SESSION REPORT =

D732 FORTRAN Project Swap Meet R7-AE ,41,44 1987

SHARE NO. SESSION NO. SESSION TITLE J ATTENDANCE

Sunnie Sund

PROJECT SESSION CHAIRMAN INST. CODE

SLAC, BIN 96, Box 4349, Stanford, CA 94305, (415) 854-3300

SESSION CHAIRMAN'S COMPANY, ADDRESS, and PHONE NUMBER

HIGH-LEVEL FORTRAN
Frederick W. Nagle
U.S. Department Jf Commerce
NOAA/NESDIS Systems Design and Applications Branch
1225 West Dayton Street
Madison, Wisconsin 53706

Installation Code: WP

FORTRAN
The Schwer'ﬂteger Librar
Al d orary
D732 1225 W. Dayton Street
Madis W! 5370
~Madison W! 53706

High-Level Fortran (HLF) is a pre-compiler (not a compiler and not an
interpreter) which enhances the Fortran language in that it implements two
types of variables, VECTOR and MATRIX, not available in conventional
Fortran-77. Lengthy matrix expressions can be evaluated with the aid of the
STACK (see below) which permits partial results to be computed, set aside, and
later retrieved to complete an expression.

HLF accomplishes its purpose by inspecting the submitted high-level
source code, and modifying it where necessary to make it acceptable to an
existing Fortran compiler. Those Fortran statements which are already
acceptable to a standard compiler are left unchanged.

The following is a brief summary of salient HLF capabilities which go
beyond those of conventional Fortran:

i The variable types VECTOR*4, VECTOR*S, MATRIX*4, and MATRIX*8 are
available and may appear in arithmetic expressions as such. Vector- and
matrix-valued functions, returning vectors and matrices through their own
names in arithmetic expressions, are also allowed. Notation exists for
the dot and cross products of two vectors. A row, column, or main
diagonal of a matrix may be directly referenced as a sub-matrix. Matrix
concatenation is allowed, i.e., AABB = AA // BB, where AABB is the matrix
AA augmented columnwise by BB.

2% The dimensions of a matrix are not fixed by a DIMENSION or MATRIX
statement. The dimensionality of a matrix may be changed dynamically as
the program executes. The dimensions of a matrix-valued function can
also vary dynamically.

CHRM _7°2N_1 7019

N’

The Schwerdtfeger Library
1225 W. Dayton Street
AA=~ 527

3. Masking and extraction operations are available within the language. It
is not necessary to invoke subroutines for this purpose, e.g., A <AND> B
denotes the 'logical AND' of A and B.

4, Sexadecimal (hex) constants may appear in arithmetic statements, i.e.,
they need not be defined in DATA statements.

5% The swap or exchange operator using the double equality sign allows two
variables of any type, including vectors and matrices, or rows and
columns of matrices, to exchange values, e.g., A == B,

6. Somewhat curiously, any Fortran SUBROUTINE written in an existing Fortran
language, which returns a vector or matrix as its output, may be invoked
as a HLF matrix- or vector-valued FUNCTION, subject to very mild
restrictions.

7 i Source code may be submitted in either UPPER or lower case.

8. On-line comments are allowed, i.e., a line of Fortran source code may end
with a semi-colon (;) or exclamation mark (!), after which the remainder
of that line may be used for comments.

As American National Standard Language Fortran-8x evolves over the next
several years, efforts will be made to maintain HLF in a status wherein it is
at least not incompatible with the ANSI standard, i.e., a program written in
the new Fortran-8x will be accepted by HLF.

The rules governing the choice of symbols for constants and variables are
essentially those with which the reader is acquainted. In the absence of a
user-provided IMPLICIT statement, HLF assumes that variables beginning with
the letters A-H and 0-Z are REAL*4, the remainder being INTEGER*4,

If the user wishes to depart from the foregoing implicit name rule, he
can provide his own IMPLICIT statement, or provide explicit type statements.
The permissible variable types in HLF are:

1. CHARACTER 7. REAL*8 (or DOUBLE PRECISION)
2. LOGICAL*1 8. COMPLEX
3. LOGICAL*4 9. VECTOR*4 (or VECTOR)
4, TINTEGER*2 10. VECTOR*8
5. INTEGER*4 11. MATRIX*4 (or MATRIX)
6. REAL*4 (or REAL) 12, MATRIX*8
VECTORS:

Let us first discuss VECTORs in HLF. The term VECTOR is used herein to
mean only three-dimensional vectors in Cartesian space. The term is not used
to denote a row, column, or eigen-vector of a matrix. Three-dimensional space
is not considered a special case of n-dimensional space because the vector
(cross) product of two vectors is defined only in three-dimensional space, and
unlike the scalar product of two vectors, it is not generalized to higher
dimensions.

Just as a REAL in Fortran occupies a single word of memory, and a COMPLEX
number two words, so a VECTOR in HLF occupies three memory words containing,
respectively, the x-, y-, and z-components of that vector. A vector variable,
if dimensioned, signifies an array of vectors. The permissible operations on
a vector are addition (+), subtraction (-), scalar (dot) multiplication (*),
and vector (cross) multiplication (**) or (<x>).

Let us consider a few examples of vector arithmetic in HLF. In the
following, vector variables will be capitalized for clarity in reading the
examples, as is permitted but not required in HLF.

