studied. We found, using. the
subset of SMMR channels simulating these --except for the new
85 GHz capability--that one should expect SSM/I to achieve a
standard error of estimate within 8Z of SMMR for Q and 13%
for R. If IR 1s used as well, SSM/I's performance should
equal that of SMMR. =

We found that simple "switch-type" screening methods
should be introduced posteriorly, and do not effect  signifi-
cantly improved accuracy relative to straight linear regres-
sion methods if much data are to be averaged. They do allevi-
ate the embarrassing problem of "negative rain rates" produced
by these methods and our recommended algorithms for Q and R
use them.

Finally, there 1is some doubt about the stability of the
least squares coefficients and this is at least partly related
t6 the retention of rather poorly defined coefficients for the
18 GHz channels. Those testing algorithms should be acutely
aware of this gquestion. It might Dbe well to test ridge
regression versions of algorithms simultaneously and adopt
this method should the evaluation warrant it.
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Appendix A
Normality of Data and Residual Distributions

Many statistical techniques, including significance
tests assume that each observation comes from a normal dis-
tribution. If the number of samples in the data set is lar-
ger than 25 or so, histograms are helpful in assessing the
nature of the distribution as we did in Sec. 4 (Fig. 4&.1).
For larger sample sizes one can construct special plots to
judge the assumption of normality, called gquantile-quantile
plots [Johnson and Wichern, 1982] or normal probability
plots. These are plots of a sample quantile against the
quantile one would expect if the data were normally distrib-
uted. When the points lie along a straight 1line, or nearly
so, normality is a reasonable assumption, otherwise it 1is
suspect.

If normality 1is doubtful, or actually ruled out,
there 1is some peril in proceeding as if it held. An alter-
native is to transform the data to achieve a description of
the problem in terms of variables more nearly conforming to
the normality assumption. Johnson and Wichern [1982]) suggest
power transformations. These are generated Dby replacing x,
the observed value of the variable X, with x% There is a
special definition for a:=0: X 1s replaced Dby I1n(x). For
values of o less than 4, large values of x are pulled in and
small values stretched out. On the other hand for values of
x greater than 4, large X values are extended, small values
compressed. The choice of a may be dictated by simplicity,
or ease in interpretation in part. Thus one might favor
a:=0,5 --even if «a=0.509 were slightly Dbetter.

It follows that examinations of the distributions of
our rain rate variable, R, and its transforms are desirable.
In Fig. A4 we have normal probability plots of R. R2, [R



and 4R. All these show two effects clearly. First, there
is a "step" or discontinuity just above zero rain rate. 1In
the data set from which these samples are drawn about half
the cases are for R:=0. This is typical in our data Dbase.
Second, there is a small step near 17 mm/h. If we draw a
referen.ce line from the 50 cumulative percent point to the
95 or 99 cumulative-percent points, we can see that the R
greater than zero parts of the data are more normally dis-
tributed for (R than for the others.

Johnson and Wichern [1982) suggest a systematic means
of choosing a power transformation using the Box-Cox family

of transforms, defined as
(x¢ - 1)/a for « not equal O
1n(x) for a equal to O

Fig. A.2 shows normal probability plots of Box-Cox
transformed rain rates for « = {0, 0.2, 0.4, 0.6, 0.8, 1.0}
These plots show that the best exponent is somewhere in the
interval 0.4 to 0.8, probably close to 0.6. This suggests
replacing »R by the variable @ = JR. Although not in this
transform family, we found that similar results were obtain-
ed for L = In(R + 1) as shown in Fig. A.3.

The L-transformation 1s best understood as the trans-
form that renders the radar digitization error approximately
constant, since ORpeas 1is (0.6 Rpeas) except near R:=0.

After we formulate a regression model and estimate
it’s coefficients we should consider the validity and ade-
quacy of the model. Each residual is an estimate of the er-
ror of the model. Usually it is assumed that the errors are
drawn from a normal population with a zero mean and constant
variance. Residuals, on the other hand, can actually have

unequal variances and non-zero correlations even though



their mean is zero. However, If the correlations are small
and the variations of the variance not too large, we can
still treat them as samples drawn from an approximately
normal distribution. One means of detecting significant
departures from this approximation is to plot the residuals
against the predicted values. Another 1is a normal
pProbability Plot of the residuals [Johnson and Wichern,
1982].

Fig. A4 1illustrates the character of the residuals
(see Sec. T7) when the three variables (R, R and In(R + 1)
are fit with regression equations. It is obvious that the
residuals of both (R and In(R + {) are more normally distri-
buted than the residuals of R.

Now consider the structure of the residuals when
Plotted against the predicted values as suggested above.
These are shown in Fig. A.5. We note that the lower left
corner of each distribution is "missing". This is caused by
the constraint, felt at low predicted rain rates, that only
rain rates greater than 2zero are allowed. Thus at zero rain
rate only positive residuals are possible. The banding in
the figures is caused by the interaction of two factors: (1)
The "peakiness" of the frequency distribution of various
rain rates and (2) the assumption that the radar data are
"true". A significant portion of the variance should be at-
tributed to the "truth data" which is Known to have a vari-
ance from the desired parameter that is the same order of
magnitude as the regression equation.

