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I. INTRODUCTION"

In support of GALE the Rain Studies Group at the University of
Wisconsin - Madison has made two sets of maps of Atlantic Ocean
rainfall. One set, which has been published in a quick look atlas
(Martin and Auvine, 1987) concerns 24-hour rainfall. The other set,
which has not been published previously, concerns 6-hour rainfall.
Funding has limited both sets to parts of the GALE period. All of the
maps are based entirely on information extracted from geostationary
satellite images. This report presents a final set of both types of
maps. It also describes the process by which the maps were made,
assesses their accuracy, highlights the main features contained within

them and recommends several possibilities for further work.,

II. DATA

The maps are derived from digital infrared images of the GOES-6
satellite. Pixel resolution was 4 km at the subpoint of the satellite:
about 5 km near the center of the map domain. Nominal time resolution
was 1 hour. Very few of the processed images contained defects of any
kind. From landmarks we estimate that absolute errors in pixel location

are less than three pixels.

ITI. PROCESSING

Rainfall was estimated by the Global Precipitation Index (GPI)
technique of Arkin (1983; also see Arkin and Meisner, 1987). This
technique assumes that rainfall is linearly related to fractional cloud
cover. 235 K is the threshold temperature for cloud. Ordinarily, the

area, or box, for the measurement of GPI cloud cover is 2.5 degrees in



latitude and longitude and the interval between infrared images is 3
hours. 1In the present case a box is 1 degree in latitude and longitude
and the image interval is 1 hour.

Fractional cloud covers (f) are averaged for the period of the
estimate, then are related to rainfall (ﬁ;mm) as

R-kef
The coefficient k has a value of 72 mm d°1.

Fields of rainfalls, consisting of one estimate for each box, were
contoured by means of a standard microcomputer plot package (Plot 88 by
Plotworks). For convenience the maps are presented in rectangular
format. However, the area for which rain information actually is
available is a trapezoid oriented northeast-southwest. Long-dashed
lines mark the northwest and southeast sides of this trapezoid. A
dotted line marks the southeast coast of the United States and Canada
and islands of the western Atlantic.

The 19 daily maps are listed in Table 1 and presented in Appendix
1. Except for 21 and 22 January all maps are drawn from the Intensive
Observing Periods. Nominally, days begin with the 00 UTC satellite
image and end with the 23 UTC image.

Rainfall is contoured in units of millimeters. With one exception
the increment between contours is 10 mm. The exception is the lowest
contour, which marks values of 0.1 mm. This contour is dashed.

One correction has been made to the daily map set presented by
Martin and Auvine (1987). The grid has been replotted to remove a
scaling error in longitude (up to 2.5 degrees on the eastern edge, with
the corrected image covering a broader strip of longitude) and

repositioned to remove an offset (.5 degree in latitude and in



longitude, with the corrected image displaced to the north and east).
Two changes also have been made. First, present maps for 21 and 22
January include a full set of GOES images. Second, the remaining seven
maps which in the Martin/Auvine report contained less than 12 images
have been dropped.

The 6-hour maps are identical to the 24-hour maps except in the
following respects:
-- Their period spans the first two Intensive Observing periods and is
continuous over the eleven days beginning at 00 UTC on 18 January;
-- In all but one case (1/18, 6-11 UTC, five images), maps are based

on six infrared images.

IV. COMPARISONS WITH GAUGE RAINFALL

The coefficient we have used for these maps was derived for
tropical marine regimes. Arkin (personal communication, 1986) predicted
that its use in the present context would overestimate actual rainfall,
that the overestimate would increase with latitude and that random
errors would in general be larger than those to be expected in estimates
of monthly tropical rainfall. In this section we compare satellite
estimates with gauge measurements of rainfall.
A. PREMISES

Rainfall has variability in time and space. The scales of the
variability depend upon the climatic regime as well as the specific
synoptic situation producing it. Thus, it is possible to specify even
the characteristic dimensions and durations of rain "events" only by

glossing over much detail.



For the GALE data set, the a priori estimated characteristic time
scale at a fixed geographic location and the characteristic spatial
scale at a fixed time are the order of 1000 s and 10 kilometers
respectively. This means that the rain value of each 1 degree latitude
by 1 degree longitude by 6 hour resolution cell could be the mean of as
many as 10° "independent events." However, if we account for the longer
persistence of a rain sysfem in a coordinate frame moving with the storm
(at a speed the order of 5 ms'l), the precipitation could cut entirely
across the 1 degree by 1 degree spatial cell with a characteristic width
of 10 km in six hours. Thus, a more realistic estimate of the number of
independent rain "events" realized in a resolution cell would be the
order of 10 for six hour accumulations. That this is the case wi;l be
verified later.

