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I. INTRODUCTION

Over the past four years, great strides have been made in the areas of data
management and display of 4-D meteorological data sets. When the current contract
went into effect in early 1986, the displays consisted of wind trajectories and moisture
mesh surfaces from upper air data over a topographical map. Now the software can
produce multi-parameter displays of transparent surfaces, trajectories as streamers,

density surfaces, 2-D contours and text, in stereo or mono (with color). Also, we have
made the move from single image processing on the mainframe computer to real-time
interaction on the Stardent computer.

This report summarizes the work accomplished under this contract with details
contained in the appendices.

II. WORK SUMMARY

The Statement of Work for this contract read as follows:

TASK 1: Inventory of 4-dimensional data setr. Survey of available and planned 4-D
meteorological data sources. Evaluate the data types for their impact on the data
management and display system.

TASK 2: Data management. Analyze the requirements for data base management
generated by the 4-D data display system. Evaluate the suitability of the existing data
base management procedures and file structures in light of the new requirements.
Where needed, design and implement new data base management tools and file
structures.

TASK 3: Data integration. Assure the quality of the basic 4-D data sets. Investigate
interpolation and extrapolation techniques for the 4-D data. Combine 4-D data from
various sources to make a uniform and consistent data set for display purposes.

TASK 4: Design data display softv_are to create abstract line graphic 3-D displays.
Create realistic shaded 3-D displays. Develop animation routines for these displays in
order to produce a dynamic 4-D presentation.

TASK 5: Workstation design. Implement a prototype dynamic color stereo
workstation. Produce a complete functional design specification based on interactive
studies and user feedback.

TASK 1: 4-D INVENTORY

Inventory of 4-D data sources

Over the course of the contract, many scientists and research institutions were

queried about their use of or availability of 4-dimensional data sets. Primarily, the
search was limited to meteorological data, though data from other earth sciences have
been included. The effort relied on catalogs, journal articles, and referrals to track
down the source of a particular data type. A questionnaire was designed to provide a
concise format for the inventory: whom to contact, what kind of data is available,
how to acquire (price, format), and any reference or catalog that would be useful.
Naturally, even the most exhausted searches would not be complete, but also we
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excluded individuals that were not willing to provide their data to outside users.

Appendix A contains the inventory for the 4-D data sets.

Data sourqes u_ed

Over the past three years, the 3-D software has been applied to data from 21
different sources. The development of a general 3-D grid structure and display
program made this task manageable. Usually, the only new software that needed to be
written, were programs to put the data in the MclDAS (such as a tape read program).
For imagery, though, it was handled on an individual basis, since most of the effort
was in the area of model output. The data types fall into three general categories:

imagery, observations, and models.

Imagery

GOES images
McGill volumetric radar

NSSL Doppler radar
NASA/MSFC volumetric radar
LIDAR

CT scan medical data

Observations

Rawinsonde balloon soundings
VAS satellite soundings
Wind Cave data

Global topography
Global soil and vegetation type
HIS aircraft soundings

Models

NSSL kinematic microphysical cloud model
NASA/MSFC LAMPS model

Robert Schlesinger's 3-D cloud model
UW/CIMSS 4-D data assimilation model
NASA/GSFC GMASS model

NMC global model
RAMS model

Warzyn Engineering hydrology model

More information on these data sets can be found in Appendix A and in Hibbard
(1989b).

TASK 2: DATA MANAGEMENT

Requirements

The management of 4-D data sets requires more than one data structure for
efficient access and organization. The different file structures are divided into
categories similar to the way the 21 data sources were divided (under TASK I):
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Images, unevenly spaced data (observations and trajectories), and regularly spaced data
(2-D and 3-D grids from model output).

Image data and 2-D grids are similar in structure (2-D matrices), with the
differences being the source and volume of data, and the display. Remote sensors
(satellite, radar, lidar) produce massive amounts of data spatially, temporally, and
spectrally.

Regularly spaced data (grids) are usually produced from numerical models. The
output consists of many physical parameters at a sequence of time steps in the form of
2-D and 3-D grids. These data sets may also be large (as is imagery), but the access
pattern requires a different structure.

Observed data (rawinsonde and satellite soundings) and trajectories do not fit
into a matrix format. No assumptions are made about the space or time distribution
of the data.

Evaluation of existing data manaRemenr

The MclDAS provides three data structures for the storing of weather data:

Image, Grid and MD (Meteorological Data) files.

Images are stored as 2-D arrays as 1, 2, or 4 byte quantities per pixel. For multi-
spectral data, interleaving of the pixels is done, thus adding a third dimension.
Images of different times are kept in individual files. A separate file contains a
directory entry for all images on the system so that all users have read access to all

images on the system, but not necessarily write access. Since the naming convention is
numeric, a time sequence of images would normally be stored in numeric order. This
structure is very general, and is being used for the radar, lidar, and the resulting
rendered 3-D graphics.

The grid file structure provides for only 2-D grids. There are limitations in size,
10240 maximum number of grid points per grid, and 159 grids per grid file. Also, the
data values at the grid points are stored as scaled integers. Since the naming of data
sets on MclDAS is currently numeric, large numbers of 2-D grids are stored in
successive grid files.

The MD file structure is a key driven system for randomly spaced data. The
layout is a matrix, with each cell containing the data at a particular time and location.
It is usually organized so that each row corresponds to a time, and each column a
location. This works well for surface hourly reports and upper air data. The data
structure is organized well, but may be inefficient in some access modes. Trajectories
could be stored in MD files, but since trajectories are distributed more non-uniformly,
performance and storage would be degraded.

New data structure and MclDAS commands

The current MclDAS data structures did not provide an efficient means for

storing and manipulating 3-D grids and trajectories. The 2-D grid structure was used
as a model to develop a 3-D grid structure. The naming of utility commands for
accessing and listing the data are similar to their 2-D counterparts. But there are some
important differences between the two. 3-D grids are stored as floating point numbers
and there is no size limitation. The maximum number of grids per grid file was
increased to 319 grids; but for large 3-D grids (40,000 points), only about 200 grids can
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be stored due to limitations in the MclDAS file system. Some of these changes have

brought about discussions regarding changing the 2-D structure.

A new type of file was designed for trajectories. They are stored as lists of X,
Y, Z, T coordinates with a maximum of 1000 trajectories or 30,000 coordinates.
Currently, there is one trajectory file that can store up to 10 trajectory sets. This has
not been a problem since trajectories are usually a derived parameter and can be

regenerated when needed from the original data of U, V, and W 3-D grids.

Along with the new data structures, new commands for MclDAS were written.
A concise and general package of programs were written to manage and display 3-D
grids and trajectories. A summary of these can be found in Appendix C.

Management of 4-D and 5-D data sets

Organization of multi-parameter time sequences of 3-D grids is necessary for not
only the user, but also for the software. To generate long time animation sequences,
the grids should be ordered such that this task can proceed somewhat automatically.
We order the grids by grouping all parameters for each time, with an integral number

of groups per grid file if the data set spans several files.

TASK 3: DATA INTEGRATION

Data quality assurance

Most of the data we have worked with are processed in some way. For the

modelers, any anomalies that would appear in the 3-D images would be useful in
detecting problems in the model. We have used data from Doppler radar, which is
processed before we have access. The problem of data quality for real-time
rawinsondes was not looked into as we forged ahead into investigating better graphical

techniques and animation.

Interpolation and extrapolation

Originally, our major source of 4-D data was rawinsondes or VAS satellite
soundings, which is very coarse in the time dimension. Interpolation becomes
important to generate smooth time animations of the data. As we gathered more data
sets, model output became the dominant source, and the need for interpolation went
away. In cases where interpolation was necessary, a simple linear method was used to
double the amount of times for a more coherent animation. For image data, the

problem is much more difficult and was not addressed.

Combine data from different sources

The combination of data from different sources has not been a problem..Most

data sets (especially model output) are highly integrated already. Once the data arc in
a 3-D grid or t.rajectory file, though, combinations of different data are possible.
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TASK 4: 4-D DISPLAY SOFTWARE

Design display software

The display software evolved based on the feedback we received from
meteorologists. It was developed on an IBM mainframe computer which allowed us to
animate up to 128 frames of individually generated 3-D images. Many of these

features were ported to the Stardent which permits real-time interaction with the data.

A rectangular box is the basis for the display, to which we can add objccts and
line drawings. The base of the box depicts geography: base maps and topographical
relief. Color is used to delimit ocean from land and also to accent the land relief.

This orientates the user in terms of earth location. For small scale studies (e.g.,
thunderstorm), this will be a shaded plane. The vertical axes of the box are labcled

with height (in kilometers).

The depiction of 3-D fields can be added to this initial box. Scalar parameters
can be represented with transparent (or opaque) contour surfaces, grid-mesh surfaces,

or as a transparent fog. Wind speed maxima shown as contour surfaces represent a
"jet-core" well. A time animation of potential temperature depicted as a grid-mesh

may show wave features propagating. Cloud water rendered as a transparent fog gives
an effect of cloud density. Though they are all scalar quantities, different display
techniques are used to bring out the desired information and also to allow
combinations of different parameters. 2-D slices through the 3-D scalars can be drawn
either at a constant height level or along the topographical surface.

The motion of air particles are shown as line segments. These trajectories can bc
drawn in several ways. They can be long and tapered showing a long time span in a
single image for tracing particles back to some beginning point. Usually they arc
drawn shorter, with length proportional to speed, and animated. These can be solid or
fade to transparent.

Image data can be textured mapped to a 3-D perspective. This has been used for
lidar data and for GOES satellite imagery.

3-D display techniques

The use of stereo gives a vivid 3-D effect for viewing the images generated on
MclDAS. Unfortunately, stereo viewing is not practical for videotaping or for
inclusion in publications. Techniques were developed that would heighten the 3-
Dimensionality of the images. One of these is depth cued trajectories. The
trajectories are shaded so that the ones closer are brighter. Tapered trajectories (the
leading edge is wider than the tail) have been used in some cases. For animated
sequences, a slight rocking motion is added. By rocking the objects a degree or so
(excluding the outer box), the eye detects easily what is forward of another object. We
found that rocking along the axis of motion (horizontal for motion going horizontal.
and along the vertical for up/down moving objects) proved the best.

TASK 5: WORKSTATION

The MclDAS workstation was the starting point for a display device for the 4-D
weather data. A stereo terminal was developed using two large screen projectors,
which presented different images for the left and right eye through polarization. This
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required modifications to the existing MclDAS terminal which is described in
Hibbard, et al., 1987. This was an effective tool for presenting animated color

sequences of 4-D data in stereo; but, it could not be viewed elsewhere through still
pictures, or more importantly, video tape. This required more development in the
software to provide more visual cues (see 3-D Display Techniques above) and to rely
less on stereo.

The ultimate goal was to develop an interactive 3-D terminal (Hibbard 1988,
Hibbard and Santek, 1989b, 1989c). This was developed on a Stellar (now Stardent)
GS-1000 graphics supercomputer. This system can produce 3-D animations in real
time, of large gridded data sets. Through the use of a mouse, the scientist can view
his data by selecting parameters, controlling animation, and manipulating the viewing

angle. The usel; is presented with a window that contains his data rendered as 3"-D
objects and a control panel. The window contains imagery in the same format as
described in Design Display Software. But, the image contained in the window can be
rotated, zoomed, panned by holding down a mouse button and moving the mouse. The
control panel is new, but very intuitive. By clicking buttons (with the mouse)
parameters can be selected (turned on and off) and animation is started and stopped.

Sliders provide a way to select levels of a particular parameter. For example, to
change from a 50 m/s contour surface to 55 m/s level, the pointer is positioned over
the appropriate slider and is moved with the mouse button depressed until 55 m/s is
displayed above the slider. Color and transparency for the surfaces are also controlled
in this way.

The interactive workstation has many advantages over the original workstation.

Stereo, or some software techniques (such as rocking), are not needed to l_rovide visual
cues to heighten the 3-D effect: the user now controls the perspective at will. The
time needed to produce a video tape has been reduced from weeks to just minutes.
The user can interactively change the perspective or the combination of parameters
immediately, without having to wait for a sequence of images to be generated and
displayed.

Ill. PUBLIC APPEARANCES

The product, namely the display of 4-D data sets, has been well received
wherever it has been shown. This includes classroom situations, international
conferences, and many other places unknown to us, due to the massive distribution of
video taped displays of animated 4-D images. "Live" demonstrations were an
important part in presenting our work as it would provide us with immediate feedback
of comments and suggestions. The demonstrations in the exhibit area during the
International Conferences on Interactive Information and Processing Systems (IIPS) for
Meteorology, Oceanography, and Hydrology would draw hundreds of meteorologists.
We also had video tapes accepted at SIGGraph (Special Interest Group on Graphics)
conferences where upwards of 20,000 attend (Hibbard and Santek, 1988, 1989d).

Our first large public production was at the 3rd IIPS held in New Orleans, LA
in January, 1987. We brought along two MclDAS workstations and Aquastar IIIC
projectors to present 3-D animated sequences in polarized stereo. Ten different
sequences were shown using data from radar (standard and Doppler), rawinsondes,
satellite, and numerical models (thunderstorm, regional, and global). The response was

positive, with many favorable comments and suggestions resulting. Many commented
that they remembered some meteorology by viewing this demo. Some suggested the
addition of line graphics to the images. This forum also sparked the interest of





researcherswith data. This gaveus an opportunity to work with various typesof data
for the years to come,which aided in the designof data managementand display
software.

The following yearat the 4th lIPS, a ten minute video tape wascontinually
shown,with someonepresentfor explanation. Somesuggestionsfrom the previous
conferencewere incorporatedand new data setswere presented. Of note is the useof
morecolor and depth cues(to eliminate the needfor binocular stereo)and the
application of the software to dual Doppler radar and morenumerical models(LAMPS
and GMASS).

At the 5th and 6th IIPS(held in 1989and 1990),we presenteda truly interactive
3-D display with a Stellar (Stardent)GraphicsSupercomputer.At times we had the
researcherpresenting his own data,describing how it helped interpret the model
output. At the 1990conferencewe displayedthe current NMC global model output in
addition to case studies of very large data sets.

Also at the IIPS conferences, one or two papers were presented each year
describing the current effort and future plans. Other conferences where video tapes

produced by us were presented are:

- SPIE: Boston, MA 1988
- 4th IIPS: Anaheim, CA 1988 (Prof. Patricia Pauley)
- Polar Low Conference: Madison, WI 1988 (Louis Uccellini)

- Palmen Symposium: Helsinki, Finland 1988 (Uccellini)
- SIGGRAPH: Atlanta, GA 1988
- SIGGRAPH: Boston, MA 1989

During the fall of 1987, the Synoptic Laboratory class spent some time on
MclDAS studying the 3-D representation of their case study of an extratropical

cyclone. The class, taught by Profs. Lyle Horn and Patricia Pauley, were given a
series of questions to answer based on the 3-D images. The response was favorable,

noting that the 3-D images provided additional information that could not be
extracted from traditional plots. Many faculty of the Meteorology Department also
viewed the display and were interested in developing case studies for their courses. In

the fall of 1989, the Synopt!c Laboratory class revisited, but this time it was presented
on the Stardent. Once again it proved valuable to the class, especially in showing the
inter-relationships between parameters.

IV. FUTURE EFFORT

The future development effort will expand on the work accomplished over the

last three years. Three main areas emerge as being important for continued work in
this area:

- Data management
- Visualizing model data
- Visualizing remotely sensed data

In the area of data management, a more object orientated approach will be

investigated. This will tie together large and varied data sets in a more manageable
way. The user accesses the data through these named objects, rather than grid





numbersor area numbers. This allows the data to be ordered in a fashion that is

commensurate with the desired display.

Visualizing model data was emphasized in much of the work that was done. A
general display package will be developed that will allow ANY scientist to import his
4-Ddataand display onaStardent workstation. User defined procedures will be
added to the analysis, to permit complex calculations to operate on the data at display
time. Also, real-time interaction with parameters as the model executes is not too far

away into the future as the speed of supercomputers increases.

Visualizing remotely sensed data is becoming increasingly important. Here the
volume of data is much larger than that of model data. Interactive tools are needed to

manage, display, and operate on the data. Also, methods for combining with model
output are needed for intercomparisons of parameters.

V°
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APPENDIX B

The following is a list of papers written under this contract. Copies of the papers
follow.

Hibbard, W., 1986a: 4-D Display of Meteorological Data. Proceedings, I986 Workshop
on Interactive 3D Graphics, Chapel Hill, SIGGRAPH, 26-33.

Hibbard, W., 1986b:Computer Generated Imagery for 4-D Meteorological Data. Bull.
Amer. Met. Soc., 67, 1362-1369.

Hibbard, W., R. Kraus, D. Santek, and J.T. Young, 1987: 4-D Display of Weather Data
on MclDAS. Proceedings, Third International Conference on Interactive
Information and Processing Systems for Meteorology, Oceanography, and
Hydrology, New Orleans, AMS, 89-93.

Hibbard, W., 1987: 4-D Display of Satellite Cloud Images. Proceedings, Digital Image
Processing and Visual Communications Technologies in Meteorology, Cambridge,
SPIE, 83-85.

Santek, D., L. Leslie, B. Goodman, G. Diak, and G. Callan, 1987: 4-D Techniques for
Evaluation of Atmospheric Model Forecasts. Proceedings, Digital Image
Processing and Visual Communications Technologies in Meteorology, Cambridge,
SPIE, 75-77.

Hibbard, W., 1988: A Next Generation MclDAS Workstation. Proceedings, Fourth
International Conference on Interactive Information and Processing Systems for
Meteorology, Oceanography, and Hydrology, Anaheim, CA, AMS, 57-61.

Hibbard, W. and D. Santek, 1988a: Presidents' Day Storm, Visualization/State of the
Art: Update. SIGGraph Video Rev., No. 35.

Hibbard, W. and D. Santek, 1988b:Visualizing Weather Data. Workshop on Graphics in
Meteorology, ECMWF, Reading, England, 63-65.

Hibbard, W., D. Santek, and G. Dengel, 1988: Visualization of Four-dimensional
Meteorological Data. SIGGraph Video Review, No. 37.

Santek, D., W. Hibbard, K. Quinn, and T. Melka, 1989: 4-D Display of Geohydrological
Model Results. Proceedings, Fifth Interactive Information and Processing
Systems for Meteorology, Oceanography, and Hydrology, Anaheim, CA, AMS.

Hibbard, W. and D. Santek, 1989a: Visualizing Large Data Sets. Proceedings, Fifth
Interactive Information and Processing Systems for Meteorology, Oceanography,
and Hydrology, Anaheim, CA, AMS.

Hibbard, W. and D. Santek, 1989b: Visualizing Large Data Sets in the Earth Scienccs.
Computer, Vol. 22, No. 8, 53-57.

Hibbard, W. and D. Santek, 1989c: Interactivity is the Key. Chapel Hill Workshop on

Volume Visualization, University of North Carolina, Chapel Hill, NC, 39-43.
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(interactive.video disk), Optical Data Corporation, Warren, NJ.

Pauley, P., L. Keller, W. Hibbard, and D. Santek, 1989: 3-D Animations of a Developing
Extratropical Cyclone for use in General Meteorological Education. 2nd
International Conference on School and Popular Meteorology and Oceanographic

Education, AMS, 166-167.

Tripoli, G., W. Hibbard, D. Santek, 1989: Four-Dimensional Interactive Analysis: A
Tool for the Efficient Understanding of Large Data Sets. Preprints, 12th
Conference on Weather analysis and Forecasting. Monterey, CA, AMS, J 10-J12.

Hibbard, W. L. Uccellini, D. Santek, K. Brill, 1989: Application of the 4-D McIDAS to
a Model Diagnostic Study of the Presidents' Day Cyclone. Bull. Amer. Met. Soc..
70, 1394-1403.
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CA, AMS. (Presentation but no paper)

Pauley, P.,W. Hibbard, and D. Santek, 1989a: A Four-Dimensional Case Study for
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Proceedings, 1986 Workshop on Interactive 3D Graphics, Chapel Bill, SIGGRAPH

4-D Display of Meteorological Data

William L. Eibbard

Space Science and E_gineerlzg Center

Umlversity of Wisconsin-Madison

Abstract

The Mmm-com_uter Interactive Data Access System (Mc_AS) developed

at the University of Wisconsln-Madison Space Science ant F.uglneer!.ug

Cen_er (UW-SSEC) collects large quantities of me tecroiogzcai data in rea_

time for storsxe, analysis an= display on m_Iti-frs-me video ter-_.Azais.

Software is being developed cn the Mo_AS system which _rcduces 3-D ir_es

from a varle_y of =eteorcicgicai da_a for stereo display in short

aaizatlzz sequences. These anuma_icn sequences are produced _ a few

_utes. The user controls :he space and time extents, contents and

"i-for-_a_ion density of the display.

i. Iztroduct.on

_-_ The atmosphere ia a multlvariate moving 3-D volume. Traditionally,

=eteorc!ogists have worked with large numDers of 2-D plots of different

_ar_meters, a_ differen_ times, levels and orientations within the

atmosphere, and integrated these into a mental model of the atmosphere.

Recently there has been interest by a number of groups to produce

integrated _-D displays of meteorological data, including the Natlcnal

Cen_er for Atmospheric Research (Grctjahn and Chervin, 198_), the

Goddard Space Flight Center (Ha_ler, Pierce, Morris and Dodge, 1985),

Colorado State University (Meade, 1985), AT&T Bell Laboratories

(Schiavone et. ai.,1986), Lawrence Livermore National Laboratory (Grote,,

1985i, and the University of Wisconsin Space Science and Engineering

Center (Ribbard, Krauss and Young, 1985).

The .McIDAS system has been developed over the last 12 years at the

UW-SSEC to give meteorologists access to a variety of weather data in real

time t_-ougb multi-frame video terminals (Chatters and Suomi, 1975). This

system consists of a host, which is an IEM. mainframe, from one to twenty

or more video terminals designee and built at VW-SSEC, interfaces to a

variety of meteorological data sources, and roughly 500,000 lines of

software, mostly FORTRAN. Large quatities of weather data from observir_E

systems such as satellites, weather balloons, radar and ground

observations, and from weather models, are brought into the Mc_AS host

within mamutes cf being generated. The data are stored and analyzed on

the host, and transmitted to the terminal for display. The terminal can

display animated sequences of images and graphics.

This paper describes an effort to develop four-dimensional displays

---_ of meteorological data with the Mc_AS system at the UW-SSEC. This effort

has focused on the creation of software which analyzes meteorological data

and generates time sequences of 3-D images depictlr_ the atmosphere. The
_'_'_ ?AGE IS
_:-_'_ images are usually generated in pairs for both left and right eye

Dc !_tlV)R (MJALCCY perspective and displayed on a McIDAS terminal with anagly_hic stereo and
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an-_ma_.on. The s_ereo dls_-ay _am teen implemented by coloring the left

an_ right eye images green and red, and viewing throug_ green and red

filter glasses. We are currently building a large screen dlmplay us _ing

two projectors with polarized filters, to be viewed through polarized

filter glasses. The image generate.on software uses perspective, shading,

hidden surface removal, transparency and other visual cues consistently

with the stereo geometry to produce a vivid illusion of a moving 3-D model

of the atmosphere. A typical sequence contains from 3 to 7 image pairs

and is animated repeatedly at between I and 15 frames per second.

2. Image Design

The atmosphere is very complex. It is understood in terms of

,,,itiple interacting variables over a space-time continuum. Weather

observing systems and weather models produce huge quantities of data,

which are Increasin_ every year. Forecasters, model developers and

students all have a need to access this data and comprehend it. They

need to see meteorological data in ways tha_ maxe the 3-D structures

and motions clear for a varle_y of different ;arame_ers. Our images

are being designed to accomsilsh these goals.

Our i=ages are also designed to march the ca._a_illtles of our

exlmtlz_ ..Uc!DASter_als. These ter_als include u_ tc 128 video frames

and 6_ graphics overlay frames, all of _80 by 6_0 pi=eis. The video

;ixels have 6 bits of intensity encoded in 3 bits by a statimtlcal scheme

which is suited to smoothly varying intensities. The video frames are

organized in pairs, with the two 6 bit intensities driving a color taDle

which maps the 12 video bits to 5 bits each of R, G and B out. The video

out._ut is overlayed by a graphics frame with 3 bits per pixei. The 3

.___. graphic bits are decoded am a transparent level and a table of 7 colors

defined by 5 bits each of R, G and B. A cursor of selec:a_le shape, size

and color is drawn over the video and graphics to help the user interac'.

with displayed infor=ation. User inpu_ comes via key_oar_, joystlcks,

mouse, and graphics tablet. A modified version of the color table

circuit is being built for the polarized two projector display.

Figures I through 7 (I and 3-7 are from Eibbard, 1986) illustrate

the images generated by our software. Figure 7 consists of four small

stereograp_-s. To see the stereo effect, look at the left image with your

left eye and the right image with your right eye. It may help to place

a piece of cardboard per_endicula._ to the page separating the Lmages.

All of our images depict a rectangular box of atmosphere, with the

box edges drawn in and a map on the bottom of the box, including

boundaries or topography or both. The box helps create the illusion of

3-D space and gives a position reference for items in the box. The
tick marks on the back of the 5ox are labelled in kilometers above sea

level. The topographical map is useful not only to show the relation

between weather and topography, but also to avoid depictl:_ weather

phenomena beneath ground level (in figure 4, some of the phenomena are

actually underground). The resolution of our topography da_aset is abouf

10 miles, so topography is generated only for large scale maps.

A primary goal of our effor_ is to show the 3-D structure of the

atmosphere. This proDlem is attacked through the conslsten_ use of

stereo display, perspective, shading, hidden surface removal and other

depth cues. Since the atmosphere is a continuum, meteorologists are

--- Interested in information at all depths of the display, without nearer

items obscuring farther ones. We address this problem through the use

O_iG_NAL PAGE |S°f transparent and mesh surfaces and groups of small objects, suc_ as
-the wind streamlines and trajectories in figures _ and 5. TheseOF POOR

_l_,_L_tec_niques are effective if their densities are tuned correctly. For
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example, the _napes of the tran.-parent surfaces in figure _ are

reasonaoly clear, but tbls brews down when :_ere are _ or more

transparent layers over an opaque layer. T_e software wblcb generates

the streamlines and trajectories tries to tune their densities so that

they are evenly distributed and not so dense as to obscure each other.

The trajectories are den_er near the ground level where lower wind

speeds make them shorter.

Because illumlna_ion, surface shape and transparency all contribute

to perceived brightness, care ,_,st be taken so their effects are not

visually amOiguous. For exam!e, the orientations of t_e opaque

streamilnes in figure 4 are easier to see than the orientat'ons of the

semi-transparent trajectories in figure 5, where the transparency tends

to wash out the subtle brightness cues to orientation.

Atmospheric data exist in the form of scalars (tem=erature,

pressure and moisture}, vectors (winds), di._crete data (lightning and

precipitation) and images (saceillte and radar). Display tecnniques

must be tuned to the mathematical form of the data, aa well as its

com=iexity and texture. Figures I to ? illustrate t_e use of opaque

surfaces, transparent surfaces, grid mesh surfaces, llne graphics on

surfaces, strear_ines, trajectories, clouds, density slices and drop

shadows. ._e contour surfaces can be applied to a wide variety of scalar

quantities including wind speed, _isture, temperature, wind vor:iclty,

etc. We have found that appropriate 3-D graphics for a _ars_neter are

not necessarily si_iar to the stanca.-_. 2-D gra_nlcs for t_at pa_-s._eter.

For example, pressure contour lines in 2-D are fs.m_ilar to anyone WhO

watches TV weather shows, but pressure consour surfaces in 3-D are

nearly flat horizontal surfaces and not very interestlc_. _owever,

contour surfaces of the ratio between observed pressure and standard

atmosphere pressure bring out ver_ical detail of high ant low pressure

areas. T_e density of objects in the display should be tuned not only

for visual clarity, but also to reflect the complexity of the data being

displayed. For example, the density of wind trajectories should be

increased (and theL- thickness reduced) for more complex wind fields.

For most shs_ed objects diffuse reflection wor_s well, but the cloud

images need a special shadi:_ function suited to cloud-like torture.

Texture ma_es the stereo more effective by creat_ tie points for

the viewer's eyes to line up the left and right i_es. The natural

texture of the topography and clouds helps to resolve their stereo depths.

When contour surfaces are very flat they wor_ poorly with the stereo.

The movement of the atmosphere is i_nportant. We depict motion

t_rougb time sequences of images which are animated repeatedly. In

order to produce the sequence in a reasonable amount of computin_ time,

it is desirable to use a short sequence of images. The time steps

represented in the ani=ation will be minutes or hours, and the display

rate should be between I and 15 frames per second. In order that the

motion be unar.biguous, objects in the images should significantly overlap

from one frame to the next. For exa_le, the lengths of the trajectories

in figures 5 and 7 are tuned so that they overlap between frames. The

way the tails of the trajectories fade into transparency also helps to

enhance their sense of motion. When contour lines or surfaces are

animated, the distance a contour line or surface moves between frames

should be less than the distance between contours within a frame. Thi_

makes the motion less ambiguous.

The input to our image generation software consists of large

quantities of meteorological data, which may contain errors, gaps in

coverage and bizarre geometries. In order to be credible with the

user, the software ,,,st be robust enough to avoid producing crazy

images in response to these data pathologies. This is a particular
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problem for the clou_ 2ma6e generation _.llustratec in figure I, which

uses patter-- recognitlcn to extract cloud s from satellite imagery.

The contour surface generation software used for figures 2 and 3 is

also vu!nera_le to problems with complex input data.

Large amounts of da_a can cause clutter and confusion between

different parameters in an image. However, images which ordinarily

!oo¢ cluttered wlll clear up when viewed with stereo and animation.

The differences in depth and motion help to resolve different items in

the display. Variations in texture, brightness and color also tend to

resolve clutter (Marr, 1982). The eye is very good at distinguishing

otjects which differ in size, orientation, shape or brightness. For

example, in figure 5 the trajectories are 20 percent brighter than the

map and the grid mesh is brighter s_ill. Also in figure 5, the bright

grid mesh lines contrast well with the dark map lines.

The time and distance scales of our displays are selected by the

user. If the scales do not match, the motions may be too slow or too

fast or the angles may be misleading, in almost all cases, the vertical

scale must be greatly exaggerated, because of the relative th_.nness of

the atmosphere. This exa6gera_Ion msxes it posslhle to see ver_icai

detail but feats to unrealistic angles ant shapes. For example, the

large clouds in figure I would be very flat viewe_ from space. The fact

that they lock cloud-like is satlsfy!ng but misleading, and apparently

due to a fracta! scaling -law by WhiCh cloud geome_.ry is SLT.i!ar at

different scales if the aspect ratio is c_._uged witz size (Love joy and

Scner_zer, 1986).

3. Image Generation

Our software generates images of the types shown in figures 1

t_-ou_h 7 in accordance with the image design ideas presented above.

The software :__ meant to be efflcienc, in order to be _J:teractive,

while producing images of sufficient quality to present the weather

information clearly.

Weather image generation usually consists of t_-ee basic steps:

analyzing the weather data, rendering the map, and rendering the weather

data over the map. The analysis step is separate since its results may

be used for images at different perspectives, times, densities, etc.

The map rendering step is separate since a map background can. be used

for several images in an animation sequence.