If we destroy the "peakiness" and the constraint that
R 2 O by adding a normally distributed random number, r,
with a standard deviation less than or equal to the radar
measurement error, we should get about the same regression
equation, but the residuals will be "unstacked"™ so we can
visually estimate their average distribution. Fig. A.6
shows before-after comparisons for R and {R. The randon num-




ber, r, has a standard deviation of 25 for R and 15 for
{R.

In both cases the new regression coefficients were
covered by the old coefficients plus or minus the uncertain-
ty in the coefficients. HNaturally, as suggested above, the
added noise reduced the correlation coefficients and 1in-
creased the standard errors. However the point is that the
new residuals are satisfactorily distributed. We conclude,
therefore, that the "peakiness" and constraint that R is
greater than zero were not doing violence to conclusions
drawn from the original regressions.

Consider Fig. A.7. The upper left panel shows radar
rain rate with "error bars" as a function of rain rate. Ac-
tually these are Jjust 1607 of the rate itself (see Sec. 4).
The lower right panel shows error bars for Q = R from an
actual regression --on the assumption that the varilance l1s
independent of Q. If this were the case rain rates above a
few mm/h from the regression would be more accurate than the
radar data! This absurdity 1s illustrated at the 1lower
rightwhere the attributed error bars_for (R are shown as
vertical 1lines with those for radar shown as horizontal
lines. .

This clearly suggests a need for better truth, fér
careful interpretation of goodness of fit parameters, or 1f
radar data must be used, for a transformation which renders
the varilance of the (so-called) truth more nearly constant.
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Table B.1
Regression Results for Brightness Temperature
' As a Function of Rain Rate

262.039
255.073

266.45
264.639
243.819
259.679
256.515
257.567
269.633
253.071
272.731

265,983

276.449

250.76
273.067
253.596
265.412

257.7
252,675
252. 801
261.338
258,163
255. 597
254.792
256.639

stch3v
3.07916
3.48825
2.42157
3.04878
2.19646
1.90476
2.44774
9.94842
3.11652
5.96703
1.31494
1.80228
2.63479
8.7125
. 95804
. 38133
. 76901
. 81925
. 86192
16742
. 20772
. 49697
. 42794
1.60491
1.348114

N RO wn

Qra~>» g, ha> Coar
qh3?  qsh37 cv3?
-6.02441 1.54418 269.337
-2.60512 1.89479 266,59
-3.6389 1.12395 275,343
-1.40308 2.07443 275,519
0. 79400 1.17482 259,716
-0.61564 1.13152 270.855
-3.5789%4 1.02358 268.312
-2.48226 6.98909 266,336
-8.32454 1.53763 272.4
-2.959343 2.0847 259,641
-3.32916 0.59317 275,307
-3.43091 0.80739 269.8114
-3.69774 1.36665 278.393
0.55185 4.82002 258.695
-9.75508 £714897 276.174
-4,93107 0.91276 261,705
-2.06214 0.32337 268.058
=3.39417 0.88955 267,605
-0.66408 0.69454 263,293
-0.79100 0.48732 262.362
-2.84678 0.54633 269,935
-9.76108 0.66007 270.78
-2.15948 1.21206 264,371
-1.53103 0.81344 264,158
-2.31099 0.61664 265.039

stcv3?
1.8864
. 36307
. 13695
. 36445
. 20062
. 34055
.51713
. 97856
. 89831
. 36627
1.15904
1.56558
2.39653
6.69635
2.81827
2.76201
0.69061
1.16279
1.26904
0.92788
0.84239
0.62594
1.85717
1.16398
1.07953

L S I S A S T S T o)

-3.32621
-3.53354
-0.34245
-9.19176
=5.12194
-1.89192

-3.1619
-1.18893
-0.75528
-2.525495
-5.86238
-2.09373
-1.54304
-1.88432

0.94601
1.2836
0.99183
1.60881
0.64216
0.79635
0.64062
3.4976
1.42996
1.63505
0.52285
0.70435
1.22231
3.70463
1.09468
0.74558
0.2904
0.56856
0.47338
0.39151
0.38107
0.276

- 0.92712
0.58996
0.49379

Table B.1l is continued on the following page.




Table B.1 Continued.