In the evaluation discussed below we first compare our estimates
(in some instances interpolated to rain gauge locations) for a subset of
the GALE data with the observations of individual rain gauges
integrated over six hours. The rain gauge data is a "proxy" data set
for true areal average rain. In view of this and the above paragraph,
this comparison is a severe test. Consequently, for an alternative
appraisal, it is appropriate to compare aggregated results with means
formed from groups of the order of ten 6-hourly rain gauge observations.
This simulates a more nearly ideal distribution of "truth data." There
is no other practical approach in view of the very low density of rain
gauges available--even with the special field program deployment.

B. COMPARISONS WITH INDIVIDUAL GAUGES
First we consider the statistical distributions of 6-hour rainfall

both for the gauges and for the estimates. These are shown in Table 2.



Because rain is strictly non-negative, these are unsymmetrical and
highly peaked at zero. The parts of the distribution for non-zero rain
accumulation are well described by exponential, gamma or lognormal
distributions as illustrated in Figs. 1 and 2.

The sharpness of the peak is reduced by any process which increases
the integration (i.e., area, or time averaging), which accounts for part
of the difference between the gauge observations and the estimates.
Further difference may arise from the lack of discrimination of high
rain rates by the estimation algorithm, which has absolute maximum
6-hourly accumulation of 18 mm. Thus, gauge observations are more
skewed toward higher rain rates.

The selection of a specific analytic representation of the
probability distributions is not required. The ones in the figures are
for illustrative purposes only. However the parameter values for each
are optimum for that particular distribution. Since the distributions of
the rain estimates and the gauge data are not the same shape (i.e.,
similar in skewness and kurtosis) there is no elementary linear relation
that will correctly transform rain rate determined by one into rate
determined by the other for the entire range of rates, or even for the
important range of rates. The main point to be made is that the gauge
data especially are far from normally distributed, but would become more
so, according to the central limit theorem, if each gauge "datum" were a
more highly aggregated quantity, such as a mean value from several
gauges, or averaged over a longer time period.

It is interesting to consider the instances in which the estimates
indicate there is no rain, but gauge observations report rain (detection

failure). The complementary failure in which the estimation suggests



rain, but there is no rain (false alarm), is not so easy to assess
because of the inadequacy of the gauge network. Nevertheless the
apparent false alarm rate is a useful quantity, since it provides an
estimated upper limit on the true false alarm rate.

The cases are distributed among the four classes: (1) detection
failure, (2) apparent false alarm rate, (3) success (rain-estimated and
rain-observed), and (4) apparent success (no rain estimated and no.rain
observed). Elsewhere in this report we refer to classes (2) and (4)
together as potential false alarm cases. The relative numbers of cases
in each of the four classes are shown in Fig. 3.

Only the detection failure sector unambiguously points to a defect
of the estimation scheme. The false alarm sector might well be due to
the non-representativeness of the gauges. The "no rain estimated-no
rain observed" case is alternatively not a measure of success since such
a situation could arise from coincidental failure of the algorithm and
inadequacy of the gauge network.

Quantitative comparisons are somewhat more interesting than the
categorical comparison of Fig. 3. Consider Fig. 4, a simple scatter
plot of interpolated estimates as a function of gauge observations.

This figure manifests much of what was stated above: A concentration of
points at low rain rates, a line of false alarms for various y-values at
x = 0, a short row of points for various small x-values at y =0, and a
broad cloud of points. Together these points show a modest positive
correlation (r = 0.40). It is easy to envision from.this plot that,
corresponding to any value of estimated rain, there is not a unique
value of actual rain, rather there is a probability distribution of

actual rain, from which the sample gauge observations are drawn. We



should not expect the points to lie along a simple curve, as would be
the case if the two types of observation were connected by an elementary
deterministic physical law. What we hope for then, is to discover the
relationship of the mean of actual rain (approximated by_the gauge
observations) as a function of the estimated rain. Least-squares
regressions are a suitable means of investigating this relationship.

The results of regression of the estimates on the gauges are shown
in Table 3. This model consists of a constant plus a linear term. We
note from the table that the constant term is surprisingly large, but
rather poorly determined. On this ground, as well as our firm
expectation that the mean rain rate ought to be nil when it is estimated
to be so, we also present results for a second regression in Table 4.