Firstly, vectors, like other variables in Fortran, may be typed either by
the implicit name rule, or by specific typing statements.

Implicit Vector*8 (V), double precision (d)
Vector*4 UA,UB

Vector*8 (f)VUNITS

UA = UB + VUNIT8(VA ** VB) - VC

The typing statements indicate that any variable beginning with the
letter V is a VECTOR*8, i.e., a vector each of whose three components is a
REAL*8 quantity. Moreover, the vectors UA and UB are VECTOR*4, ji.e. their
components are REAL*4 values, and finally the vector-valued FUNCTION VUNITS8
returns a VECTOR*8 through its own name appearing in an expression. As any
Fortran programmer will instantly discern, the replacement statement first
computes the cross product VA x VB, normalizes (unitizes) this vector to one
having a length of unity, adds to it the vector UB, and subtracts the vector
VC, storing the result of this arithmetic into the vector UA.

Note that vector-valued functions must sﬁecifically appear in a VECTOR
type statement, preceded by the symbol (f). The reason for this requirement
is discussed below under MATRICES.

In the case of the foregoing example, the output of the HLF processor
would include the following:
*
REAL UA(3),UB(3)
(¥ VECTOR*8 (F)VUNITS8
DOUBLE PRECISION V$81(3),V$82(3),V$83(3),V$84(3)
DOUBLE PRECISION VA(3),VB(3),VC(3)
* *kk
C UA = UB + VUNIT8(VA ** VB) - VC
CALL V$CROS(VA, -8,VB, -8,V$81, -8)
CALL VUNIT8(V$81,V$82)
V$83(1) = UB(1)+v$82(1)

V$83(2) = UB(2)+V$82(2)
V$83(3) = UB(3)+V$82(3)
V$84(1) = Vv$83(1)-vC(1)
V$84(2) = v$83(2)-vC(2)
V$84(3) = V$83(3)-vC(3)
UA(l) = V$84(1)
UA(2) = V$84(2)
UA(3) = V$84(3)

It may be seen that the HLF processor initially creates the temporary
three word holding arrays V$81,V$82, V$83, and V$84 to contain intermediate
vector results. More would have been defined had they been needed. These
same arrays would later be used in evaluating another vector expression. The
submitted statement then is commented out, and is replaced by the code which
follows. The subroutine V$CROS computes the cross product of two vectors,
storing the resulting vector in V$81. This is then normalized to V$82 by
VUNIT8. Note that the vector-valued function VUNITS is changed to a
subroutine call. The remaining steps of the computation are performed
in-line, one component at a time, until the final result is stored into the
vector UA.

In most Fortrans, mixed mode arithmetic normally produces a result having
the mode of the "higher" operand, i.e., the sum or product of a REAL*4 and
REAL*8 is REAL*8. Likewise, in the case of HLF vector arithmetic, mixed mode
arithmetic involving VECTOR*4 and VECTOR*8 leads to a VECTOR*8 result.
Incompatible types are flagged as errors by the pre-compiler, i.e., an attempt
to add a REAL to a VECTOR will produce a diagnostic. However, a vector may be
multiplied or divided by a scalar, as in VTERRA below.

A vector on the left side of a replacement statement may be set equal to
a REAL or INTEGER expression on the right, e.g.,

UA = 10. + tempo

will set all three components of UA to the current value of the expression on
the right. This feature is most commonly used in setting a vector to zero.

Any vector may be expressed in terms of its three components by means of
the vector-valued function VEC4 or VEC8, e.g.,

UA = VEC4(1., 2., -.3)

A single component of a vector is itself a REAL*4 or REAL*8 value, and
may be used as such, e.g.,

UA(3) = 100.
UB = VEC4(UB(1l), UB(2), UB(3))

The second statement above is frivolous, since it sets each component of UB to
its current value.

An expression involving vectors or vector functions may be used as an
argument to a subprogram:

rough = tough + glitch(VA*VB, VA**VB)

In this case, the first argument to the function 'glitch' is the scalar (dot)
product VA*VB, and the second argument is the vector (cross) product VAxVB.

We conclude our discussion of vectors by displaying a practical and
much-used vector-valued function which computes the point on the ground viewed
by a scanning satellite when an initial, final, and current position are known
in vector form (VSAT1, VSAT2, and VSAT, respectively), as well as the
left-to-right scan angle.

(2]

0OO0OON0O % %XO0000O0ON0ONO

Vector Function VTERRA*4 (VSAT1,VSAT2,VSAT,scan)

Capitalized values are vectors; the remainder are scalars.
To compute the point on the ground which a scanning satellite
views when its position is VSAT, given VSAT1 and VSAT? as

its positions at the start and finish of an image.

The scan angle is negative to the left of orbit.

All vectors are in the celestial coordinate system.

The arcsin calculated by statement 10 is the zenith angle of
the satellite from the ground point to be determined.

If this routine is called by an assembler or conventional
Fortran routine, the call is...