chig stchis qhi8 qshi8 cvis8 stcvi$g qvig qsvi8
256. 387 4.64975 -7.75462 2.33182 2635.644 2.81744 -5.53315 1.41292
248.013 4.95268 -0.39649 2.69026 260.688 2.93075 -1.10212 1.59196
253, 383 1.7116 0.70572 0.79441 263.002 1.09212 0.22525 0.50689
260,392 3.08166 1.05347 2.0968 267.618 2.03235 0.10584 1.38284
231.792 3.72198 2.69903 1.99608 249.216 2.16653 1.46279 1.15879
253,783 2.02284 1.0476 1.20167 267.181 1.463 -0.55870 0.86903
246.626 3.90264 -1.82774 1.64793  260.36 2.53963 -2.09736 1.07238
247.92 11.6915 0.92577 8.21367 259.077 7.38296 1.23886 5.18677
257.646 1.58202 -0.80122 0.78053 261.038 1.35194 -1.04506 0.66702
240,04 6.8148 2.53635 2.55196 247,47 5.93693 1.81256 2.07343
268,476 1.34425 -1.36917 0.6064 271.143 1.00364 -1.40576 0.45275
259.059 1.88416 -0.82122 0.84407 264.197 1.60749 -1.15914 0.72042
270.992 2.5119 -0.90500 1.3029 273.705 2.30477 -0.83136 1.19547
241,491 11.8814 2.42814 6.97295 230. 36 9.3523 1.17242 5.28462
267.37 1.52898 -2.74025 0.59388 268.631 1.19016 -2.64181 0.46228
243,407 3.47981 1.7351 0.93934 249.774 2.87733 1.08154 0.77677
259, 935 0.63858 -0.20704 0.26852 263.191 0.46721 -0. 32407 0.19646
251.006 2.56356 -1.01841 1.2535 261.828 1.7717 -1.49285 0.86630
240,554 2.54697 3.9124 0.95009 253.592 1.58909 1.98849 0.59277
242,946 1.85539 1.35409 0.77454 252.976 1.15498 1.41858 0.48213
254,939 1.78077 2.58648 0,80556 260.721 1.20238 1.78395 0.54391
243,572 1.97603 0.98764 0.8743 296.957 1.25486 0.09009 0.95334
246.813 2.00556 4,36368 1.0042 255.242 1.4649 3.16334 0.78124
246.992 2.86262 2.21232 1.45092 256.005 1.53505 1.21313 0.77803
247,966 1.93393 0.16606 0.88461 238.025 1.4823 -0.49155 0.67803

Table B.1 is continued on the following page.



Table B.1

continued.

Coz1 Oc,vz21 Qev=z1 Ty vai
cval stcocval qval qsval
266.343 2.30702 -4,47542 1.156935
262.644 2.70209 -2.03477 1.46776
266,341 0.98493 -0.84518 0.45714
266.123 2.1540S 1.03422 1.46564
251.994 1.63021 .34 0.87195
266.512 1.3244 -0.43208 0.786358
262,316 1.83693 -1.57075 0.77366
261.459 5.0827 0.3903 3.97077
262.896 1.93774 -2.04593 0.75868
256.021 3.58899 0.21122 1.34398
272.731 0.84332 -1.78215 0.38042
266.607 1.2688 -1.49062 0.5684
274.553 1.86495 -1.12452 0.96733
260.958 9.29483 0.43518 2.92926
270.655 1.26861 -3.951818 0.49275
258.015 1.73667 -0.678 0.4688
266.072 0.41461 -0.67155 0.17434
260.94 1.20603 -0.31518 0.58971
256.6635 1.25231 1.10884 0.46714
259.878 0.8113 1.4201 0.33866
262.059 0.763567 0.64051 0.34636
262.127 1.259 -2.21177 0.55514
2956.889 1.48223 2.046 0.73994
259.162 0.82192 0.04384 0.41659
259.606 1.39908 -0.93352 0.63996

Table B.1 is concluded on the following page.




Table B.1 concluded.

Tmax Values

h37 v37 v2l hig vig

cranh37? cranv3? cranvai cranhi8 cranvi8
241,825 258. 856 2995, 549 232.119 251.449
240,363 259.835 299.32 231.342 251.916
236.903 255.417 251.427 228,505 247.888
237.274 256.891 250.871 227.299 247.354
222.026 247.824 241,847 209,714 236.472
254.086 265.916 263,242 249.8¢1 262.203
249,837 265.234 260.819 241.216 258.49
252,208 264,405 260.73 246.361 259.395
264.021 267.221 265.879 262.434 266
242.799 291.461 252,337 234,846 243.413
262.784 268.079 268,829 260.126 265.29
264,317 268.044 266.49 260,545 264.904
295,291 261.442 260.04 252.477 258. 38
261.734 266.412 267.646 259.385 263.708

264,34 266.896 266,545 262.7 265.046
240, 383 249,193 249,853 230,855 239.833
233.326  260.458 261.227 251.725 296.791
256.705 267.186 263.041 252.426 263.417
236.979 255.928 251.633 225.107 246,987
251.797 263.048 258.193 245.754 257.426
249,298 262,252 257,655 240,522 254,549
255.395 264.861 260.282 250.361 259.593
238.632 256.834 253.046 230.411 248,075
254.72 265.403 261.315 248,974 259.19%4
240,901 2958. 641 254.81 228.89 248,282




Table B. 2
Partial Correlations Relating G, R and L to Tjr, and Tpi

Q IR v37 h37
Q - 1,00 -0.32 -0.23 -0.13
IR - 1.00 0.27 -0.16
v37 - 1.00 0. 914
n37 - 1.00
Q IR vis hi8
G = io 00 "o- 45 -0. 05 o. 03
IR - 1.00 0.15 -0.03
his8 - 1.00
Q IR vai
Q - 1.00 -0.41 -0.13
IR - 1.00 0. 29
vai - 1.00
- Q IR v37 h37 va1i
Q@ - 1.00 -0.33 -0.26 O.11 0. 12
IR - 1.00 0.21 -0.17 0. 11
v37 - 1.00 O0.76 0. 36
nh37 - 1.00 0. 20
Val = 10 00
R IR v37 h37
R - 1.00 -0.26 -0.22 -0.11%
IR - 1.00 0.30 -0.18
v37 - 1.00 0. 91
n37 - 1.00
R IR vi8 hid
R - 1.00 -0.39 -0.06 0. 04
IR - 1.00 0.15 -0.03
vié - 1.00 0. 85
nis - 1.00
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Table B. 2,