In this case we have constrained the constant to be zero. Note that r2
in this case (Table 4) refers to the moment about O, not about the mean,
hence its much larger value. The salient result from Table &4 is that
this model is about as good as the one incorporating the constant term.

In order for the significance test results shown in the table to be
valid, the residuals must satisfy the normality assumption used in
deriving the tests. Since the data themselves were seen to be very
non-normal, it is worthwhile to verify this for the residuals. For this
purpose we exhibit Fig. 5. The y-axis on these probability plots is
scaled such that a normal distribution will lie along a straight line.
Therefore, the plots show the poor approximation normality of the
residuals.

It is interesting to consider the relation of gauge observations
and the estimates when all potential false alarms are eliminated. That

is, we only consider the cases for which gauge-recorded 6-hour rainfall



exceeds zero. In this circumstance the linear coefficient is somewhat
larger (Table 5), especially if we choose the regression for which the
constant term is zero (Table 6). There is no substantial difference
between the standard errors of the two regressions, but the latter would
be preferred on physical grounds. Additionally, the constant term is
poorly determined and its "spread" includes zero. In any case, the
regression of Table 6 results in a linear coefficient of 0.94. By
eliminating the potential false alarms, the means (and other
distribution parameters) of the gauges and estimates are brought
somewhat more in accord, as shown in Table 7.

The locations of the array of gauge locations used for comparison
are shown in Fig. 6. This illustrates that we have the order of one or
two gauges per cell. Moreover, it is instructive to consider the gauge-
gauge correlations (Table 8). The table suggests, because of many low
gauge-gauge correlations, the possibility that the low value of the
estimate-gauge correlation, mentioned above, might be attributable to
the spatial variation of rain combined with the "point" naturé of
gauges. Thus comparisons with individual gauges may have only a little
relevance to assessment of the estimation algorithm’s skill for
estimating area average rain over 1 degree squares, tending to give a
somewhat pessimistic evaluation. Perhaps we should not ignore the
"error" of the gauge measurements with respect to the desired area
average.

This leads naturally to a reconsideration of the regression
illustrated in Table 3. 1In this case the prescription is that the rain

A

estimates R should be modified or replaced by a new estimate,

R = [a + beR]



to achieve an improvement. The a,b are the regression coefficients from
Table 3, or from Table 4 (for which a = 0). In either case, the
regression line was obtained by minimizing the sum of the squares of the
y-deviations only. This is equivalent to assuming that the gauge data
are "perfect." Howevér, they are not perfect measures of area average
rainfall as indicated above.

If one wants to minimize the sum of the squares of the x-deviation
plus the squares of the y-deviation, then it can be shown that the
constant must be chosen so that the curve passes through the centroid of
the data, and has a slope equal to the ratios of the standard
deviations. This is the appropriate procedure if the gauges and
estimation contribute equally to the scatter about the regression line.

There is yet a third logical possibility. Since the gauge data are
intrinsically point measurements, while the GPI is intrinsically an area
measurement, it is conceivable that the GPI estimate errors are much
smaller than the gauge errors for area averaged rain. In this event one
would minimize the sum of the squares of the x-deviations only. After
considering the further possibility of aggregating, or averaging, gauge
data, we shall illustrate how the assumed apportionment of error affects
the regression curves.

C. COMPARISONS WITH AGGREGATED GAUGE MEASUREMENTS

The rhetorical question, "How big an area does a gauge represent
wheﬁ averaged over six hours?" can be investigated by considering the
inter-gauge correlations, and especially their variation with distance.
The correlations and distances are displayed in Table 8. A scatter
plot, Fig. 7, is somewhat more instructive, however. The figure

suggests that the inter-gauge correlation falls to the level of the



correlation between estimated rain and gauges at a distance of about

90 km. To view the gauge data as "truth" requires working at
correlations such that the square of the gauge-gauge correlation is much
greater than the square of the estimate-gauge correlation.

If we say that it is sufficient for the square of the gauge-gauge
correlation to be at least three times the square of the estimate-gauge
correlation, then we conclude that the gauge-gauge correlation should be
0.69, or more. This follows from the correlation of estimates to gauges
of about 0.4 cited earlier. Thus, the gauge-gauge correlation should be
the square root of 3 e (0.4)2 = 0.69. Fig. 7 thus suggests no more than
30 km as a safe coverage zone radius for a rain gauge averaged over six
hours. This is equivalent to about 10 to 12 evenly distributed rain
gauges per one degree square near 30°N latitude. Thus thé inter gauge
correlation data support the estimate of about 10 gauges per one degree
square given above.