The analysis step varies widely, depending on the nature of the

weather data being displayed. For unevenly distributed observations,

it is usually necessary to interpolate these to a uniform grid. This

is done using an efficient sta_istlcal technique (Hibbard and Wiley,

1985). For wind streamlines and trajectories, such as shown in figures 4

and _, paths are traced through a 3-D or _-D grid of wind vectors. For

cloud images, such as shown in figure I, cloud heights are derived from

cloud infrared temperatures, and cloud edges are detected with a

pattern recognition technique. For contou_ surfaces, such as shown in

figures 2 and 3, equal level surfaces are traced through a 3-D grid.

The topographical and contour surfaces shown in figures 2 and 3 are

Gourau_ shaded triangles. The topographical map usually consists of

5,000 to 10,000 triangles. This density wor_s well with the texture of

the land and the coastlines, and preserves reasonable computing times.

The contour surfaces are composed of hundreds or thousands of triangles,

depending on the area of the surface. These triangles are larger than

those used for the topography, generally matching the density of the

weather data sets. The use of larger trian_!es decreases the time and

memory needed for generating the surfaces, but occasionally produces odd
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looking surfaces.

The wind strea=llnes and trajectories are shaded tubes. These are

rendered as triangles Vnlch extend across the width of the tube and are

shaded with a "cylindrical" shade function. Thi_ shade function

approximates diffuse reflection on the surface of a cylinder uslng

forward differences for scan conversion of the cylinder. The function

is parameterlzed to wore with arbitrarily oriented cylinder and light

source directions. For the trajectories wbich fade to transparency,

th!a function is modified to also interpolate the alpha value.

The shaded clouds of figure I are generated from GOES (Geostatlonary

Operatlcnal Environmental Satellite) visible and infrared imagery, by

remapping into perspective in latitude, longitude and altitude

coordinates. A simplified version of the rem_pplng algorithm is given

in the appendix. The software which generated figure I combines this

algorithm with a cloud edge detectlng'algorithm. The software also

optimizes many of the calculations through the use of forward differences

and special cases. The remap algorithm is much more efficient than the

technique of rendering every square of _ pixe!s in the GOE._ image as a

polygon in the perspective ima__e. The remap algcrlt_= can currently

only accommodate a !imlted range of _erspectlve rotatlcna, because of the

assumption that a GOES image line maps into a series of llne segments

running roughly horizontally across the perspective image. However, this

could be remecleo by adding an initial step to rotate the GOES image, or

by using a more complex in_erpolatlon me_hod in the second phase of the

algorithm.
The horizontal slices of radar ecnos in figure 6 are generated by a

remapping tec_nlque. Radar data are analyzed to images at a series of

levels in the atmosphere, where plxe! value is simply echo intensity.

These images are then remapped into a perspective image. The remapping

cf these radar slices is much easier than the cloud remap. Each pixei

of the perspective imzge maps, via simple perspective transforms, to a

plxel in each horizon_-al slice image. At each plxe! of the perspective

image, we examine the mapped pixei from each horizontal slice and pick

the nearest non-clear one, which is used to generate the shade of the

pixei in the perspective image. Drop shadows from the lowest level are

generated by a similar technique. The perspective transform- for the

lowest level is altered to assume an altitude of zero, and non-clear

pixe!s cause the map surface to be dimmed.

Our software is organized to render into a band of lines, so that

in general an entire triangle can be rendered at once, saving on the

overhead of managing polygons. The number of lines in a band can be

adjusted, but is usually set at 80. The shade at each pixe! is a simple

8 bit intensity. _hen the image is loaded into a 6 bit video frame, the

low 2 bits are dropped. A Z-buffer algorithm is used for hidden surface

removal, with only 8 bits of depth. So far this low amount of Z

resolution has not caused serious problems, partially because we scale

depths to use all 256 levels. A Z-buffer algorithm is also used for

rendering semi-transparent objects. This is done with two images, one

for opaque objects and one for semi-transparent objects. The opaque

image has a shade and a depth at each pixel, and the transparent image

has a shade, a depth, and an 8 bit alpha at each pixel. First, all

opaque objects, including the map, are rendered into the opaque image.

Then, the semi-transparent objects are rendered into the transparent

image, with a modified depth comparison. A new transparent pixel is

combined with the transparent image only if its depth is less than the

Z-buffer depth of the opaque image. The new plxe! is combined according

to the usual rules for alpha and shade, and the transparent depth becomes

the minimum of the old transparent depth and the new plxel depth. This
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always produces correct shade for plxels wblcb see two or less transparent

layers plus an opaque layer, and produces correct shade with probability

_/3 for plxels which see three transparent layers plus an opaque layer.

However, with three, four, or more transparent layers, the effects o_ the
layers on the shade are so visually ambiguous that errors in shade
calculations are not readily apparent.

Our image generation software has no anti-allasing. Bowever, for

objects shaded by difDJ_e reflection, the effects of aliasing can be
reduced by placing the light source in the same direction as the viewer.

This causes the edges of shaded objects, where the allasing is mos_

noticeable, to be relatively dim.
These image generation techniques are implemented on an IN _381.

The computing times vary depending on the data set being rendered, but

some typical CPU times can be sta_ed. The map in figure I is rendered

in 7.5 seconds, and the map in figure 3 is rendered in 11 seconds. The

steamllnes and grid mesh in figure _ are analyzed in 15 seconds and

renderec in 5 seconds. The surfaces in figure 3 are analyzed in 6

seconds and rencered in 19 seconds. The surface in figure 2 is rendered

in 11 seconds. The clouds in fle-ure I are analyzed and rendered in 22

seconds. Figure 5 is par; of an animation sequence of ? stereo pairs.

The ana_ysis for the sequence, whlcn processes 5 da_a sets spanning 9

hours, takes 70 seconds. The trajectories and grid mesh surface are

rendered in 8 seconds per image. The tatar slices in fie-ure 6 are

rendered in 21 seconds. Of course, an anlma_ion sequence of stereo

image pairs for any of these image types w111 requ_-e one to several

minutes for analysis and rendering.

_. Interactivity

Interactlvity is the key to useful meteorological display. The
user should have control over the contents, spatial and time extents,

perspective point and information density of the display. The nature

of Interactlvity depends on the system's response time to the user's

controls. The faster the response is, the more the user can experiment

and play with the data.
Meteorologists use graphical displays to support decisions, some

of them important. Thus, they ,-,st have faith in the accuracy of the

displays. However, meteorologists tend to not trust depth information

in 3-D displays. The work described in this paper is partially

motivated by a desire to increase the accuracy of perceived depth

information in meteorological displays. Ultimately, the best way to

increase the user's truest in depth information is to provide control

over the perspective point of the display with fast response time.

Depth information in an 3-D image is conversed to more trustworthy

screen geometry information when the Z-axis is rotated into the screen

plane. Hardware rendering systems are being built which can solve this

problem for images of reasonable complexity (Clark, 1982 and Fuchs

et. al., 1985).
For meteorologists, the issues of trust and interaction are complex.

Some meteorologists reject computer analysis and graphics of their data,

on the grounds that they can only understand their data by studying it

closely enough to draw the graphics by hand. Other meteorologists see
this as impractical because of the huge quantities of weather data

becoming available. The point is that the first group wants the
interaction with their data which they get from drawing graphics by

hand. The synthesis of these two positions will be computer analysis

and graphics which to allow meteorologists to interact with their data

with the same response time as a pencil.
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Very fast render_ .-peeds should be ex;lolted to give the user
control over a variety of para=eters of the d_play. _iti_le contour

surfaces in an _:age, such as shok_ _ f_ure 3, are badly cluttered
if more than 2 or ] different contour levels are rendered together.

Rowever, the relation between many dlfferen: contour level= could be
seen by changLcg the value of a single contour surface qui_ly under
user control. Similarly, the relation between many different types of

meteorological data could be seen by selectively adding and deletlng

renderings of each type of data, so they can be seen in various

com_Inatlons. If all of them muss be dL_played at once, the resulting

image would be cluttered. Interactive control over the distance and

time scales of the display would allow the user to take a close Ioo_ at

Important small scale regions of a larEe scale display. Thi_ requires

more than ._st an Image zoom, since the density of the displayed

information ,_st be adJu_sed with the scale change. Of course, fast
response for each of these forms of control requires special attenslon

to the analysis and renderlng algorlthms whic_ need to be accelerated.

We have found thas it is Imp.organS thas interactlvity be limited

to aspects of the dlspiay worth controlling. Otherwise, the user will

be cverwneimed with choices they do not underssand. For exsmm!e, the

paramesers of the shadlng function should generally be fixed for a

given ty_e of Image. $1milar!y, control over the perspective view

poin: is useful, bus other parameSers of the perspective transform

should be hidden from the user. Default values should be supplied

for moss controls, so that the user can choose to Ignore them.

_ne user can interact with the 2-D images on the .McID_ system

through the use cf JoysticKs and cursor. We plan to extend this to our

3-D Lmages through the i=_iemensatlon of a 3-D cursor. This cursor

should be a movable Image element, such as a cross hair, which

partlcipates in the perspective and hidden surface removal with the

base image. The 3-D cursor will allow the user to retrieve the values

of meteorological parameters at points in the atmosphere. It will al_o

allow the user to Interac; with the Image rendering process, for

example to direct the software to trace the path in the display of a

particular air parcel. We may also implement a drop shadow of the

cursor to the ground, as an aid to finding the earth location of upper

air phenomena.

5. Conclusions

OF P(_,.)R Q_.jAL!TY

Meteorologists need effective access to the large amounts of data

produced by weather observlng systems and by numerical weather models.

Computer graphics provides a natural tool for this access, particularly

in three dimensions with motion. The work described here explores some

of the possibilities of thi_ tool. _J_wever, there is m_ch greater

potentlal for computer graphics of weather data and other forms of
scientific data. During the next ten years, reasonably priced fast

rendering systems will change the way in which scientists see their data.

There are a variety of ways that our displays can be improved.

It would be useful to combine more t_es of data in a single display.

The cloud images can be improved by finding sources of information

about the sides and bottoms of the clouds. In fact, there is some hope

that sophisticated pattern recognition algorlthms can deduce some of

this information from the texture of the cloud tops. An important

area for improvement lles in makln_ it easier for the user to manage

and analyze the data under!yin_ the display, particularly as data

from diverse sources must be combined to understand a weather situation.

Our _-D display effor_ initially included an attempt to use





co_,_ercially available 3-D renderlr_ software. _wever, we had better

results with our own software, largely because of the flex_illty it

provided. The clouds in figure ; and the trajectories in figure 5

would be difficult to produce efficiently with commercial software

paoxa6es, it is a lot of work to produce renderlng software, but it

is worth the effort in terms of the control and understandlng one gains.

Althou_h we are very excited about the development of fast rendering

hardware, our experience with commercial software packages sugEests

t_at new hardware be viewed with caution. Still, the benefits of fast

interaction will Justlfy designing images to match the capabilities

of rendering hardware.

Append_

This algorithm remaps a GOES Image to a perspective Image, with

two phases of processlng for each GOE_ image llne. First, t_e line is

mapped tc a series of llne segments, assumed to stre_c_ roughly

horizontally across the perspective Image. Then, the plxels between

th_s series and the series of line segments mapped from t._epreviou_

GOES ILue ace shaded by vert_-cal inter_olatlon.

Constants and variables:

n_ilnes ,n_e!em_

nplines ,npeiems

gilne,Eelem

fat, !on, a!t

qelem

pline,pe!em

- size of GOES Image

- size of perspective Image

- pixel coordinates in the GOES image

- 3-D location of plze! from GOES Image

- elemen', coordinate in perspective i-age of

pine! from GOE_ image

- plxei coordinates in the perspective image

GOES-iR(Ellne,ge!em) - infrared value at coordinates gline,gelem in

GOE£ _,_e

pshade(_iine,peiem) - shade vaiue at coordinates pllne,peiem in

perspecclve Linage

iline(pelem) - llne coordinate in perspective image as a
function of element coordinate in perspective

image, along current remapped GOE_ image llne

ishade(pelem) - shade as a function of element coorcinate in

perspective image, along current remapped GOES

image llce

Jline(pelem) - similar to iline, for previous GOL_ image llne

Jsha_e(pe!em) - similar to ishade, for previous GOES image llne

Functions:

transfor= - transform from GOES image coordinates to latitude and
longitude. This function is calculated precisely at a

square grld of points and interpolated inside the squares

height - calculates altitude from GOES infrared temperature

shade - calculates s_ade based on GOES visible value and the

geometry of the cloud top surface

perspective - calculates the perspective transform from latitude,
longitude and aitltude to llne and element
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Al_orithm:

for gline=1 to ngllnes
lelem=O
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for pele_:l to npelem5
il!ue (pelem) :O

__. _line(pelem)=O
end for

; first phase: map a line of the GCES image to a series of llne

; segments in the perspective image
for gelem=l to nKelem_

fat, Ion: transform(g llne ,ge !era)

alt=hei6ht (GOES- IR (gllne ,gelem) )

gshade=shade(gllne ,gelea)

pllne, qele=: persp ectlve( lat, lon, alt)
if O<lelem and lelem<qelem then

; create a line segment in the perspective image between the

; destinations of two consecutive pixeis from the GOES image
dline= (pline- il/me) / (qe lem- lelem)

dshad e--(gsh_ e-imhade )/ (qe iem- ielem)

for pe!em=ieiem_1 to qe!e=

lline= iline_d llce

isSa_ e= lahsa e_dshad e

if 1<=peiem and pelem<=npe!ema then

iline (poles) =lllae

i_hsde (pe!em) = _:_ e
end if

end for

endif

lllne:p !ine

lahade:gshade

-_ lelem=qelem
end for

; second phase: calculate the shades of plxe!s in the perspective

; image between the current and the previous series of llne segments
for peiem=1 to npeiems

aline: illne (p•iem)

bllne: Jllne(peiem)
if O<hllne and bline<aline then

; interpolate shades along a vertical segment of plxe!_ in

; the perspective image
ashad e=ishad e(pelem)

bshade: jsbad e(pelem)

dshade= (ashad e-bshad e)/ (allne-b line)

for pline=bline*1 to aline

bshade:bshade,dshade

if 1<=pline and pllne<:nplices then

pshade (pline, pelem) =bshad e
end if

end for

endlf

endfor

; move line segments for current line to previous line

for pelem=1 to npelems

Jline (pelem) =iline(pelem)

-..... Jshade (pelem) = lahade (pelem)
end for

end for
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Figure I. Cloud Ima_e generated from GOES data over the Gulf of

Hexi=o, Louisiana, __i_si_sippi and Alabama. The tick mares on the
back of the box are la_elled in kilometers above sea level.

OF POOR QW]ALITY

Figure 2. 55 m/s wind speed surface and sea level pressure contour
lines drawn on the topographical surface, generated from LFM (Limited
Fine Mesh) model data.
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Figure 3. 5emi-transparen_ 32 m/s wlnd speed surface and an opaque

28 m/s wind speed surface generated from balloon data.
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Figure _. Wind streamlines and a 5 g/kg (grams of water vapor per

kilogram of air) grid mesh m.txlng ratio surface, generated from balloon
data.





Figure 5. Wind trajectories with tails fading to transparency, and a 5

g/kg mixing ratio surface, generated from VA_ (VI_R Atmospheric Sounder)

satellite data.

Figure 6. Horizontal slices of ecbos from a volumetric radar over a
small scale map centered at Mount Royal, Quebec.
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Figure 7. Four small stereographs-of: (a) w:r_d trajectories and _l.xl._g
carlo surface from balloon data, (b) clouds from GOES data, (c) opaque

wlnd speed surface from balloon data, and (d) wind trajectories in a
severe thunderstorm from dual doppler radar data over a small scale map

near Ortenta, Oklahoma. To see the stereo It may help to place a piece
of cardboard perpendicular to the page separating the images.
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Cover: Cloud image generated from GOES data of 1800 GM"I 10 September 1985 over the Gulf of

Mexico. Louisiana. Mississippi. and Alabama. The image was generated by remap _ith artificial en-

hancement of the sun's shade and a cloud-edge-detection algorithm. For mote details see the article by
Hibbard beginning on page 1362.
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Abstract

The University of Wisconsin-Madison Space Science and Engineer-

ing Center is developing ammated stereo display terminals for use
with MclDAS IMan--computer [nteractive Data Access System l.
This paper describes Image-generation techniques which have been
developed to take maximum advantage of these terminals, integrat-
ing large quantities of four.dimensional meteorological data from
balloon and satellite soundings, satellite images, doppler and volu-
metric radar, and conventional surface observations. The images
have been designe_ to use perspective, shading, hidden-sunace re-
moval, and transparency to augment the animation and stereo-dis-
play geometry. They create an illusion of a moving three-dimen-
sional mociei or' the atmosphere so vivid that you feel like ._ou can
reach into the display and touch it. This paper describes the design of
these images and a num0er or rules of thumb for generating four-
dimensLonai meteoroioglcal dispia'.s.

1. Introduction

A meteorologist wishing to understand a weather situation

must typically study a large number of map plots of various

types of weather data over a range of times and vertical lev-

els. Skilled meteorologists can integrate these plots and

create moving three-dimensional pictures of the weather in

their minds. It would be useful to meteorologists to have a

tool that would directly present integrated three-dimensional

moving displays of weather situations.

There has been interest bv a number of groups recently in

the development of three-dimensional weather displays, in-

cluding the National Center for Atmospheric Research

(Grotjahn and Chervin. 1984L Colorado State University

(Meade. 1985). the NASA Goddard Space Flight Center

iHaster et al.. 1985), AT&T Belt Labs lSchiavone et al..

1986t, Lawrence Livermore National Laboratory, (Grotch.

1985L and the University of Wisconsin-Madison. Space Sci-

ence and Engineering Center IHibbard et al., 1985).

The stereo McIDAS terminal being developed at the Uni-

versity of Wisconsin-Madison Space Science and Engineer-

ing Center is an important tool for creating moving three-

dimensional weather displa) s. This terminal displays different

images to the viewer's left and right eyes by using filter

glasses, which ma.v either be red and green or cross polarized.

The viewer has the illusion of looking at a three-dimensional

object. The stereo terminal can also animate sequences of

stereo images to create the effect of motion.

In order to use the stereo terminal effectively, the dis-

played images should depict the moving three-dimensional

structure of atmospheric parameters and phenomena as

clearly as possible. This paper reports on imagery designed
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and implemented over the last three years as part of the larger

stereo-terminal-development effort. In these images the

three dimensions are the three spatial dimensions with ani-

mation used for the time dimension. The attitude is that the

viewer is looking at a model of the atmosphere evolving over

time. The real content of this work is the development of a set

of algorithms that create these images interactivety ¢in real

time_ from data on the McIDAS computer system. The paper

starts with a description of the goals and problems of three-

dimensional meteorolomcal displays, followed by the gen-

eral approach used and rules of thumb learned along the

way. Then the design of specific images is described. These

!nclude cloud images from GOES (Geostationar'y Opera-

tional Environmental Satellite) data. wind streamlines from

rawinsondes, wind trajectories from rawinsondes and VAS

t VISSR [visible infrared spin scan radiometerj Atmospherlc

Sounder_ soundings, contour surfaces from rawtnsondes,

wind trajectories from dual doppler radar, and images of

multiple sections through a volumetric radar. These descrip-

tions do not include the details of the geometry and shading

algorithms used. Such information can be found in graphics

texts I Foley and Van Dam. 1982and Rogers. 1985). The con-

clusion describes future work and the appiication of these

techniques to new sources of data.

2. Goals and problems of 4-D

meteorological disptay

Description of the atmosphere requires presentation of pa-

rameters within its volume, and representation of their time

evolution. To depict the three-dimensional spatial portzon or

_his. it is necessary to use a variety of visuai cues including

perspective, stereo, motion parailax, depth precedence, shad-

ing, texture, brightness, color, shadows, and transparency.

Perspective is reflected in the way things appear smaller at

greater distances: stereo is the use of different views for the

right and left eyes: motion parallax is the way the relative po-

sitions of objects at different depths appear to change as the

viewer moves: depth precedence is simply the fact that near

objects hide objects behind them (this is often called hidden-

surface removalS: and shading is the variation in brightness

due to the changing surface orientation of the objects being

viewed. Texture is a high-frequency variation in shading.

which can provide a lot of information about depth and sur-

face properties. Brightness and color also tend to carry depth

information. Bright objects usually appear closer than dull

objects, and more subtly, red objects sometimes appear

closer than blue objects. Shadows and transparency also help

to support the illusion of depth. These visuai cues are power-

ful tools for communicating depth information when they

are used together consistently. However. it is important to in-
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tegrate the use of different visual cues so that their effects are

not ammguous. For example, the percev.ed bnghmess of a

scene _s a funcuon ol ilium:nation, shape, transparency, and

shadov.s. If these cues are used carefuily, the viewer will be

able to separate their effects. Because the atmosphere is a

continuum, an effective displa', must show information at ahl

depths ,,,thout nearer regions obscuring farther regions.

VVhereas most computer-graphics appiicanons to date ha_ e
been concerned with the surfaces of three-dimensional ob-

jects. :or meteorology the concern is v, ith the three-dimen-

sional •. oiume.

Meteorological data exist in the form ot scalar I]e[d_ _mois-

ture. temperature, pressure, v.ind speed, ctc. I. _ector tibias

i_v,ndsJ. :mages I,,ateilite and radar _mages) and discrete

phenomena llighming and precipitation _.Display techni_ ues

must t'e ale'.eloped tor each t.',pe ol data. _u,ted to the mathe-

manna; :arm as welt as the density and texture of the data. it

is also cesirable to combine different t.'. pes of data mid a sm-

gte dL,_:ay ,._,uhout contusion betv, een parameters or too

much .:.utter.

the ..mot,on otthe atmosphere is demoted b" aroma:rag a

_eq uc::.,:,: of _ma,-,es. In an animated disp'a': :t _sdesirar?ie that

:he mc::on be elba,q, apparent using a relau',ci_ -i:ort _c-

quence ..'_ ,mages. A -,ht.,rt _,:quencc '._ii; conserve CIspia)-

termma. :tame %;ace and can al_,.c ne _.omputed .'n, re

qmcki?

As 'a:tq tt_,o-dimensionai meteoroiomcai dispia? _. inter-

actp. w. :_',important, l'he _te,aer sho-uid be able to control

the cententsand the xtet_point of the displa_ and to generate

a net_ CaSbta _. re[ati',eiy quickl.'.. Becauae oIthe compiexlt? ot

three-c_me.nsionai dispta_, algorithms..earuculari?, for se-

quences ot images, efficiency must be ,ertousi,. address, be to

achie'.e _::e desired le',ei ut mteracu',iLx.

Thrr.e-dimens,onai disma3', share a number ot data-

,,rien:e,.: problems v.ith more-traditional dlspia?.s. Bad data

_oint:. ,:an generate distracting and bizarre e:Iccts m an annex -

qs In :act. :he greater _oiume ot data used in generaung

three--c:mensxonat disniaxs makes them more buscepubie to

bad-data eroblems. Data density and co',erage _houid heip

determ:ne the -<ale ot the dispia'.. Ho,._e,.er _anat_ons m

denser', and coveraee can create problems. Gaps in the data

can create misleading dispia_.s v,mie too much data can
create a ciuttered dispia}.

A parncutar problem ot three-dimensu)nat dispia,._ is tne

exaggerated _ert,cal-to-honzontai aspect rand that tt_e,,

,men _:a_ e. For a horizontal scale ot hundrecs or thousands

of km_meters, it ts necessar', to expand the _ertlcai,<ale bx a

factor ,-t tens or hundreds. Ahhougn this is una',o_dable. _t

can lea,a to misieading angles and s,opes m the dispia.,..

Another parucuiar problem ot three-dimenstonai displa}

_.,,the dllI]cuit; Ot presenting precise quannfiable mlorma-

t_on. T_:_s _,, m part due to the ummgmtT, ,q depm. _ mci",

make:, it easier t_ ,be reJau_e spatlai reianons than aosoiute

[ocatlorl.

3. Design of 4-D meteorological imagery

MI ol :he _magesdcscnbed here t except the first cia, ud lmag¢_

.ire ha.,ed _nblde a rectanguiar box ,.,,ho_e edges are drav, n _rl

the image. This helps to define the three-dimensional space

and to create a position reference for objects in the box. Tb.

coordinates of the box are usuail, latitude, longitude, at

height. Tick marks along two of the box's vertical edges ar_""

labeled in kilometers to help ideate objects _ertlcatl',. Some

sort of map base is alwa',s dra'an on the bottom of the box.

This can be a topographicai re.:ef _urtace or a fiat _,urtace.

Map boundaries ma.,, be drav.n on the -urtace as a v,a_ to

find the horizontal locations o_ objects m the nox. The relief

map sho,a,s the relation of _eather to topography,. [t also

hides the part of the box space '*hich ls.belot_ ,_,round ie,.ei

and _hich should not appear ::, contain atmosphere.

The principal depth cues -:sod are perspecme, stereo.

depth precedence _hiddcn--,unace remo_a_L and q_ading.

_A,hen these are used accurate:', and conslstentlx the_ can

create a stnkine three-dimens:enai illus_on. Mthou,,h stereo

is central to the t'our-dimens_onal _eamer-dispm:, effort, its

effect is greatly enhanced b,. :b.e -so of perspecm.e. _hading.

and depth precedence. Stereo :: aiso ennanceu b', texture :_r

other '_anattons in brignmess :nat create ue m)lnts :or the

e,.es to line up the k::: and r:.:.,:t :maces t)mer d?Dth cues

used include IViOtlOH ;?,:irali_,,. _-'rl£.qt,'2eb,-..4ado,,',,,. d_d

',ransearenc}. In order :,) cre2:e a ,:c,n_ mcm:.: ',_:r_L_-tllmcn -

,lonal iIIuskm, the c:c_:ia cue, -::omd b.,: -:,cd ,_,ms_stent.',.
[t is important that the ',ma':> ?orltaln p,_ 2r,>,- err_r_ eL:at

can distract the xie_er, attem: :n from the real mlormatbm

ofthedispia}. On the other han4.:nereare,ome caicwauons

that can be t or.,. approx:mate ,:ennui causing a distraction.

For example, smooth ,urtaces ,:an _e approximated b,. m,ri',

large flat pot',gons without t_;5- ?zln,..z,nt.,tlccd at, iong as ti

.-.hading _s smooth. . .,,,

Because the atmosphere ,3 a zontm.uum and most ,n its

phenomena are continuous. :: :, deslraoie to dispia} lnlor-

marion from many depths .,h,-n:.lHaneouy]', ','.itllOUt nearer

items obscuring farther _tem,,. 7[".:, can be accompu_hed ,a _m

the iudicious use 4t :ran>pare=: _urfaces and '_'rld-mesn-ur-

:aces. A group ofsmail _i;aded ,__ects. _,ucn a.., trajectories c,r

streamlines. ,_ also ellen:ire :: :heir denstt', _:_p_cked nor-

reed'.. Ho_e,.er. these effects _r.ouid not :'e _cr,._orkcd to

:.he point where the _ma'aes beJ,:.'m,.e cluttered a;:c c_mtusine.

Images t_hich appear cluttered '.'.hen '._,.'_eu ,taucaii,.

tt.ithout stereo ma,, become C!e27 "A hen animation and _:ereo

are added, as ditference_ in de7:2 area motion tend to re_.ot,, e

items in the image. Clutter can a_so be cleared H different

items are gi',en different s_zes, re\lures, br>.zntnesse_,, or coi-

ors l Marr. 1982L For exampie. :ets ot objects, can be resobeo

it:he general brightness ie_e_ o: .me set _sat least twenty per-
cent different than the other.

In addition, animated _tems :n the dispia,, _,ituuid ha,.e s,a-

nit]cant overlap from one frame to the next: other_se. :he,.

v.Hi be difficult to follo_. For e\ampie, tralectorms sh )u_d be

long enough t,) ,_eriau netx_eer: trames.

_,hhough mteractp, lt,, t, _m2ortant. _t _s also _mportant

not to burden the u,,er t_ Hh t,',_ :.'2"1n,, cht)Icc'_ ol per_pect:', e

geometr), iieht-,ource ?!ac_'rr:c:_:..hadin,, aieorHl:,m .'?.a-

tame,ors, etc. These can bc Dlc:,.dd correct'.x ,mcc _pcrnap_ a.,

a l._nctlon ol the data to be dp.2:a,,ed I. :,.'e 'r',, the user's at-..... e

tent_enh,rmeteoroiogy F,re\ampte. lixm,__,tnchght:,our:

to coincide ',_.Hh the _m_cr-: .:,.e 7'OsltlOrl seems to gp, e goov..,..._
resu'.ts in all _.ltuat_on>. T}:cu,er ,,qould haxe control o_er the

te_smum ol the dispta?..,o that a,cene max ne _e,aed from
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FIG. I. Cloud image generated from GOES data of 2215 GMT 28 March t984, by remap and vertical shift of pixels according to infrared-
temperature--derived heights.

different angles and different distances. The user should also

be able to have some control over the contents of a display,

such as the time and geographical extents, the values of con-

tour surfaces, and in some cases the density of information.

All these forms of control are possible with the displays pre-

sented here. Interactivity is greatly enhanced by increasing

the efficiency of the display generation, giving the user. faster

response to his choices.

4. Cloud images

t

This work includes two approaches to creating perspective

images of clouds from GOES data. The first approach re-

maps GOES images to a nongeosynchronous perspective

and then shifts pixels vertically in the image by a distance

proportional to height, as calculated from IR (infrared)

temperature (Fig. 1). Any gaps created by these vertical shifts

are filled in by repeating pixel values. For high-resolution

images, IR brighmesses are interpolated.

The images produced by this approach appear three-di-

mensional and are effective when viewed in stereo with ani-

mation. However, they suffer from several problems. The

shading is generated from the GOES visible brightness and

lacks texture except for low-sun angles. Where there are ver-

tical gaps between cloud and ground and between cloud lay-

ers this approach interpolates over the gaps, connecting

clouds with ground and cloud layers with each other.

The second approach to cloud images is an attempt to

overcome the problems of the first. This approach produces

perspective images of clouds over a topographical map (Fig.
2), which may be viewed in stereo with animation. A remap-

ping algorithm is combined with artificial enhancement of

the sun's shading and a pattern recognition algorithm to de-

tect cloud edges. The cloud-edge detection is based primarily

on the IR-brighmess-variance technique of Coakley and

Bretherton (1982) with surface hourly temperatures and vis-

ible brightness used to increase the accuracy of detecting low

clouds. Detecting cloud edges makes it possible to treat

clouds as distinct objects in three-dimensional space, so that

they may be combined with other types of objects in the

display.

One curious aspect of 3-D cloud displays is that they look

so much like we expect clouds to look, despite the fact that

they cover areas hundreds of kilometers across and the verti-

"cal scale is greatly exaggerated. Apparently, clouds obey a

fractal scaling law with similar shapes at different scales if the

vertical-to-horizontal aspect ratio is adjusted to match the

scale (Lovejoy and Schertzer. 1986).
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The beautifulcloud images produced at the Goddard

Space Hight Center helped to motivate and guide thiswork

(Hasler et al.,1985).
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5. Wind trajectories and streamlines

Time sequences of stereo images of isentropic wind trajecto-

ries are generated from rawinsondes or VAS soundings com-

bined with a grid-mesh mixing-ratio surface and a topograph-

ical map (Fig. 3). The trajectories are depicted as shaded

tubes of finite diameter. With animation they appear to trace

a path through the atmosphere, with their tail ends fading

into transparency as they move. The finite body of the trajec-

tories makes it possible to use shade and hidden-surface re-

moval as cues to their shape and location. The fading into

transparency enhances the sense of motion and serves as a

cue to wind speed, as the degree of transparency along a tra-

jectory is proportional to the length of time since th'e air par-

cel was at the points along the trajectory. The display clearly

shows the relation between wind, moisture, and topography
over time.