CALL VTERRA(VSAT1, VSAT2, VSAT, scan, VGRND)

Implicit Vector*4 (u-v)

Vector*4 (f)VUNIT4 *

data init/0/ c

arcsin(x) = 57.29578*atan2(x, sqrt(l.-x*x))

if(init .eq. 0) then

cdl = sqrt(vsatl(1)**2 + vsatl(2)**2 + vsatl(3)**2)

cd2 = sqrt(vsat2(1)**2 + vsat2(2)**2 + vsat2(3)**2)

cd = .5*%(cdl + c¢d2) ; mean distance, earth center to satellite
UVORB = VUNIT4(VSAT1**VSAT2) ; unit vector orbital plane

ratio = c¢d/6371. ; ratio of cen dist to earth radius

init = 1

end if

Subsequent entries execute only the following...

gamma = arcsin(ratio*sine(scan)) - scan

VTERRA = 6371.*(VSAT*cosine(gamma)/cd - UVORB*sine (gamma))
return

end

modified by HLF, this routine looks like:

HLF SUPPLEMENTARY PRINT-OUT #**kkkkkkkkhkkskkkkkhk
VECTOR FUNCTION VTERRA*4 (VSAT1,VSAT2,VSAT, SCAN)
SUBROUTINE VTERRA (VSAT1,VSAT2,VSAT, SCAN,VSERRA)

TYPING STATEMENTS ...

IMPLICIT VECTOR*4 (U-V)

INTEGER J$TACK,N$A1,N$A2,NSlS,N$2$,M$NTAG,M$BASE,N$ADDR
REAL DECLARATIONS ...

REAL VSERRA(3)

VECTOR*4 (F)VUNIT4L

DOUBLE PRECISION DSRET

REAL V$41(3),V$42(3),V$43(3),V$44(3),V$45(3)

REAL VSAT1(3),VSAT2(3),UVORB(3),VSAT(3)

DIMENSIONS ...

ey

COMMON DECLARATIONS ...
COMMON/R$ES/ JSTACK(100)

DATA STATEMENTS ...

DATA INIT/0/

ARCSIN(X) = 57.29578*ATAN2(X, SQRT(l.-X*X))

IF(J$TACK(6).LT. 100) J$TACK(6) = 100
MSNTAG = JSTACK(3)

M$BASE = JSTACK(4)

J$TACK(3) = J$TACK(1)

J$TACK(4) = J$TACK(2) C

IF (INIT.EQ.0) THEN

CD1 = SQRT(VSAT1(1)**2 + VSAT1(2)**2 + VSATI(3)%%2)
CD2 = SQRT(VSAT2(1)**2 + VSAT2(2)**2 + VSAT2(3)%%2)
CD = .5%(CDl + CD2)

UVORB = VUNIT4(VSAT1**VSAT2)

CALL VSCROS(VSAT1, -4,VSAT2, -4,V$41, -4)
CALL VUNIT4(V$41,V$42)

UVORB(1) = V$42(1)

UVORB(2) V$42(2)

UVORB(3) = V$42(3)

RATIO = CD/6371.

INIT = 1

END IF

GAMMA = ARCSIN(RATIO*SINE(SCAN)) - SCAN

VTERRA = 6371.*(VSAT*COSINE(GAMMA) /CD - UVORB*SINE (GAMMA))
R$41=COSINE (GAMMA)

R$42=SINE (GAMMA)

V$41(1)=VSAT(1)*R$41

V$41(2)=VSAT(2)*R$41

© V$41(3)=VSAT(3)*R$41

V$42(1)=V$41(1)/cD
V$42(2)=V$41(2)/CD
V$42(3)=V$41(3)/CD
V$43(1)=UVORB (1) *R$42
V843 (2)=UVORB (2) *R$42
V$43(3)=UVORB (3)*R$42

V844 (1) = VS$42(1)-V$43(1)
V$44(2) = V$42(2)-V$43(2)
VS44(3) = V$42(3)-V$43(3)

VS45(1)=V$44(1)*6371.
VS45(2)=V$44(2)*6371.
VS45(3)=V$44(3)*6371.

VSERRA(1) = V$45(1)
VSERRA(2) = V$45(2)
VSERRA(3) = V$45(3)
JSTACK(1) = J$TACK(3)
JSTACK(2) = JSTACK(4)
J$TACK(3) = M$NTAG
J$TACK(4) = M$BASE

RETURN
END

Note that HLF comments out the VECTOR FUNCTION statement, and replaces it
with a SUBROUTINE header card. The resulting vector value of the function is
returned to the calling routine as a subroutine argument whose name is derived
from that of the function, with § replacing the second character.

References to the array J$TACK are stack control statements, not actually
needed in this application, but discussed below under MATRICES.

MATRICES:

Perhaps of greater importance even than vector arithmetic is the ability
of HLF to deal with matrix expressions. A subroutine P$ROC (see below)
contained in the link library accompanying the HLF package performs most of
the matrix arithmetic, and in addition manages the stack (see below). Matrix
variables will be capitalized in the following examples, though of course
capitalization is not required.

Unlike VECTOR variables in HLF, MATRIX variables cannot be defined by the
implicit name rule because the latter conveys no dimensioning information.
Matrices can be typed only by a specific MATRIX*4 or MATRIX*8 type statement,
which contains the actual dimensions, and perhaps also the "working"
dimensions which the matrix is presumed to possess at any instant during
execution.