Since the gauge data are linear, they can be added. The GPI
algorithm is also linear because histograms "add" and rain is a linear
function of histogram classes. Thus, one can average the rain estimates
corresponding to 10 or 12 gauge observations and compare them with the
average of the gauge observed rain, to simulate better an ideal truth
data set, and obtain a better evaluation of the estimation algorithm.

One result of this procedure is displayed in Table 9, which gives
regression results for a constant plus linear term. The table shows
that the constant is very small and need not be included since it is
also rather poorly determined. Thus we reran the regression excluding
the constant term, obtaining the results in Table 10. Both regressions

exhibit satisfactorily the normal distribution of deviations (Fig. 8)
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since they are substantially the same. In either case the linear
coefficient has value of about 0.81.

Why are the results better than for the comparisons of individual
observations? The probable answer is that the aggregated data do not
violate the normality assumption as strongly as the original data. The
large peak of the data is pushed slightly away from zero, allowing for
both positive and negative deviations of the estimated data from the
gauge data. (Compare Fig. 5 with Fig. 9.) 1In the same way the skewness
of the data distribution is reduced, which is more favorable. (For a
linear regression to work perfectly, the distributions of both the
dependent and the independent variable must have the same standardized
skewness and kurtosis.)

Fig. 9 shows the range of relafionships we have discussed between
the gauge observed 6-hour rain accumulations and the estimates obtained
from the infrared threshold algorithm.

While we leave the selection of the "best" relationship to the
reader, our own preference is for (a), (c) or a compromiée between them.

In producing the maps curve (a) was selected.

V. PATTERNS

In spite of interruptions to the record, certain patterns do emerge
in the daily maps. Overall, rainfall apparently is heavier in the north
than in the south. Everywhere its preferred scale is distinctly larger
than that of the estimation grid. Frequently the rain is banded from
northeast to southwest.

Although not as extensive as the daily maps, the 6-hour maps have

the advantage of continuity. Over the last half of January, at least,
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their 6-hour interval is well suited to capturing the evolution of west
Atlantic rain systems. In general systems move from west to east. Some
of the stronger centers move in a northerly direction as well. Often
the northern part of a band lags the southern part, with the result that
the band tends to pivot cyclonically across the domain. There were two
periods of what might be called pluviogenesis--the development of a
well-marked, isolated rain system--18 through 19 January and 23 January.
In addition, between 25 and 27 January a cyclonically curved rain band
pivoted across the northern part of the domain. Intervening periods

were relatively dry.

VI. CONCLUSIONS

For the éALE gauge data set the GPI calibration over-estimated rain
by 44 percent. This is based on the mean values in Table 2. Accounting
for the disagreement can be viewed in two ways: (1) the coefficient of
rain rate for cloud colder than the threshold is too large, or (2) the
coefficient is not too large, but fhe area covered by over-threshold
cloud tends to be larger than the rain area. Because elimination of the
potential false alarm cases reduces the disagreement to 24 percent as
shown by the difference of the means in Table 7, we find (2) attractive.

Considering the technique as an area average measurement (Table 93,
conclusions are less clear-cut. The aggregated results suggested a
correlation > 0.58 between the estimates and the "truth." (This follows
from the square root of the value 0.345 for r? at the bottom of Table
9.) They seemed to indicate that the sensitivity of the GPI was about
19 percent too large for this coastal zone data set, since the linear

coefficient differs from one by 19 percent. Further, a constant term



~ 0 was a natural consequence, not an artificial constraint. It is
somewhat risky to give great weight to general conclusions from this
very small data set, but since correlation value is similar to that
found by Arkin and Meisner (1987) it seems that a consistent evaluation
is becoming established.

Users might expect that these maps slightly underestimate peak
rates and substantially overestimate the sizes of rain systems. Frontal
rains may be offset to the east (P. Robertson, NASA Marshall, personal
communication). Overall, rain rates probably are biased on the high
side.