The analysis is relatively simple. For each observation

time over the period of the display three-dimensional isen-

tropic grids of wind velocity and height are produced. Sound-

ing data is interpolated along each sounding to 10 evenly

spaced potential-temperature levels. On each level wind

speed and height are analyzed to a uniform 20 by 20 grid

using a fast Barnes analysis (Hibbard and Wiley, 1985). The

wind trajectories are traced along the isentropic surfaces

using linear interpolation in time and space. The algorithm

tries to maintain a reasonable density of trajectories. The

mixing-ratio surface at each time is analyzed by finding the

height of the desired mixing-ratio surface at each sounding,

and interpolating these heights to the same grid. Thus the

mixing-ratio surface consists of points in three dimensions all

having the same mixing-ratio value, similarly to the way an

isentropic surface consists of points with the same potential

temperature.

The first images produced as part of this work were wind

streamlines drawn as shaded tubes.(they look like spaghetti)

combined with a grid-mesh mixing-ratio surface and a simple

map (Fig. 4). These are generated from rawinsonde balloon

soundings with an analysis similar to the trajectories de-

scribed above. Animation is used for motion parallax rather

than time sequence. Two stereo pairs of streamline images

are generated, so that by animating between the two pairs.

the scene seems to rock vertically. This is very effective in en-

hancing the three-dimensional illusion.

FIG. 2. Cloud image over a topographical map, generated from
GOES data of 1800 GMT l0 September 1985 by remap with artifi-
cial enhancement of sun's shade and cloud-edge-detection algorithm.

FIG. 3. Wind trajectories and a 5 g/kg mixing-ratio surface over
a topographical map, generated from VAS soundings of l I April
1984.

6. Contour surfaces

Perspective line graphics of isentropic and mixing-ratio sur-

faces are generated from rawinsondes. These are grid-mesh

surfaces over map outlines (Fig. 5). Because of their simplic-

ity, long animation sequences can be generated quickly. They

work best when the time interval between images is three

hours and when they are animated at a rate of at least three

FIG. 4. Wind streamlines and a 5 g/kg mixing-ratio surface over
a simple map, generated from rawinsondes of 1200 GMT 11 April

1979. ORIGINAL PAGE IS
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FiG. 5. 280 K potential-temperature surface over a simple map,
generated from rawinsondes of 0000 GMT 23 April 1986.

FiG. 6. Wind-speed surfaces for 32 m. s-t (semitransparent) and
48 m. s- _(opaque) over a topographical map, generated from rawin-
sondes of 0000 GMT 17 April 1986.

FIG. 7. Wind trajectories with trajectory, thickness used to indi-
cate echo intensity, generated in a frame of reference that moves with
the storm. The storm is near Orienta. Oklahoma. on 2 May 1979.

per second. This gives the appearance of waves rolling along

the moisture or isentropic surface.

The mixing-ratio or isentropic surface at each time is ana-

lyzed by finding the height of the desired surface at each

sounding, and interpolating these heights to a 20 by 20 grid.

The grids of heights are then linearly interpolated between

sounding times.

More-complex shaded contour surfaces are generated

from rawinsondes for a variety of meteorological parame-

ters. The data are interpolated along each sounding to 10

evenly spaced height levels. On each level the data are ana-

lyzed to a uniform 20 by 20 grid and the surfaces are then lo-

cated in the display through this three-dimensional grid.

These are depicted as one or more shaded surfaces, some of

which may be semi-transparent, over a topographical map

(Fig. 6). This technique is capable of displaying oddly shaped

surfaces which may contain folds or bubbles. The shapes of

the surfaces are easy to understand, particularly when viewed

in stereo. When viewing a transparent surface and an underly-

ing opaque surface simultaneously, the eye is quite good at

separating the shade variations of each surface and deducing

their shapes. However, this breaks down when there are sev-

eral transparent layers.

7. Radar data

Dual doppler radar data. consisting of three component

wind vectors and echo intensities over three-dimensional 15

by 30 by 30 grids at a sequence of observing times between

three and 12 minutes apart, have been analyzed and supplied

by the National Severe Storms Laboratory. These data were

supplied in grid sets that move with the storm. The data are

displayed as a time sequence of shaded wind trajectories in a

fiat box, with trajectory thickness varied to represent echo in-

tensity along the trajectories (Fig. 7). These trajectories are

traced through the grids, subtracting average storm velocity

from the winds, resulting in a storm relative display. The box

is about 33 km on a side and 15 km high, so that the vertical-

to-horizontal aspect ratio is approximately square. When

these images are animated in stereo, they create a dramatic

display of winds inside a thunderstorm.

Volumetric-radar data sets were supplied by the McGill

University Radar Weather Observatory. These had been re-

sampled by McGill to uniform 256 by 256 grids on I 1 un-

evenly spaced vertical levels, with observation times I0 min-

utes apart. A stereo pair of images is generated at each

observing time, consisting of a series of horizontal slices

through the atmosphere (Fig. 8). Each slice is opaque where

there are echoes and transparent elsewhere, with the ground-

clutter echoes removed. The data are resampled in the verti-

cal with the density controlled by the user. This allows the

density of slices to be tuned according to size and orientation

of the storm, so that high slices do not obscure low slices. The

bottom of the box is flat with map boundaries and drop

shadows from the lowest level of echoes. Note that the map

boundaries in Fig. 8 are too coarse for the 256 by 256 km

scale of the box. Finer map boundaries would be used with

these images where radar data were available regularly.
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FIG. 8. Horizontal sections through a volumetric radar, with

ground echoes removed, over a flat map with coarse boundaries. The
data is centered near Mount Royal, Quebec, at 1710 GMT on 9 July
1981.

8. Conclusions

The image-generation techniques presented above integrate

large quantities of four-dimensional meteorological data for

animated stereo display. These techniques combine perspec-

tive. shading, depth precedence, transparency, brightness,

shadows, and motion parallax with the stereo-display geom-

etry in a consistent way to create the vivid illusion of a mov-

ing three-dimensional model of the atmosphere. Figure 9

contains small stereographs of four of these types of images.

Many of the elements in these images, such as fading tra-

jectory tubes and clouds with edge detection, would be diffi-

cult or impossible to generate using commercially available

3-D graphics software. It is also useful to have the flexibility

to experiment with image-generation techniques without the

constraints of a large software package that was originally

created for a different application.

While the displays presented in this paper create a striking

four-dimensional illusion when viewed with stereo and ani-

mation, they are still a long way from reaching the potential

of four-dimensional display for meteorologists. There are

several ways they can be improved in the near future. First,

elements from these displays will be integrated into com-

bined displays. For example, a semi-transparent isotach con-

tour surface may be combined with the shaded tube wind tra-

jectories to help indicate the speeds of the trajectories. Or, in

the study of severe weather, it might be useful to combine a

semitransparent moisture surface _ith grid-mesh, potential-

temperature surfaces at several different temperatures, and

to add sea-level-pressure isobars drawn on the topographical

surface. It would also be interesting to combine cloud images

with volumetric-radar echoes, perhaps with the clouds modi-

fied to be semitransparent. With such a large number of po-

tential combinations, more research and field testing will be

essential in determining the degree of utility for any particu-

lar one. Second, the image-generation techniques of this

paper will be applied to gridded output data of a sophisti-

cated data-assimilation model that is being developed on the

MclDAS system and is being run on a regular basis (Mills

T^gLE 1. CPU times and wall-clock times for representative

sequences of image pairs for the image-generation techn;
presented in this paper.

Image-generation technique

Number CPU Wall

of image time time

pairs (sees) tminsl

cloud images by remap and vertical 1 73 3.4
shift

clouds over a topographical map, 3 160 8.1
with artificial shade and edge
detection

wind trajectories and mixing-ratio 7 220 13.3
surface from VAS soundings, over
a topographical map. covering nine
hours and five sounding periods

wind streamlines and mixing-ratio 2 35 3.2
surface from rawinsonde balloon

soundings, over a simple map, with
motion parallax

grid-mesh potential-temperature 9 .18 2.0
surface over a simple map

two semitransparent wind-speed 1 70 3.3
surfaces from rawinsonde balloon

soundings, over a topographical
map

wind trajectories from dual doppler 7 97 q_
radar

horizontal sections of a volumetric 3 148 S. 1
radar

and Hayden, 1983). Third. the use of four-dimensiona r '-

plays would benefit from making the numerical value,

geographical locations of the displayed meteorological _a

more accessible. The location problem can be addressed by

displaying views ofthe same scene from several different per-

spective points, or by using the four-dimensional display in

conjunction with simple two-dimensional line graphics. The
numerical values and locations of data can also be accessed

using a three-dimensional cursor. The user would place this

cursor at a point of interest in the display and retrieve its lo-

cation in latitude, longitude, and height as well as the values

of meteorological parameters at that point. The three-di-

mensional cursor should be implemented in such a v, av that

it participates in the perspective and hidden-surface removal

with the rest of the image elements.

The cloud-image generation with cloud-edge detection is

the most complex software presented here, and attacks the

most difficult problem. These cloud images are based on in-

formation from GOES data about the tops of clouds, and on

surface hourly temperatures. They could be improved by add-

ing information from surface hourly cloud-cover observa-

tions and VAS soundings to fill in the sides and bottoms of

the clouds. These data could also help improve the accuracy

of cloud-top heights and cloud-edge detection. The current

cloud images have a tendency to all look like cumulus clouds.

This could be addressed by adding a cloud-typing algorithm

(Kittler and Pairman, 1985) to adjust the shade and texture of

the clouds. These changes may help to improve the tendenc)

of the current technique to display thick cirrus cloudr t

thunderstorms similarly.

Most of this work was done using red and green filters with

the stereo display, so that it has been impossible to effectively
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FiG. 9. To see the stereo effect with these four image pairs, look at the left image with your left eye and the right image with your right eye. It

may help to place a piece of cardboard perpendicular to the page so that your left eye cannot see the right image and your right eye cannot see

the [eft image. (a) Wind trajectories and a 5 g/kg mixing-ratio surface over a topographical map, generated from rawinsonde balloon sound-

ings of 1200 GMT 23 April 1986, (b) Cloud image over a topographical map in the region of the Baja peninsula, generated from GOES data of

21 O0 GMT 24 April 1986 by remap with artificial enhancement of sun's shade and cloud-edge-detection algorithm. (c) Wind-speed surface for
40 m. s -_ over a topographical map, generated from rawinsonde balloon soundings of 0O00 GMT 18 April 1986. (d) Wind trajectories with

trajectory thickness used to indicate echo intensity, generated in a frame of reference that moves with the storm. The storm is near Lahoma,

Oklahoma, on 2 May 1979.
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experiment with the use of colored images. However, once a

cross-polarizeddisplayisregularlyavailable,color willhe

exploitedas a visualcue.

One of the major features of this work has been the atten-

tion paid to efficiency. Table I lists the CPU time and the

wall-clock time to compute representative sequences of

image pairs for each of the image-generation techniques

presented. The CPU time is the number of seconds to gener-

ate the sequence of image pairs on the IBM-4381 McIDAS,

including the time for data analysis but not including the

time for loading the images into the video terminal. The wall

time is the number of minutes the user must wait, from the

time the first command is entered until the sequence of image

pairs is ready for viewing on the video terminal, assuming the

system is not very busy. Note that the wall time is roughly

twice the CPU time, plus a minute for each image pair to be

loaded into the video terminal. Also note that the grid-mesh

potential-temperature surfaces use the graphics mode of the

video terminals and do not need image loads. Times for these

techniques will vary depending on the time and distance

scales being displayed, and on the values of the meteorologi-
cal data. For example, cloud images are generated more

quickly when there are fewer clouds.

A revolution is occurring in computer displays as comput-

ing power approaches the point where it is economical to

produce images in a fraction of a second. This will allow the

userto specifythe perspectivepoint and the contents of the

display with a device likea mouse or a joystickand to get

immediate response.This iscurrentlypossible for simple

graphics and under development forcomplex and smoothly

shaded images similarto those presentedhere(Fuchs etal.,

1985 and Clark, 1982).
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William Hibbard, Robert Krauss, David Santek and J. T. Young

Space Science and Engineering Center

University of Wisconsin

Madison, Wisconsin

_. INTRODUCTION

Meteorology is the science of the constant-

ly moving four-dimensional atmosphere around us,

but the meteorologist must currently rely on

static two-dimensional plots of weather informa-

tion for forecasting and research. A meteoroid-

gist wishing to understand a weather situation

typically studies a large number of map plots of

various types of weather data over a range of

times and vertical levels. Skilled meteorolo-

gists mentally integrate these plots and create

moving three dimensional pictures of the weather

in their minds, buc it would be useful to have a

computer terminal which would directly present

such integrated three dimensional moving displays

of weather situations, omitting the need for time

"consuming study of two-dimensional plots and

maps. To shed new light on atmospheric inter-

actions and the behavior of predictive models, we

need a faster and more efficient look at the

atmosphere as a four-dimensional continuum.

The Space Science and Engineering Center

(SSEC) of the University of Wisconsin, with its

Man-computer Data Access System (McIDAS), has

long been a leader in sacelllce and weather dace

processing (Suomi, 1983). The extensive use of

animated sequences of two-dlmenslonal images and

graphics in MclDAS has proved very. helpful in

weather analysis. With a large dace base of

real-t1_ne observaclons as well as archive and

nodal output now available, McIDAS ca=abi!itles

are being expanded co handle four-dimensional

data sets in x,y,z, and c.

To complement the expansion to four-

dimensional data sets, a McIDAS based terminal is

being developed at SSEC thac provides the user a

means of viewing animated sequences of _-D

weather data in stereo (Hibbard. Krauss and

Young, ;985). This terminal uses two large

screen pro]errors, creating different images for

:he left and rlghc eye via polarization. An

illusion of three dimenslonality is created in

:he dlsplay, and by using time-Lapse loops of a

series of images, motion in the elms domain is

:rested. Zmage generation techniques have been

developed at SSEC to take _axim_u_ advantage of

this new terminal, integrating large quantities

of four-dimenslonal meteorological data from

5alloon and satellite soundings, satellite

images, doppler and volumetric radar, and

conventional surface observat:=ns (Hibbar=,

L986). The images have been =esigned _o use

perspective, shading, hidden surface removal and

transparency to augment the a=z=mcion and stereo

display geometry. They create an i!luslon of a

moving three-dimensional model of the atmosvhere

so vivid chac you feel you can reach into :he

display and couch iC. Other _roups currently

exploring aspects of multi-dimensional data

display include the National =enter for Atmo-

spheric Research (Grotjahn ant Chervin, L984),

Colorado State University (Meace, 1985_, :he NASA

Goddard Space Flight Center _Easler, Pierce,

Morris and Dodge, L985), and AT_T Bell Labs

(Schiavone, Papachomas and Julesz. 1986).

No pictures are included with this _aper,

as still photographs and non-stereo viewing

dramatically reduce the effect cf the displays.

Live demonstrations of this wor_ will be pre-

sented using video projectors and a large screen

in the University of Wisconsin exhibit as a part

of thls conference. Hibbard _986) contains some

images of stereo pairs in blac_ and white.

2. HARDWARE

A deliberate decision was made ac :he

beginning of the stereo termlr.aA development

program to minimize new hardware design and

construction until we had a we£1-develoved idea

of what ohm stereo terminal actually should do in

the MclDAS environment. The flrsc two years

scarred with developlng the soft, are chat gave
access to the database and constructed the .-D

dace _iles needed co display the data. Then we

experimented with the display o_ the data, trying

to creatively find the best ways of co-_,un_cacing

to the meteorologist via the stereo imaees. We

are still in this stage of development, and will

remain there for a while Longer. as the section

on future work suggests below.

The first exper!=encs were done with two

McIDAS cermlnals linked together, using two CRT

displays and a half-silvered =Irror. This was

the minimal configuraclon we could use to provide

color stereo. It required sof_.'are co load one
of the 'maees back-_ar_, so the reflection would

*

coincide wlch the dlrecc view image. In addi-

tion, a link between the two c_r=%nals was
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required so they would change frames in syuchrony.

A lot of software develo_ent work could be done

this way, but it tied up two tsrsinals ac a time

and was therefore soms_mat impractical. Moreover,

only one or two people at a tin could see the

display because of the restricted field of view
the half-silvered mirror in=roduced. We wanted a

more efficient way to generate stereo with a

single terminal chat could be permanently avail-

able and be viewed by a number of people at once.

To display color stereo with a single McIDAS

terminal required more extensive terminal hard-

ware modifications, and we have recently completed

them. The color stereo displays in the exhibit

hall are produced using a single MclDAS terminal.

One major constraint on the modification

of a single McIDAS terminal for stereo develop-

ment work was that the terminal continue to work

like a standard terminal when used for non-stereo

display. All the additions for stereo _eneration

had to be transparent to the non-stereo user. In

addition, we wanted to minimize the amount of

modification, since this would only be an interlm

step to the final specification of a MCIDAS

stereo display terminal.

The current McIDAS terminal design is

bull= on a multlbus chassis with two bus masters,

an In_e! 8085 which drives the display hardware,

and a PC/AT interface which serves as the link to

the user and to the mainframe and provides addi-

tional local processing capability. Normally, a
termlnal has a single RG3 board with i_s own

internal timing and a lookup table which accepts

[2 bits of digital image input and outputs 5 bits

each of R,G, & B to a DAC for video generation.

hBat was done in this interim modification

was to add a second video chain to a standard

McIDAS terminal. This required four internal

hardware changes:

i) The =ultlbus P2 backplane was rewired co

_wltch image memory to an additional uew video

board.

2) An external timing reference for the video
was added, since the _o video boards could no

longer operate independently using their own

timing references.

3) The logic controlling the boards was modified

so they operated in parallel as far as access to

memory and output to the video chain was con-

cerned, but their ack's were designed to be

serial, so both hoards had to complete one

operation before the next operation could begin.

4) The signal flow to the lookup cables was

inverted for the second board so it would always

receive the image for the opposite eye. The
graphics planes were also disabled on the second

video board since they would be neeaed for

drawing the stereo cursor. The non-stereo

hardware-generated cursor was retained to operate

in parallel on both boards, however, so a consls-

ten¢ line-element reference would always be

present in _he two output _mages, if neeued.

The result of these changes is that when

uslng the second video channel to drive a monitor

or _ro]ector with polaroid filters, one can see

9O

full color stereo using passive polaroid filter

glasses, and one now has a stereo cursor as well,

which can even per_icipate in depth buffer 's

if the depth buffer is available in cermina.___,
menory. The first channel of video, however, is

still identical to what an unmodified terminal

would produce. The only drawback tO this

approach is thee one does not have overlaid

.stereo graphics planes, since the graphics planes

have been appropriated for the software generated
stereo cursor.

3. SOFT;ARE DESIGN CONSIDERATIONS

The atmosphere is a four-dimenslonal

continuum. To depict :he spaclal portions it is

necessary to show the location of da_a in the

a_sphere using a variety of visual cues includ-

ing perspective, stereo, motion parallax, depth

precedence, shading, brightness, color, shadows

and transparency. It is also necessary to inte-
grate the use of different visual cues so that

their effects are not ambiguous. For example,

the perctived brightness of a scene is a function

of illumination, shape, transparency and shadows.

If _hese cues are used carefully, the viewer will

be able to separaue their effects and the scene

is _leaslng to view and easy to comprehend. If

the cues are _nconsistenc, the result is confu-

sion. Because the atmosphere is a continuum, an

_ffectlve display must show information at all

de_chs without nearer re$1ons obscuring farther

re_ions. Most computer graphics applications to

date have been concerned with the surfaces of

3-D objects. In meteorolo_ the concern is - ",

the three-dlmenslonal volume. The programm2

challenge is co display representations of th_

da_a within tha_ volume effectively so the

information contained within the data is

meaningfully perceived by the meteorologist.

An extensive software package has been

_rl=:en at SSEC for the generation and viewing o:

3-D weather parameters. This includes assembling

a &-D data base from a variety of sources and

renderlnE images from this data base through the
use of highly tuned algorithms that enhance the

3-D effect. It is our desire to create 3-D

images of atmospheric parameters, animated with

ti_e, that will show as clearly as possible _he

structure and evolution of weather systems. The

images we currsnely generate include cloud images
from GOES (Geosta_lonary Operational Environmen-

tal Satellite) da_a, wind streantlines, wind

trajectories, and concour surfaces from rawln-

sonde bellooo soundings, VAS (VISSR Atmospheric

Sounder) soundings, and model output at any scale

(thunderstorm to global). Also, from dual

doppler radar data, images are created depicting

wind trajectories and multiple sections through a
volumetric radar.

Meteorological data available in the

McIDAS enviroament exist in the form of scalar

fields (moisture, _emperature, pressure, wind

speed, etc.), vector fields (winds), images

(satellite and radar Images) and discrete

phenomena (llghtnlng and precipitation). Di_

techniques must be developed for each type o_
data, sul_ed to the ma_hemaclcal form as well_

the density and texture of the data. It is also

desirable to combine different types of data into
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a single display, but without confusion between

parameters or too much clutter.

Nearly all of our 3-D images are based

within a rectangular box, which is drawn as part

of the image. This provides a visual reference

for the objects inside, making it easier to

visually extract relative positional information

in space. The coordinates of the box are usual-

ly, but not llmlted to, latitude, longitude, and

height. In the case of doppler radar or a

thunderstorm model, the base of the box could be

storm relative instead of earth coordinates. For

large scale data, a base map can be drawn on the

bottom of the box to aid in locating objects in

the horizontal. A topographical relief map can

also be added for relating weather parameters to

the topography, and can provide a better land/

ocean boundary through brightness variation. The

vertical axis is labelled in kilometers or

pressure coordinates to help in determining the

heights of volumes in the box.

The key to presenting 3-D images is

creating the illusion of depth in the pictures.

The use of stereo, perspective, hidden surface

removal, and shading can be very effective in

providing depth cues to the viewer. In addition,

transparency, shadows, and motion will tend to

heighten the illusion of reality. It is impor-

tant to use these depth cues effectively and

efficiently. Interactlvlty and quick regenera-

tion of images are also prime concerns if this

type of data display is to be used in an opera-

tlonal or research environment. It is important

that the viewer's attention is not distracted by

visual errors in the display due to bad data or

to inadequate approximations.

The command structure for creating images

is modular and provides the user with total

control of parameters for assembling and viewing

data sets. The meteorologist, however, does not

have to concern himself with choices of shading

algorithm parameters, light source placemsnt,

etc., as these should not have to be modified in

most cases, and are buried one level deeper in

the co_nand structure.

As with two-dimeuslonal meteorological

displays, interactlvlty is important. The viewer

should be able to control the contents and the

view point of the display and generate a new

display quickly. Because of the complexity of

three-dlmenslonal display algorithms, particular-

ly for sequences of images, efflclenc7 must be

seriously addressed to achieve the desired level

of interactivit 7. This is the main reason

existing McIDA$ terminals are merely interim

steps. We ueed about two orders of ma_nitude

more computing power in the terminal to gec true

interactivity.

Three-dimensional displays share a uumber

of data oriented problems with more traditional

displays. Bad data points can generate distract-

ing and bizarre effects in an analysis. In fact,

the greater volume of data used in generating

three-dlmensional displays makes them more

susceptible to bad data problems. In most cases

data density and coverage determines the scale of

the display. However, variations in density and

Coverage can create problems. Gaps in the data

91

can create misleading displays while too much

data can create a cluttered display.

A particular problem of 3-D displays is

the exaggerated vertical to horizontal aspect

ratio that they often have. For a horizontal

scale of hundreds or thousands of kilometers, it

is necessary to expand the vertical scale by a

factor of tens or hundreds. Although this is

unavoidable, it can lead to misleading angles and

slopes in the display.

Another particular problem of 3-D display

is the difficulty of presentinB precise quantifi-

able information. This is in part due to the

ambiguity of depth, which makes it easier to see

relative spatial relations than absolute loca-

tion. For these cases an interactive 3-D

pointing device in the image is essential. Like

the 2-D version of McIDAS terminals, use of a

cursor relates the image coordinates in the

display to the true spatial coordinates in the

data. If the stereo cursor partakes in depth

buffer access, its usefulness is greatly enhanced

because it can now also point behind objects.

&. CREATING 4-D METEOROLOGICAL L"-_GERY

The first decision to be made in generat-

ing an image is the geographical extent of the

3-D box and the user's view point. An image of

this basic "box", which can include topography,

is generated, to which objects are then added.

The default viewpoint works well for a synoptic

scale box, but can be modified _o view the scene

from a different angle. Next, one must not only

choose the parameter to examine, but also the

value of the surface to generate and possibly a

degree of transparency if more than one parameter

or contour is to be displayed.

The decision tree is different for each

case. For example, to find the upper level jet

on a 2-D map, one would simply look on a 250 mb

chart for the area of strongest _inds. For a 3-D

display, the question asked would be, "What wind

speed defines the jet?". An i=a_e containing a

volume showing the extent of the 50 m/s wind

speed may be created. Or, a surface of 40 m/s

may better define the Jet with s Jet-core speed
of 75 m/s. Here the 40 m/s surface would be

drawn semi-transparent and 75 m/s volume would be

opaque. In this example the 3-D image would show

the Jet as it is positioned in the atmosphere,

whereas, the 250 mb chart is Just a slice through

the atmosphere at a particular level. A time

sequence could then show the Jet meandering

across the country changing in intensity and

height.

Another example could be verifying model

forecasts. We could take the 2-D grid output

every 12 hours from the LFM for a 48 hour fore-

cast run and generate 3-D grids of wind speed.

For the next 48 hours we would take each current

LFM initial condition as verification every [2

hours and also create 3-D grids for comparison.

A sequence through the forecast period would be

made by usin_ different levels of transparency

for forecast and verification Jet core wind speed

value.
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Also, 2-D contours can be drawn on the

topographical surface, such as surface pressure,

precipitation totals, etc. This level of control

allows the meteorologist to combine grids of

different tFPes or different contour levels,

along with 2-D contours, to create more meaning-

ful 4-D data sets and displays that show rela-

tionships of different kinds of data.

Time sequences of stereo images of £sen-

tropic wind trajectories are generated from

rawinsonde balloon soundings or VAS soundings,

combined with a grid mesh mixing ratio surface

and a topographical map. The trajectories are
depicted as shaded tubes of finite diameter.

With animation they appear to trace a path

through the atmosphere, with their tail ends

fading into transparency as they move. The

finite body of the trajectories makes it possible

to use shade and hidden surface removal as cues

to their shape and location. The fading into

transparency enhances the sense of motion and

serves as a cue co wind speed, as the degree of

transparency along a trajectory is proportional

to the length of time since the air parcel was at

the points along the trajectory. The display

clearly shows the relation between wind, moisture

and topography over time.

Perspective line graphics of potential

temperature and mixing ratio surfaces are gener-

ated from rawinsonde balloon soundings. These

are grid mesh surfaces over map outlines.

Because of their simplicity, long animation

sequences can be generated quickly. They work

best when the time interval between images is 3

hours and when they are animated at a rate of at

least 3 per second. This gives the appearance of

waves rolling along the moisture or iseutropic
surface.

More complex shaded contour surfaces are

generated from rawinsonde balloon soundings for a

variety of meteorological parameters. The data

is interpolated along each sounding to I0 evenly

spaced height levels. On each level the data are

analyzed to a uniform 20 by 20 grid and the sur-

faces are then located in the display through

this 3-D grid. These are depicted as one or more

shaded surfaces, some of which may be semi-trans-

parent, over a topographical map. This technique

is capable of displaying oddly shaped surfaces

which may contain folds or bubbles. The shapes

of the surfaces are easy to understand when

viewed in stereo. When viewing a transparent

surface and an underlying opaque surface simul-

taneously, the eye is quite good at separating

the shade variations of each surface and deducing

_helr shapes. However, this breaks down when

there are several transparent layers.

Most recently, atmospheric model data has

piqued our interest because of the smoother

fields, shorter time intervals, and lack of

observational artifacts and data gaps. We can

spend less rime massaging the data and more time

experimenting with generation of images. NMC

model data is available only at [2 hour steps,

but still has proved to be useful if the spatial

scale is large enough. An assimilation model

running on McIDAS provides us with better spatial

and temporal scale data than the NMC model. The

assimilation model has 15 vertical levels with

60 km grid spacing. By using one hour time

intervals, animated sequences of isotach surface

or vortex tubes show continuity through time.
Other surfaces of interest include vertica"

motion and pressure deviation. Since a pa a-

lar pressure surface is relatively flat in'_""

15 km high box, we have found that display of th

deviation of pressure from a climatological mean

shows troughs and ridges better.

The 3-D grids and displays developed are

not restricted to any scale or data type. We

have taken output from a thunderstorm model

(Schlesinger, 1974) and generated surfaces of

different parameters. Of particular interest is

liquid water content which, when contoured at th

.5 g/m**3 concentration, shows the time evolutic

of a thunderstorm complete with anvil, low-level

outflow and overshooting tops. Doppler radar

data can also be displayed as trajectories. Whe

these images are animated in stereo, in a coordl

hate system moving with the storm, they create a

dramatic display of winds inside a thunderstoru.

We are working now to combine the doppler winds

with volumetric radar showing water concentratic

6. FUTURE WORK

In an earlier report (Hibbard, Krauss, an

Young, 1985) we discussed the need to address

four major aspects of stereo terminal develop-

ment: i) the human interface; 2) the display

technology; 3) data base management; and 4)

computer and software technology. Display

technology is not yet sufficiently advanced to

produce true volumetric displays, so we have

chosen the traditional approach of present_

separate color image to each eye. We have

addressed the data base management problem to'_'/th_

extent that we can assemble and process a wide

variety of data to generate the stereo images.

More sophisticated methods of storage and access

may be desirable in the future. Most of our

recent work has been in software development and

experiments relative to the generation of images

We invite you again to view our exhibit at this

conference and offer suggestions. We still need

to address the questions of what the optimum

user-computer interface really is. Now that we

have developed a range of display options, we ca:

address how the meteorologist will use them in

concert to enhance his perception of what _he

true physical situation in a data set is and how

that physical situation is evolving, and develop
a MclDAS terminal environment to aid this

perception.

A key aspect of interactivity is the abil-

ity of the scientist to access all the data at a

given point in the displayed McIDAS image by

pointing at that location with a cursor. This

capability must be preserved in the stereo dis-

play. The location problem can be addressed by

displaying views of the same scene from several

different perspective points, or by using the

four dimensional display in conjunction with

simple two dimensional llne graphics. The numer-

ical values and locations of data can also be

accessed using a 3-D cursor. The user would

place this cursor aC a point of interest in

display and retrieve its location in latltu_

longitude and height as well as the values o_ "_"

meteorological parameters at that point. The 3-D
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cursor must be implemented in such a way that it

participates in the perspective and hidden sur-

face removal with the rest of the image elements.

Line graphics, because they do not appear

in nature, tend to detract from the physically

real appearance of the stereo display. There is

a place for llne graphics, but we suspect that it

is in displaying computed theoretical quantities,
or used to ark or annotate various features.