Partial

IR

v37
n37
vel

IR
v37
nh37

IR
vis8
his8

IR

v37
h37
vetl

correlations, continued
R IR vai
R L 1- oo -00 35 —°u 14
IR - 1.00 0. 31
vet - 1.00
R IR v37 n37 vai
1.00 -0.27 -0.25 0.08 0.12
- 1.00 0.24 -0.19 0. 10
- 1,00 O0.75 0. 36
- 1.00 0. 21
- 1.00
L IR v37 n37
- 1,00 -0.33 -0.23 -0.14
- 1,00 0.27 -0. 15
- 1.00 0. 91
- 1.00
L IR vis8 nis
- 1.00 -0.45 -0.05 0. 03
- 1.00 0.15 -0.03
- 1.00 0. 85
= 1- 00
L IR vai
L = 1000 -00 48 -00 13
IR j - 1.00 0. 31
vai - 1.00
L IR v37 h37 vl
1.00 -0.34 -0.26 _O.114 0.12
- 1. oo 00 21 -0' 17 0' 10
- 1.00 O0.76 0. 36
- 1.00 0. 20
— 10 oo
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Table B.3
Linear Regression on Rain Rate and Square Root of Rain Rate

The tables on the following pages are reproductions of the
output of the regression computing program. The notation
varies slightly from that used in the balance of the report.
However, the notation 1is reasonably obvious. For example,
either th37 or Th37 might represent Tp37. The dependent
variables "Rain" and "qrain" represent rain rate (R) and
square root of the rain rate (Q) respectively.
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DEP. VARIABLE: qrain
IND. VARIABLES: tv37

th37

tv21

tvis

thig8
CONSTANT: VYES
WEIGHTS:
FLAGS: NO

" MODEL FITTING RESULTS
VARIABLE COEFFICIENT STND. ERROR T-VALUE PROB(>aTm)
CONSTANT 16.006617 2.233513 7.1666 . 0000
tv37 -0.086306 0.018304 -4.7151 . 0000
th37 '=-0.0028623 0.015788 -.1817 « 8553
tv21 =0.009031 0.017159 - 5262 . 5989
tvisg -0.002018 0.012321 -.1638 .8700
this 0.047037 0.0133 3.5366 . 0008
O CASES WITH MISSING VALUES WERE EXCLUDED.
ANALYSIS OF VARIANCE FOR THE FULL REGRESSION

SOURCE SUM OF SQUARES DF MEAN SQUARE F-RATIO PROB(>F)
MODEL 241.68620 S 48.33724 26.51212 . 00000
ERROR 71€.33324 333 1.82273
TOTAL (CORR.) 958.01944 398

R-SQUARED = 0.252277

F—=SRQUARED

STND. EFROR OF EST.

NUMBEF: OF RESIDUALS

(ADJ. FOR D.F.)
= 1.35009

0.242764

SAMPLE AVEFAGE = -8.28695E-15

SAMFLE VARIANCE
SAMPLE STANDARD DEVIATION
OF SKEWNESS =

COEFF.

= 1.79983

COEFF. OF KURTOSIS =

SURBIN-WATSON STATISTIC

0.6779132

1.24158

STANDARDIZED VALUE =

0.928339

STANDARDIZED VALUE = S.52822

Z.13607



DEP. VARIABLE: qrain

! IND. VARIABLES: tv37

th37
tv2l
tvig
thisg
tir

CONSTANT: YES
WEIGHTS:
FLAGS: NO
MODEL FITTING RESULTS

VARIABLE COEFFICIENT STND. EFRFOR T-VALUE PROB(>ETHE)
CONSTANT 132.445837 2.147448 6.2613 « 0000
tvi7 -0.054878 0.01723 -32.0607 . 0024
th37 -0.0148€2 0.018039 -.9876 - 3240
tval =0.0012Z27 V. 01EZES -.07€0 «939S
tvig 0.00263S 0.0116E3 « 2307 .8177
this 0.03392SS D.012828 3.1626 . 0017
tir -0.017221 0.002E2 -6.821S . 0000
O CASES WITH MISSING VYALUEZS WERE EXCLUDED.

ANALYEIS OF VARIANCE FOFR THE FLLL FEGRESSION
SOURCE SUM OF SQUARES DF MEAN SGUAFE F-RATIO PROB (:F)
MODEL 217.e9661 = S2.334343 32.41318 . 00000
ERFOR €20.32283 FiE J 1.c3348
TOTAL (CORR.) 2S8.01944 3298
F-SQUAFRED = ©.331€£182

R-SQUARED

NUMEEF OF FESIDUALS = Z

{ADJ. FCOR D.F.: =
STNC. ERFCR OF ESET. = 1..T7CO8

0.32138&8

W

SAMFLE AVEFAGE = -S5.8BE6IZE-15
SAMFLE VAFIANCE = :.808GS
SAMFLE STANDAFD DEVIATION = 1.26841

COEFF. OF SHEWNESS = 0.S47£03 STANCDAFDIZED VALUE = 2.36C3
CCEFF. OF KURTOSIE = a7
DUREIN-WATSON STATIST

S 1 873= STANDAFDIZED VALUE = o.7T:2
IC = Q.2EE068B
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DEP. VARIABLE: qrain
IND. VARIABLES: tv18
this
tir
]
! CONSTANT: YES
| WEIGHTS:
' FLAGS: NO
MODEL FITTING RESULTE
VARIABLE COEFFICIENT STND. EFRFCS T-VALUE PFROBC:®Ts
CONSTANT 9.037154 1.5 S.6742 . OO0
tvis -0.011888 0.0 -1.0192 .2087
this 0.00596S 0.0 .6234 .S333
tir -0.024464 0.0 -3.9652 . D000

O CASES WITH MISSING VALUES WERE EXCLUDED.