A matrix in HLF is always presumed to be rectangular, i.e., it has two
subscripts. A MATRIX type statement having only a single subscript (n) means
(n,1): i

MATRIX*4 GLITCH (10) means MATRIX*4 GLITCH(10,1)

If a MATRIX type statement contains more than two subscripts, the effect is to
define an ARRAY of matrices, i.e.,

MATRIX*8 GUMBO(3,4, 10)

defines an array of ten matrices, each of which has three rows and four
columns. A MATRIX type statement may contain not more than four subscripts,
two intrinsic subscripts stating the shape of the matrices, and not more than
two extrinsic subscripts defining the array containing these matrices.

Like vector-valued functions, matrix-valued functions appear in a type
Statement preceded by the symbol (f). The reason for this should be clear.
Most Fortrans typically interpret a symbol followed by a left parenthesis as
either a dimensioned variable or as a function, and distinguish between these
two by noting whether the symbol is or is not dimensioned. In the case of
HLF, however, a symbol may be BOTH dimensioned and also be an external
function. To resolve this ambiguity, which does not occur in conventional
Fortrans, the symbol (F) is required in the MATRIX*n or VECTOR*n card. The
reader might suppose that (F) would not be needed in the case of a
vector-valued function, since a single vector is not formally dimensioned.
However, the occurrence of a symbol like VXYZ(J) is ambiguous, since it is

unclear if it refers to a vector function with argument J, or to the J-th
component of a local vector, which is in fact a real number. The pPresence or
absence of the symbol (F) resolves this question,

The permissible operations involving matrices are addition +),
subtraction (-), multiplication of two matrices (*), and concatenation (//).
These operations are accomplished by the subroutine PSROC contained in the
link-library accompanying the HLF system. A matrix may also be multiplied or
divided by a scalar, the effect being to multiply or divide each element by
that scalar.

The rules of mixed mode arithmetic with matrices are analogous to those
for VECTORs and REALs, i.e., the sum, difference, product, or concatenation of
a MATRIX*4 and a MATRIX*8 is MATRIX*8. An exception is multiplication or
division by a scalar, in which case the resulting matrix has the same length
attribute as the given matrix, regardless of the length attribute of the
scalar.

The dimensionality, or shape, of a matrix or matrix-valued function may
fluctuate during execution. For this reason, the pProgrammer, in addition to
the "true" dimensions of a matrix, can also optionally provide "working"
dimensions, expressing the shape of the matrix at any instant. These are
provided by using a semi-colon (;) within the type statement, followed by two
integer variables whose value is defined during execution. A matrix-valued
function has only working dimensions, because no space is allocated to contain
its result, which is sent to the stack when it has been computed.

MATRIX*4 GUMBO(10,10; ii,jj), XX(6,9)

i

o

A
9
UMBO = XX

i
J

“o e

*

The matrix XX has the inflexible dimensions (6,9), whereas GUMBO has
(10,10) as its maximum size, but its instantaneous dimensionality is (ii,jj).
The programmer is thus permitted, indeed required, to define the integers ii
and jj in order to correctly shape the receiving matrix GUMBO. The 54 matrix
elements of XX are stored into the first 54 elements of GUMBO. It is the true
dimensions (preceding the semi-colon, if any) which allocate storage space.
The working dimensions, if given, govern the dimensionality only during
execution.

The operation of concatenation is somewhat like concatenation for
CHARACTER variables. A matrix of dimensions (m,n) may be concatenated with
one of dimensions (m,k), the result being a matrix with dimensions (m, k+n),
€.8.,

MATRIX*4 GLITCH(10,20; 10,ii), HITCH(10,20; 10,33),
1 NITCH(10,20; 10,kk)

* * k%
11 = 4
i =7
kk = ii + i3

NITCH = GLITCH // HITCH

where NITCH is set equal to the four columns of GLITCH followed by the seven
columns of HITCH. Concatenation is allowable only if the matrices involved
have the same number of rows. It is not necessary that the two matrices have
equal length attributes, so that if HITCH in this example were MATRIX*8, the
operation would still be allowable. Either or both of the operands may be a
matrix-valued function.

As with vectors, an expression involving matrices or matrix-valued
functions may be used as a subprogram argument. Consider the following
trivial program to compute the inverse of the transpose of the product
of two matrices.

Program Triv

Matrix MRES(30,30; jj,jj)

Matrix*8 (£)MINVER(jj,jj), (£f)MTRAN8(jj,jj),

1 MA(24,5; jj,5), MB(5,24; 5,j3) * * Assume that MA and MB have been
defined.

jji = 20 s assigns value to jj in the type statements

MRES = MINVER(MTRAN8(MA*MB, jj,jj), jj)

stop

end

The 20x20 matrix product MA*MB is first transposed by the transposition
function MTRAN8, and this result is in turn inverted by the inversion function
MINVER. This example further shows that a matrix-valued function may have its
shape determined by working dimensions to which actual values are assigned
during execution. The result returned by a matrix-valued function is actually
sent to the stack, from which it is retrieved for later inclusion in a final
result.