Line graphics can be used for abstract mathematl-

cal quantities, to distinguish them from the

physical surfaces or volumes in the images. Line

graphics might also be useful in drawing cross-

sections of the atmosphere, introducing 2-D plots

into the 3-D display at key positions to aid in

analysis.

While most surfaces can be interpreted

using a single light source and appropriate

shading, even when the surfaces are highly

convoluted, it is clear that use of both color

and texture, along with shadows and multiple

light sources, can aid in helping the viewer to

comprehend curvature of highly unintultlve

surfaces. Most of the work to dace was done

using red and green filters with a single monitor

stereo display. Now that a cross polarized

display is regularly available, color will be

exploited as a visual cue. Texture can also aid

in making a surface appear more realistic, and in

discriminating one surface from another when they

intersect in three dimensions.

We mentioned that the user interface has

yet to be addressed in any great detail in our

development program. Part of the delay has been

because we were not clear just what was to be

manipulated and how the scientist would use the

displays in his analysis. As we get scientists

at SSEC more involved with using the stereo

displays for actual data analysis over the next

_wo years, we will be able to improve the inter-

faces to speed up the generation and presentation

of images. We also intend to experiment both

with voice I/0 as a substitute for keyboard use

(so the user will not have to take his eyes off

the display), and introduce a certain amount of

"intelligence" into the terminal to guide the

user in appropriate ways and suggest useful

alternatives depending on context.

The development of faster CPU's and cheeper

memory will clearly help design of a more powerful

stereo terminal. It is unlikely, however, that a

general purpose processor will be able to provide

the fast image generation capability required for

a terminal to be truly interactive. A revolution

is occurring in computer displays as computing

power approaches the point where it is economical

to produce images in a fraction of a second with

custom hardware. This will allow the user to

specify the perspective point and the contents of

the display with a device llke a mouse or a

Joystick and get immediate response. This is

currently possible for simple graphics and u_der

development for complex and smoothly shaded

images similar to those presented here (Poohs,

et. al., 1985; and Clark, 1982).

We intend also to introduce a 6-D "]oy-

stick" to indicate both position and direction in

the stereo display. This will be done using a

simple current carrying coil moving in a 3-D

magnetic field surrounding the terminal operator.

The field is roughly two meters on a side, and

the position and attitude of the cell is

periodically sensed by means of the current it

generates as it moves. The coil can be worn on a

finger, so the operator need only point and give

a verbal co,-,and to initiate terminal action.

7. CONCLUSIONS

Currently, work on stereo terminal speci-

fication is proceeding on schedule and is getting

more sophisticated in terms of types of data

accessed and complexity of image generation.

Scientists' interest appears to be increasing as

they see some of the benefits of adding an extra

dimension to the display of their data. With the

introduction of displays of model output we hope

to heighten this interest even further. Within

two years we expect to have a wide variety of

possible displays and a user interface capable of

guiding a novice user to _roduce meteorologically

meaningful displays.
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ABSTRACT

A technique has been developed to display GOES satellite cloud images in perspective ovez

a topographical map. Cloud heights are estimated using temperatures from an infrared (IR)

satellite image, surface temperature observations, and a climatological model of vertical

temperature profiles. Cloud levels are discriminated from each other and from the ground

using a p_ttern recognition algorithm based on the brightness variancd technique of Coak!ey

and Bretherton. The cloud regions found by the pattern recognizer are rendered in three-

dimensional perspective over a topographical map by an efficient remap of the visible image

The visible shades are mixed with an artificial shade based on the geometry of the cloud-to_

surface, in order to enhance the texture of the cloud top.

i. INTRODUCTION

A variety of techniques for displaying satellite cloud images with depth have been

developed on the Man-computer Interactive Data Access System (McIDAS). The first of these

was a simple stereo display of simultaneous images from two different GOES satellites,

usually from one satellite over the eastern United States and another over the western

United States. Then a technique was developed to recreate this stereo effect from a single

GOES satellite. The cloud-top heights are estimated from the temperature of the IR image,

and these heights are used to simulate the image seen from another satellite by shifting

pixels horizontally according to height.

These simple techniques rely on binocular stereo as the only visual cue to cloud height,

___ which makes it impossible to see small height variations and textural detail. In order to

address this problem we developed a technique for rendering GOES images in a perspective

view. As before, the cloud height is estimated from IR temperature. The GOES image is

remapped into a perspective projection and then pixels are shifted vertically according to

height. This can be viewed in stereo by remapping the right and left eye views to two

slightly different perspectives. These images work well in some cases, but still lack

shading texture when the sun angle is high. They also depict cloud edges as connected to

the ground.

In this paper I will describe an improved technique for rendering GOES images in

perspective. Cloud heights are estimated using temperatures from the IR image and a

climatological model of vertical temperature profiles. Clouds are discriminated in the

image using a pattern recognition algorithm based on a brightness variance technique, with

surface temperature observations used to help discriminate low clouds from ground. These

clouds are rendered in three-dimensional perspective over a topographical map by an

efficient remap of the visible image. In order to enhance the texture of the cloud top, tk

natural sun shading in the visible image is enhanced by mixing with an artificial shade

derived from the geometry of the cloud-top surface.

2. DISCRIMINATING CLOUDS

v

The input to the discrimination process consists of a GOES visible and IR pair of image_

Because of computer memory li_Litations, these images are processed in bands of 80 lines

rather than all at once. As the program reads the images, it selects a sector that just

covers the region of interest specified by the user (which is a rectangle of latitude and

longitude). This sectorizing process includes a blow-up or blow-down, if necessary, to a

resolution comparable to the resolution of the perspective image being produced. After th_

images have been read, the input IR data are smoothed. Each IR pixel is averaged with its

four neighbors, and the weighting of the average is adjusted according to whether the valu_

of the pixel lies inside or outside the range of values of its neighbors, so that noisy

pixels are smoothed more than other pixels.

Next, the IR radiances are converted to heights. First, the IR radiances are converted

to temperature by a simple formula. These temperatures are then compared to a climato-

logical model of vertical temperature profile which is parameterized by date and latitude,

and the height is estimated. These profiles are interpolated between the latitudes at the

top and bottom of the input image. They are also modified by the surface hourly temperatu

observations (at the time of the GOES data) in order to improve the accuracy of height
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estimates for low clouds. The visible radiances are also brightness normalized by a simple

multiplicative factor depending on latitude and date to remove the effects of sun angle.

The variance technique of Coakley and B!etherton (I) is designed to find the IR radian

intervals associated with cloud layers in an IR satellite image. In this case the techniq_e

is applied to an image whose pixel values are the heights derived from the IR radiances.

This height image is divided into sectors of 80 pixels by 80 pixels, and the analysis is

done for each sector independently. A histogram of the heights in the sector is constructed

and the height difference (=D) between its fifth and ninety fifth percentile is calculated.

The average height and the variance of heights is calculated for each of the 1600 two by two

boxes in a sector, and a histogram is formed of the average heights of those boxes whose

variance is less than 0.05*D. The idea is that boxes with small variance will tend to lie

on flat cloud levels rather than on slopes between clouds. The histogram gives frequency as

a function of height, and the clusters in this histogram will give height intervals

associated with cloud layers.

Our cluster detection algorithm was developed by trial and error, and several of its

parameters can be controlled by the user when they are dissatisfied with the default values.

The cluster finder starts by applying a low pass filter to the histogram. This filter can

be controlled by a user parameter. Moments are calculated for the histogram and a ramp

function is added to accentuate the skew of the histogram. This step is a good example of

the trial and error development of the algorithm. We originally added this step to remove

skew from the histogram, but found that the final results were better when we accentuated

skew. Then the algorithm finds the peaks of the histogram, defined as maxima within a

certain range of heights, where the range can be controlled by a user parameter. For each

peak, we find an associated height interval and calculate its area (sum of frequencies), the

mean frequency and the variance of frequencies within the interval. These values are then

used to determine which peaks should be merged into adjacent larger peaks. This step uses

two parameters which can be controlled by the user. A range of heights is found for each of

the merged peaks, and these ranges define the final clusters for the histogram.

The primary goal of the cloud detection algorithm is to select those pixe!s which are in

clouds and to delete the rest. Assuming that the histogram clusters give the height ranges

of cloud layers, a simple algorithm would just delete those pixels whose height does not

belong to any cluster. Our algorithm is an elaboration of this developed by trial and

error. First, we find the correspondence between the clusters of adjacent sectors (the 8

pixel by 80 pixel sectors) which are at roughly the same height levels. At the boundaries _-/

of sectors there is a transition zone where the cluster ranges are interpolated between two

sectors. If a cluster has no corresponding cluster in an adjacent sector, then its range is

smoothly tapered to empty at the sector boundary. Once the clusters and their

interpolations between sectors are derived, the pixel deletion process starts. Pixels not

in clusters are deleted. Pixels in clusters at or near the ground are deleted if their

normalized visible brightness is low or if the local slope of the height surface is high,

with the exact mixing of these conditions controllable by user parameters. Pixels not

deleted will be grouped in cloud regions in the image. All pixels within a certain distance

of the border of a region, whose height is less than the low limit of the region's cluster

range, are deleted. Finally, pixels whose deletion causes small holes in cloud regions are
reselecued for inclusion (that is, they are undeleted).

3. RENDERING CLOUDS

The input to the rendering process consists of an image of heights and an image of

normalized visible intensities, with some pixels marked for deletion. The first stage of

rendering is to mix the visible intensities with an artificial shade based on the cloud-top

geometry. The artificial shade calculation is a simple table lookup based on the slopes of

the height surface. This shade is mixed with the normalized GOES visible brightness in a

proportion which the user can control.

Now the problem is to map the modified visible image onto the surface defined by the

selected pixels (those in cloud regions) of the height image and to render this in

perspectlve. An obvious approach is to render every little square of four adjacent selected

pixels as a polygon, interpolating between the visible shades at the corners. However, an

image remapping technique will render the image with much less computational effort. The

remap technique used here is a two-stage process. In the first stage, each line of the

visible :mage is mapped via the perspective transform into the destination image, forming a

sequence of short line segments stretching roughly horizontally across it. Each short line

segment 1s drawn between the mapped positions of two adjacent pixels from the source line.

In the second stage, pixels in the destination image are shaded by interpolating verticall'

between the series of line segments mapped from successive source lines. This approach

avoids the complexity of interpolating in two dimensions by factoring the interpolation in £_'I

a horizontal component (along source lines) in the first stage, and a vertical component

(along destination columns) in the second stage.
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This remap algorithm suffers from a couple of problems. First, it cannot accommodate an

arbitrary perspective (that is, arbitrary point of viewj, because of the requirement that a

source line map to a sequence cf line segments stretching roughly horizontally across the

destination image. However, this could be easily remedied by adding an initial step to

rotate the source images. Second, in areas of the image close to cloud edges, where the

cloud-top surface has large slope, the series of short line segments will turn from

horizontal to nearly vertical, resulting in a frayed cloud edge. This has been remedied by

adding an intermediate step between the two basic remap stages which smoothes between line

segments at cloud edges.

4. THE USER'S VIEW

The McIDAS system manages a large inventory of GOES images, including real-time images

and non-real-time images. The real-_ime images usually consist of images covering North

America and the globe, at different resolutions, every half hour for the last two hours.

:4on-real-time images are retrieved from an archive containing almost all GOES images

generated during the last ten years. Given a GOES IR and visible pair of images, the user

can enter a simple command whlch causes these to be rendered in perspective as a stereo pair

over a topographical map, and loaded into a video workstation. The user may specify

latitude, longitude and height bounds for the box of data to be displayed. The user also

has control over some of the parameters of the cloud discrimination algorithm, although the

iefault values usually work fzirly well. These perspective stereo cloud images can be

rendered from a sequence of GOES images spaced every half an hour and then displayed with

anlmation to see cloud motion. These perspective images work well to reveal cloud-top

Motion, including the boiling top cf a convective system and the interaction of clouds with

topography.

The time to analyze the GOES IR and visible pair for cloud detectioh and to render the

clouds in perspective varies between 20 and 30 seconds, depending on the number of clouds

present and the scale of the iisplay. The time to produce the topographical map varies

between 6 and 12 seconds, depending on scale. When a time sequence of images is produced,

the topographical map only has _o be rendered once. In a test, a sequence of three stereo

pairs of perspective images was rendered in 160 seconds. These times are all measured for

:he software running on an IBM 4381.

5. CONCLUSIONS

There are several ways that the detection and rendering of clouds described here could be

improved. More accurate cloud-top height estimates could be made using vertical temperature

profiles of the atmosphere from RAC_ (balloon) or VAS (satellite) soundings. A cloud-typing

algori=hm (2) could be used :c increase the accuracy of cloud detection and rendering. For

example, the iR temperatures zf thln cirrus could be corrected for their partial

transparency. The sides and bottoms cf clouds could be approximated based on known

properties of cloud types.

A number of people who have viewed these c]nud images have pointed out a curlous aspect

of them. Although they cover regions hundreds of kilometers across, their appearance agrees

with our expectations of clouds based on our experience with regions only a few kilometers

across. Clouds over large scale regions viewed from space look very flat, but in our

images, in order to bring out the vertical detail of the cloud top, the ver:icai scale has

been greatly exaggerated. This suggests that clouds obey a fractal scaling law, in which

the shapes are invariant to a scale change if the vertical to horizontal aspect ratio is

changed with scale.
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This remap algorithm suffers from a couple of problems. First, it cannot accommodate an

arbitrary perspective (that is, arbitrary point of view), because of the requirement that a

source line map to a sequence of line segments stretching roughly horizontally across the

destination image. However, this could be easily remedied by adding an initial step to

rotate the source images. Second, in areas of the image close to cloud edges, where the

cloud-top surface has large slope, the series of short line segments will turn from

horizontal to nearly vertical, resulting in a frayed cloud edge. This has been remedied by

adding an intermediate step between the two basic remap stages which smoothes between line

segments at cloud edges.

4. THE USER'S VI_

The McIDAS system manages a large inventory of GOES images, including real-time images

and non-real-time images. The real-time images usually consist of images covering North

America and the globe, at different resolutions, every half hour for the last two hours.

Non-real-time images are retrieved from an archive containing almost all GOES images

generated during the last ten years. Given a GOES IR and visible pair of images, the user

can enter a simple command which causes these to be rendered in perspective as a stereo pair

over a topographical map, and loaded into a video workstation. The user may specify

latitude, longitude and height bounds for the box of data to be displayed. The user also

has control over some of the parameters of the cloud discrimination algorithm, although the

default values usually work fairly well. These perspective stereo cloud images can be

rendered from a sequence of GOES images spaced every half an hour and then displayed with

animation to see cloud motion. These perspective images work well to reveal cloud-top

motion, including the boiling top of a convective system and the interaction of clouds with

topography.

The tlme to analyze the GOES IR and visible pair for cloud detection and to render the

clouds in perspective varies between 20 and 30 seconds, depending on the number of clouds

present and the scale of the display. The time to produce the topographical map varies

between 6 and 12 seconds, depending on scale. When a time sequence of images is produced,

the topographical map only has to be rendered once. In a test, a sequence of three stereo

pairs of perspective images was rendered in 160 seconds. These times are all measured for

the software running on an IBM 4381.

5. CONCLUSIONS

There are several ways thau the detection and rendering of clouds described here could be

improved. More accurate cloud-top height estimates could be made using vertical temperature

profiles of the atmosphere from RAOB (balloon) or VAS (satellite) soundings. A cloud-typing

algorithm (2) could be used to increase the accuracy of cloud detection and rendering. For

example, the iR _emperatures of thin cirrus could be corrected for their partial

transparency. The sides and bottoms of clouds could be approximated based on known

properties of cloud types.

A number of people who have viewed these clmud images have pointed out a curious aspect

of them. Although they cover regions hundreds of kilometers across, their appearance agrees

with our expectations of clouds based on our experience with regions only a few kilometers

across. Clouds over large scale regions viewed from space look very flat, but in our

images, in order to bring out the vertical detail of the cloud top, the vertical scale has

been greatly exaggerated. This suggests that clouds obey a fractal scaling law, in which

the shapes are invariant to a scale change if the vertical to horizontal aspect ratio is

changed with scale.
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ABSTRACT

Evaluating model performance is difficult in light of the amount of data which is output

that is to be compared to an analysis for verification. Examining 2-D plots of many differ-

ent parameters at several levels is tedious. This information must then be mentally inte-

grated in an attempt to understand where problems may exist. The use of 4-D displays can

greatly aid in evaluations by presenting the output of the model as a volume instead of 2-D

slices. A capability for 4-D displays of meteorological data is being developed at the

Space Science and Engineering Center. The Man-computer Interactive Data Access System

(MclDAS) is used for all aspects of the analysis: this includes acquiring data, running the

model, storing the output and displaying the results. A version of the Australian Regional

Analysis and Forecast Modules were applied to the eastern portion of the USA and adjacent

Atlantic Ocean. This assimilation system is being used to analyze intensive observing

periods during the GALE (Genesis of Atlantic Lows Experiment) field experiment.

Many different types of data are presented as 3-D contours (surfaces). In addition to

the use of perspective, hidden surface removal, and transparency, the 3-D effect is enhanced

through the use of animation and stereo viewing. Changes in the shapes and sizes of the

surfaces with time can indicate how well the model is performing. By displaying both the

model result and the verification of isotachs, for instance, a visual check quickly identi-

fies differences in the jet position and strength. Or, the deviation of the model from the

analysis can be generated to check for structure in the errors both spatially and temporally.

I. INTRODUCTION

Atmospheric models provide the meteorologist a look into the future by generating fore-

casts of various meteorological parameters. These complex models attempt to approximate the

4-dimensionality of the atmosphere around us. It is unfortunate that the output from the

models consists of 2-D plots, usually horizontal slices for select vertical levels or

vertical cross-sections for selected transects. The information must then be mentally

integrated to picture the atmosphere as a continuum in time and space. This is a tedious

task requiring examining and re-examining many contour maps. A need exists to bypass this

type of analysis, not only because it is time consuming, but also it is incomplete.

A capability to display meteorological data in 4-D is being developed on the MclDAS

at the Space Science and Engineering Center. I HclDAS is recognized worldwide as a leader in
the processing of satellite and weather data An extensive data base of weather observa-

tions, satellite imagery, and model output is available, much of it in real time, to

generate data sets in x,y,z, and time. Three-dimensional images are generated using highly

tuned rendering algorithms making use of hidden surface removal, transparency, and shading.

The addition of stereo viewing and animation results in a depiction of the atmosphere in

motion.

The entire analysis is done on the MclDAS. The large data base iS drawn from for rawin-

sonde and satellite data, and also for model output from the NMC (National Meteorological

Center) Global model to initialize the numerical model o_ the MclDAS. The model, a version

of the Australian Regional Analysis and FOrecast Modules _, is being used on MclDAS to

analyze intensive observing periods during the GALE of early [986. The output from the

model are stored as 3-D grids for use with the display software.

No photographs are included in this paper. A video tape will be shown as part of =he

presentation of the paper, to illustrate the techniques described. See Reference 3 for

examples of pictures of stereo pairs.

2. SOFTWARE

An extensive software package is being developed to create, manage, and display 4-D data

sets on MclDAS _. The modular design provides the necessary flexibility to assemble 3-D

grids from a variety of sources and file in a common grid structure. Only one display

program is needed to use these 3-D grids, regardless if the data is from a thunderstorm

model or a global model. If U,V (horizontal winds) and W (vertical wind) are available as

3-D grids for many times, parcel trajectories can be generated and displayed similarly.

/
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The display of these data sets can take on many forms, summarized as follows (with

typical examples):

- Transparent objects: Wind maxima or vortex tubes

- Wire mash: Mixing ratio surface

- Contours: 2-D graphics

- Tubes: Air parcel trajectories.

These objects or contours are drawn within a rectangular box that usually defines the

latitude, longitude, and height limits. The software allows the combination of many differ-

ent parameters in one display. Also, topographical information can be included along with

base maps.

3. NUMERICAL MODEL

The Australian Regional Model is an analysis/forecast assimilation system. This allows

for the insertion of meteorological data during the model run, to update the forecasts

without an absolute re-initialization. It is applied to the Eastern half of the USA and

adjacent Atlantic Ocean during the GALE period. Specifically, the model is a 65 X 65 grid

on a Lambert conformal conic projection with a horizontal spacing of 60 km. There are 15

vertical levels in sigma-p coordinates, with a top at approximately i00 mb.

The case examined is a 24-hour forecast run, initialized with the NMC Global model and

conventional synoptic data, .with no additional assimilation of other data throughout the 24

hours. Output from the model is hourly in the form of 2-D grids (65 X 65) interpolated to

the 10 mandatory pressure levels for height, temperature, dew point temperature, winds, and

vertical motion. Also, 2-D grids at the surface are generated, for example mean sea-level

pressure and precipitation. These model generated grids are then mapped onto a 30 X 30 X I0

grid, equally space in latitude, longitude, and height. This reduces the resolution by

about a factor of 2 in each of the three dimensions from the model.

4. 4-D METEOROLOGICAL IMAGERY

2

Model performance is usually determined by calculating a RMS (Root Mean Square) error ,
skill score , or comparison of 2-D plots . These are static displays that use only a small

part of the total output from the model. By using the 4-D displays on McIDAS we can examine

the 3-D grids in stereo and with animation. Though, it does not quantify the model's

deviation from the true atmospheric conditions, it does provide a 4-D visual comparison.

The case explored is a 24-hour forecast for 27 January 1986 characterized by a strong

upper level Jet (75 m/s), a closed circulation through most levels, and a developing low

pressure system at the surface. Two major types of 4-D displays are generated. First, time

sequences of model parameters every hour are animated. This shows parcel trajectories along

with transparent wind maxima volumes or vortex tubes. Surface contours of mean sea-level

pressure and precipitation are also added Into the displays. The use of animation and depth

cues heighten the 3-D effect in the non-stereo viewing. Secondly, every 12 hours an

analysis can be compared to the forecast. At these two times, 3-D surfaces from the fore-

cast and the analysis will be in the same display. Comparisons of jet strength, extent, and

location can be visually checked with one image, instead of many 2-D plots. Other param-

eters are also displayed, such as vorticity centers and the pressure field at the surface.

5. CONCLUSIONS

The use of 4-D display has given modelers at SSEC an added dimension in viewing model

output. In one case, assimilating data into a particular forecast run resulted in a large

difference in the Jet strength. The 3-D view of this change was much more striking than the

2-D plots. We have also found that including more familiar 2-D contours in 3-D displays

helps the meteorologist to better interpret the 3-D.

Development continues in all aspects of 4-D data sets and displays. This includes the

integration of data from satellite images, conventional soundings, satellite soundings,

doppler radar, weather radar, and output from various models. The eventual goal is to

present meteorological data in three dimensions that conveys new information to the

scientist that would not have been possible with traditional 2-D plots.
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A NEXT GENERATION MCIDAS WORKSTATION

William L. Hibbard
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University of Wisconsin

Madison, Wisconsin

I. IN_ODUCTION

This paper describes the goals of and a

proposed design for a next generation Man-computer
Interactive Data Access System (MclDAS) work-

station. The basic drive behind this is a

requirement for a new 4-D workstation which

combines animation with depth in its displays.

However, it also covers the needs for a general
McIDA_ workstation.

The current MclDAS workstation includes a

video system which stores and displays images and

graphics, and a processor which controls the

video system and communicates with the user and

with MclDAS applications software running in the

IBM mainframe host computer. The video system

stores up to 128 image frames and 64 graphics

frames of 480 lines by 640 elements. Images and

graphics are independently animated and colorized,

with graphics and cursor overlaying images. The

workstation processor is an Intel 8085 running a

fixed control program, which has recently been

upgraded by adding an IBM-PC/AT.

Although our workstation was at the state

of the art ten years ago, now there are other

science and engineering workstations with superior

technology. However, McIDAS still has the advan-

tage of a workstation highly integrated with

meteorological data sources and applications

software. We are interested in developing a

workstation which integrates new technology into

McIDAS. Capabilities for larger frames, more

bits per pixel, faster frame loads, pan, zoom,

and greater interactivity should be integrated

with MclDA_ data management and easy access by
applications software.

We will describe the requirements for a

next generation MclDAS workstation, a proposed

system based on the AT&T Pixel Machine, and

designs for integrating its video memory and

processor into McIDAS.

2. BASIC _EQUIREM S

The most basic requirement for a new

workstation is to preeerve our current capabili-

ties. Thus, it must be able to store about I00

Image and graphics frames of about 480 lines by

640 elements. The video outpu_ must be able to

flexibly color video and graphics, to combine two

or more image frames, and to overlay video with

graphics and a cursor. It must also be able to

generate two independent displays simultaneously

for stereo. The workstation must be able to

animate at rates of about 10 frames per second,

with independen_ control of images and graphics.

The cos= should be competitive with the current
COSt.

In addition to the current capabilities,

a new workstation must store image frames with at

least eight bits per plxel and wlthouc any

statistical encoding. More than eight bits per

pixel would be desireable for GOES 1R data and

other new sources. The graphics frames should

have at least three or four bits per pixel.

The new workstation should also include

some features which enhance interactivity by

reducing response time for the user's access to

image data. These include large and variable

sized frames with hardware pan and zoom, and
faster frame loads.

3. INTERACTIVITY

Interactivlty is fundamental to MclDAS.

The user at the workscatlon enters commands for

loading image frames and generating graphics

which are executed within seconds or minutes.

The user can manipulate the colorizatlon of the

display with immediate response. Earth coordi-

nates and values of meteorological parameters can

be retrieved at the cursor location within

seconds. The cursor can also be used to direct

correlation wind measurements, sounding

retrievals, and cross section analyses.

Improved interactivity is the most impor-

tant goal for a new workstation. MclDAS has

recently been used to extract cloud detail from

Voyager images of Uranus, a difficult problem

requiring filtering, remapping, brightness

normalization and other image processing steps.

This task would be easier if the user could get

inunedlace visual feedback to mouse or joystick

control over the parameters of these image

processing functions. Some modern workstations

offer this capability.

The 3-D displays we are developing on

MclDAS especially require a workstation with

great computational power for interactivity.
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Three-dlmensional displays have special problems

of visual amblgulty noc shared by 2-D displays.

Each plxel on a 2-D display corresponds Co only

one locaclon in a 2-V data sec, while each plxel

of a 3-D display corresponds co a llne containing

a pocenclally infinite number of points in a 3-D

data set. Also, our eyes are better ac comparing
2-D Iocaclons on a screen than ch_y are at

co_arlng depths depicted with binocular stereo.

The most effective way co resolve both of these

forms of 3-D ambiguity is co give the user the

abillcy co change the view point in 3-D with

i-_ediace response. A 90-degree rotation changes

depth information into more easily perceivable

screen geometry information. RoCatlon also

separates and creates relative motion between the

3-D points which share a plxel, resolvin S them to

the user's eye.

The computational power needed for 3-D

rotaclon and zoom can also be applied co ocher

forms of interactive control over the display.

These include control over the density of informa-

tion, the value of contour surfaces, the selection

of meceorologlcal fields Co be combined in the

display, and parameters of the underlying analysis.

These forms of Interaccloo should be simultaneous

with rime animation. As the interaccivicy of 3-D

displays increases, particularly in the area of

real rime 3-D rocaclon, the need for binocular

stereo displays with their special glasses will

diILinlsh.

There are ocher forms of 3-D inceracclon

which are lees demanding co,_pucaclonally. First,

real-elms rocaclon and zoom can be applied co

simple images such as flue graphics. Second,

complex 3-D images can be produced at less than

real-elms races and stored for mulClframe anima-

Clon, similar co animation on the current MclDAS

workstation. Third, a 3-D cursor can be dSsplayed

in 3-D images in way conslstenc with perspective,

hlddeu surface removal, and transparency. Such a

cursor can be used co retrieve values of meceoro-

logical parameters. Ic can also be used co

interaccively direct the creation of 3-D image

elements, such as the placement of trajectory

parcels ac points of interest.

4. PROPOSED SYSTEM

The video system of the proposed work-

station is the ATT Pixel Machine (Runyon, 1987).

It contains up co 48 million bytes of frame

memory and executes up co 820 million floating

point operations per second. With chls compuca-

clonal power, the Pixsl Machine can provide

real-rime interactive rocaclon of anlmaced 3-D

images similar co chose we currently produce on

McIDAS (Hibbard, 1986). IC can also provide the

ocher forms of inceracclvicy described in the

previous section. Of course, this would require

very complex and difflculc software.

The Pixel Machine has no hardware pan or

zoom. However, ic has sufficient computational

power co implement these functions in software ac

reasonable anlmacion races, as well as false

color enhancement of more than eight blcs per

pixel. Its video output can generate separate

red, green and blue channels with eight bits

each. This mode will allow very high quality

images with subtle use of color.

The Pixel Machine requires a conventional

hose with an operating syscm for running

develo_enc software and coordinating the opera-

cion of los many DSP-32 processors. The only

currently announced hose i8 a Sun computer

running the UNIX operating system. The Pixel

Machine will be available in the first quarter of
1988.

The Pixar Image Computer (LevinChal,
1984) would be a good alternate candidate for our

next video system. Ic contains up co 120 million

bytes of memory and can execute 120 million

integer operations per second. The Pixar has

been available for a couple of years and has a

developed software base. Although it has less

power for real-rime rotation of complex 3-D

images, IC provides a variety of real-rime image

processing functions. The Pixar also requires a
hoar computer. Currently announced hoses include

Sun, Symbolics, Silicon Graphics and DEC micro

VAX II.

A great deal of software will be required

co integrate the new video system and hose as a

McIDAS workstation. Most of this software will

run in the hose for dace management, cou_unlca-

clone, and applicaClons. Software for the video

processor will implement lower level buc compuca-
Clonally incenslve tasks for inceracclve

functions.

The costs of both the Pixel Machine and

the Pixar are within range for a McIDAS work-

scaclon.

In order co satisfy our basic require"

mencs and inceraccivicy goals a video system must

combine a large and flexible frame memory with a

powerful and generally progra-_-ble processor
where the processor has high bandwidth access co

the memory. Ic is likely chac several ocher

candidate systems will appear during the next few
years.

5. MANAGING VIDEO MEMORY

In the current MclDAS workstation, the

allocation of video memor7 to frames is fixed,

and the frames exactly fic the screen, with no

pan or zoom cransfot_naclon. The frames and ocher

video system components are managed with a disk

file called the frame directory and a memory

region call system co---on (SYSCOM). The frame

dlreccory contains entries for a fixed number of

frames, documenclng the source (e.g., satellite

ID), dace and rime of the frame dace, the loca-

tion and resolution of the frame within a larger

image, and ocher information. Animaclon and

interactive funcclons are managed by a TV control

(TVCTRL) process. Because the frames exactly fit

Che screen, the TVCTRL process does noc need

access Co the frame director7 co control

anlmacion. Ic only needs access Co SYSCOM, which

contains the sequence of frame numbers defining

the animaclon loop, along with dwell rimes for

each frame.

In order co manage variable (and user

definable) sized frames with pan and zoom, these

structures need Co be changed. The number of
frame entries needs Co be variable, and some new

informaclon needs Co added Co the entries,

v



including the size of the frame, the address

range of video memory used co score the frame

dace. a flag indicating whether the dace are

scored in packed format, and the number of bits

per pixel for packed dace. Animacion control
should include the ability co pan while animating,

and the ability co keep earth locations fixed

during animation of loops whose frames possess

different sizes, locations and resolutions.

These abilities require Chat the frame dlreccory

Information for a loop be accessible in memory

during anlmaclon. The frame directory informa-

tion also needs co be scored redundantly on disk

to survive a system reboot or crash.