ANALYSIS OF VARIANCE FOR THE FULL- SZEGRESSION

SOURCE SUM OF SQUARES DF MEAN EQUAFRC F-RATIC
MODEL 218.90001 ke T ZeZEEST 38.39483
ERROR 739.11943 39S 187113

TOTAL (CORR.) 958.01944 2398

R-SGQUARED = 0.22843C

F-SQUARED (ADJ. FOF D.F.J = 0, 222838

STND. EFROR OF EST. = 1.3&7731

NUMBEF. OF FESIDUALE = Z3%2

SAMFLE AVERAGE = -5.15303E-1C

SAMFLE VARIANCE = 1.8S70€

SAMFLE STANDARD DEVIATION = 1.36Z73

COEFF. OF SKEWNESS = 0.E13867 STANDARCIZED VALUE & S.00534
COEFF. OF KURTOSIS = 3.14643 0,537083

DURBIN-WATSON STATISTIC =

STANDARDIZED VALUE =

c.828711
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DEP. VARIABLE: qrain

IND. VARIABLES: tv37

th37

tir
CONSTANT: YES
WEIGHTS:
FLAGS: NO

MODEL FITTING RESULTS

VARIAELE COEFFICIENT STND. ERROR T-VALUE PROB(>mTE)
CONSTANT 17.537506 1.683567 10.4169 - — —,0©000
tv37 -0.072821 0.0151¢67 -4.8012 . 0000
th37 0.029€03 0.010945 2.7052 . 0071
tir -0.017327 0.002565 -6.7558 . 0000

O CASES WITH MISSING VALUES WERE EXCLUDED.

ANALYSIS OF VARIANCE FOR THE FULL REGRESSION

SOURCE SUM OF SRUARES DF MEAN SQUARE F-RATIO FROB(:F)
MODEL 284.02424 3 94.6747S SS.48485 « 00000
ERROR 673.99520 295 1.70632

TOTAL (CORR.)> 958.01944 398

F-SCQUARFED = 0.239647
F-SQUARED (ADJ. FOR D.F.) = 0.291127
STND. EFROFR OF EST. = 1.30626

NUMBEF. OF PESIDUALS = 239

SAMFLE AVERAGE = 1.04709E-14

SAMPLE VARIANCE = 1.63346

SAMFLE STANDARD DEVIATION = 1.30133

COEFF. OF SKEWNESE = 0.57746Z STANDARDIZED VALUE = 4.70306
COEFF. OF KURTOSIS = 3.082S8 STANDAREDIZED VALUE = 0.ZES5IT
DURBIN-WATSON STATISTIC = 0.913247
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DEP. VARIABLE: gqrain

IND. VARIABLES:

tir

CONSTANT: YES
WEIGHTS:

FLAGS:

NO

ENTER DESIRED FACTORS, THEN
PRESS ENTER TO FIT OR F KEY.

SAMPLE
SAMFLE
SAMFLE
COEFF.
COEFF.

DURBIN-

AVEFRAGE = -1.18184E-15

VARIANCE = 1.8B€238

STANDAFD DEVIATION = 1.Z6431

OF SKEWNESS = 0.631307 STANDARDIZED VALUE = S. 14815
OF KURTOSIS = Z.18332 STANDARDIZED VALUE = 0.743328
WATSON STATISTIC = 0.87091Z2

B-13

X1HELP 2ANOVA 3FPLTPRD 4COND SRESIDS ECMFEFF 7 8 10QUIT

PRINT MON JAN 27 1986 08:34:00 AM VERSION 1.1 REC: OFF
MODEL FITTING RESULTS

VARIABLE COEFFICIENT STND. ERROR T-VALUE PROB(>uTa)

CONSTANT 7.57298 0.590€67 12.8211 . 0000

tir -0.025208 0.002341 =-10.7679 . 0000

] O CASES WITH MISSING VALUES WERE EXCLUDED. :
ANALYSIS OF VARIANCE FOR THE FULL REGRESSION

SOURCE SUM OF SQRUARES DF MEAN SQUARE F-RATIO PROB(>F)

MODEL 21€.55S32¢ 1 21€.S532€6 115.934822 . 00000

ERROR 741.46608 397 1.867€7

TOTAL (CORR.) 958.01944 =98

R=-SQUARED = 0.2Z€043

R-SQUARED (ADJ. FOR D.F.) = 0.224093

STND. ERFOR OF EST. = 1.3E6ET

NUMBER OF FEEIDUALS = 339



DEP. VARIABLE: qrain

IND. VARIABLES: tv37

th37
<
CONSTANT:  YES
WEIGHTS:
FLAGS: NO s
MODEL FITTING RESULTS
VARIABLE COEFFICIENT STND. ERROF T-VALUE PROB(>aTa)
CONSTANT 19.465317  1.750232 11.1216 . 0000
tv37 -0.111286  0.014823 -7.504€ . 0000
th37 0.04529 0.01128 4.0240 . 0001

O ZASES WITH MISSING VALUES WERE EXCLUDED.