Let us next look at the foregoing example as it would be interpreted and
modified by HLF. The output would be:

€ HLF SUPPLEMENTARY PRINT-OUT ***kkkkkkkkkkkkkkkkk
PROGRAM TRIV
€ TYPING STATEMENTS ...
INTEGER J$TACK,N$A1,N$A2,N$IS,N$25,M$NTAG,M$BASE,N$ADDR
¢ REAL DECLARATIONS ...
C MATRIX MRES(30,30; JJ,JJ)
REAL MRES(30,30)
G MATRIX*8 (F)MINVER(JJ,JJ), (F)MTRANS8(JJ,JJ),
C 1 MA(24,5; J3J3,5), MB(24,5; JJ,5)
DOUBLE PRECISION MA(24,5) ,MB(24,5)
DOUBLE PRECISION DSRET
(& DIMENSIONS ...
C COMMON DECLARATIONS ...
COMMON/RSES/ JSTACK (100)
G DATA STATEMENTS ...
JJ = 20

C MRES = MINVER(MTRAN8(MA*MB, JJ,JJ), JJ)

/0

IF(J$TACK(6).LT. - 100) J$TACK(6) = 100
MSNTAG = J$TACK(3)

M$BASE = JSTACK(4)

JSTACK(3) = JSTACK(1)

J$TACK(4) = J$TACK(2)

J$TACK(1) = JSTACK(3)

CALL P$ROC(J$TACK,MA,JJ,5,12,8,MB,5,JJ,1
CALL P$ROC(J$TACK,N$A1,JJ,JJ,IZ,0,0,0,0,
I$41 = NSADDR('M$81'")

CALL MTRANS(J$TACK(I$41),JJ,JJ,J$TACK(N$A1))

CALL P$ROC(J$TACK,N$A1,JJ,JJ,12,0,0,0,0,0,0,64,'M$83',12,D$RET)
I1$42 = NSADDR('M$82")

CALL MINVER(J$TACK(I$42),JJ,J$TACK(NSAL))

CALL P$ROC(J$TACK,MRES,JJ,JJ,11,4,0,0,0,0,'M$83',126,0,0,D$RET)
STOP

END

2,8,92,'M$81"',12,D$RET)
0,0,64,'M$82"',12,D$RET)

Those HLF statements which are patently illegal in standard Fortran are
commented out. DIMENSION or REAL type statements are used to generate the
needed storage, and certain stack-control statements involving J$TACK are
evident. The first call to PS$ROC performs the multiplication of MA and MB
with JJ as a dimension. The resulting product is stored in the stack, and a
tag or "claim check" M$81 is assigned to this product identifying it for later
use by the calling routine when this product is to be retrieved. The second
call to P$ROC merely allocates space to contain the result of the transposi-
tion function MTRAN8, and the tag M$82 is assigned to this anticipated result.
The integer variable N$Al returned by PSROC is the location within the stack
where the transpose is to be placed. The function N$ADDR returns the stack
location I$41 where MA*MB was stored. The transposition function MTRANS,
called as a subroutine, is then invoked with the stack location J$TACK(IS$41)
as input, and the location J$TACK(N$Al) where the result is to be sent. The
third P$ROC call allocates space where the inversion routine MINVER may place
its result, and the function N$ADDR returns the location within the stack I$42
corresponding to the tag of the transpose M$82. We next invoke MINVER to
compute the inverse, where J$TACK(I$42) marks the location of the input to be
inverted, and J$TACK(NSAl) the location of the result. This inverse has the
claim check M$83, and the final call to P$ROC moves this result to its final
destination MRES.

As the reader may have inferred, the "claim check" serves a purpose
analogous to the claim check which a concert-goer receives when he checks his
coat in the cloak-room at a concert. He has no idea where the attendant has
actually placed his coat, but he expects that when he presents the claim check
to the attendant after the concert, the attendant will use the identifier on
the claim check to find the coat. Similarly, the user's program has no
knowledge where within the stack an intermediate result has been placed, but
PSROC uses the "claim check" as a means to find the desired result, along with
other information such as the number of rows or columns, length attribute,
etc., in order to combine it with other data to complete an arithmetic
expression.

We are now in a position to discuss the stack more fully.

e e 2 oo ae

/]

THE STACK:

In the course of performing matrix arithmetic, it follows that a number
of intermediate results will be generated for which temporary storage must be
provided. Since these intermediate matrix results are not explicitly named by
the user, there will of course be no dimension or common Statements written by
the user to allocate storage for them, for the Programmer sees no need to
define them formally.

For example, in the following matrix replacement statement, where MINVER
is a matrix-valued inversion function

A = BXC + D*E + MINVER(GG, j3)

it is necessary first to compute the inverse of GG, which must then be added
to the products B*C and D*E. Each of these partial results must be set aside
somewhere while other intermediate results are generated, and finally the
various intermediate results must be combined obtain the final result A,

In order to provide storage for intermediate results, HLF utilizes the
so-called STACK - an array whose size is declared by the programmer at the
outset, but whose management thereafter need not be the concern of the user.
At the end of execution, the user can ask that the largest utilized amount of
the stack be displayed, so that he can adjust the size upward or downward if
it is inadequate or grossly excessive. The fifth stack word J$TACK(5)
contains this information expressed in bytes, or the user may simply CALL
MFSTAK(0).

The subroutine P$ROC performs most matrix operations on behalf of the
user's program, and also manages the stack. When P$ROC has computed an
intermediate result, it records its attributes (numbers of rows and columns,
word length, location where stored, etc.), and returns to the calling program
the tag or 'claim check' whereby the user's pProgram can request the quantity
at a later stage.