Currently MclDAS has a hierarchy of three

coordlnace systems for image data. These are the

image coordinates from the raw dace source, area

coordinates in the image file on disk, and frame

coordinates in the video frame. The relation

between these coordinate systems is defined by

translation offsets and resoluclon blow-up or

blow-down factors in both line and element direc-

tions. NiCh variable sized frames this hierarchy

will be extended by adding screen coordinates in

the menlcor screen. As wlch the ocher coordinate

systems, the user will generally specify screen

locations by earth lacltude and longlcude and let

the system convert. During anlmaclon of a loop,

the user will usually select the screen window

into the frames by earth coordinates. IC is

interesting Co consider uses for animaclon of

loops whose frames differ in size, location and

resolution. A forecaster mlghc maincaln a GOES

loop covering a local region every half hour, and

another loop covering a larger surrounding region

every hour or two. To save frame space the local

loop could share the larger frames ac the Clmes

when the loops coincide, resulting in a loop

whose frames vary in size, location and possibly

resolution. As another example, a storm might

move off the edge of the region covered by a

standard loop. In order to continue following

the storm, the user could define another loop

including the frames of the standard loop and

more recent frames with a translated location to

continue covering the storm. The new loop would

be animated with the screen centered Co cover the

storm over the duraclon of the loop.

The allocation of video memory into a

variable number of variable sized pieces is

similar Co the allocation of segments of main

• emory in a computer system. This suggests the

use of an object-based system similar to chose

used for managing memory segments, rather than

the current flee file frame directory. Each

frame would be documented by a frame object. An

object-based system could also be used for those

parts of SYSCOM relating to the video system.

Loop objects would point to a series of frames.

Several loop objects could be defined and given

names, so that the user could easily switch among

dlfferenc loops. Objects could also be defined

for color cables, cursors, windows and ocher

Video system resources. Frame objects would have

names, although the user would usually refer to

frames by the name of a concainlng loop and the

sequence number of the frame in the loop, or by

loop name and frame time. Of course, a frame

COuld belong to several loops.

Access to objects in an object-based

system is through a sec of subroutines defining

the legal operaclons on objects. This allows

object formats and processing to be changed

without changing appllcaCions. It also protects

system integrlcy from applications programs. The

current SYSCOM is divided into blocks of memory,

and the words of each block are allocated to

fixed uses. Although the blocks can grow by

adding words onto the end, this structure tends

towards having a fixed number of structures of a

given type (e.g., cursors, windows, loops).

However, an object-based system allows an arbi-

trary number of each type of structure. This is

more adaptable to new video systems, as well as

co new uses of existing video systems. An

object-based system also makes ic easier co add

new types of structures.

Objects can be defined for 3-D structures.

A 3-D frame object could be defined to include a

pair of ordinary frames, one for a 3-D image and

one for a depth z-buffer. It would also include

parameters for the projection mapping from 3-D

space to 2-D screen coordinates. Such a 3-D

frame would support operaclons with a 3-D cursor,

and also support incremental rendering of new

information in the frame in response to user

interaction. This type of 3-D frame would apply

to 3-D frames conCalnlng only opaque objects.

However, another type of 3-D frame could be

defined which would allow transparent objects.

Such 3-D frame object would include an image and

a z-buffer for opaque objects, an image and a

z-buffer for transparent objects, and a buffer of

transparency (alpha) values. This would allow

3-D cursor operations and interactive control of

rendering wlch transparent objects. A topography

frame object could be described, which would

contain surface helghcs aca grid of points.

This could be used Co render a shadow of a 3-D

cursor on the topographical surface in a 3-D

frame. Of course, these operations with 3-D

frames and cursors require processing power close

co the video memory.

Most of Chess design ideas would apply to

any video system which allows variable sized

frames.

6. MANAGING THE VIDEO PROCESSOR

All functions of the video system involve

executing software on the video processor. These

functions include frame loading, animation,

panning, zooming, drawing graphics, color table

loading and cursor movement. They also include

interactive functions created by users with

co,-_unicacing software components in both the

video processor and the host processor. The

video processor must appear to execute these

functions simultaneously. This is a new type of

resource management problem for McIDAS.

The video processor should be managed as

a queue server which executes functions requested

by host processes. HcIDAS applications will call

a system service to request that video soft-_are

ba invoked. If the video processor is busy when

an application calls the invoke service, the

request will be placed on a queue. Requests will

be removed from this queue and invoked when the

video processor signals that it has completed the



currentfuncclon. A_echanism should be provided

wlth thls service to allow data to be passed in

both directions between host and video processor.

Other system services will be implemented so chat

host programs can explicitly load and unload

video processor software.

By managing the video processor with a

queue server, several simultaneous and apparently

continuous video processes will be implemented

with multiple continuous processes in the host

which repeatedly invoke routines in the video

processor. A system service should also be

provided to temporarily disable the queue server,

in order to accommodate very complex functions

with software components in both host and video

processor which co_unicace without the queue
server mechanism.

An important function for the video

processor will be to provide real-time animation
and interaction with 3-D i_sSss, which presents

some new _anagement problems. For multi-frame

animation, the frame objects for the scored

frames are used to manage the animation.

However, for real-time animation there are no

stored frames and frame objects. Thus SYSCOM

should include information for managing realotime
animation. This would include 3-D world bound-

aries (e.g., latitude, ionglCude and height

bounds), the parameters of the perspecclve

mapping, time bounds and the time step for the

animation, a list of the currently displayed

meteorological fields and links back to their

underlying data sets (stored in the host's memory

or the video memory), and current analysis and

information density parameters. User interaction

with real-time animation will be managed by

linking thls informaclon with user input through

keyboard, mouse, Joystick and other devices. Of

course, user interaction can be simultaneous with

time animation of the display.

While video processors are designed to

provide fast rendering of images, they are not

necessarily suited Co the data analyses asso-

ciated with rendering images, particularly for

large meteorological data sets. This may pose

barriers to real inceractivity with the data.

One approach to this problem is to restrict the

analysis at any instant to a subset of the data

set, and to use the speed gained by this to allow
the user Co roam around in the data. For

example, 3-D and 4-D gridded data could be
preprocessed to exist at its natural resolution

and at several coarser resolutions. At any given

instant, the world extents of the display could

be used Co pick a resolution of the grids with a

tractable analysis problem. To see more detail,

the user would zoom in closer to a region of the

display, which would be accompanied by a switch

to a sector of a finer resolution grid. Thus a

continuous perspective zoom would be punctuated

by discrete analysis zooms, increasing the level

of detail in the display. In sows cases there

may be a slight lag of the analysis as the user

zoc_as into a new region of _he data. For

example, after an analysis zoom. wind traJec-

tories mlghc gradually appear over a period of a

Couple seconds, concurrent wlth tlme ao_matlon

and rotating perspective.

In order Co understand this mode of

interaction, it is worth describing how it could

be controlled with a mouse. With neither mouse

button pushed, lateral _ouse motion would control

horizontal image rotation sad forward and back-

ward mouse motion would control vertical image

rotation. With the left mouse button pushed,
mouse motions would control horizontal and

vertical translation of the image on the screen.

With the right mouse button pushed, forward and

backward mouse motion would control zooming

towards the point of the 3-D cursor. As the user

zooms in, the world box appears co expand on the

screen, but it is periodically replaced with a

smaller box and a more detailed analysis. During

a zoom out, this would be reversed. The mouse

could also be used to control the 3-D cursor,

although this should be kept segregated from

mouse control of the image. One method would be

to use a mouse burton double click to swlCch

modes between cursor and image control.

These design ideas would apply to any

video system which provides a generally program-

mable and powerful video processor.

7. OTHER DESIGN CONSIDERATIONS

A new video system should make it pos-
sible to achieve must faster frame loads than

currently, particularly when they do not involve

a resolution change or sectorization from a very

large image file. This applies particularly to

frame loads from the workstation host to the

video system, but it should also be possible to

increase the speed of data movement from the IBM

mainframe co the host. For example, the "burn

box" communications system on McIDAS network of

the Centralized Storm Information System at the

NSSFC achieves data transfer races of 1.2 Mbps,

equivalent Co moving a 480 by 640 by 8-bit frame
in _ or three seconds.

Fast frame loads would apply in both

directions, so 1: should be possible for users to

quickly save their frames, similar co the way

they now save string tables and color cables, and

Co quickly restore chem. Faster frame transfer

races will also be desireahle to keep load times

for larger frames within reason.

Data retrieval times for uon-lmage data

are also important. The time to Kenerace graphics

depends on the tlme to get the data. Grid data

are usually stored in reasonably compact arrays

which can be retrieved quickly. However, irregu-

larly spaced data are often scored in a way that

their retrieval requires as many disk reads as

there are data points. Comerclal data manage-

menc systems based on the relational model of

data provide independence of the applications

software from the data storage format, as well as

retrieval of data in unpredictable combinations.

However, only chose systems which provide control

over the physical grouping of data are appro-

priate for use with interactive graphics. On

MclDA3, the MD da_a manage=sot system provides

data independence and physical grouplng of data

based on geometric retrieval patterns. Designers

of interactive meteorological systems should take

the lead in developing data management systems

based on a geometrical model of data.



8. CONCLUSION

A next generation workstation should

include capabilities for varlable-sized frames,

pan, zoom and fast frame loading which reduce

response _ime for access to image data. However,

it is equally important to recognize that a next

generation workstation should also include a

powerful processor close to the video memory in

order _o support greater interac_Ivity of image

processing, graphics generation and image render-

ing. This is particularly _rue for 4-D displays,

which will become an integral part of a general

meteorological workstation. A powerful and

general procdssor in the workstation will improve

the quality of 4-D images, increase their inter-

activity, and gradually reduce _he need for

binocular stereo and stereo glasses.
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Extended Abstract

Numerical weather models are producing enormous amounts of data.

A typical model output data set may consist of one billion points in a

five-dimensional rectangle, composed of a i00 by i00 horizontal grid, by

30 vertical levels, by i00 time steps, by 30 different parameters.

Such a data set can fill thousands of two-dimensional plots, and

challenges the capacity of current systems for its management, analysis
and visualization.

The University of Wisconsin-Madison Space Science and Engineering

Center (SSEC) developed the Man-computer Interactive Data Access System

(McIDAS) as a tool for accessing weather data as animations of

two-dimensional images and graphics (Smith, 1975). This system was a

revolutionary change from the traditional paper facsimile plots, because

it gave the user control over the geographic extentsand contents of its

images and graphics, and because it provided animation. However,

numerical models and modern remote sensing instruments are generating

data sets whose size, dimensionality and complexity exceed the

capacities of current interactive weather systems. Thus we began an

effort about six years ago to develop a four-dimensional capability for

McIDAS. This system generates animated displays of multivariate

three-di=ensional images from weather data.

Our system manages weather data as two and three-di=ensional

uniform grids, as trajectory paths through space and ti=e, and as

images. Grids can be grouped together for multiple parameters and

multiple time steps, allowing us to manage a five-dimensional rectangle

of model output data as a whole. Our system includes a wide variety of

user commands for housekeeping and analysis operations on our data

structures. Gridded data can be resampled in space and in ti=e,

combined by arithmetic operations, transformed to a moving frame of

reference and manually editted. Gridded data provides an indicator for

missing data values, and this can be exploited to visualize only a

region of a grid by marking other areas as missing. Trajectories can

be generated from gridded U, V and W wind components.

The four-dimensional McIDAS system can be used to generate

animation sequences of three-dimensional images which combine many

physical paremeters, using a variety of graphical techniques (Hibbard,

1986a; Hibbard, 1986b). All of our images are rendered in a rectangular

box, including a flat or topographical map on the bottom, with optional



physical and political boundaries. Our graphical primitives include:

** opaque and transparent trajectories, rendered as thin cylinders v

** opaque and transparent contour surfaces

** grid mesh contour surfaces

** contour isopleth lines lying either on the topographical map or on

a horizontal surface defined by some other gridded variable such

as pressure or potential temperature

** volume rendered densities, with the opacity of each

three-dimensional point proportional to some gridded variable

** opaque and transparent texture mapped images, lying on some plane

in space

** visible satellite images texture mapped onto a cloud top surface

defined by the corresponding satellite infrared derived heights

We often combine our animation sequences with a rocking motion of

about 1 or 2 degrees, as a way of making the three-di=ensional geometer

of the depicted weather phenomena more apparent (Hibbard, Santek and

Dengel, 1988). We also sometimes stop the time action and rotate the

images through large angles.

We have applied our soft,'are to produce visualizations of data_r_c

many different numerical weather models (Pauley, Hibbard and Santek,

1988; Meyer and Seablom, 1988; Uccellini, 1988; Santek, Leslie, Good_an

Diak and Callan, 1987). We have also applied our software to a wide

variety of remote sensed data from satellites, radars, lidars, observin
networks and sounding instruments. These visualizations are used for

teaching at the University of Wisconsin and other institutions, for

conference presentations of case studies, and by modellers and

inst_anent developers wishing to understand their data.

Our experience producing visualizations of weather data has
shown that a more interactive system is very important (Hibbard, 1988).

We are currenlty developing a new system based on the Stellar GS-1000

graphics supercomputer. Most of our images contain between 5000 and

20000 shaded triangles, and roughly the same number of line vectors.

Our animations generally run at 7.5 frames per second. The GS-1000

should be able to produce similar animations in real-time, giving the
user interactive control over the display for rotation, zooming,

changing the combination of selected parameters, retrieving values at a

cursor, changing the levels of contour surfaces, and varying the image_

in many other ways.
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INTRODUCTION

The analysis of geohydrological data has
traditionally been through the use of 2-D
contour plots and vertical cross sections. This

is the most natural because of the way the data
are gathered and traditional display mechanisms.
Although there has been an increased use of
numerical models to simulate flow systems, the

output presentation methods have not changed to
handle the new and often voluminous amounts of

data. A simple 2-D model may generate hundreds
of 2-D fields that can be displayed, or
contoured, on a graphics system or in a hardcopy
form. Traditional methods for analysis may be

appropriate, but the greater amount of data
makes it more difficult. Taking it one step
further to 3-D, the complexity increases by more
than the additional dimension because of

interactions and relationships between all three
space dimensions and time. It is unfortunate

that the output is often in a 2-0 form, usually
vertical cross-sections for selected transects

or horizonta] slices. It is up to the scientist
or engineer to mentally integrate the

information to gain a better understanding of
the 4-D characteristics of water flow. Not only
is this task tedious, but the results of the
analysis will probably be incomplete. It
behooves us to investigate ways to display the

model output as a continuum in space and time to
better interpret a complex flow system.

The geohydroIogic model results presented in
this paper are from a 3-dimensional transient

groundwater flow model. Warzyn's analysis and
presentation of 3-D transient groundwater flow
model input and results uses typical contour

maps (e.g. Figures I and 2). Display of the 3-D
flow field as it changed through time was needed
to:

• clearly illustrate the vertical position

of the horizontal f]ow relative to clay
layers separating sand and gravel
aquifers, and

• present results to non-technica] c]ients
and the public•

A means to display meteorological data in 4-0
has been deve|oped at the Space Science and

135

Engineering Center (SSEC) on the Man computer
Data Access System (McIDAS) (Hibbard, et. al.,

1987). The flexibility designed into the data

management and display programs, allowed for a
relatively easy extension for use with

hydrological data. There are similar vector and
scalar fields between hydrology and meteorology,

but the time and space scales differ vastly•
For instance, a 40-year groundwater flow

simulation was stored in the 4-D database as

through 4t took only ID hours. Similar
adjustments were used for space scales.

Application of McIDAS to subsurface hydrology
has been initiated on two projects where 4-D

presentation of the data enables a better
understanding of the interaction between the
subsurface conditions and the groundwater

hydrology. A still photo example of the McIDAS
display is shown in Figure 3.

Through cooperation of two of the authors,

Warzyn's data used by and output from a
groundwater hydrology model were transferred to
the McIDAS and displayed in 3-D animated
sequence. The purpose of this paper is to
present the results of this technology exchange
and highlight the advantages of a 4-dimensional

display capability. The paper will present a
brief background on each software used, the
hydrologic problem set used and finally, the

results in both 2-D and 4-D presentations.

MCIDAS 4-D SOFTWARE

The McIDAS manages and processes satellite and
weather data for displays of animated satellite

images with overlayed graphics (Suomi, et. aI.,
1983). McIDAS runs on an IBM 4381 and uses

graphic workstations built by SSEC. The 4-D
software, a small part of the McIDAS, was
developed to manage and display 4-D

meteorological data, and has been applied to
numerous data sets of varying time and space
scales. The data are stored in 2-D grids, 3-D
grids and trajectory files (parcel location with

time). One rendering program operates on the
grid and trajectory files, regardless of space
or time scales, and generates 3-D images. The
images may consist of any or all of the
following components for depicting different
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types of physical parameters: transparent or

opaque objects, transparent fog, wire mesh, 2-O
contours, and tubes (Hibbard, 1986). For this
geohydrological case, clay layers are shown as a
transparent or color opaque object, within the
clear matrix of the aquifer, where groundwater
can easily flow. Trajectories appear as moving
tubes. These objects are drawn within a
rectangular box that defines the area of

interest in 3 space. To heighten the 3-D
effect, the use of hidden surface removal,

shading, stereo viewing and animation are used.
Included in some animated sequences is a slight

rocking of the objects (but not the outer box)
to give additional depth information.

FLOW MODEL AND PARTICLE TRACKER

The groundwater flow model(MOOFLOW) used to
simulate changes in head due to changes in water

supply well pumping rates was written by
McDonald and Harbough (1984), of the U.S.
Geological Survey. The model solves the

groundwater flow, partial differen- tial
equation given below, using a finite difference
approximation.

B(Kxahl2x) + a(Kyah/ay) + B(KzBhlBz) = SsB_hh+W
Bx _y Bz _t

where X, Y, Z - spatial cartesian

coordinates (L)
K - hydraulic conductivity of the

saturated porous media (L2/T)

Ss = specific storage (L-l)
t -. ti_ (T)
W - volumetric flux (L3/T)

h - potentiometric head (L)

The model uses a block centered finite

difference grid for setup of the problem domain
and the strongly implicit procedure for
solution. Data input includes aquifer parameter
matrices (hydraulic conductivity and physical

description of the geologic distributions),
initial conditions (starting head) and boundary
conditions (ie. pumping rates and locations,
head or flow conditions on model boundaries,
rainfall recharge rates, river and lake
locations, head and connection with the

aquifer). The finite difference grid in the

horizontal, X-Y plane is uniform although not
necessarily of equal spacing. Each vertical grid
layer can be deformed to follow the irregular
shape of the aquifer or clay layers in the
subsurface Each model layer for this well
field probiem is highly deformed to follow the

variable thickness of the clay layers and
aquifers.

Results from MOOFLOW consist of a matrix of head

values for each layer, for each finite time step
of the model. Actual flow directions in this

heterogeneous multi-layer simulation cannot be

determined based on the head maos alone (e.g.
Figures I and 2). A velocity field processor is
required to determine actual 3-dimensional

groundwater flow lines at any one instant or the
resultant flow path through time.

A particle tracker (PATH3D), developed by
Chunmiao Zheng (in publication by the Wisconsin

Geological and Natural History Survey), was i

in the transient mode to map the flow lines v
through the modeled area based on MODFLOW
output. PATH3D uses the head matrices from

selected time steps in MODFLOW, with selected
input files used to initiate the MODFLOW run.
Two minor additions are required, the thickness

and porosity of each layer (to compute travel
time) and particle starting points in space and

time. PATH3D moves each particle in response to
the advection velocities interpolated between
flow model cells for the duration of the time

step. The next series of head matrices are then

read, new velocities computed and particles
moved. Output from the particle tracker model
consists of the X, Y, Z and time positions of

each particle. Graphical presentation of output
is left up to the user.

Both the MODFLOW and PATH3D programs are run on

a Micro-VAX computer at Warzyn. Run times for a
flow model are approximately 186 CPU minutes for
a transient (60 time step) simulation. PATH 3-D

requires approximately 5.5 CPU minutes for a, 50

step transient, 10-particle analysis.

GROUNDWATER HYDROLOGY CASE

The example case for this paper is groundwater
flow in the vicinity of a municipa) (W series

wells in Figure I) and industrial well (F series
wells) field in the midwest. Several wells
within each well field were contaminated by

trichloroethylene and/or tetra-
chloroethylene. An extensive field L_--4

investigation is in process to characterize the
geology, the groundwater flow system and
determine the extent of contamination within

each aquifer. The groundwater modeling is being
conducted concurrent with the data gathering so
as to help quantify results of the field

investigation, direct further investigations to
identify critical areas of additional data needs

and finally to evaluate remedial actions.
Therefore, the model results presented here are
not fully calibrated and verified to observed

conditions. This paper is intended to present
results of the geologic investigation and the

groundwater flow modeling using the McIDAS
display techniques.

The aquifer utilized by the municipal and

industrial wells is a thick sequence (greater
than 260 ft) of three sand and gravel outwash
deposits separated by two clay till deposits.
Each of the sand and gravel outwash deoosits are

laterally extensive, although varying in
thickness from 20 to 70 ft. The supply wells
are screened in, and pump from, the lowest sand
and gravel deposit. The two clay till deposits
separating the aquifers are not present

throughout the entire modeled area. These two
till deposits are displayed on the McIDAS

display as transparent sur?aces. The lower till
is present only in the west portion of the model

area (see Figure 3) as a finger extending fro_
the northwest to the center of the model. Th_
upper till is present across the south and wes_ "_

ends of the model. The relationship becomes



muchclearerwhenviewingthevideotape
presentedat theconference.

During the field investigation contaminants have

been found above the clay layers c)ose to
potential source areas. In the center of the
city contaminants have been found at depth

(greater than 150 ft below the water table).
This raises the concern that the contaminants

may have moved as a dense non aqueous phase
liquid, sinking to the bottom of the aquifer.

: north

• 2000"

Figure I - Contour map oflgroundwater head in
layer I - contour map of uppermost

sand and gravel deposit (O.7m contour
interval).

The McIDAS display (Figure 3) i11ustrates the

strong control that the clay deposits exert on
the groundwater flow system that horizontal

projection of the flow lines (see base of
Figure 3) cannot show, Flow lines starting at
the water table are relatively horizontal above

a clay deposit. As the flow line reaches the

end of clay deposit the small downward vertical
gradient through the permeable sand and gravel
results in very strong downward flow just off

the edge of a clay deposit. This illustrates
that contaminants can move to great depths off

the edge of a clay deposit. This discounts the

potential presence of a pool of highly
concentrated contaminants acting under a density

gradient.

Figure 3 - McIDAS 3-0 display with 2-0

projection of flow lines on base.

White surface are the top and bottom

of clay deposits. The !symbo) shows
the pumping well, location. View
from the east.

!

I

Figure 2 - Contour _ap of groundwater head in
layer 5 - bottom sand and gravel

deposit. AQuifer being pumped by the
supply wells (O.gm contour interval).

SUI_f4ARY

MclDAS has definite advantages over Z-D methods

for display of the complex geology to clients or
management, a11owing even the uninitiated an

ability to grasp the conditions• Figure 3
i11ustrates a true3-dimensiona] picture of the
clay layers distribution. Rotating the display
provides different views illustrating specific

relationships.

13"

McIDAS's display of groundwater flow in 4-O
a11ows further analysis and a better
understanding of the interaction between the

geology and groundwater flow system.
Utilization of McIDAS for the case study

presented here, provided insight into the
problem of how a contaminant moved 100 ft
vertically clown in an aquifer, when vertical
downward gradients were small. This may reduce
the need for additional, expensive field
investigations.
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I. INTRODUCTION

Remote sensing instruments and numerical

models are producing large data sets which are

difficult to manage, analyze and visualize. A

lidar can produce a dace sac of 1.5 billion

points, with 2000 sampkes per ray, a volume scan

of 60 by 60 rays, and 200 volume scans over

eight hours of observing, A weather model may

produce i billion points in a five-dlmensiona_

rectangle, composed of a I00 by I00 horizontal

grid, by 30 vertical levels, by I00 time steps,

by 30 different parameters. An Earth Observing

System (EOS) era instrument may produce I0

m111ion observations per second.

Such huge data sets defy our cradltlonal

techniques for managing, analyzing and visualiz-

ing chem. Thousands of _wo-dlmensional plots

may be required for a billion point weather

model data set. And these plots may not

adequately depict phenomena which weave through

many horizontal planes and many vertical cross

sections.

We are attempting to address this

problem, with our current IBM mainframe-based

system and especially with our next generation

interactive system based on a graphics super-

computer workstation.

2. CURRENT SYSTEM

We are currently handling large data

sets using the four-dlmenslonal McIDAS software

running on the IBM mainframe McLDAS. Using chls

system we have produced videotapes which are

effective for visualizing large case study data

SetS.

Our software provides toots for managing

large data sets as two- and three-dimenslonal

uniform grids, as streamlines, as trajectories,

and as images. The software has a consistent

set of conventions for dealing with groupings of

these snruccures by different parameters at a

given time, and by time steps over a range of

times. Thus three-dimenslonal grids grouped for

both parameters and clmes comprise e five-

dimensional rectangle such as a weather model

might produce. TraJecrorles are managed in

groups which indicate the motions of many air

parcels throughout a four-dimensional space and
time region. Our data management software

includes user co_nds for flaring and manlpula-

ting data sets, subroutine libraries Co give

analysis programs access to data, and Cape read

programs for getting data into the system.

McIDAS and its four-dimensional component

provide a vide variety of data analysis functions.

These operate on images, grids, trajectories and

other data structures for smoothing, interpolation

advection, simple arithmetic combinations, and

many specialized analysis techniques. These

analysis programs access the data through the data

management libraries.

Our system includes a large body of

software for generating three-dimensional images.

These programs generate:

** shaded relief topographical maps with physical

and political boundaries

** trajectories as shaded cubes

** grid mesh contour surfaces for parameters such

as mixing ratio and potential temperature

** shaded contour surfaces for any scalar

parameter, which may be either opaque or

transparent

** contour lines, drawn either on the topo-

graphical surface or on a surface in the

atmosphere (such as a pressure or cheta

surface)

** twO-dimensional image slices in the atmo-

sphere, such as those scanned by radar or
lidar

** three-dimensional transparent fogs with

opacity proportional to some scalar parameter

** cloud top surfaces generated from visible and

infrared satellite images

These images can be rendered as grey
shades or as color. Although the McIDAS work-

station has only pseudocolor and not true color,

we have been able co combine color and

transparency effects. This combination requires a

two-dimensional color space, which we were able to

implement using the McIDAS _2-bic color table

combining inputs from two image channels simul-

taneously. In order to produce accurate colors,

we had to modify the PROMS in the workstation

which implement the McIDAS encoding of 64 image
intensicles into 3 bits.

Although the images produced by McIDAS

can be viewed directly on the works_aclon, we



have concentrated on producing videotapes of our

image animations. This is partly to reach more

people with these images, but also because the

workstation capacity of 128 _ges limits our

ability to vlsuaiize a large data set. We

produced a videotape from model slmulacions of

the Presidents' Day storm with Louis Uccellini,
which contains thousands of McIDAS images. It

takes several days Co load all these images into

the workstation, so direct viewing on the

workstation would not be a practical way to

visualize this large data set.

Producing animation sequences of our

three-dimensional images requires chat the image

generation programs are invoked for each image.

For some cases, each image may require that a

series of rendering programs be run. Thus the

production of an animation sequence can be quite

complex. We have developed soma standard

practices for managing these movie-making Jobs,

using the McIDAS DUO comuand. DUO invokes a set

of other co"_ands r_peatedly, changing the

co-,--nd parameters for each invocation. Often

these Jobs involve mixtures of data management,

data analysis and image generation commands.

They may also require hours of CPU time, despite
our best efforts to make our software efficient.

Three-dlmensional images suffer from the

inherent ambiguity of mapping three dimensions

onto a two-dlmensional plane. The right approach

to resolving this ambiguity is to produce the

interactive system we describe below, which will

allow the user to rotate the image in real-time

under Joystick control. For our videotape

productions, however, we have developed a

compromise solution. We rock the images slightly

wlth clme animation. This is effectively

illustrated in the animations we produced from

Robert Schlesinger's cloud model data. The

development of the storm is accompanied by a

vertical rocking of about-two degrees. Com1_aring

the same sequence wlth and without the rocking

shows a dramatic difference in depth perception.

We also experimented with combining time

animation with a steady rotation, but this

produced ambiguity between the apparent motion

of objects due to dynamics and due to rotation.

The rocking is not ambiguous with the relatively

steady dynamic motions of the atmosphere, and

would only be an_iguous with rocking or oscillat-

ing motions of the atmosphere. For some of our

animations we also stop the tlme dynamics to

show a r_tation of a stop action vlev of the

atmosphere. This can be very effective in

visualizing three-dimensional weather geometry

st a single time.

A videotape intended for visualizing a

large data set may require many animation

sequences to see different parameter combinations,

different scales, and different vlelrpoints.

Thus a good videotape requires detailed planning

reflected in a script. The script lists the

different ways of viewing the data see, their

sequence and the length of time each runs.

Because of the amount of effort required to

produce a videotape from a large data set using
our current system, the script planning process

is essential co conserve computer and human

resources,

A videotape is produced by dubbin$

individual animation sequences onto tape, and then

editing them together according co the script.

The individual sequences are loaded into the

multiframe McIDAS workstation and animated using

the McIDAS animation control contends. For a very

large data set, such as Gres Tripoli's RAMS cloud

simulation, an individual sequence is too long co

fit in the McIDAS workstation. In that case, the

editing involves combining partial sequences into

one long smooth animation.

We have used the current system to produce

effective visualizations of large data sets on

videotape. However, the tlme and effort required

for these productions is enormous. Several hours

of computer time are often needed to render an

animation sequence and load it into the

workstation. Producing an effective animation

requires a lot of trial and error with choice of

perspective point, combination of parameters,

contour levels, colors, degree of transparency,

map scale, etc. Thus each animation sequence may

take days or weeks to produce, and a whole cape
can take months.

3. INTEEACTIVE SYSTEM

We are developing an interactive system

based on a graphics supercomputer. This system

will produce a quantum leap in our ability to

manage, analyze and visualize large data sets.

The basic ideas for It are described in our paper

last year to this conference (Hibbard, 1988). The

hardware candidates are the Stellar GS-1000, the

Ardent Titan, the Alliant/Raster Technologies

GX4000, the Silicon Graphics 4D/90 GTX, and the

AT&T Pixel Machine. The Apollo DNI0000 will

become a candidate when a true rendering engine is

integrated into its design, which is expected in

late 1988 or early 1989. Each of these systems is

capable of storing large data sets and generating

real-tlme multivariate three-dimensional animations

from them.

In order to interactlvely analyze and

visualize data, it must be quickly accessible.

Thus it is necessary to store large data sets in

main memory rather than disk to get the necessary

access speed. Transfer rates from modern disk

drives are measured as a few million bytes per
secofid, while access transfer rates for the main

memories of graphics supercomputers are measured

as hundreds of millions of bytes per second.

Furthermore, the memory capacities of several of

these machines are :28 million bytes, with 512

million byte machines expected within a year.

These capacities are large enough to store

significant subsets of current data sets for

real-time interactive analysis and visualization.

Of course, we will have to modify our data manage-
merit software so data can be stored both in main

memory and on disk, and can be moved between these

media in response to the needs for access.