ANALYSIS OF VARIANCE FOR THE FULL PEGRESSION

SOURLCE SUM OF SRUARES DF MEAN SQUAFE F-RATIO PROB(>F)
MODEL 206. 14566 2 103.07282 S4.28683 . 00000
ERFOF 751.87378 3%€ 1.89867

TOTAL (COFR.) 958.01944 398

F=SQUAFED = 0.215179 :
r-5CUAFEL (ADJ. FOR D.F.)> = 0.211213
STND. EFROFR OF EST. = 1.07792

NUMBEFR OF ®ESIDUALS = 233

SAMPLE AVEFASE = 1.46177E-14

SAMFLE VARIANCE = 1.88313

SAMPLE STANDARD DEVIATION = 1.37446

COEFF. OF SKEWNESS = 0.7791S54 STANDARDIZED VALUE =
COEFF. OF KURTOSIS = 3.4147 STANDARDIZEL VALUE = 1.
DURBIN-WATSON STATIESTIC = 0.B891631

B-14
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DEP. VARIABLE: Rain

IND. VARIABLES: Tir
Tv37
Th37
Tv21l
Thig
Tvig

CONETANT: YES

WE IGHTS:
FLAGS: NO
MODEL FITTING RESULTS

VARIABLE COEFFICIENT STND. ERFOF  T-VALLS === < mTum)
CONSTANT SE.22227  10.04€432 S.52s: . 0000
Tir -0. 062602 0.01181 -S.3853 - D000
Tv37 -0.20009  0.083881 -2.38< 0lps
Tha7 -0.1344E€€  0.070404 -1.20° . CSET.
Tv21 -0.031804  0.076181 -.417< .E7EE
Th18 0.23627  0.053103 3.997= . 0001
Tvig -0.001192  0.0S4E64 -.0218 -982€6
O CASES WITH MISSING VALUES WERE EXCLUDED.

ANALYSIS OF VARIANCE FOR THE FULL REGRESSION
SOURCE SUM OF SQUARES DF MEAN SQUARE  F-RATIZ  ceOB(:F)
MODEL $392.087€ €  998.€81% 27.934z . 0000
ERROR 14014.489 33z 35. 751
TOTAL (CORR.) 20006.57¢ 398

R-SQUARED = 0.29950¢
P-SQUARED (ADJ. FOR D.F.J

STND. ERROR OF EST. = S.37%

0.Z9eTss

==
P)
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DEP. VARIABLE: Rain’

IND. VARI/T.ES81 Tir

Tvie

Thig
CONSTANT: YES
WEIGHTS:
FLAGS: NO

MODEL FITTING RESULTS

VARIABLE ! COEFFICIENT STND. ERROR T-VALUE PROB(>ETH)
CONSTANT 37.676827 7.503113 S.0215 . 0000
Tir -0.0974€8 0.01156S -B8.427¢ . 0000
Tvie -0.071035 0.05495 -1.2927 .« 1962
Thisg 0.037871 0.045075 .8402 .40132

O CASEE WITH MISSING VALUES WERE EXCLUDED.

ANALYSIS OF VARIANCE FOR THE FULL REGRESSION

SOURCE SUM OF SGUARES DF MEAN SQUARE  F-RATIO  -PROB(SF)
MODEL 3602. 1587 3 1200.7196 28.9120 . 0000
EFRCT. 2 16404.418 395 41.530

TOTAL (CORR.) 20006.576 398

R-SQUARED = 0.180049
R-SAQUARED (ADJ. FOR D.F.) = 0.1723821
STND. ERROR OF EST. = 6.44439
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DEP. VARIABLE: Rain

IND. VARIABLES: Tir

Tv37

Th37
CONSTANT: YES
WEIGHTS:
FLAGS: NO

MODEL FITTING RESULTS
VARIABLE COEFFICIENT STND. ERROR  T-VALUE PROB(>aTE)
CONSTANT 75.874235  7.941904 . 9.5537 . 0000
Tir -0.064839  0.012099 -5.2592 . 0000
Tv37 -0.316427  0.071548 -4.422€ . 0000
Th37 0.114158  0.051€32 2.2110 .027€
0 CASES WITH MISSING VALUES WERE EXCLUDED.
ANALYSIS OF VARIANCE FOR THE FULL REGRESSION

SOURCE SUM OF SOUARES DF MEAN SQUARE  F-RATIO PROEB ( >F)
MODEL 5008. 1615 2 16€3.3872 am cesz . 0000
EFROR 14998. 415 395 27.971
TOTAL (CORR.) 20006.576 =98

R-SQUARED = 0.28032
®-SOUARED (ADJ. FOR D.F.

) = 0.244622
STND. EFFOF OF EST. = £.1€2083
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DEF. VARIAPLE: Fain

IND. VARIAELES: Tir

CONSTANT:  YES

WEIGHTS:
FLAGS: NO

MODEL FITTING RESULTS
VAR IABLE ’ COEFFICIENT STND. ERROF T-VALUE FFOEBE¢ . aTa;
CONSTANT 29.344€932 '2.785017 10.5733 « QOO0
Tir -0.101668 0.011038 -2.2108 0000

O CASES WITH MISSING VALUES WERE EXCLUDED.