Clearly, the stack must be carefully managed. In evaluating a matrix
éxpression, a HLF program may invoke an external function which itself may or
Mmay not use the stack, and this function in turn may call yet another which
may or may not use it, etc. Hence, PS$ROC must insure that these in-depth
stack usages do not overlap or conflict. The logical structure used to
maintain integrity of stack usage is reminiscent of the Stack Pointer and Base
Pointer used in governing the stack seégment on a Personal Computer equipped
with an 8088 chip (push-pop logic), wherein the top of the stack used at one
Program level becomes the bottom location available to a lower-level routine.
Statements in the HLF output listing referring to J$TACK are stack control
Statements needed to avoid stack-usage conflicts. The logical similarity

between HLF stack management, and management of the stack segment of a PC, is
possibly significant, and is discussed below.

Sub-Matrices:

A row, column, or main diagonal of a matrix may be referenced directly as
a sub-matrix without recourse to an external subprogram. The programmer uses a
defined value for the desired row (column), and a dollar sign (8) for the
column (row). A dollar sign in both subscripts references the main diagonal:

Matrix AA(10,10), X(10), MSUB(5,2), (f)MSUBI4(5,2)
X = AA(4,9) + AA(S,6)

This statement defines X as the sum of the fourth row and the sixth column of
AAC
*

MSUB = MSUBI4(AA, 10,10, 2,10,2, 5,10,5)

This statement defines a sub-matrix MSUB by means of the matrix-valued
function MSUBI4, extracting rows 2,4,6,8,10, and columns 5,10 of AA. The last
six arguments of MSUBI4 are DO-loop indices which select the rows and columns
to be included in the sub-matrix.

A row or column may be PASSED to a subprogram as an argument, but in
general a row or column cannot be DEFINED as a subprogram argument. Unlike
the elements of a matrix column, the elements of a row in general do not
occupy sequential memory locations, but are separated in memory by a distance
depending on the number of rows. Hence,

call jello(tom,dick,harry, AA(7,$))

will correctly pass to 'jello' the scalars 'tom,dick,harry', and the seventh
row of AA as a sub-matrix. The seventh row is first copied into consecutive
locations within the stack, and it is from this stack location that it is then
passed to 'jello'. However, no Provision currently exists to return a row or
main diagonal defined by 'jello' backward through the stack, and thence to its
location in discontiguous locations in AA. Thus, if the subroutine 'hello'
DEFINES a ten-word array X which we wish inserted into the main diagonal of
AA, we must

call hello(tom,dick,harry, X)
AA(S,$) = X

By analogy, the same restriction applies to a matrix column, although
this restriction is removable in principle, since the elements of a column
occupy contiguous memory.

A matrix on the left of an equality may be set equal to a matrix or
matrix expression on the right having the same number of rows, but having more
or fewer columns. The effect is to copy the number of columns of the left or
right matrix, whichever is FEWER. For example,

>

/3

Matrix*4 SHORT(10,10), LONG(10,20)

SHORT = LONG
will set SHORT equal to the first ten columns of LONG. On the other hand,
LONG = SHORT

will set the first ten columns of LONG equal SHORT, leaving unchanged columns
11-20 of LONG.

As with vectors, a matrix or sub-matrix on the left side of a replacement
statement may be set equal to a scalar expression on the right. The effect is
to set every element of the matrix to the value of the scalar expression. For
instance,

AA = 0.
AA($,8) = 1.

will first set the entire matrix AA to zero, and will then create 1's down the
main diagonal. (The matrix-valued function MIDEN4 can also be used to create
the identity matrix.)

We conclude this section with a comparison of standard Fortran and HLF,
both used to code four matrix equations in one version of a Kalman filter.
The four matrix equations in algebraic notation are

P' = TPT' + Q -

G = P'H'(HP'H' + R)

x, =T + G(z - HT)
Pk - P}'(kZIGHP' -1

where the prime indicates transposition. We shall not attempt here to define
the meaning and shapes of all the matrices involved, but simply to encode
these matrix operations using standard and High-Level Fortrans. First, in
standard Fortran, with the assumption that the programmer has available a
subroutine MATMUL which multiplies two matrices, another MATSUM which computes
the sum or difference of two matrices, and MINVER which inverts a matrix, the
coding for these equations might look like:

c FIRST MATRIX EQUATION
CALL MATMUL(T,P,XX1, 10,10,10)
CALL MATMUL (XX1,TT,XX2, 10,10,10)
CALL MATSUM(XX2,Q,PT, 1., 10, 10)

c SECOND MATRIX EQUATION
CALL MATMUL (H,PT,XX1, 5,10,10)
CALL MATMUL (XX1,HT,XX2, 3510,5)
CALL MATSUM(XX2,R,XX1, 1., 559
CALL MINVER(XX1,5,XX2)
C THIS IS THE MATRIX INVERSE IN THE SECOND MATRIX EQUATION
CALL MATMUL (HT,XX2,XX1,10,5,5)
CALL MATMUL (PT,XX1,G, 10,10,5)