The gauge-satellite rainfall comparisons could profitably be
extended. Even more useful would be comparisons over the ocean of
satellite and radar rain rates. Once their quality has been
established, the satellite estimates should be combined with gauge and

radar measurements in a comprehensive mapping of GALE rainfall.
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Table 2. Distr‘ibt.ntidwpa*areters of six hour rain accumnulation from gauge obser-

vations and the rain estimation algorithm, both the nominal

and interpolated to the gauge locations.

grid point values

Distribution Gauge Rain Estimation Algorithm
Parameter Data Grid Pt, interp.
Sarple size 112.000 112.000 112.000
Average 2.932 4,000 4,165
Median 0.508 2.000 2.270
Mode 0.000 0.000 0.000
Standard deviation 6.011 4,830 4,694
Minimum 0.000 0.000 0.000
Max imum 35.560 18.000 18.000
Range 35.560 18.000 18.000
Skewness 3.641 1.268 1.184
Standardized skewness 15.730 5.481 5.117
Kurtosis 15.078 0.653 0.500
Standardized kurtosis 32.573 1.412 1.08148




Table 3. Model fitting results for gauge accumilation as a function of interpo-
lated estimates of rain 1

Term in regression coefficient std emror t-value sig. level
CONSTANT 0. 796 0. 700 1. 13 0. 25
LINEAR 0. 512 0 111 4, 58 0. 00

95 percent confidence intervals for coefficient estimates
Lower Limit Upper Limit

CCNSTANT -0. 591 2 184
LINEAR ; 0. 290 0. 734

Analysis of variance for the regression

Source ' Sum of Squares IF  Mean Square F-Ratio P-value
Model 643. 125 i 643, 125 21. 0050 . 0000
Error 3367. 95 110 30. 6177

Total (Corm. ) 4011, O7 111

R-squared = 0. 160 Stnd error of est. = 5,53

R-squared (Adj. for 4 £ ) = O 152

Istandard errors in the upper division of the table (and similar tables to
follow) are standard errors of the corresponding constant or coefficient of the
regression term. For example, the standard error in determining the constant
term in this regression is 0.700. The standard error given at the bottom of the
table is that of the estimated variable.



Table 4 Model fitting results for gauge accamlation without a constant term

Term in regression coefficient std emror t-value sig. level

LINEAR 0. 597 0. 083 T 14 0. 00

95 percent confidence intervals for coefficient estimates

Lower Limit Upper Limit
LINEAR 0. 431 0. 763

Analysis of Variarce for the Full Regression

Source Sum of Squar~es1 IF Mean Scmare1 F-Ratio P-value
Model 1566, 58 1 1566. 58 51. 0310 . 0000
Error 3407, 54 111 30. 6986

Total 4974, 12 112

R-squared = O, 314946° Stnd error of est. = 5. 540
R-squared = 0. 3149462 Stnd error of est. - 5, 540

iTaken about zero, not the mean.
is not the square of a true correlation for regressions in which the con-
stant has been forced to zero. In these cases it is a moment about zero, rather
than the mean. These remarks also apply to Tables 6 and 10.
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Table 5. Model fitting results selecting cases for which the gauge accunuia-
tions are greater than zero.

Term in regression coefficient std. error t-value sig.level
OONSTANT 2.045 1.128 1.81 0.07
L INEAR 0.738 0. 165 4.45 0.00

95 percent confidence intervals for coefficient estimates
Lower Limit Upper Limit
CQONSTANT -0.213 4.30
L INEAR 0.406 1.06

Analysis of Variance for the Full Regression

Source . Sun of Squares DF Mean Square F-Ratio P-value
Model 809.698 1 809.698 19.8427 . 0000
Error - 2366.74 58 40,8058

Total (Corr.) 3176.44 59

R-squared = 0.254 Stnd. error of est. = 6.38

R-squared (Adj. for d.f.) = 0.242




Table 6. Regression results after eliminating the potential false alarm cases
and rejecting the constant term '

Term in regression coefficient std error t-value sig. level

LINEAR 0O, 9430 0. 123 7.63 0. 00
95 percent confidence intervals for coefficient estimates

Lower Limit Upper Limit
LINEAR 0. 695 1. 190

Analysis of Variance for the Full Regression

Source Sum of Squares ]ZF_‘ Mean Square F-Ratio P-value
Model 2473. 23 1 2473, 23 58, 3476 . 0000
Error 2500, 89 59 4o, 3879

Total 4974, 12 60

R-squared = 0. 497 Stnd error of est. - 6,51

R-squared (Adj. for 4 £ ) = 0.497




Table 7. Distribution parameters when potential false alarms are eliminated

Distrilbution Parareter Gauge Cbhservation Estimated Value
Sample size 60. 000 60. 000
Average 5. 473 4, 416
Standard deviation 7. 337 5. 106
Median 2. B40 2. 500
Mode 2. 540 0. 000
Minimmm 0. 254 0. 000
Maximm 35. 560 18. 000
SKewness 2. 766 1. 208
Standardized skewness 8. 748 3. 821
Kirtosis 8, 045 0. 540
Standardized Kinrtosis 12. 7214 0. 855




Table 8. Correlations and separation distances between pairs of rain gauges.