We will also need to extend the MclDAS

data management to allow users to refer to large

data groupings and apply analyses to a whole data

set wlth a s_ngle cowmand. Thus the user should

be able to refer to a single image or to a time

sequence of t_ages vlth equal ease. It should

also be possible co manipulate a single grid, or a
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group of grids for different parameters at a

single rime, or a group of grids for different

parameters and at a sequence of times, all with a

single command. A principle goal of our planned

system is co allow the user to interact with a

large data set at the pace of his own thoughts.

This will only be effective if the user is not

bogged down in entering a separate cc_and for

each element of the data set.

Our proposed Interactlve system will

produce images similar co the ones we currently

produce on the IBM mainframe. However, they

will be rendered in a tenth or a flfrh of a

second, allowing them co be rendered as they are

animated. This will give the user i-,_edlate

control over their rotation, zoom and cou_inatlon

of parameters via mouse or Joystick. It will

also be possible to interactlvely control the

levels of contour surfaces, trajectory placement,

information density and smoothing. Thus the

user will be able co understand a complex

multivariate four-dlmenslonal data set quickly.

When the user sees an interesting phenomenon in

one animation sequence, he will be able Co

pursue its cause by displaying Ic in relation to

ocher parameters, viewing it from another angle,

or taking a closer look with a different

sampling or smooching of the data.

4. CONCLUSION

Our experience producing graphics

animations from very large data sets has convinced

us more than ever that inceracclvlty is the key

to making four-dimenslonal data management,

analysis and visualization work. In the past we

have conducted a varlecy of experlmencs with

stereo displays. Although stereo produces an

interesting sensation and does provide some

depth information, it is certainly not the

answer co the serious problem of managing and

visualizing large data sets. A highly inter-

active system is the answer.
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Visualizing Large Data Sets
in the Earth Sciences

William Hibbard and David Santek

University of Wisconsin-Madison

ith single data sets containingbillions of points, meteorolo-

gists and other earth scientists
face an avalanche of data received from

their remote-sensing instruments and

numerical simulation models.

The Space Science and Engineering

Center (SSEC) at the University of

Wisconsin-Madison led the evolution of

weather visualization systems from paper

to electronic displays with our Man-

computer Interactive Data Access System

(MclDAS). We have continued this evolu-

tion into animated three-dimensional

images and recently into highly interactive

displays. Our software can manage, ana-

lyze, and visualize large data sets that span

many physical variables (such as temper-

ature, pressure, humidity, and wind

speed), as well as time and three spatial
dimensions.l'z

MclDAS has produced three-
dimensional animations of data sets from

many diverse sources on videotape and on

a special binocular stereo workstation.

These animations are used in the class-

room at the University of Wisconsin and

other institutions, and by visiting scientists

presenting case studies at conferences.

Model developers are using MclDAS to

produce highly interactive, real-time ani-

mations of the dynamics of their models.

Data management

The MclDAS system manages data

from at least 100 different sources, a diver-

McIDAS, an

interactive

visualization system,

is revolutionizing the

ability of earth

scientists to manage

and analyze data from

remote sensing

instruments and

numerical simulation

models.

sity illustrating the flexibility of our data

management tools. These tools consist of

data structures for storing different data

types in files, libraries of routines for

accessing these data structures, system

commands for performing housekeeping

functions on the data files, and reformat-

dng programs for convening external data

to our data structures.

MclDAS includes data structures for

grids, images, paths, and nonuniform

data. Two- and three-dimensional grids

are spatial arrays of numbers appropriate

to numerical weather-model output and

analyses of remote sensed data. Our grid

structures permit grouping a range of

times and multiple physical variables in a

data set of billions of points, allow a vari-

ety of horizontal and vertical map projec-

tions, and indicate missing data points.

Images are two-dimensional arrays of

pixel intensities produced by satellites,

radars, lidars (laser radars), and other

sources. These images may include multi-

ple spectral bands and may be grouped

into time sequences, possibly containing

billions of points. Paths are sequences of

points through space or space-time,

usually representing trajectories of air par-

cels derived from wind data. Nonuniform

data consist of numbers without any spa-

tial order that might be produced by sur-

face observations, balloons, ships, and
aircraft.

The MclDAS system provides numer-

ous analysis functions for time and space

interpolation of data, for deriving grids

from nonuniform data, for deriving

trajectories from wind grids, for convert-

ing data to a moving frame of reference,

for making measurements from image

data, and for applying a large variety of

operators to grid and image data. (As part

of the development of our three-

dimensional visualization tools, we have

inventoried four-dimensional data sets in

meteorology and related earth sciences. A

copy of this inventory is available at cost

by writing to the librarian of SSEC.)
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Figure 1. Regional Atmospheric Modeling System (RAMS)

cloud model of a severe thunderstorm, showing a transparent

1.0-gram-per-cubic-meter condensate surface, a red 4.0-gram-

per-cubic-meter hail surface, a blue 2.0-gram-per-cubic-meter

rain surface, and wind trajectories. (With Gregory Tripoli,

Univ. of Wisconsin Meteorology Dept.)

Figure 2. Limited-Area Mesoscale Prediction System

(LAMPS) model output showing a grid-mesh 300-kelvin

potential temperature surface, a transparent 8-gram-per-

kilogram mixing-ratio moisture surface, and wind trajectories

over a topographical map. (With Patricia Pauley, Univ. of

Wisconsin Meteorology Dept.)

Figure 3. LAMPS model output for cloud water density over

a topographical map. Volume is rendered as a transparent

fog, with opacity proportional to cloud water density. (With

Patricia Pauley, Univ. of Wisconsin Meteorology Dept.)

Three-dimensional
visualization

Figure 4. LAMPS model output showing a transparent

0.00016-per-second vorticity surface, trajectories, and

300-millibar height contour lines over a topographical map.

(With Patricia Pauley, Univ. of Wisconsin Meteorology

The MclDAS tools for three-

dimensional visualization o f meteorolog-

ical data run on an IBM mainframe and

can load up to 128-frame animation

sequences into workstations built at SSEC.

The animations can be viewed directly

(optionally, in binocular stereo) or

recorded on videotape.

Our data are depicted in a rectangular

box outline with height tick marks labeled

in kilometers. A map, including

topographical relief and boundary lines,

can be drawn on the bottom of the box.

The box visually defines the three-

dimensional space, the map provides geo-

graphical context, and the topography is

useful because it affects the weather.

We can depict gridded three-

dimensional scalars using opaque or trans-

parent contour surfaces (Figure 1) or a

grid-mesh contour surface (Figure 2). A

contour surface defines a constant valve

for a scalar variable. MclDAS can also

depict a scalar as a transparent fog (Figure

3), where fog opacity is proportional to

any scalar variable. The system generates

contour lines (Figure 4) on a two-

dimensional slice through a three-

dimensional gridded scalar.

Wind vectors can be depicted using

trajectory paths, which can be long and

::.L_: POOR _JAU'FY

tapered (Figure 5), short with length

proportionaltospeed(Figure6),or faded

to transparency (Figure 7). McIDAS also

represents winds with derived scalars, such

as vorticity, contoured in Figure 4, or

potential vorticity, contoured in Figure 5.

Figure 8 shows depth-cued trajectory

paths adapted to depict a network of

underground caves.

MclDAS can texture map image data to

surfaces in three-dimensional perspective.

as shown in the two lidar images in Figure

9. In Figure 10, we have texture-mapped

a visible satellite image to a surface defined

by the corresponding infrared image. P:

tern recognition discriminates clouds, an_,-..- _

the visible pixels are blended with an arti-

ficial shade based on cloud-top geometry.
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Figure 5. Mesoscale Analysis and Simulation System (MASS)
model simulation of the Presidents' Day storm, showing a

transparent 0.00002-kelvin per millibar per second potential

vorlicity surface and trajectories over a topographical map.

(With Louis Uccellini, NASA Goddard Space Flight Center)

Figure 6. A microdownburst sensed by multiple doppler

radars, with a transparent 30-DBZ radar reflectivity surface

and wind trajectories. (With Robert Kropfli, NOAA Environ-

mental Research Lab.)

Figure 7. Thunderstorm simulation showing a transparent Figure 8. The Wind Cave network from data gathered by

0.5-gram-per-cubic-meter cloud water surface and trajecto- manual survey. (With .lem Nepstad. US Nat'l Park Servicej

ries. {With Robert Schlesinger, Univ. of Wisconsin Meteorol-

ogy Dept.)" ORiGiNAL PAGE I$
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Figure 9. Cirrus cloud section by two vertical lidar (laser

radar) slices. With Ed Elorant, Univ. of Wisconsin Meteorol-

ogy Dept.)

Figure 10. Perspective image of clouds over the Gulf of Mex-
ico, generated from Geoslationa_' Operational Environmen-
tal Satellite (GOES) infrared and visible data.
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Figure Ii. Hydrological model output showing transparent

clay layers, ground-water trajectories, and labeled well posi-
tions. (With Kenneth Quinn, Warzyn Engineering)

OF POOR OUALITf

Figure 12. RAMS model of the atmospheric effects of a vol-

canic eruption, showing a green O.07-gram-per-cubic-meter

sulfur dioxide surface, a red 4.0-gram-per-cubic-meter water

vapor surface, a blue 12.0-kelvin potential temperature devia-

tion surface, and wind trajectories. The widgets to the left of

the image control the display. (With Gregory Tripoli, Univ.

of Wisconsin Meteorology Dept.)

Our images also show the interactions

between physical quantities. Figure 1

shows contour surfaces for condensate

(transparent), hail (red), rain (blue), and

wind trajectories from a thunderstorm

simulation. Figure 2, taken from a model

analysis of an extratropicai cyclone, shows

a grid-mesh potential-temperature con-

tour, a transparent moisture-mixing ratio

surface, and trajectories over a topo-

graphical map. Figure 11 depicts under-

ground water trajectories with transparent

clay layers and text marking the locations

of wells.

To enhance the depth information of

our videotape animations, we usually

combine time animation with a slight rock-

ing of the three-dtmens]onal scene. The

amplitude of this rocking is only one or

two degrees and may be either vertical or

horizontal, depending on the alignment of

objects in the scene. This rocking is a very

effective depth cue and is not ambiguous

with most meteorological motions. We

experimented with combining time anima-

tion with a steady rotation, but this created

great ambiguity between the actual motion

of objects and the apparent motion caused

by rotation.

Transparency is an important part of

our images, but it has presented some spe-

cial problems. To render transparent sur-

faces efficiently, we developed a modified

Z-buffer algorithm.: We analyzed and

rendered each of the images in Figures 1- I 1

in about 30 seconds on our IBM 4381. Our

workstation also poses a difficult problem

for transparency: It does not separate red,

green, and blue channels in its frame

buffer. Rather, it was designed for false

coloring of two-channel satellite data. We

solved this problem by designing our

images so that their pixeis lie on two-

dimensional planes through three-

dimensional color space.

Interactive
visualization

Our experience with very large data sets

has shown the importance of interactivity

for their visualization. Thus, we are cur-

rently developing a highly interactive ver-

sion of our system--using the Stellar

GS- 1000 graphics supercomputer--to pro-
duce three-dimensional animations in real

time (i.e., drawing at the animation rate).

This system can provide an interactive win-

dow into data sets containing tens bf mil-

lions of points produced by numerical

models and remote sensing instruments._

Figure 12 is an image produced by this

system, it shows contour surfaces for sul-

fur dioxide (green), water vapor (red),

potential temperature deviation (blue),

and depth-cued wind trajectories. We can

animate such images at five to 10 frames

per second from a data set containing 10

different physical variables over 121 time

steps in a 25×35×IT-point three-

dimensional grid. This data set contains 20

million grid points in a five-dimensional

ari'ay.

System features. The user controls the

display with a mouse, and the system gives

immediate response to commands

• rotate, zoom, and pan in--,,,,_e

dimensions;

• select any combination of the scalar

variables and wind trajectories; and

• start/stop time animation and single-

step time forward or backward.

The user can also select new defining level_

for contour surfaces using the mouse. The

computation of new surfaces occurs at a
rate of about two per second and is asyn-

chronous with the animation rendering

The new surfaces replace the old in the ani-

mation as they are computed.

Our system holds an entire data set in

main memory, along with polygon and

vector lists to represent the surfaces and

lines generated from gridded data. We use

compressed data structures to maximize

the size of the data sets we can visualize.

The 20-million-point data set is visualized

on a 64-megabyte system; a 128-megabyte

system could be used for a 50-million-

point data set.

The animation involves decompressing

the polygon and vector lists, transforming

them to a two-dimensional projection, and

shading the pixels. Because each fr_ "_f

the animation is generated as it o-

played, the user can instantly rotate and

zoom by changing the transform function.
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Theuser can also select the combination

of viewed physical variables and control

the time stepping by changing which poly-

gon and vector lists are processed. The

levels of contour surfaces are changed by

computing new polygon sets from the grid-

ded data, and this is done asynchronous[y

with animation.

Scientific use, Interactive visualization

is crucial to earth scientists, who must vary

the way they look at a large data set

according to its content. Controlling the

combination of variables allows the user

to examine specific cause-and-effect

mechanisms. Coordinated hand-eye con-

trol of the view angle is a powerful way to

understand three-dimensional geometries.

Control of time stepping is needed to con-

centrate on particular events. Varying the

defining levels of contour surfaces is

important to quantitative understanding

of data throughout a volume. We are

working on an interactive mechanism

allowing the user to move a plane through

a three-dimensional volume, with contour

lines of selected variables rendered on the

plane. This mechanism will provide higher

information density on the selected plane,

so the user can concentrate on a specific

spatial region.

A large data set often contains many

interesting events and cause-and-effect

links. Our system's interactivity lets scien-

tists "play" with their data sets and pur-

sue interesting physics at the pace of their

own thoughts, without the distraction of

waiting for the system to catch up.

led intensively by meteorologists trying to

improve weather prediction. Our video-

tape clearly visualizes one simulation of

this storm's dynamics and is being used for

many conference and classroom presen-

tations.

Scientists have begun using our interac-

tive visualization system based on the Stel-

lar GS-1000. Gregory Tripoli of the

University of Wisconsin Meteorology

Department used it for only a few hours,

but that brief use helped him see and

understand problems in his thunderstorm

model that he had not seen during several

years of viewing his data in two-

dimensional plots. He has used this new

understanding to correct problems in his

model.

Clearly, interactive visualization is

revolutionizing the ability of earth scien-

tists to understand their enormous data

sets.
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Applications

Our visualizations are being used for

teaching at the University of Wisconsin

and other institutions. With Patricia

Pauley of the University of Wisconsin

Meteorology Department, we set up a

series of animations on the binocular ste-

reo workstation to help students in a

weather laboratory better understand

storm systems.: We are also making

videotapes of weather visualizations avail-

able to other teaching institutions.

Scientists are using our visualizations to

understand their data sets s'r and to pre-

sent results at conferences. A videotape we

produced with Louis Uccellini of the

NASA Goddard Space Flight Center

vividly depicts the development of the

"Presidents' Day" storm that buried

Washington, DC, in snow--when no snow

was predicted. 8 This storm is being stud-
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INTERACTIYITY IS THE KEY

W'dliam Hibbard and David Santek

Space Science and Engineerh].g Center
University of Wisconsin
1225 West Dayton Street

Madison, W/53706

ABSTRACT

The interactivity provided by rendering at the
animation rate is the key to visualizing multivarite
time varying volumetric data. We are developing
a system for visualizing earth science data using a
vaphics supercomputer. We propose simple
algorithms for real-time texture mapping and
volume imaging using a graphics supercomputer.

KEYWORDS: Interactive, texture mapping,
volume image, earth science.

INTRODUCTION

At the Space Science and Engineering Center we
are concerned with the problem of helping earth
scientists to visualize their huge data sets. A large
weather model output data set may contain one
billion points in a five.dimensional array,

composed of a 100 by 100 horizontal grid, by 30
vertical levels, by 100 time steps, by 30 different
physical variables. Remote sensing instruments
such as satellites, radars and lidars produce
similarly large data sets. During the last six years
we have been developing software tools for
managing and visualizing such data sets. as part of
the Space Science and Engineering Center's Man-
computer Interactive Data Access System
(MclDAS). These tools run on an IBM 4381 and
produce animation sequences of multivariate
three-dimensional images which are viewed on our
large multi.frame workstations. However. each
image takes 10 to 30 seconds of CPU time to

anal_e and render, and another 30 seconds to

load into the workstation frame store, so turn-

around time for producing an animation sequence
can be several hours. Figure 1 is a typical image
produced by this system. We have applied this

system to generate animations from at least twenty
different model simulation and remote sensed

data sources. Although our earth scientist
collaborators are usually pleased with the results.

they all express a desire to change the animations
with quicker response. This is by far their (and
our) primary, request. Therefore we have begun
developing a highly interactive workstation based

on the Stellar GS-1000 graphics supercomputer.
This system can produce three-dimensional
images from model output data sets in real-time.

giving the scientist control over the image
generation with immediate feedback.

This paper describes earth science data sets, the
work we have done so far with the Stellar GS-

1000, and some thoughts on further development.

LARGE DATA SETS
Earth scientists are concerned with the three-

dimensional domains of atmosphere, ocean, and
earth. They are also concerned with the two-
dimensional domains which define the boundaries

between atmosphere, ocean and earth, particularly
with the new drive to understand our planet as a
single coupled system. Data sets over these
domains are generally sampled at regular _ids of
points in some two or three-dimensional
coordinate system. The vertical dimension is often
sampled at hi_er resolution, and visualized on an
expanded scale, because of the extreme thinness of
the atmosphere, oceans, and crust when viewed on
a global scale. Earth systems are dynamic, so the
data sets include a time dimension, usually

sampled at regular intervals. The time intervals
depend on the nature of the earth system bein_
studied, and are matched to the spatial resolution
to give reasonable motions. The data sets are

usually multivariate reflecting .the interacting
physical quantities being studied. At the extreme.
atmospheric chemistry, data sets may include



densities for hundreds of different chemical
constituents.

Much remote sensed data takes the form of

images. These may lie on some two.dimensional

surface through three-dimensional space, or each
pixel may integrate along a ray though space.
Each pixel may have multiple components, for

different spectra, polarizations or other physical
quantities. Large satellite images are up to 16,000
by 16,000 pixels. Planned instruments will return
hundreds of spectral components at each pixel.

INTERACTIVE 4-D WORKSTATION

We are actively developing software to apply the
graphics power of the Stellar GS-1000 to visualize
large earth science data sets. Our approach is to
store a data set and derived data structures (such
as polygon and vector lists) in main memory and
to produce real-time animations of multivariate

three-dimensional images from these data, giving
the user as much interactive control over the

image generation process as possible. For a five-
dimensional model output data set, main memory
contains:

** a five-dimensional (three space, time and
physical variable) array containing the
model output data set. For a very large data
set, the memory resident array has reduced
time and space resolution and coverage, and
a subset of the physical variables.

** polygon lists representing contour surfaces
through three-dimensional scalar fields.

** vector lists with time coordinates

representing particle trajectories generated
from four-dimensional vector fields.

** polygon fists representing a topographical
map, along with vector fists for boundary
lines.

*" vector fists representing contour lines of two
or three-dimensional scalar fields on a two-
dimensional surface.

** pixel maps as the destination of rendering
operations.

We give the user interactive control over:

** time animation, which may be enabled or
disabled, single stepped forward or

backward, and the animation rate changed.
** the perspective mapping for rotation and

zoom.

** the combination of physicalvariablesto be

rendered, including contour surfaces and

lines, trajectories and topographical map.

"" the selection of new contour levels for
contour surfaces of scalar variables.

The user gets immediate (a tenth to a fift_ a
second) visual feedback to all of these con'ZY%ls

Although the system cannot calculate the polygom
for a new contour level at the animation rate, the

new surfaces replace the old ones in the animatior.

as they are calculated, so the user immediatel)
begins to see the effect of this control. For three-

dimensional grids containing 20,000 points
contour surfaces are calculated at a rate of abou_

two per second, concurrent with real-time

animation rendering. It is important that
scientific visualization workstation have the

floating point performance to support this type o:

interaction with the analyses underlying the
display.

The reaction of scientists to this interactive

visualization of their data sets has been ve_

enthusiastic. A tTpical pattern of use is to look a'
the most important variables at various contour
levels, along with trajectories, noting all the
expected phenomena, until something unexpectec
is seen. Then a cause is sought, bv viewing the
unexpected phenomenon in combination witl-

other variables which offer candidate explanar;-,ns
Often adjustments to contour levels are nec ,--,
to see the clearest correlation between vari-_es

When a cause is found, it may also need ar
explanation, and a backward chain of cause ant
effect finks is followed. The kev element of thi:
system is that it reacts to the scientists' control:

immediately, so that their thoughts are no
interrupted by waiting for the system.

We have sometimes heard that vector tint

segments and polygonal surfaces are no
appropriate techniques for volume visualizaiion

Our experience shows that interactivity is the mos"
important tool for attacking multivariate, dynamic
volume visualization problems. The appropriat_
rendering techniques for such problems are those

which can be performed in real-time, giving the
user interactive control with immediate response
Thus, we have been concentrating on the vecter
line segments and polygonal surfaces which can be
rendered at real-time animation rates. In the nex:

two sections we will discuss the prospects for real-

time animation with other rendering techniques.

VOLUME IMAGING

As part of our software development on the ,;
mainframe we. have experimented with'--.r_s_
approximate algorithms for producing volume

ORIGIND, L Pi;:C'ZiS
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images, in which a three-dimensional scalar
variable is depicted by a transparent fog. with the
opacity at every point proportional to the value of
the scalar. We have applied these algorithms to
cloud water density in a three-dimensional array
of about 40 by 40 by 20, as shown in figure 2. The
simplest algorithms offer the hope of real.time

rendering. The images they produce do have
some artifacts, but they are certainly adequate for
interactive visualization.

For our approximate algorithm we use the view
direction to the center of the image, and choose
the principal axis of the scalar grid most nearly
parallel to this view direction. The grid is then
treated as a series of layers perpendicular to the
chosen axis, which are rendered as transparent fiat
surfaces, interpolating transparency over each
little grid rectangle. An alpha value, which is 0.0
for totaUy transparent and 1.0 for opaque, is
calculated at each grid point as proportional to (or
some other function of) the gridded scalar value.
The rectangular polygons are then rendered with
variable alpha, the lavers rendered from back to

front. In our implementation we use an alpha
buffer containing logarithm(1.0-opacity), which
composites by addition rather than multiplication.
Table look-ups are used to take logs and antilogs.
We assume that color is constant throughout the
grid, so that it is not necessary to maintain color
buffers. Red, green and blue are simply
proportional to the final opacity, values. The
calculation of opacity, from grid point value
includes a correction for the path len_h of the
view ray between two layers of the grid. This

correction is implemented by applying a table
iook-up to the opacity, which raises it to the power,
the secant of the an_e between the view direction
and the chosen principle axis. This look-up table
is merged with the logarithm look-up.

This algorithm generates three noticeable
artifacts. First, thin high density, layers running
obliquely through the grid may be rendered with
oscillating bands of intensity., a form of aliasing.
Second, the individual layers can be seen at the
edge of the array domain. Third, parts of the
image change discontinuously when the chosen
principal axis changes during rotation. There is a
simple fix for the third problem, which helps with
the other two. Render three versions of the

image, one for each principal axis. and take an

average of these weighted by the cosines of the
view direction with the principal axes.

The one axis method requires rendering a number
of rectangles roughly equal to the number of grid

points of the scalar variable, while the weighted
average of axes method renders three times that
number of rectangles. And, of course, each p/xe]
must be accessed a number of times roughly equal
to the number of grid layers rendered. For a 40 by,
40 by 20 grid, this is 32,000 or 96,000 rectangles,
and accessing each pixel 20, 40 or 100 times.

These numbers are a bit high for current graphics
engines to do in real-time, but they can be reduced

significantly by culling out all rectangles with all
four corners below some opacity threshold.

We would certainly like to see su_3port for such
rendering algorithms on commercial graphics
engines.

IMAGE MAPPING

Much remote sensed environmental data Ls

generated in the form of images on two-
dimensional surfaces embedded in three

dimensions. For example, a radar scan at a

positive elevation sweeps out an image on a cone.
Figure 3 shows two perpendicular vertical lidar
scans. It is desirable to visualize such data in their

natural geometry., possibly combined with other
data, and rotating under user control. We believe

that current graphics engines can support real-
time texture mapping for such images, using a
simple algorithm.

The source image to be mapped is stored in
memory, in a simple two-dimensional arrav, with X
and Y pixel addresses. The surface is divided into

polygons. At each vertex of the polygon mesh
record the X and Y addresses of the

corresponding pixel from the source image. Then
render the polygon mesh in three-dimensions with
a Z-buffer algorithm. However, where Gouraud
shading would interpolate color intensities.
interpolate instead the X and Y addresses of

pixels. The rendering engine should also combine
the X and Y address into a single array address.
requiring a multiply. Where this is difficult, it may
be possible to use shift and add, and assume that
the image is stored in an array with one dimension
equal to an even power of two. The result will be
an image filled with addresses from the source

image. These addresses would then be replaced by
the values from the source image, probably using a
fast scalar processor or a special vector
instruction.



This algorithm requires a flera'ble system. The
rendering processor must be able to combine pixel
addresses, and the rendering output should be

available to some processing element which can
interpret its pixels as addresses and replace them
with the addressed values. We would like to see

support for this type of texture mapping algorithm
on commercial systems.

CONCLUSZON

The interactivity implied by real-time animation is

the key to giving scientists visual access to their
large, multivariate, time dynamic, volume data
sets. At SSEC we have begun developing an
interactive system for managing, analyzing and
visualizing earth science data using the Stellar GS-
10017. Our initial work with the GS-1000

demonstrates a breakthrough in providing earth
scientists with access to their large data sets.

Because interactivity is crucial, the appropriate
rendering techniques for volume visualization are
those which can be rendered in real-time.

Currently, this means rendering using vector line
segments and polygonal surfaces.

However, it should be possible to adapt current

graphics engines to real-time rendering of volume
,mages, at least by approximate algorithms, and to
texture mapping. The types of simple algorithms
presented here, and more complex variations,
argue for flexibility, in commercial rendering
systems. At SSEC we selected the Stellar GS-1000
because its rendering processor is micro-coded

and because its pixel maps are rendered into main
memory, where they are available as input for
multi-stage rendering algorithms. It is even
possible in such an architecture that the power of
the rendering processor could be applied to data
analysis. Environmental data are generated in a
great variety of forms, with unpredictable

processing requirements; this aries for a flexible
and programmable system. Besides flexibility in
the rendering processor, we also appreciate
systems with powerful scalar and vector
processing, and without communications
bottlenecks between partitioned memories or
processors.

Many meteorologists still draw contour analysis
from weather observations by hand. In fact, pads
of printed maps showing weather observing station
locations are manufactured for this purpose.

These pads give the meteorologist coordinated
hand-eye interaction with their data sets, which
they miss with computer-generated graphics. The

graphics supercomputer workstation gives tki

hand-eye feel back to meteorologists, applied t
data sets containing millions rather than hundrec

of points.

ACKNOWLEDGMENTS "-"

We would like to thank P. Pauley, G. Tripoli, F
Schlesinger, L Uccellini, E. Eloranta and all of ot
other earth science collaborators. This work wr

supported by NASA (NAS8-33799 and NAS_
36292).

REFERENCES

Dreben, R., Carpenter, L., and Hanrahan,
[1988] Volume Rendering. Computer Graphics 2

4, SIGGRAPH, pp. 65-74.

Foley, J. and Van Dam, A. [1982] Fundamenta
of Interactive Computer Graphics. Addison-Weslt
Publishing Company, 664 pp.

Hibbard, W., Krauss, R.J. and Young, J.T. [198

3-D weather displays using MclDAS. Preprin:
Conf. Interactive Infgrmation and Processb
Systems for Meteor., Ocean., and Hydro. (L
Angeles, AMS, 7-11 Jan. 1985), pp. 153-156.

Hibbard, W. [1986a] 4-D display of meteor
logical data. In Proceedings of 1986 Worksl-_,_ c
Interactive 3D Graphics. (Chapel Hill, SIG( .P
23-24 Oct. 1986) pp. 23-36. "-"

Hibbard, W. [1988] A next generation McID/
workstation. Preprints, Conf Interactive h_forrn
tion and Processing Systems for Met, Ocean, a,
Hydro. (Anaheim, American Meteorology Socie
1 Jan. - 5 Feb. 1988) pp. 57-61.

Hibbard, W. and Santek, D. [1988] Presiden
Day Storm. Visualization/ State of the A
Update. SIGGRAPH Video Review number
ACM SIGGRAPH.

McCormick, B.H., DeFanti, T.A.. and Brov

M.D., Editors, [1987] Visualization in Scienti
Visualization. Report to the NSF by the Panel
Graphics, Image Processing and Workstatio,
ACM SIGGRAPH, 88 pp.

Pauley, P. M., Hibbard, W., and Santek, D. [19_
The use of 4-D graphics in teaching synol:
meteorology. Preprints, Conf Interactive Infom
tion and Processing Systems for Meteor., Oce:
and Hydro. (Anaheim, AMS, 1 Jan. - 5 Feb. 19_
pp. 33-36.

ORIGINAL PAGE IS

OF POOR QUALITY



Rogers, D. [1985] Procedural Elements for com-

puter Graphics. McGraw-HiU Book Company,
433 pp.

Santek, D., Leslie, L., Goodman, B., Diak, G., and

Callan, G. [1987] 4-D techniques for evaluation of
atmospheric model forecasts. In Proceedings,

Digital Image Processing and V'tmal
Communications Technologies in Meteorology

(Cambridge, SPIE, 26-29 Oct. 1987] pp. 75-77.

Upson, C. and Keeler, M. [1988] V-BUFFER:

Vis_le Volume Rendering. Computer Graphics
22, 4, SIGGRAPH, 59-64.





EFT

!,'_r ;_I Fi 'i!l "'',Y"ilI':. i_ fill!

!

3-D ANIMATIONS OF A DEVELOPING EXTRATROPICAL CYCLONE
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1. INTRODUCTION
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2. THE INTERACTIVE 4-D WORKSTATION

One of the objectivesof any introductionto

meteorology isto help the studentsbecome more

intelligent "consumers" of the increasingly sophisticated
presentations of weather used on television.Even TV

weathercasts in smaller markets often now present two-

dimensional radar loops, satellite loops, and animations
of the 24 hr forecast showing highs, lows, fronts, and
jet streams. The general public as well as students
exploring meteorology in science classestend to think

of ordy surface processes and typically fail to appreciate
the influence of the flow aloft on the surface "weathee'.

A powerful tool that can be used to encourage students

to view the atmosphere as three-dimensional rather
than two-dimensional is computer graphics.

The work described here is an extension of

Pauley et al. (1988), presenting some aspects of the
large-scale flow using animations of 3-D graphics for a
model simulation of an extratropical cyclone case from
April 1982. This cyclone deepened rapidly over the
North American rawinsonde network and is weLl

captured in the LAMPS (Limited.Area Mesoscale
Prediction System) (Perkey 1976) simulation. Model
data have the advantage over observations of providing
self-consistent data sets with high temporal resolution,
giving smoother animations. The graphics were
prepared on a Stellar GS-1000 graphics supercomputer
at the University of Wisconsin.Madison using a

generalized set of three-dimensional graphics developed
in the Space Science and Engineering Center.