¢

c THIRD MATRIX EQUATION
CALL MATMUL(H,T,XX1,5,10,10)
CALL MATMUL (XX1,X,XX2, 5,10,1)
CALL MATSUM(Z,XX2,XX1, -1., 5,1)
CALL MATMUL(G,XX1,XX2, 10,5,1)
CALL MATMUL(T,X,XX1, 10,10,1)
CALL MATSUM(XX1,XX2,X, 1., 10, 1)

c FOURTH MATRIX EQUATION
CALL MATMUL(G,H,XX1, 10,5,10)
CALL MATMUL(XX1,PT,XX2, 10,10,10)
CALL MATSUM(PT, XX2, P, -1., 10,10)

In contrast, the same computational steps encoded in HLF would have an
appearance almost identical to the above matrix equations, i.e.,

PP = T*P*TT + Q
G = PP*HT*MINVER (H*PP*HT + R, 5)
XP = T*X + G*(Z - H*T*X)
P = PP - G*H*PP

Quite aside from the fact that the HLF coding is far more succinct and
self-documenting than the standard code, a salient advantage of the HLF code
is that the dimensions of the matrices involved can be changed during
execution, so that on the next pass the matrices P and T, for example, could
be 8x8 rather than 10x10, etc. 1In standard code, it is somewhat awkward to
change the dimensionality of locally-defined arrays during execution. Speed
of execution on the two versions is competitive.

VECTOR AND MATRIX FUNCTION-TYPE SUBPROGRAMS

Just as ordinary Fortrans allow function subprograms which return REAL,
INTEGER, or LOGICAL values, so it is possible in HLF to define function
subprograms which return VECTOR or MATRIX values as well.

Matrix Functions:

To DEFINE a MATRIX function subprogram, the following general format is
used:

MATRIX FUNCTION MGUMBO*8 (argl, arg2, ...M,N,...)

MATRIX*8 MGUMBO(M,N)

DO 100 1

DO 100 J
100 MGUMBO(I,J) = xxx

or

MGUMBO = some matrix-valued expression

1,M
1,N

RETURN
END

1§

The function name must appear in a MATRIX type statement which contains
the dimensions of the result. These dimensions may be formal arguments
defined by the input list, PARAMETERs, or literal constants.

Within the CALLING program, the function name must appear in a MATRIX
type statement, preceded by (F)

MATRIX*8 MRESLT(10,10), MA(10,10), (F)MGUMBO(10,10)

MRESLT = MA + MGUMBO(args...)

The MATRIX*8 statement as shown serves to inform the user's program that
the functional value returned by MGUMBO will be a MATRIX*8 10x10 result, but
no actual space within the user's area will be allocated for it. (The
functional value will be returned to the stack instead.)

*kk

Vector Functions:

Within the VECTOR FUNCTION subprogram, the following general arrangement
is used. Note that the function name does NOT appear in a type statement,
since the type is implied by the functional header statement.

VECTOR FUNCTION VGUMBO*4 (args...)

VGUMBO(1) = aaa
VGUMBO(2) = bbb
VGUMBO(3) = ccc
or

VGUMBO = (some vector expression)
RETURN
END

Within the CALLING program, the function name must appear within a VECTOR
type statement, preceded by (F), e.g.

VECTOR*4 VAL,VA,VB, ..+, (F)VGUMBO, ...

VAL = VA + VB + VGUMBO (args)

*k%k

The user may discover that HLF actually restructures a VECTOR or MATRIX
function subprogram into a SUBROUTINE. HLF alters the FUNCTION header card
from

MATRIX (or VECTOR) FUNCTION GUMBO*n (a,b,c...)

o

to
SUBROUTINE GUMBO(a,b,c..., G$MBO)

creating an output argument whose name is that of the given function, but with
$ as the second character.

As a matter of fact, it is an interesting and possibly confusing
circumstance that any existing SUBROUTINE, written in some conventional
Fortran, and possessing the property that it returns its result (vector or
matrix) as the LAST formal parameter in its argument list, can be invoked as a
FUNCTION by a HLF program.

Caution:

In the case of both VECTOR and MATRIX function subprograms, as with other
Fortrans, it is necessary that the function name appear at least once on the
left side of an equality, or in any event, the separate elements must be
defined in some manner.

Statement-type functions involving vector or matrix variables are not
permitted in HLF. A vector- or matrix-valued function must be an external
sub-program.

MISCELLANEOUS FEATURES:

HLF affords the user a few other minor capabilities. One of these is the
swap or exchange operation within a single statement, denoted by the double
equality sign ==, I 9

A==38B

will cause the variables A and B to exchange values. The two variables
involved may be integers, reals, vectors, or matrices, or rows and columns of
matrices, but must be of the same type and word length, e.g., both REAL*4,
MATRIX*8, etc. For instance, to exchange two rows of a matrix, one could use

MAT(I,$) == MAT(J,$).
COMPLEX variables cannot be swapped in this manner, nor can ordinary
scalar arrays. Arrays must be typed as VECTOR or MATRIX in order to be

'swappable'. The restriction on swapping complex variables is to be removed.

*k%

HLF will also accept the .BUT. connector in lieu of the .AND. connector
within a Fortran test, e.g.,

IF(RELHUM.GT.85. .BUT. ALBEDO.LT.0.5) GO TO 50

The two conjunctions BUT and AND mean the same in the English language,
the choice depending on the degree of similarity or antithesis in the mind of

17

the speaker. In this example, a high relative humidity may suggest
cloudiness, but a low albedo tends to contradict this assumption.