Samwple Correlations (top), significance (middle), separation in Km (bottom)

Gauge1

Gauge3

Gauge7

Gauge1

1.0000
.0000
0

A37
.6988
312

. 2245

.6243
0170
T4

Gauge2

.0327
.9118

-.2367
4152
552

.0339

Gauge3 Gauged4d GaugeS Gauge6 Gauge7? Gauge8

.2927
172

. 7295
. 0031
52

-.0737
.8024
168
-.2712
487
-.0474

8722
241

1.0000
.0000
0o

4461
. 1098

135 -

—02441

-.5318
.0503
331

.5768
.0308

1.0000

.0492
.8674
122

-.2431
. 4023
463

.0950
. 7466
201

1.0000

0000

(0]
.35921 1.0000
.a072 0000
363 0

-.3254 -.3068 1.0000
83 284 o




Table 9. Regression model for grouped rain gauge observations.

Dt L D ——— - - B e e L p——

Term in regression coefficient std. error t-value sig.level
CONSTANT 0.0294 1.46 0.020 0.98
LINEAR 0.812 0.338 2.40 0.04

95 percent confidence intervals for coefficient estimates
Lower Limit Upper Limit
CONSTANT -3.35 3.41
LINEAR _ 0.03 1.59

Analysis of Variance for the Full Regression

Source Sum of Squares DF Mean Square F-Ratio P-value
Model 17.0694 1 . 17.0694 5.76 .043
Error 23.7027 8 2.96283

Total (Corr.) 40.7720 9

R-squared = 0.418 Stnd. error of est. = .72

R-squared (Adj. for d.f.) = 0.345




Table 10. Model fitting results selecting gauge accunulations greater than zero
with no constant term included.

Term in regression coefficient std. error t-value sig.level

L INEAR 0.818 0.118 6.92 0.00

95 percent confidence intervals for coefficient estimates

Lower Limit Upper Limit
L INEAR 0.550 1.085

Analysis of Variance for the Full Regression

Source Sum of Squares DF Mean Square F-Ratio P-value
Model | 126.232 1 126.232 47,9285 .0001
Error 23.7039 9 2.63376

Total 149.936 10

R-squared = 0.841 Stnd. error of est. = 1.62

R-squared (Adj. for d.f.) = 0.841
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Classes based on interpolated values

gauge>0, est.>0
55

. gauge>0, est.=0

SRR
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:

&
gauge=0, est.>0
37

Fig. 3. Composition of the data set according to a classification scheme
derived from the pairs of rain accumulation values (zero, or non-zero) ob-
tained from the gauges and the rain estimation algorithm inter polated to the

gauge locations. The numerals labeling each sector are numbers of cases In
that class.



Gauge Measurements Compared to Estimates
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accumulations in mm.
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Flg. 5. Two regression curves with scatter plots of the data and normal
brobability plots of the residuals.
regression with a constant from Table 3, while the lower panels refer to
that of Table 4 which has no constant term. An ideal normal distribution of

residuals would appear along the lines shown in the right panels.

The top two panels refer to the linear

The

patterns shown indicate a marked departure from normality.
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Flg. 9. Five possible relations between the original rain estimates and a
retuned estimate based on comparisons with the gauges. Curve (a) cor-
responds to the original (unmodifled) estimate. Curve (b) 1s the regression
of Table 3, which assumes the gauges are perfect truth, and which incor por-
ates a constant. Curve (c) denotes the regression of Table 10 for grouped
data (the Table 9 case would be indistinguishable). Curve (d) results from
assuming that the errors in the gauge measurements and the rain estimates
have equal variance. A regression which excluded the false alarm cases,
corresponding to the data summarized in Table 7, is not shown but would lie
approximately mid way between (a) and (c). The left most curve, (e), would
result from minimizing the x-deviations from the regression line, and repre-
sents an upper limit on a linear relation between the original estimates and
a retuned one based on gauge data.
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APPENDIX 1

TWENTY-FOUR HOUR MAPS
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APPENDIX 2

SIX-HOUR MAPS
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