The graphics presented in the videotape include
animations of such fields as three-dimensional

temperature and jet stream structures; the relationship
between humidity, cloudiness, and vertical motion; and
the three-dimensional motion field. Some two-

dimensional graphics are also presented to depict the
relationships between the three-dimensional structures
and their more typical two-dimensional representations. _

The graphics used in this work were prepared on
a Stellar GS-1000 graphics supercomputer. The
software evolved from a set of 4-D graphics routines

written as part of McIDAS (Man-computer Interactive
Data Access System) (Hibbard 1986). The Mc[DAS-
based 4-D graphics were invoked using interactive
commands, but required considerable CPU time on the
IBM 4381 and so could at times take several hours to

produce a single animation sequence. The Stellar-based
system can produce four-dimensional images (three

spatial dimensions plus time) from model output data
sets in real time, giving the scientist control over the
image generation with immediate feedback (Hibbard
and Santek 1989).

The Stellar graphics system can display meteor-
ological data in several ways. The underlying topo-

graph), is shown as a three-dimensional surface and can
be turned on or off to allow the geographical location
of features to be portrayed. Basic scalar quantities such
as temperature, mixing ratio (humidity), rain water
content, cloud water content, vertical motion, and

horizontal windspeed are displayed as shaded surfaces.
The capability also exists to display a scalar quantity as
a wire mesh surface. Vector fields such as the 3-D

trajectories are displayed as "ribbons" whose length is
proportional to the magnitude of the vector. These
graphics can be animated or viewed singly, as well as
rotated or zoomed. The system is menu-driven and
controlled with a mouse.

3. GRAPHICS FOR THE APRIL 1982 CASE STUDY

The case study used in this project portrays a
rapidly intensifying extratropical cyclone with severe
weather in an associated cold-frontal squall line,
blizzard conditions in the northern Plains, and a dust
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'storm in the southern Plains, a cyclone wi---'-_something _ Paule-_,P_M.,W.L Hibbard,and D.A. Santek,1988:
:foreveryone. The LAMPS simulationwas initializedat

,0000 UTC 2 April1982 and ran for36 hours. Model

outputisavailableevery two hours fora totalof 19

map times,allowinga smooth animation.

Samples of the graphicsare shown in Figs.I-3.

It should be kept in mind that the originals are in full
color and animated. Fig. 1 depicts the relationship
between the jetstream,as portrayedby the 50 m/s
windspeed surface,and fronts,as portrayedby the

steeplyslopingregionsof the O'C temperaturesurface.

The northward progressionof moistairfrom the Gulf

of Mexico and itsrelationshiptocloud formationis

shown in Fig.2. Fig.3 isa frame from an animation

sequence showing the 3-D flow field(trajectories)and
the jet stream.

The use of 4-D graphics in teaching synoptic
meteorology. PreDrints o[ _lae Fourth [ntl, Conf. o
Interactive Information and processimr Systems for "-_"

Meteor.. Ocean.. and Hydro.. February 1-5, 1988,
Anaheim, CA, I08-110.

Perkey, D.J., 1976: A description and preliminary
results from a fine-mesh modal for forecasting
quantitative precipitation. Mort. Wea. Rev., 104.
1513-1526.
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Figure 2:5 g/kg mixing ratio surface (medium

shading) and O.1 g/kg rain water surface (white
shading) with topography.

)Figure 1: O'C temperature surface (light shading) and

50 mls windspeed surface (dark shading) with
topography.

Figure 3: Tra/ectodes and 50 m/s windspeed surface
without topography.
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FOUR-DIMENSIONAL INTERACTIVE ANALYSIS: A TOOL FOR THE

EFFICIENT UNDERSTANDING OF LARGE DATA SETS
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D•vid Samt_k

University of Wisconsin, Dept. of Meteorology, Madison, WI 53706

1 Introduction

Ia recent years, mt imprmmmc_ta in computer technoiegy

have allowed us to both compile obeervz_,ions a.ud model

the wezther with increasing temporal and spatial resolu-
tion. Consequently, the amount of information cont.xined

in both model derived and observational data setshu in-

crensed geometrically to the point where it has become diffl-
cult for one to a_dmilate all the information available. R_

cent workstation technology such as McIDAS (Man com-

puter Intera_'tive Data. Access System), UNIDATA, AFOS

and others, have given us read time _ecess capability with
may of these data sets. Nevertheless, the study of fully

three-dimensional time dependent d•ta sets remains t diffi-
cult task. Normally, it requires the examination of countless

two-dimensional cross-sections in an effort to construct the

mental three-dimensional image necessary, for true under-

standing. These difficulties have further been exaggerated

on the thunderstorm _e and mesoscale where atmospheric

structures are even more three-dimensional i. naxm'¢.

Recent advanc_ in rendering technokq_y harm allowed us
to view three-dimensionad data as solid surfaces enhanced

by shading. These rendering algorithms require • large
amount of computer power a.ud so have not been employed

¢xtemavely in real time access systems so far. In the last

year. however, workstation tecknotogy has fiaz_y advanced

to the point where it is feasible to employ four-dimemsionti

(space- time) interactiwe analysisof several variables si.
multaaemudy ia real time. At the University of W'u_mn-

&u -Madimn, w_ haw taken adv-4atag¢ of them advunces

by developing the first interactive four-dimensional anal-

ysis worth lamwa ns "Four-Dimensional McmAS'.

Read time hindering algorithm_ a/hTN us to enima.te a three-

dimemnonal zp4u:iai display of any four-dimemnoaad data set

while interacting with the image through zooming, Wmuing,

rotating and even r.hamgiag the partitadar image vits"ed. As

• react, one can take data sets containing teas of megaby_

of iaforma_fion and effectively view the entire da_ set in a

mLtt_ of auamda.

Ia this paper, we will emphasise the utility of fou-

dimenaiunal anadysis of numerica/ly modeled a_mmpberic

Eelds. In the nexx section, we prmat a _d of nu-

mericad model analysis and its goals. In ruction three,
describe how w_ have developed the fous-dimenmonal Md-

DAS to meet these gos_ so far, while in section four

discuss our plans for further development. We prment no
in this reprint since we r_y heavily on color and a_-

imafitm to ma.ke our point. Video of the analysis _ be
eentnd to the oral preparation.
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2 Analysis of Numerical Model Out

put

Atmmpheric models represent not o-}y a foreca,st tool, h_

also a snbset of a set _f tools by which we _ eft'e<

tiveiy build a physically consistent theory explaining ob

served weather behavior. The models we employ rtnge frov
the simple anadytical models, such as the qua_i-geostmphi_

omega equation, to the more compiex linea_ seml.analyti,

models such as the ba.rociinic instzbillr,.- theory or CIS_

theory, increasing in complexity up to the full primiti_
equation (PE) models. PE modds incorporate a wide vari

ety of physics and nonlinear interacuons and represent th,

most rea_stic depiction of actual atmospheric phenomen;
we have. Such models are almost always integrat_ namer

icad|y and result in the generation of large space.time dat_
sets. To the extent that the nnmerical simulation mateh_

the evolution of ohserveci data., the model derived data se_

and the physics used to create that evolution explicitly re-
vend the physical mecha.uisms responsible for the observe_

phenomena.
In order for this powerful tool to be effective, we must:

1) be able to compare as many'of the aspects of its out-

put with observable p_a.meters as we can and 2) be able

to effectively diagnose how the model physics interacted to
produce the r_ult obtained. Because _ioas are nor-
madly _everely limited in comparison with model simulated

fields, it ia quite mmal to be faced with only a few sketchy

oiar,ervations of a very complicated process. In some cases,
the observ'4tions may be diltlcult to find in the large model

output da_ Nt and so interactivity could be advantageous
for verification •done.

Perhaps the most difficult problem in model output
amalysis is determining exffirtly why the model produced

the result obtained. Truditionally thishas been mlved ei-

ther by the use of "senutivity" tests or by detailed analytis

of the magnitude and scale of modeted simulated "forcing"

terms. The "_itivity" test approar.h ca_ be conciusiw

for simple overall "importaaa" tests, but is v_'y expensiue
and falls to .how how the importance of a pro_u varies

spatially a_d evol_ with time. The _ ualysis" ap-

proach revea_ the ma4g_.itudes of Ioe.al for_ngt, but to be a.a

effective tool for diagnosing o_rall importance oft proeees,
one must view the forcing ax many different times and loca-

tions. The understand_n_ of the intera_'tion among severs/

"forcings" can be mpec_ally difficult.
In the pust, we have looked at the relative roim of the

"forcing" terms by contouring the statev-a_abh,e at specific
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timm tad infe_ how strong a procom probably is of ebe

picking ,pe_ic Io_tion_ tad rectlc_ mverel of tM,

"forcing" term, locally tad compariq relatim ma_tadm.

NumericaJ modelen ham a/m occa_ly prmattod attire
contoured fields of forcing terms, where sack t4umzs art rel-

atively simple to reproduce during analysis. More recently,
eva complex te_ms a:. being inc_y presatted ia a
coumuzod form.

The field analym of "forcing _ terms grenxly adds to the

vohnne of variables umciated with t particular model iate-
_mAian. For in.ante, • thunderstorm _alztian win usu-

elly predict about tea time-dupe•date vLriablm including

wind. premmre, cemper_ur_ tad micraphysical quantities.
The speQflc micr_physicai interaction _ such u rim-

inK, at.creation, uucie_tion etc., on the other kand, number

_, much as ?5 a/one. Hence what we bq_ to anzb-m the

"forcing _ _rms, _m can incream the foor-dime-,sionad anai-

ym load by a8 much xt one order of ma_tude.

With sack am enormous valmme of variabim and pro-

to ann/y-us in a time v_g three-dimesmoazi vof
ume, the proo.-, _ building a physic_ pictu_ of the time

evolution of the simul_ed phenomena becomm ine_ciatt

and perhaps not potable if one is forc_ to operate ia a

h'Ngmented mode, looking at one two-dimat'ionzi plot _r-

car amother over the period of pexhzpl sevesul moutks or
years!

With the complexity of our modeL, oniy inc_ng, it
is necessary to Ftad a more e_cient method to study the

output and the physics leading to the timniatod evolution.
This is where four-dJmensiona_ Mc/DAS ht a/ready making

breakthroughs. La the nex_ section w describe some of our
curratt work in this area.

3 Interactive Four-Dimensional McI-

DAS

Raecatt adv-ancm in super graphics computer t4cknoloq7 has

xllmmed Hibbzrd tad Statek (1989) to extend the {our-

dhaatmonai display re,okay developed on the Mc[DAS

mainfrazne (Hibburd, 1_) to run intmmctiw./y ia a work-
station environment uin& the Stellar GS*IMO workstazoiou.
The workstation k_ sumcieat pow_, to load as many as 2,50

time periods of 8 predicted three- dimatsiouai atmmpheric

quantities into tea•rat memory and still h_ sentient room

to m_ore po]y_ repremmta_ioaa o( & _ th/qm diJazta-
simud surt'a¢.a for each of them fields. The hJsb memory to

scm_ trta_ar raze then _ amy or mveral of them sur-
facto to be ratderut onto the m us • thrm dimenaion_

color anita•sod _ movinK through the 2,50 time periods
at the rate of 10 framm per second! A sophisti_ and

P_able rendmin& pror_ aflow the us_ to coa-
troi the nmdering by rotating, paama& azeud or umming
into the ima4gt [a fact, oue r.aa zoom aZl of the way into

mm surface and view others imbedded in'id_ Moreover,
v_ of uaderiyb_ tolmKnphy andaow tsa)ecton,,- can

1_ ,_mdered siunzhanmualy. The Sceilaz'8 mnitipr_usung

zait z/low• the _ to rer_cudaz_ the stared polygon sur.

fz_m at any chceen v'_Jue wh_e the an_maz_l ima4pt *j b_m_g
v_ewt,d.

Hum, tee morkstatm kus provided a powerful too/
for comphmdy vi_rin& in _ of "im_ three.

dLmaaiosai str_cm:_ within a "ia_le int_ taaiy'is

•ion. Monmer, theup•co-time rtlatiauhip l_tw_ Nver:d

individuti variables am be viewed c/arty, giving a perspec-

•iv. not l_ible uminK t_0-dimensionai or singmlzr tkreo-

dimensional plots. For example, our 64 megabyte memory

allc,,s us to retain up to eight 3D variables at 2,50 time pe-

riods in memory. The animation and intesac_vity with the

viewing perspective allom the _ to move to any number

of p_dble va.atofe poia_ to view say complex combination

of the tMmens_oaai surfaces or trajectories.

Because of the SteUaz's [zrge memory and efficient vec-

tor pr_g, the super graphics computer is able to per-

form at 8pecds within one order of that of supercomputer
m_in/rames. As • ramie, lazxe models eta be integrated
economica/]y on them reechoes in • researchenvironment.

At the University of Wisconsin - Madison, w_ haw

implemented the University of W]s¢ouin cloud/m_e

model (Tripofi, 1989_,b) on the SteL[ax and subaequentiy

view the cmtput using the resident Four-OimeamonzL McI-

DAS. The aumenca_ model c_ typica_/y generate m_e

data •eta including wind, pressure, temperature, desexed
microphy'icni fields, and sou temperature and moisture on

• topography following coorcLinz_e system.

By being resident on the SteLlar system, the modei out-
put can be viewed _, thre_dimemuoaa_ sur_a--es either im-

mediately _ individual model in•elections or dispi•yed

as the model is being int4_p'_ted. Aim, since the model code
is resident on the graphics _orkatazion, one can ea._y re-

cover forcing terms and render them as thzee-dimensioual
surface i_. Tb.is a/lows • penpecuve of the physicad

progremoa of the fields both in terms of the evolution of

the state panmet_n-s and in terms of the chznging physics
uever b4_ore po_uble u'ia& other aaziysis t_h_iqueJ.

At the oral pr_attaxirm to this paper w_ wiU show video

of rome actuni taalyais s_sions for severzi _fferent simu-

lated atmmpheric phenomata.

4 Future Development

Clearly, this aJudym tool a£reedy represeata • breakthrough

it atmospheric anaJysi8. Our pla_ for the future are to inte-
lpr_te into thl, system the remaiaing MclDAS products. We

will continue to devetop the product to dectivety disptay
any physical procm leedia_ to the predicted r_dts. Of

co.me, theft are many ana/ysi8 producta traditiona//y used

to study atmmpheric data _ w_ich can aim be •pptied to

the fo_r-dimmo_ zaadysia. Such products may inciud_t

the a4_pllaufiou of lured-pare filtaum, or •wu_ng prooedurm.
Them is aJao the semi to point any rqpon mthia • tkrm_
dimen'io_ ima_ and require • trajectory to pare tkrough

that point, or perhaps auk for an analysis product in _ma-
ation with that paint. For instaac_ we my ask for • time

ms'ies of preamu_ or temperature pr_ented in • g_•phicai
form over time.

We aunttim committed to ma_ring this iut_mcuve _aal-

yes coml_atible with other atmmphenc modeb and data
•st•. We hope to mmpiify the pream ofcrexting aAgontkma
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which compute derived p_Lmeterz, such u forcing terms,

for rendering.

In the comin_ dec_es, u the computer _ecnnotogy in-
cre.aams,we expect that we will incre_ingly 1o_ the dis-

tinction between the d&ta analysis, the mociel run _nd the

model analysis. The mode.] will likely become Ln esr,en-

tia/p_t of any ma_lysis system, incre_ing the effectivene_

of both the observations and model througi_ data _imi-

[_tion. The interactive four-dimensional McIDA$ running

alongsideand in conjunction with a sop_sticated three-

dimensional mode] is a first step in this direction .
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Cover: A three-dimensional perspective (as viewed from the south) of the 2 x 10 -_ K mb -_ s -_

potential vorticity surface at |200 UTC 19 February 1979: derived from the application of the
University of Wisconsin's 4-D McIDAS to a numerical simulation of the Presidents' Day cyclone

(Whitaker et al. 1988). Also included are trajectories derived for a 24-h period ending at 1200

UTC 19 February computed using 15-rain model output. Blue trajectories originate within strat-

ospheric extrusion west and north of cyclonic region along the east coast: yellow and red trajectories

originate in the low levels within the ocean-influenced planetary boundary, layer east and south

of the cyclone. See article by Hibbard, Uccellini, Santek, and Brill for details.
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Abstract

The four-dimensional (4-D) McIDAS system is applied to a nu-
merical simulation of the rapid development phase of the Presi-

dents' Day cyclone. Selected frames from a videotape oi:the model
simulation are presented to illustrate the evolution of the upper-
and lower-tropospheric potential vorticitv maxima prior to and
during rapid cyclogenesis. The 4-D structure of various airstreams
converging toward the cyclone center are also displayed. Our ex-
perience with 4-D displays of model output indicates that these
systems offer a tremendous opportunity to manage and dissect the
information content inherent in numerical simulations. The pro-
duction of the visualizations of the Presidents' Day cyclone also
confirmed a need for an interactive system capable of producing

various perspectives in real time, a requirement being addressed
with the development of a new workstation at the University of
Wisconsin Space Science and Engineering Center.

1. Introduction

The application of high-resolution numerical model

output to case studies of severe weather events pro-

vides the opportunity to study atmospheric circula-

tion systems with a confidence level not previously

attained using the operational data network alone; an

advancement that is having a significant impact on

synoptic meteorology (Keyser and Uccellini 1987).

Whitaker et al. (I 988) present a synoptic analysis and

diagnostic study of the 19 February 1979 Presidents!

Day c,_'clone using a regional-scale numerical-model

simulation in which the details of their analysis far

exceed previous analyses based only on 12-h oper-

ational radiosonde data (Bosart and Lin 1984; Uccel-

lini et al. 1985). Model datasets at 15-min to 1-h

intervals were used to study various physical pro-

cesses, including jet streak circulation patterns, a

stratospheric extrusion within a tropopause, fold, la-
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"" Meteorological Operations Divisions, National Meteorologi-
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tent heat release, and sensible heat fluxes within the

planetary boundary layer that were all related to the

rapid cyclogenesis that marked that case. More im-

portantly, the use of high-resolution model data bv

Whitaker et al. provides the means to resolve the

interaction of the various physical processes, trace

the stratospheric and lower tropospheric potential

vorticity maxima, and compute detailed trajectories

depicting the three-dimensional (3-D) airflow through

the developing storm system.

The major problem that now confronts the mete-

orologist attempting to dissect model simulations of

scale-interactive weather and climate processes is not

a lack of useful and dynamically consistent datasets,

but the real possibility of being overwhelmed by the

model data. This is especially true when a short time

interval in the model output is required to resolve the

processes that interact to produce the rapid evolution

of severe weather events. The purpose of this paper

is to describe an application of the Man Computer

Interactive Data Access System (MclDAS) at the Uni-

versity of Wisconsin's Space Science and Engineering

Center (SSEC) to produce a four-dimensional (4-Dt

display of selected meteorological fields generated by

the mode[ simulation of the Presidents' Day cyclone.

The 4-D MclDAS system (Hibbard 1986a) is de-

signed to manage and analyze very large datasets

(either from remote sensing instruments or numerical

models) and to produce complex, 3-D multivariate

images from these datasets. The real power of the

system involves the animation of these fields and the

ability to change the perspective so that meteorolo-

gists are provided the means to "observe" the at-

mosphere in motion from various points of view.

Sequences of the model fields and trajectories have

been animated for the Presidents' Day cyclone and

recorded on videotape. We can, of course, only pro-

vide snapshots of selected model-generated fields

and trajectories in this paper to highlight the type of

imagery and the range of perspectives available.

A brief reviewof the 4-D MclDAS system is pro-

vided in section 2, and the steps taken to apply this

system to the Presidents' Day storm simulation are

discussed in section 3. Selected examples of mete-

orological fields are displayed in section 4 and the

results and future plans are summarized in section 3.

Vol. 70, No. II, November 1989
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2. The four-dimensional MclDAS

The 4-D MclDAS is a set of software integrated within

the MclDAS system, a development guided by its ap-

plication to a variety of datasets including numerical

model output (Santek et al. 1987; Pauley et al. 1988;

Meyer and Seablom 1988) and remote sensing ob-
servations (Hibbard 1986a; Hibbard 1986b). The

4-D MclDAS provides tools to manage data as 2- and

3-D grids, as trajectories, as images, and as collec-

tions of data without any spatial order. The grid struc-

tures can be grouped to manage very large datasets

spanning multiple physical variables and sequences
of times. These 4-D MclDAS data-management tools

include file structures for storing data, libraries of rou-

tines for accessing those files, user commands for

housekeeping functions (listing, copying, etc.) on

those files, and programs for converting external data
to those file formats.

The 4-D MclDAS includes a variety of commands

for analyzing data in the MclDAS file structures.
These include

1) resampling grids to a different spatial resolution,

map projection, or vertical coordinate

2) resampling time sequences of grids to a different

temporal resolution

3) transforming grids to a moving frame of refer-
ence

4) generating general arithmetic grid operators

5) interpolating nonuniform data to a grid

6) deriving trajectories from grids of wind com-

ponents

7) creating images from grids

The 4-D McldAS is used to produce animated se-

quences of 3-D images from data in the MclDAS file

structures. The visual elements of these images in-
clude

1) shaded relief topographical maps with physical

and political boundaries

2) trajectories drawn as shaded tubes, which may

be either opaque or semitransparent, and may

be long and tapered or short with the length

made proportional to wind speed
3) isolevel contour surfaces of 3-D scalar vari-

ables, which may appear smooth with natural

shading, may be semitransparent, or may have

a gridded "fishnet" appearance. (An example
would be a surface of constant wind speed en-

closing a jet stream.)
4) isolevel contour lines, drawn either on the top-

ographical surface or on a surface in the at-
mosphere (such as an isobaric or theta surface)

5) images projected onto 2-D surfaces in the at-

mosphere, such as those scanned by radar or

1399

lidar

6) 3-D transluscent volumes With opacity propor-

tional to some scalar physical variable. (This is

a natural way to depict cloud water density.)

7) cloud top surfaces generated from visible and

infrared satellite images

These 3-D images are assembled into animated se-

quences showing the time evolution of a dataset, or

showing a rotating view of a single time within a

dataset. The animated sequences are loaded into the

MclDAS workstation where they can be viewed di-

rectly or recorded onto videotape.

The 4-D MclDAS provides a variety of means to

increase viewer comprehension of the images it pro-

duces. The images are generated in color, and the
user can control the color of each physical variable.

The user can also control the scale of the depicted

spatial region and the rotation of the user's viewpoint.

Depth information is somewhat ambiguous in 3-D

images, and a rotating perspective helps resolve this

ambiguity. However, the apparent motions of de-

picted objects become ambiguous when rotation is
simultaneous with time animation. Our solution to

this problem is to apply a slight "rocking" to the en-

tire 3-D domain during time animation. The rocking

is not ambiguous with most meteorological motions,

and it does enhance the sensation of depth.
We have used the 4-D McIDAS system to produce

videotapes from many datasets. These videotapes are

generally composed of many separate animation se-

quences, including 2- and 3-D images. The different
animation sequences show the data at a variety Of

scales and viewpoints, and with different combina-

tions of physical variables. Given the complexity of

a large dataset, and the large amounts of human and

computer resources needed to create a videotape, we

have found it important to work from a script. The

script provides a way to plan the presentation, to see
its parts in perspective, and to avoid making costly

mistakes during the repetitive parts of the production

process.

3. MclDAS applied to the Presidents'
Day storm

The rapid development phase of the Presidents' Day
storm was simulated at the Goddard Space Flight

Center (GSFC) using the Mesoscale Analysis and Sim-

ulation System (MASS) as described by Whitaker et

al. (1988). The dataset consists of 2- and 3-D grids

plus trajectories computed at 15-min intervals over a

36-h period from 1200 UTC 18 February to 0000
UTC 20 February 1979. Three-dimensional grids for

temperature, specific humidity, u and v wind com-
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ponents, and potential vorticity include data for all

32 levels of the model. There are 2-D grids for terrain

topography, surface pressure and pressure tendency,

surface temperature, stable and convective precipi-
tation, and planetary boundary-layer thickness. The

2- and 3-D grids are in a polar stereographic projec-

tion of 102 x 70 grid points. The dataset also in-

cludes 21 selected trajectories computed at GSFC

using an iterative technique and a 15-min model out-

put as described by Whitaker et al. (1988).

For the purpose of visualizing the storm's devel-

opment, we used the 4-D MclDAS tools to select a

subset of this dataset, covering 60 time periods, at

halghour intervals between 1500 UTC 18 February

and 2030 UTC 19 February 1979. The gridded data

were interpolated to psuedomercator projections

(constant latitude and longitude grid intervals) cov-

ering several geographical subsets of the original re-

gion and to uniform height levels in the vertical.

The goals of this effort are to visualize the basic
evolution of the sea level pressure (SLP) field, the

relationship of this development to upper-level jets

and convergence of various airstreams during the

storm development, the cold air damming along the

coast, and the relation of potential vorticity to the

converging airstreams and rapid cyclogenesis. Satis-

fying our goals required many trial and error adjust-
ments to

1) the map scale

2) the view angle

3) the combination of physical variables
4) the contour levels of scalar variables

5) the color and transparency of various image ele-
ments

6) the means of displaying trajectories

This trial and error process was very time consuming,

usually requiring several hours to see the result of

even a small change. This effort illustrates the need
for a more interactive system.

4. Examples of colored displays ofthe
Presidents' Day cyclone

In this section, several examples of the 2- and 3-D

colored displays are presented to illustrate the ability

of the system to overlay various fields and provide

insight into the structure of and airflow through the
rapidly developing cyclone. These examples, of

course, cannot convey the true power of the system,

which can only be appreciated when viewing the

videotape sequences.

Vol. 70, No. l l, November 1989

a. 2-D displays

The SLP pattern and analysis of the temperature on

the lowest model surface (approximately 20 mb

above the ground) are shown in figure l a and depict

the position of the developing surface low-pressure

system with respect to the enhanced baroclinic re-

gion along the East Coast of the United States at 1200

UTC 19 February. The model simulation captures the

damming of the colder air (less than 0°C in bluel

between the Appalachian Mountain range and the

coastline and the warmer air (15°-20°C) immediately
off the coast. The combination of the 700 mb relative

humidity and SLP (figure lb) shows that the surface

low also developed along the gradient between the

moist rising air to the north and east of the storm

center and dry subsiding air to the south and west.

The development of the surface low along this rela-

tive humidity gradient is indicative of the asymmetric

cloud structure that marks extratropical cyclones--a

direct result of the convergence of various and dis-

tinctly different airstreams toward the storm center.

The sequence of SLP, accumulated precipitation,

and the 40 m s-_ isotach at the 500 mb level (figures

lc and ld) illustrates the rapid development of the

simulated cyclone between 0600 UT and 1200 UTC

19 FebruaryL The colorized sequence provides sup-

porting evidence that rapid cyctogenesis commenced

as the exit region of the upper-level polar jet streak

approached the East Coast, and as the precipitation
rate increased to the north of the surface low within

the cyclonic side of the jet exit region. Combining

these model fields within a time sequence provides

supporting evidence for the importance of both the

dynamic and thermodynamic processes (i.e., jet
streak circulation patterns and latent heat release;

and their interaction as important factors for the onset

and maintenance of rapid cyclogenesis.

b. 3-D displays

Attempts have been made to link the extrusion of

stratospheric air into the upper- and middle-tropo-

sphere to cyclogenesis through the principle of con-

servation of isentropic potential vorticity {IPV;, where

IPV _ (I;0 + f)a01ap. As stratospheric air descends

into the troposphere, the air mass is stretched and the

static stability (-a0/ap; decreases significantly. Con-

sequently, the absolute vorticity ((_ t f) increases

with respect to parcel trajectories as long as the strat-

ospheric values of IPV are preserved. Recent review
articles by Hoskins et al. (1985) and Uccellini (1989)

emphasize the impact of the IPV anomalies on sur-

face cyclogenesis. Through an "invertibility princi-

ple" expressed by Kleinschmidt (1950), Hoskins et

al. show that a positive IPV anomaly that extends
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downward from the stratosphere into the middle trop-

osphere provides an optimal situation for enhancing
the IPV advection in the middle and upper tropo-

sphere which acts to induce a cyclonic circulation

that extends throughout the entire troposphere. The
downward extrusion of stratospheric air from the nor-

mal tropopause level to the middle and lower trop-

osphere is known to occur in narrow zones along

upper-level front/jet streak systems, a process called

tropopause folding (Reed 1955; Reed and Danielsen
1959; Danielsen 1968).

As noted by Uccellini et al. (1985), the dominant

theme has been to relate the simultaneous develop-

ment of the tropopause fold to cyclogenesis. How-

ever, a result of the Uccellini et al. and Whitaker et

al. (1988) studies of the Presidents' Day cyclone is

the emphasis on the probable link between upper-

level frontogenesis and tropopause folding associated

with jet streak transverse circulation patterns and the

subsequent development of surface cyclones. To show

the tropopause fold prior to cyclogenesis, the sub-

sequent translation of the stratospheric air eastward

toward the East Coast, and the interaction of this

air mass with a low-level IPV maximum, Whitaker

et al. (1988) utilize numerous standard four-panel

horizontal and cross-sectional figures in their paper.

The application of the 4-D MclDAS provides a clear

depiction of these features, as illustrated below.

The 3-D perspective of the simulated tropopause

fold and eastward displacement of the stratospheric

air mass is shown from a southern perspective in fig-

ure 2, with selected trajectories in figure 3, and from

an eastern perspective in figure 4, at 6-h intervals

between 0000 and 1800 UTC 19 February. The de-
scent of the 2 x 10 -s K mb-_s -T IPV surface within

a tropopause fold and advection of this IPV anomaly

toward the East Coast and subsequent deepening of

the surface cyclone are clearly depicted in the 3-D

illustrations. Figure 2 depicts the descent of the strat-
ospheric air mass down to the 700-mb level 12 h

prior to and 1500 km upstream of the developing

cyclone in association with a descending airstream

(blue trajectories in figures 3 and 4) originating on
the cyclonic side of the polar jet streak (depicted in

figures lc and ld). Whitaker et al. (1988) show that

this stratospheric extrusion was related to subsynoptic

scale processes associated with the upper-level jet/

front system in the middle of the United States. The

eastern perspective (figure 4) is included to show the

tilt of the tropopause fold (represented by the IPV

surface) toward the south as the stratospheric air de-

scends beneath the jet core and moves toward the

east, with the expected general tropopause slope

(higher to the south and lower to the north) also de-

picted. The model-generated images of the tropo-

pause fold are similar to the schematics produced by

Danielsen (1968).

The model-simulated IPV fields in figures 2-4 also

display a separate region of high IPV confined to the

lower troposphere along the East Coast that extends

upward during the period of rapid cyclogenesis. As

discussed by Gyakum (1983), Bosart and Lin (1984),

Boyle and Bosart (1986), and Whitaker et al. (1988),

diabatic processes (primarily associated with the ver-
tical and horizontal distribution of latent heat release

within a low-level baroclinic zonej contribute to the

development of the low-level IPV anomaly. The low-
level IPV maximum will also induce a cyclonic cir-

culation extending upward throughout the entire

troposphere and add to the circulation induced by

the upper-level system, as long as the low-level IPV

maximum remains downwind of the upper-level

maximum, maintaining a positive feedback between

the two. As with the upper-tropospheric IPV surface,

rotating the display from a southern perspective Ifig-

ure 3) to an eastern perspective (figure 4) provides an

indication of the sloped nature of the low-level inflow

and IPV surface (from south to north) as the separate

IPV maxima begin to merge by 1800 UTC (figure 4d).