ANALYSIS OF VARIANCE FOR THE FULL REGRESSION

SOURCE SUM OF SQUARES DF MEAN SQUARE F-RATIO PROB(>F)
MODEL 3522.6064 1 3522.6064 B4.8385 . 0000
ERROR 16483.970 397 41.521

TOTAL (CORR.) 20006.576 398

R-SQUARED = 0.176072
R-SQUARED (ADJ. FOR D.F.) = 0.173997
STND. ERROR OF EST. = €.44371
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DEP. VARIABLE: Rain

IND. VARIABLES: Tv37

Th37

CONSTANT: YES

WEIGHTS:

FLAGS: NO

MODEL FITTING RESULTS

VARIABLE COEFFICIENT STNC. EFRDR T-VALUE PROEC(>MaTE)
CONSTANT 83.088318 6.026317 10. 2623 . 0000
Tv37 -0.4603€e3 0.0EBSI7 -6.7112 . 0000

Th37 0.173211 0.052178 2. 2196 .0010

O CASES WIT'' .ISSINZ VALUES WERE EXCLUDEC.

ANALYSIS OF VARIANCE FCF THE FULL REZRESSICN

SOURCE SUM OF SQUAFRES DF  MEAN SQUARE E—=ATIC FROB(:F)
MODEL 3217.5972 £ 19S8.798¢6 SE, B . 0000
ERROF ’ 16088.97% )= 40,623

TOTAL (CORR.) 2000€.57€ S22

F-SQUAFED = 0.195815
R-SQUARED <ADJ. FOF C.
STND. ERROF OF EST. =

= -
= $.1217S3

Rad

F
6.27

s

B-19



T e et et et S . et e e bt

DEP. VARIABLE: Rain

IND. VARIABLES: Tv37

CONSTANT: YEE
WEIGHTS:
FLAGS: NO
MODEL FITTING RESULTS
VARIABLE COEFFICIENT STND. ERFOF T-VALUE PROB(>aTE)
CONSTANT 6S5.6€79837 10.238079 6.4152 -« 0000
Tv37 -0.21€16S 0.083302 -2.7682 . 0002
Th37 =-0.090172 0.07237 -1.2460 - 2135
Tv2l -0.060521 0.078E£54 -.7704 .4416
Thig8 0.2€e2429 Q0. 0E086S5 4.204€ . 0000
Tvie -0.218599 0.0SE472 - 3233 . 7421
O CASES WITH MISSINMI VALUES WEFE EXCLUDEL. y
ANALYSIS OF VAFIANCE FOR THE FULL REEGRESSION
SOURLCE SUM OF SQUAFEZ DF =~MEAN SQUAFRE F-RATIO PROBC>F)
MODEL 4355, 2441 g 221.0488 25.8763 . Q000
ERROF 150851.232 292 £8.289
TOTAL (CORF.: > 2000€.57¢6 2398
R-SQUARED .25

F—SOUAFED
STND. EFFOR OF £

7TE
fADS. &0
=T
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Comparison of Simulated SSM/I- va. SMMR-Channels

Table B. 4

File Sample

Sq. of Correlation

8td. Error of Est.

No. 8ize SSH/I 8MMR 7 Diff SSM/I SMMR ¥ Diff
For the Variable R
1. 1 666 0.231 0. 354 -35 1.437 1. 317 9
1.2 584 0. 152 0. 182 -16 1.084 {.065 2
1.3 380 0. 470 0.559 -16 1.193 1.088 10
1.4 605 0.088 0.130 -32 0. 498 0. 469 6
1.5 606 0. 146 0.237 -44 1.998 1. 889 6
1.6 389 0. 150 0. 245 -39 0. 896 O, 844 6
1.7 695 0.373 O0.431% -13 2.255 2.149 5
1.8 439 0.039 0.100 -61 0.576 O0.557 3
2.1 313 0.635 0.632 0 1.234 1.1475 (o]
2.2 472 0. 429 O0.466 -8 2.285 2.°210 3
2.3 384 0.453 0.539 -16 1.844 1,691 .9
- 384 0.134 0.139 -4 0. 730 O. 727 (o]
2.4 549 0. 027 0.033 -18 0.122 O0.121 |
2.5 353 0.416 O0.463 -10 2.182 2.094 4
2.6 496 0.082 0.105 -22 1.082 1.068 1
2.7 439 0.287 0. 375 -23 1.441 1,35 7
2.8 589 0.693 0.736 - =8 1.250 1,160 8
2.9 235 0.762 0.762 (o) 5.034 5,041 o
2.10 269 0.296 0. 314 -6 2.794 2.758 1
3.1 432 0.553 O0.750 _-26 1.903 1,423 34
3.2 465 0.468 0. 523 -11 2.245 2,126 1
3.3 356 0.481 O0.629 -24 2.624 2.219 18
3.4 361 0.432 0.548 -21 2.175 1.940 11
3.5 40 0.881 0.914 -4 0.797 O0.678 18
3.6 316 0.535 0.594 -10 1.228 1. 148 7
3.7 354 0.263 O. 354 -26 1. 061 0.993 7
3.8 283 0.395 O0.484 -18 2. 450 2.264 8
Weighted Means
Season Sq. of Corr. Std. Error
Spring 0. 162 0.239 -32 1.524 1.435 -]
Summer 0. 332 O. 349 -5 1. 637 1,488 10
Fall 0.445 O0.567 -27 1.977 1.626 22
Three Seasons 0. 313 0. 385 -19 1. 7143 1.516 i3
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Table B. 4 continued