HLF simply replaces .BUT. with .AND.
MASKING AND SHIFTING OPERATIONS:

HLF allows the user to perform certain Boolean or masking operations on
32-bit (4-byte) quantities (INTEGER*4, REAL*4, or LOGICAL*4). The operations
allowed are 'logical OR', 'logical AND', and 'exclusive OR', denoted
respectively by the operators

<OR> <AND> <XOR>

The result of such an operation is an INTEGER*4, regardless of the type of the
operands involved. 1In the hierarchy of operations, <OR> and <XOR> have the
same rank as the arithmetic sum or difference operators (+) and (-), whereas
the <AND> operator has the same rank as the arithmetic operator for
multiplication (*). For example,

J = A <OR> B <AND> C
would be construed as A <OR> (B <AND> C), i.e., the 'logical-AND' of B and C
would first be computed, and this result would then be logically OR'ed with A.
The final result would be an integer, and the value of J would then depend on
the type of variable that J might happen to be.

The truth table for the three types of operations are

OR XOR AND
A 0011 0011 0011
B 0101 0101 0101
RESULT 0111 0110 0001

Shifting:
HLF possesses a rotating shift operation of the form
VAL <ROT> nn

which causes any 32-bit quantity VAL to be circularly shifted by 'nn' bits.
The rotation is to the left if 'nn' is positive, and to the right otherwise.
The result is an integer, regardless of mode of VAL. The quantity 'nn' is an
integer, and must be enclosed in parentheses if it is an arithmetic expres-
sion, even a unary negated value:

VAL <ROT> (8*j+12) or VAL <ROT> (-12)
In a rotating shift, bits shifted off one end of a 32-bit word reappear at the

opposite end, and no bits are lost. A negative rotation is equivalent to a
32's-complement positive rotation, e.g.,

T

VAL <ROT> (-8) = VAL <ROT> 24

Another shift operator <SHIFT> allows an end-off shift in either
direction, positive left and negative right. In this case, any 32-bit
quantity may be logically shifted, wherein bits shifted off the end of a word
are lost, and zeroes are introduced at the opposite end. The same
restrictions on the shift count pertaining to <ROT> also apply to <SHIFT>.
The sign bit is included in the shift along with the 31 magnitude bits. For
example,

JSHIFT = 0AAO00000 Z <SHIFT> (-8) yields 00AA0000.
SEXADECIMAL CONSTANTS:

A sexadecimal (hex) integer may be used directly within in-line source
code in HLF, i.e., it is not necessary to define such a value within a DATA
statement, provided the desired value is an INTEGER*4. A sexadecimal integer
in source code is denoted by a symbol whose first digit is a DECIMAL digit
0-9, and which ENDS with the letter 'Z'. If the value begins with a
sexadecimal digit A-F, then the programmer MUST prefix a lead non-significant
zero, e.g., to code the hex constant ABC one must use 'OABCZ'.

As an example, to extract the three rightmost sexadecimal digits from the
real quantity GUMBO, one could code

RIGHT3 = GUMBO <AND> OFFFZ

Note that if fewer than eight digits are expressed, the resulting constant is
presumed to be right justified and zero-filled. Given the possibility of a
mandatory lead zero, the longest permissible hex constant would contain nine
digits, e.g., OABCDEF12Z.

WARNING:

Failure to include the mandatory lead zero when it is required will
produce an undiagnosed error, because the resulting symbol is often
indistinguishable from a valid Fortran variable name, e.g., ABCZ, when 0ABCZ
is intended.

IMPLEMENTATION OF HLF ON PERSONAL COMPUTERS:

The logical structure of a Stack Segment on a personal computer driven by
a 8088 or 8086 micro-chip, though never used as a model in the design of HLF,
is nonetheless almost identical to the logic used in managing the HLF Stack,
as described. A means must be available whereby partial matrix results
created at one program level remain undisturbed by routines at a lower level
which also use stack storage. HLF, to date, has never been installed on a PC,
and if it were to be installed immediately, the basic logic would be the same
as that used in main frame systems which do not possess a Stack Segment.
However, the architecture of a 8088-driven PC naturally lends itself to a
version of HLF properly designed to take advantage of it.

CONCLUSION:

High-Level Fortran provides a source language upward compatible with
existing Fortran languages which at the source level complements the advent of
array-processing computers already available at the hardware level. Vector
and matrix arithmetic is available to the programmer with the same formalism
long familiar to Fortran programmers, thus minimizing learning time. Vector-
and matrix- valued functions fully implement these two new variable types, and
allow the user to code a vector or matrix expression far more succinctly and
with far greater self-documentability than has heretofore been offered in
conventional Fortrans. Finally, the stack is managed in a manner similar to
the stack segment of a Personal Computer, which therefore readily lends itself
to the implementation of HLF.

Acknowledgements:

The author is indebted to Dr. C. M. Hayden and Mr. L. R. Herman for
helpful comments resulting from their reading of this paper; to Mr. H. M.
Woolf and Mr. H. B. Howell for aid in digitally transcribing the manuscript to
a suitable word processor; and to Ms. Laura Beckett for the tedious
preparation of the manuscript. The matrix inversion function MINVER is used
by permission of its author Mr. R. J. Purser.

19