File Sample 8q. of Correlation Std. Error of Est.
No. Size SSM/I SMMR 7/ Diff SSHM/I SHMMR X Diff

For the Variable Q

‘mmmpmmm-

1. 1 666 0.292 0. 391 -25 0.512 0.47a 30
1.2 584 0.181 0,207 -13 0.446 O0.439 2
1. 3 380 0.432 0,522 -25 0.392 0. 360 1
1.4 605 0.1146 0. 154 -25 0. 287 0,281 2
1.6 606 0. 186 0. 302 -38 0.772 O0.715 8
1.6 389 0.164 0.252 -35 0.438 O0.415 6
1.7 695 0.394 0.451 -13 0. 690 0.656 5
1.8 439 0.058 0.148 -61 0. 362 0. 344 5
2.1 313 0.519 0.518 (o] 0.506 O0.506 0
2.2 472 0. 420 0.454 -7 0.623 0.60a 3
2.3 384 0.479 0.546 -12 0.581 0. 542 7
384 0.134 0.139 -4 0. 730 0. 727 o
.4 549 0.062 0.076 -18 0.114 0.110 1
.5 353 0. 374 O0.424 -10 0.718 0. 688 4
.6 496 0.072 0.103 -30 0. 427 0. 420 e
7 439 0.300 0. 372 19 0. 585 0.554 6
.8 589 0.669 O0.687 -3 0.334 0. 323 3
.9 235 0. 808 0.809 0 0.815 0.818 (o)
.10 269 0. 333 0. 355 -6 0.805 0.792 2
3.1 432 0.562 0.709 -21 0. 608 0. 496 23
3.2 465 0. 479 0. 540 -11 0. 664 0. 624 6
3.3 356 0.546 0.699 -22 0. 762 0.620 23
3.4 361 0.415 0.559 -26 0. 758 0. 659 11
3.5 40 0. 789 0.824 -4 0. 361 0. 329 10
3.6 316 0.556 0.616 -10 0. 422 0. 392 8
3.7 354 0.305 0.4302 -24 0.401 0. 372 8
3.8 283 0.505 O0.612 -17 0. 704 0. 622 13
Weighted Means

Season 8q. of Corr. Std. Error
Spring 0.166 0.239 -31 0. 528 0.492 7
Summer 0.225 0,263 -14 0.533 O0.511 4
Fall 0.471 0. 4914 -4 0. 621 0. 551 13
Three Seasons 0. 287 0. 331 -13 0.561 O0.518 8
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Table B. 5
Comparison of SMMR and Simulated SSM/1 Plus IR

File No. Square of Corr. Standard Error
No. Cases SMMR SSM/1+ SMMR SSM/1+

For The Variable R

2. 1 313 0. 632 0. 667 1. 235 1. 175
2.2 472 0. 466 0. 460 2.210 2. 223
2.3 384 0. 539 0.478 1. 691 1. 800
L 384 0. 139 0. 150 0. 727 0. 723
2.4 549 0. 033 0. 047 0.121 0.121
2.5 353 0. 463 O. 447 . 2. 094 2. 125
2.6 496 0. 105 0.121 1. 068 1. 059
.7 439 0. 375 0. 444 1. 349 1.273
2.8 589 0. 736 0. 701 1. 159 1.234
2.9 235 0. 762 0. 761 5. 039 5. 041
2. 10 269 0. 314 0. 357 2. 758 2. 670
Weighted Means 0. 3955 0. 4000 1. 538 1. 543
Mean Difference 0. 00449 0. 00473
RMS Difference 0. 03506 0. 05610
Mean 7 Difference : 1.135 0. 308
RMS / Difference 17. 7 3. 85
For The Variable Q

2.1 313 0.518 0.618 0. 506 0. 450
2.2 472 0. 454 0. 475 0. 604 0. 593
2.3 384 0. 546 0. 539 0. 542 0. 547
2. 35 384 0. 147 0. 165 0. 320 0. 316
2. 4 549 0. 076 0. 094 0.110 0. 109
2.5 353 0. 424 0.413 0. 688 0. 695
2.6 496 0. 103 0. 136 0. 420 0.412
2.7 438 0. 372 0. 480 0. 554 . 0.514
2.8 589 0. 687 0. 739 0. 324 0. 296
2.9 235 0. 808 0. 821 0. 818 0. 789
2. 10 269 0. 355 0. 389 0. 792 0.771
Weighted Means 0. 3878 0.4211 0. 474 0. 458
Mean Difference -0. 03328 0. 01581
RMS Difference 0. 04623 0. 02401
Mean 7/ Difference -7. 904 3. 335
RMS / Difference 11.0 5. 06
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Table B. 6
Percent of days with significant regression

coefficients

Const. h37 v37 vet his8 vis8 Ind. Var./ Case
93 81 100 T4 11 37 R IR not used
91 82 100 45 9 36 R IR used
93 85 96 T4 19 26 Q@ IR not used
91 82 91 55 18 18 Q IR used
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