The previous discussion of the cyclogenetic pro-

cesses as viewed from an IPV perspective provides a

basis for linking upper- and lower-tropospheric pro-

cesses in the evolution of a rapidly developing storm.

This perspective is similar to the "type B" cyclo-

genesis described by Petterssen and Smebye (1971 ),

which relates the advection of absolute vorticity

ahead of an upper-level trough over a thermal ad-

vection pattern associated with a low-level baroclinic

zone to surface cyc[ogenesis. Both perspectives not

only account for the upper-tropospheric processes as-

sociated with trough/ridge systems and jet streaks,
but also for the influence of low-level baroclinic

zones in the evolution of these storms. The depiction
of model results on the 4-D MclDAS clearly show

that both of these perspectives are applicable to the
Presidents' Day cyclone.

Finally, the trajectories shown in figures 3 and 4

give the appearance of distinct airstreams and "con-
veyor belts" as described for extratropical storms by

Browning and Harrold (1969) and Carlson (1980).

The "dry airstream" (represented by the blue trajec-

tories) descending from the west-southwest, a "cold

conveyor belt" (represented by the red trajectories)

originating off the northeast coast of the United States

and approaching the cyclone from the east, and a

"warm conveyor belt" approaching the storm from

the south and rising rapidly in a sloped-narrow band

and turning anticyclonically are all depicted by the

4-D MclDAS display in figures 3 and 4. The low-

level trajectories in figures 3 and 4 that 1) approach



v



1402 Vol. 70, No. l l, November 1989

the storm from the east and wrap around the center,

and 2) approach the storm center from the south and

rise rapidly in a narrow-sloping band before turning

anticyclonically pass through the low-level 2 x I0 -s

K mb-ls -I IPV surface along the East Coast. These

parcel trajectories are influenced by the latent heat

simulated by the model and illustrate the nonconser-

vative aspects of the low-level flow through the IPV

maximum in a region of heavy precipitation (figures

Ic and d; see Whitaker et al. [1988]).

5. Summary

Examples of 2-D and 3-D illustrations of selected

fields from a videotape of a model simulation of the

19 February 1979 Presidents' Day cyclone demon-

strate the value of 4-D display systems for visualizing

voluminous datasets produced by numerical simula-

tions of synoptic-scale phenomena. The application

of the 4-D MclDAS system shows the interaction

among various processes throughout the troposphere

and lower stratosphere associated with two distinct

potential vorticity maxima which are difficult to vis-

ualize with standard 2-D graphics procedures. Fur-

thermore, the system provides a clear depiction of

the 3-D structure of the various airstreams or "con-

veyor belts" that converge toward the cyclone center

and extend from the planetary boundary layer to the

tropopause. As noted earlier, the power of this ap-

proach can be realized by observing the time evo-

lution of these diagnostic fields and trajectories,

which are shown on the videotape. Versions of the

videotape are available upon request. _

The production of the videotape of the Presidents'

Day cyclone was a slow and expensive process. The
trial and error refinement of the animation of the Pres-

idents' Day cyclone was inhibited by the iong turn-

around time of the system and the size of the dataset.

What is needed is a system to provide a rapid visu-

alization of the information inherent in numerical

model output and remotely sensed observations. To

meet these requirements, the MclDAS system has

been recently converted to the Stellar GS-1000, a

graphics supercomputer, and the 4-D MclDAS has

been adapted to create 3-D animations in real time

(the images are drawn at the animation rate). This

system allows the user to explore a dataset of up to

50-million grid points, providing immediate visual

feedback to the user's trial and error adjustments to

the 3-D image animations (Hibbard and Santek

1989).

Please contact William Hibbard at the Space Science and En-
gineering Center at the University of Wisconsin--Madison, Mad-
ison, WI 53706.
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A 4-D CASE STUDY FOR SYNOPTIC LABORATORY

Patricia M. Pauley

Department of Meteorology

William L. Hibbard and David Santek

Space Science and Engineering Center

University of Wisconsin-Madison

Madison, Wisconsin

",_md let me say now that I hated the laboratory, when I took the course, because I

couldn't see the sense in spending so much time drawing maps ..... in the end, I'm very

grateful for having been exposed...so very directly to actual atmospheric phenomen.a ..... I

think a person who has made subjective analyses of weather maps has a deeper

appreciation of how inadequate many objective analysis schemes are. and if wm simply

accepted the machine product as reality, it would be very dangerous ..... But at the same

time I would agree that machines...can be used very, constructively to produce various

kinds of analyses and so you could look at the essentials of the atmosphere."

Conversations with Jule Charnev (Platzman, 1987)

1. INTRODUCTION

Instructors ofsynoptic meteorology have long been seeking to facilitate their

students' understanding of the four-dimensional (three spatial dimensions and time)

nature of the atmosphere. Traditional tools in the synoptics lab have centered on two-

dimensional maps and cross-sections because of the difficultv of depicting three and

four dimensions on fiat sheets of paper. These same two-dimensional depictions are

used in operational forecasting, reinforcing their use in the classroom. Isentropic

analvsis is sometimes used because of its implicit inclusion of the vertical dimension in a

horizontal map format. However, students typically have difficulty understanding how

to interpret features in an isentropic framework, a problem which is engendered by the

lack of day-to-day operational analyses and guidance on isentropic surfaces. Three-

dimensional graphics have also been used to some extent, but are generally limited ill

application to idealized representations of the atmosphere.

The objective of the project described in this paper is to filcilitate the student's

understanding of the 4-D nature of the atmosphere through a combination of traditional

and computer-based methods. A series of plotted isobaric and isentropic maps for the
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extratropical cyclone caseof 1-3April 1982is used to give the students experience in
hand-analysis,the traditional stock-in-trade of the synopticslab. The casestudy is then
supplemented by a seriesof animated 2-D and 3-D graphics prepared on McIDAS
(Man-computer Interactive Data AccessSystem)from a model simulation of the same
case.

This paper encompassesa brief description of the 4-D graphics available on the
McIDAS systemand a description of the casestudy materials. Some classroomresults
are also included.

v

2. THE MCIDAS 4-D GRAPHICS SYSTEM

The 4-D graphics system on MCIDAS consists of a set of programs which cre:_te

stereo animation sequences of 3-D graphics from meteorological data. This system is

described at length in Hibbard et al. (1987) and Hibbard (1986), so only a brief

summary, will be provided here. The 4-D programs are invoked b 5, interactive

commands which allow the user to specify the contents, scale, viewin,, angle, and other

parameters of the display. This gives the user a ready means of interactivelv altering

the graphics to emphasize whatever feature is of interest. The 4-D sequences are

generated in five to fifteen minutes and displayed on a McIDAS workstation in sterec_

gray-shades or in "mono" color. The latter can be used to create video tapes such as

the one presented at this workshop.

The McIDAS 4-D graphics system interfaces to a great variety of meteorologic:_l

data through a 3-D grid data structure. The system depicts the data using contour

surfaces of raw and derived scalar parameters, wind trajectories, topographic maps.

contour lines of parameters drawn on pressure or height surfaces (including the ezxrth's

surface), and various other line graphics. The system has also been used to gener:_te

perspective displays of clouds from GOES satellite data, stacked CAPPI (Constant-

Altitude Plan Position Indicator) scans from volumetric radar echoes, and planar slic_s

generated from LIDAR data.

3. CASE STUDY DESCRIPTION

The case study used in this project is one of a rapidly intensifying extratropical

cyclone with severe weather in an associated cold-frontal squall line. a storm with a bit

of something for everyone. The central pressures of the cyclone are summarized in Fig.

1. During this time, the surface cyclone propagated from Colorado across Nebraska.

southeastern South Dakota, southern Minnesota and central Wisconsin to a position

near Green Bay at 09Z 3 April. The surface cyclone was supported by a short wave

aloft which earlier had propagated around the base of a long-wave trough off tt!e west



coast. The short wave wassubsequentlyembedded in broad southwesterly flow as it
amplified in the lee of the Rockies. The initial LFM fields from 00Z 3 April are shown
in Fig. 2, a time roughly in the middle of the deepening phaseof the cyclone.

According to Storm Data (1982), 56 tornadoes were reported on April 2,

including the first F5 tornado reported since 1977 (Fig. 3). Seventeen of these

tornadoes were in the Red River region, including the F5 tornado and the F4 Paris

(Texas) tornado which caused 10 fatalities and 170 injuries. Further severe weather

occurred on April 3 bringing the total severe reports for the two days to 89 tornadoes.

42 reports of hail greater than or _qual to 3/4", and 96 reports of severe-strength wind

gusts, making this the worst outbreak of severe weather since the 3-4 April 1974
"Jumbo" outbreak. A dust storm was also associated with strong winds in the cold

surge behind the system in the southern Plains in the afternoon of April 2. while

significant snowfalls were reported in the northern Plains.

This case study was first used in undergraduate synoptics at the Universitv of

Wisconsin-Madison in the Fall 1987 semester. The undergraduate synoptics sequence at

UW-MSN consists of two semester-long three-credit courses, typically taken bv seniors

after they have had one semester of thermodynamics and one of dynamics. The fall

semester emphasizes extratropical cyclones, while the spring semester emphasizes s_vere

local storms. The following plotted maps were prepared for this case: the students

were given the maps indicated by (*) to analyze:

Surface charts (00Z, 06Z, 12Z, 18Z 2 April; 00Z, 09Z 3 April) (:")

Isobaric charts (12Z 1 Apr; 00Z, 12Z 2 April; 00Z, 12Z 3 April)

850 mb (*)

500 mb (*)

300 mb (*)

Isentropic charts (same map times as isobaric charts)
295K

300K (*)
305K

315K

Derived fields (to be analyzed; same map times as isobaric charts)

85.0 mb temperature advection (*)

500 mb absolute vorticity advection (*)

300 mb divergence (*)

Analyzed isentropic cross-sections

12Z 2 Apr stations 71119-72250
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00Z 3 Apr

12Z 3 Apr

12Z 3 Apr

stations 71119-76692

stations 72747-72201

stations 71848-72201

Additional NMC products such as min/max temperature and composite moisture charts

were also given to the students.

The 4-D graphics were prepared using fields from the Perkey-Kxeitzberg

Limited-Area Mesoscale Prediction System (LAMPS) model (Perkey, 1976) initialized at

00Z 2 April 1982 and run out to 36 hours. Frames are shown at two-hour intervals

through 24 h after the initial time, except sequences 5, 6, and 7 which are through 36

hours. The sequences prepared were:

,

2.

3.

°

o

6.

7.

.

°

2-D animation of sea-level pressure

2-D animation of 500 mb heights and absolute vorticitv

3-D animation of sea-level pressure, 500 mb hei,,hts and cloud

water surfaces (0.1 g/kg)

3-D animation of 300 mb heights, surfaces of absolute vorticitv (16

x 10 "s sec'l), and trajectories

3-D animation of the 300K isentropic surface

3-D animation of the 300K isentropic surface and trajectories

3-D animation of the 300K isentropic surface with trajectories ',_nd

mixing ratio surfaces (8 g/kg)

- - " 7) QIZ3-D animation of isentropic surfaces from )9VK to o,,,,,.,

incrementing by 4K, and the 50 m/sec isotach surface for 12Z 2

April 1982

3-D animation of the 310K and 340K isentropic surfaces and tile 5()

m/sec isotach surface for 12Z v April 1982, with the viewin,, an,,te

changing from south to west

The terrain field is also depicted in 3-D in all of these sequences, in order to bring c_ut

anv relationship between the depicted fields and the topo_raphv. Fi,, 4 is a frame

from sequence 7.

v

4. CLASSROOM RESULTS

In the Fall 1987 semester, the students first hand-analyzed their maps, then

worked with the 4-D graphics while they were preparing papers describing the ev()luti(m

of this particular cvclone case. While they were studying the 4-D graphics sequences.

the students were asked to answer a set of questions which were designed t() lead them

through the graphics and direct their attention to specific aspects of each sequence.

The graphics were displayed on the stereo McIDAS workstation, allowing the students



to manipulate the graphics to a limited extent (changesequences,start and stop loops,
single-stepthrough loops).

A formal evaluation of the effectivenessof the 4-D graphics was attempted but
proved inconclusive. A short test was given to the studentsafter they had hand-
analyzed their case-studymapsbut before they had worked with the computer graphics.
The test included questionson quasi-geostrophictheory, vertical motion, isentropic
coordinates, and map interpretation. A similar test was then given after they had used
the computer graphics. An analysisof the test results showedno clear-cut effect of
using the 4-D graphics---thestudentsperformed better on some questions,worse on
others. The test may not have been properly designed;assessingthe abilitv of a
student to "think in 3-D" is difficult at best. A different set of maps was used for the
map interpretation questionson the two exams,so the results may also retlect a
difference in complexity in thesecases. Furthermore, the results may also have hcen
affected bv the small sample sizeavailable (17 students).

On the other hand, a subjectiveevaluation showed that the 7 studentswho
returned the evaluation felt that the 4-D graphicswere valuable, especially in helping
them to understand the isentropic perspective. All 7 students felt that the graphics
helped them better understand the 3-D nature of the atmosphere; 5 out of the 7 felt
that it helped them in writing their casestudy papers. The graphics also sparked a
great deal of enthusiasm,which is valuable in and of itself. The students unanimously
felt that the exercisewas interesting; one thought it was "totally cool" and another felt it
was "an experienceof Biblical magnitude".

5. SUMMARY

The goal of the project described in this paper was to facilitate the synoptics
student's understa.ndingof the 4-D nature of the atmosphere through the use of a case
studv which combined traditional hand-analysismethods with 4-D computer graphics. A
dramatic caseof cyclonedevelopment over the U.S.with an associatedseverewca_thmr
outbreak waschosen in order to be able to explore a variety of processes. A model
simulation of the casewas used as the basisfor the 4-D graphics: the model data have
the advantageof higher time resolution to provide smoother animation sequences.
Although an objective evaluation proved inconclusive,a subjectiveevaluation revealed
that the students felt the exercisehelped them better understand the 3-D nature of the
atmosphere aswell as stimulating their interest and enthusiasm.

, ACKNOWLEDGEMENTS

The authors would like to thank Prof. Don Perkey, Dr. Pete Robertson. Dr.



Mike Kalb, and Mr. Mike Seablomfor providing the LAMPS simulation used for this
casestudy. Thanks is also given to Prof. Lyle Horn and teaching assistantsGeorge
Phillips, Tom Zapotocny, and Brad Bramer for their work in preparing and using this
case in the Fall 1987synopticsclass,and Mr. Steve Nieman for his assistancein
programming the isobaric post-processor.

7. REFERENCES

Hibbard, W.L., 1986:Computer-generatedimagery for 4-D meteorological data. Bull.
Amer. Meteor. Soc., 67, 1362-1369.

Hibbard, W.L., R. Kraus, D. Santek, and J.T. Young, 1987: 4-D display of weather

data on McIDAS. Proceedings of the Third International Conference c_n

Interactive Information and Processing Systems for Meteorolokw. Ocean(_,.z,r:_phy.

and Hvdrolo_, New Orleans, AMS, 89-93.

Perkey, D.J., 1976: A description and preliminary results from a fine-mesh modet for

forecasting quantitative precipitation. Mon. Wea. Rev., 104. 1513-1526.

Platzman, G.W., 1987: Conversations with Jule Charnev, NCAR Tech. Note

NCAR/TN-298+PROC.

Storm Data, 1982: Tornado Outbreak on April 2, 1982. Vol. 24, No. 4. pp. 4-8.



g85 -

980 -

975 -

S?0 -

g65 -

\

Central Sea-Level pressur-es
C_rC_ ixl4Csurface A_IyS_)

-!

I
i

i i

r i

I
\, I

J

i •

3 6, g 12. 15 18 21 0 3 6 '_ 12

Time (from 21Z 1AlOr to 18Z 3 Apr_

I
I

I
i

Figure h Central sea-level pressure trace for the 1-3 April 1982 extratropical

cyclone, from the NMC 3-hourly surface analyses. (12Z 2 April is missing.)



-\:\

Figure 2: Initialized LF:X,[ tields t'or 00Z 3 April. Top: 500 n]b h_i,=,hts and absolute

,,(_rticitv. Bottom: ,"vlSL pressure and 1000-500 mb thickness.

ORIGINAL PAGE IS

OF POOR QUALITY



9

OUTBREAK OF 56 TORNADOES ON APRIL 2. 1982

NEB.

KANSAS

OKLAHOMA
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Fig.re 4: One frame from tile 3-D animation of the 300K isentropic surface (mesh)

with trajectories (ribbons) and 8 =._..,,,'k,,mixin,,.= ratio surfaces (semi-opaque). The vertical
scale is in kin.
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THE USE OF 4-D GRAPHICS IN TEACHING SYNOPTIC METEOROLOGY
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O__'FC;OR QUALrrY

[. [h'TROOUCT[ON

One of the primary goals in teaching

synoptlc meteorology is to help the students

learn how to take a vartety of 2-D depictions and

form a 4-D mental image of the ataosphere. The

objective of the project described in thls paper

Is to facilitate the student's understanding of

the 4-D nature of the atsosphere through a

combination of traditional methods (in which the

student hand-analyzes isobaric and _sentropic

maps and cross-sections) and coiputer-based

methods (in which the student can view and

Ianlpulate 4-D graphics as well as anleattons of

2-D fields).

During the current semester (Fall 1987), the

synoptic laboratory students aC the University of

Wlsconsin-Nadlson will be analyzing the

extratroplcal cyclone case of 1-3 April 1982 as

part of their class work, In the latter part of

the semester, the case study will be concluded

with an opportunity to view and manipulate a

series of 4-D graphics from the same case. The

familiarity with the case gained by hand-

analyzing maps and cross-sections should enable

the students to learn wore from the computer

graphics than would be possible otherwise.

The current project builds on previous work

by Prof. Donald R. Johnson and his group in

putting together educational videotape modules

(B.C., Achtor et al_..___.,1981a,b). These modules

include a set of plotted saps tO be analyzed by

the students and a videotape of MclDAS (Man-

computer Interactive Data Access System}

satellite imagery overlaid wlth analyses of

various fields obtained from conventional

meteorological data. These modules have been

very successfully used as the basis for synoptic

laboratory case studies: the addition of

satellite imagery and derived fields to

traditional hand-analyses helps the students

better understand the basic physical processes

involved In the developient of weather systems.

It is hoped that the further addition of 4-D

graphics will serve to Increase the students'

understanding even more, by showing the

Interrelationships between various traditional

2-D depictions of the ataosph_e, as well as

presenting the data In novel ways.

This paper encoIpasses a brief description

of the 4-D graphics available on the NclDAS

systes, an outline of the progression o_
activities to be used In the classroom In

conjunction with this project, and descriptions

of smaple products from this case study. As the

case is being used during the current semester,

pedagogical results are not yet available.

2. THE MCIDAS 4-D GRAPHICS SYSTEM

The 4-D graphics system on NcIDAS consists

of a set of programs which create stereo

antsation sequences of 3-D graphics from

meteorological data. This system is described at

length in Hlbbard et el., 1987 and Hlbbard, 1986,

so only a brief sulanry wtll be provided here.

The 4-D progrmms are invoked by interactive

commands which allow the user to specify the

contents, scale, viewing angle, and other

parameters of the display. Thls gives the user a

ready Beans of lnTeractlvely altering the

graphics to eIphaatze whatever feature Is of

interest. The 4-D sequences are generated in

five to fifteen minutes and are displayed on •
stereo Nc[0AS workstation.

The McIDAS 4-D graphics system interfaces to

a great variety of Ieteorologlcal data through s

3~D grid data structure. The systeB depicts the

data using contour surfaces of raw end derived

scalar parameters, wind trajectories, topographic

maps. contour lines of parameters drawn on

pressure or height surfaces (including the

earth's surface), and various other line

graphics. The system can also generate

perspective depictions of clouds from GOES

satellite data, stacked CAPPP (Constant-Altitude

Plan Position Indicator) scans fron volumetric

radar echoes, and planar slices generated from
LIDAR data.
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For this project, the data were derived From

a model simulation of the 1-3 April 1982 case

over North America. The 24 hr simulation was run

on the Limited-Area Nesoscale Prediction System

_I_UiPS) (Perkey. 1976) at Marshall Space Flight

Center with 140 _JI resolution and was Initialized

at 0000 GMT 2 April 1982. The mQdel output wan

saved at two-hour intervals and Interpolated from

the model's stEaa-z vertical coordinate to both

constant height and constant pressure surfaces.

The height-level data form the basic data set for

the 4-0 graphics, while the pressure-level data

permit the use of fields whtch are more familiar

to the students. Model data were chosen for use

with the 4-D graphics because of their better

dynamical consistency and temporal resolution

{Keyser and Ucce/llnt. 1987). The behavior of

the model simulation itself is also of interest

in terms of discussing numerical weather

prediction.

3. CASE STUDY DESCRIPTION

The case study developed by this project is

being used during the current semester (Fall

1987} in the synoptic laboratory class (Meteor

452) at the University of Wisconsin-Madison.

Thls course IS typically taken by undertraduate

senior meteorology majors after they have taken

atmospheric thermodynamics and one semester of

dynmaics. Durln_ the fall semester, synoptic lab

emphasizes extratropical cyclone development:

during the spring semester, it emphaslzes

thunderstorms and severe weather. The different

activities involved with this case study are

spaced throughout the semester to agree in timing

with material presented in lectures.

The 1-3 April 1982 case was chosen for this

project because It not only represents a

spectacular case Of a developing extratroplcal

cyclone over the data-rich northern Nldwest In

the U.S. (achieving a central pressure of 962 mb

at 1500 GKr 3 April In northern Wisconsin}, but

also includes an extensive squall line along the

tralllng cold front. Thus. the case study is

appropriate for use In both the fall and spring

semester synoptic labs. The LAMPS model run used

for the 4-D graphics was initialized at 0000 GMT

2 Aprll, In order to encompass the period durln_

which the cyclone occluded.

During the early part of the semester, the

esphasls ls placed on teaching the students

subjective (hand) analysis. After performing

some trial analyses, a series of computer-plotted

maps fOr the case study, based on standard

rawtnsonde data obtained from NCAR. is given to

the students to anaiyze. These include surface

maps. standard isobaric maps (850. 500, 300 mb),

appropriate lsentropic saps, and cross-sections.

As the semester progresses, the lecture

eaterlal covers development theory for

extratroplcal cyclones, Including quasi-

geostrophlc theory. Sequences of 2-D analyses of

various derived fields for the case (e._.,

vor¢lctty, divergence, advectlons of quantities)
downloaded from the McIDAS mainfrale will be

displayed In the PC-MclDAS envlrorment In the

Department of NeteoroloC_'s computer classroom

(Pauley and Meys. lg87).

Toward the end of the semester, the _¢uue._=

will be assigned a paper based on the case study.

They will be expected to discuss the actual

development of the cyclone being studied In ltght

of the various theories of cyclone development.

At the time the paper is assigned, the 4-D

lsmtery will be introduced to the class. After

an inltlal presentation and orientation with the

basic MclDAS commands needed to manipulate the

llagery, the students wlll be allowed access to

the stereo workstation to examine the imagery at

their own pace. The satellite Imagery for this

case study will also be Bade available to the

students on MclDAS.

4. EXAMPLES OF GRAPHICS

Although It Is impossible to completely

portray animations of stereo graphics with still

photographs, three examples are included here to

demonstrate the types of graphics used in this

case study.

Figure 1 shows trajectories and cloud water

envelopes over the surface terrain. The animated

sequence shows the clouds increasing .In size with

tile as the model "spins up". (The model has no

initial cloud water.) The trajectories outline

the circulation and also depict upward motion

within the clouds. The orographlc nature of the

clouds over the Rockies Is evident in this

sequence. Trajectories may be combined with a

variety of fields to demonstrate the

relationships between the flow field itself and

other atmospheric parameters.

FI_. 1. Trajectories (ribbons) and 3-0 cloud

wafer surfaces for 0600 GI_ 2 Aprxl I982 above

the surface topography.

The cloud water surfaces are shown wlth the

sea-level pressure {SLP) field in Fig, 2. The

SLP analysis is draped over t_e terrain to

emphasize the rote of the terrain. The

relationship between the clouds and the surface

flow field is brought out here.

tO9





PIE•2. Cloud water surfaces end the sea JeveJ

pressure anaJysis for 0600 GP4T 2 AprH 1982 above

the surface topography.

The final image included in this discussion

Is one of the 350 eb height analysis and the 60

a/s isotach surfaces (Fig. 3). The relationship

between the regions of tight height gradient and

high wind speeds is apparent. The lsotach

surfaces further demonstrate the 3-0 nature of

the high-speed Jet cores. Any arbitrary pressure

analysis can be "floated" In the analysis volume

in thls fashion to portray the relationships

between various conventional analyses and scalar

surfaces or trajectories.

FIg. 3. 350 mb heifht analysis and 60 miser

isotacb surfaces for 0200 GNT 2 April 1982 above

the surface topography.

5. SUMMARY

Experienced meteorologists have developed

the skill of mentally visualizing the

multivariate evolving 3-D geometry of weather

phenomena. A major goal of the Mc[DAS 4-D system

in general, and this project tn particular. Js to

aid in this visualization through computer-

generated images. The project described in this

paper is a case study to be used tn teaching

synoptic meteorology, which includes traditional

hand-analyses to be done by the students and

computer-generated 4-D graphics sequences. This

should sake it an ideal tool for helping students

develop their visualization skllls.

II0
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I. MCIDAS UNDER UNIX AND X WINDOWS

We have implemented a version of MclDAS (Man-computer Interactive

Data Access System) running under UNIX and X Windows, on the Stardent

GS-1000 workstation. This system goes a significant ways toward

satisfying the goals described two years ago in "A Next Generation MclDAS

Workstation" (Hibbard, 1988).

This McIDAS implementation is quite similar to previous McIDAS

implementatigns, particularly PC-McIDAS. The file structures of this

system for grids, imaBes and other forms of meteorological data are

identical with those of PC-McIDAS. All of the FORTRAN applications code

is iden=ical with PC-MclDAS, except for compiler differences. The system

level code is written in C rather than assembler and consists of two C

modules of 900 lines each. This McIDAS implementation supports variable

sized frames dynamically created by the user, pan and zoom operaEions, and

the flexibility to allocate video system bits to images versus graphics

when McIDAS is started. Thus GOES IR data can be viewed in ten image bits

overlayed by one graphic bit.

This McIDAS interfaces with the user through X Windows, providing a

pseudocolor window for images and graphics and a number of Xterm windows

for command input and text output. The new McIDAS function for

interactive model visualization uses a true-color window for graphics and

numerous widget windows for user control. McIDAS commands are entered to

a standard UNIX shell, so all of the shell tools are available, including

command history and shell scripts. The X Windows mechanism for cutting

and pasting text is available co edit McIDAS output into text files.

Numerous graphical user interface widgets are available.

An implementation of McIDAS using UNIX and X Windows, and avoiding

the use of assembly language, should be easy to transport to other



computer systems and to connect with other systems. The critical question

for porting to another system is the performance of the X server on the

_arget system for supporting animation.

2. INTERACTIVE &-D VISUALIZATION

We have exploited the power of the Stardent workstation to create

new McIDAS functions for interactive visualization of multivariate four-

dimensional data sets, such as those produced by numerical weather models.

These data sets are stored in five-dimensional arrays, composed of three

space dimensions, time, and one dimension for enumerating different

physical variables. For example, we have applied our system to visualize

the EC_F data set of & February 1988, which shows an extratropical

cyclone moving across the North Atlantic during a one week simulation.

Our software stores this data set in a five-dimensional grid of 24

latitudes by 46 longitudes (2.25 degree spacing) by 14 vertical levels by

168 time steps (one per hour for a week) by 8 variables (pressure,

temperature, specific humidity, vorticity, divergence, potential

temperature, vertical wind speed, and horizontal wind speed). This is a

total of over 20 million grid points. Note that a workstation with 128MB

of memory could be used to visualize a data set of 50 million grid points

The basis of our visualizations is real-time animation. That is,

the ability to generate the images as fast as they appear. This allows

the user to interact with the display by controlling the contents of the

images and getting immediate response. The user sees a three-dimensional

box containing moving scenes generated from the weather data set. The

scene may contain a topographical map, trajectory lines, and iso-leve!

contour surfaces of scalar variables. The user can interactively select

which of these visual elements to display at any moment. For example, the

user can select the topographical map with a 280 Kelvin potential

temperature surface and a 5 cm/sec vertical velocity surface. These will

be animated to show the interactions between these variables. The user

can interactively control the animation--start it, stop at an interesting

time, and single step forward or backward to watch dynamics slowly. The

user can interactively change the iso-levels for contour surfaces to see

different values for variables. The surfaces for a selected variable are

redrawn for all time steps, and this is done asynchronously with the

animation, typically at a rate of about two per second. The user can also

interactively rotate, pan and zoom the images in three dimensions. This
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is a very powerful way to understand complex geometries in three-

dimensions.

3. COMMUNICATIONS

The Stardent GS-1000 supports the TCP/IP protocol over Ethernet, as

well as NFS (network file system). These can be used to transfer files

from another computer, or to provide a byte stream between applications on

different machines. The 0S/2 Mc!DAS includes applcations for transferring

all the MclDAS file structures to and from the MclDAS mainframe. We will

port these OS/2 communications programs to our UNIX implementation and

link them with the raw data transfer via TCP/IP. This will be a simple

task and will provide access to all the data sources of the MclDAS

mainframe. We have no plans to port the MclDAS satellite data ingest

software to the GS-1000.

TCP/IP is supported on al_ost all supercomputers, so this will

provide an easy way to get model data into the CS-1000 for interactive

four-dimensional visualization. The primary difficulty here is to write

an application for translating the model output data format to our HciDAS

file structures, a task which we have done for many different data

sources.

Stardent has a commitment to support higher rate communications

standards as the are defined. FDDI at i00 million bits per second is

nearly settled, and there is active movement toward communications at one

billion bits per second.

4. VISUALIZING DATA SETS OF BILLIONS OF POINTS

Our visualization work is based on the idea that the problem is the

size of meteorological data sets and that the solution is highly

interactive access to those data sets. The enormous size of the data sets

gives the important information too much room to hide in. Also, the data

sets are cumbersome to manage, hindering the effort to look at them in a

variety of ways. However, advances in hardware and software systems are

making it possible to process lots of data quickly, letting scientists

make choices and get fast visual response to those choices. These tools

let the user hunt quickly through a lot of data. Our software tools

running on the Stardent workstation enable a scientist to interactively

visualize a data set of 50 million grid points.

We have done a preliminary design for an extended version of our

system which would provide interactive visualization of data sets of 5 to



I0 billion grid points, I00 times larger than our current capability.

This design distributes our current software onto both a Stardent

workstation and a CRAY supercomputer, with the gridded data set residing

on fast disks attached to the CRAY, and a very high speed link between the

CRAY and the Stardent.

The distributed system could be used to visualize a data set such as

the hurricane simulation which Greg Tripoli of the U. W. Meteorology

Department is planning to create using his thunderstorm model (Tripoli,

1989). The hurricane data set will consist of 4 million spatial grid

points by I0 physical variables by 2520 time steps (every 4 minutes for a

week), and the simulation will require about 500 hours on a CRAY 2. The

output data set will consist of I00 billion grid points which would need

400 billion bytes to store as 32 floating point values. This is an

unrealistic amount of storage, so we would reduce the resolution of the

model's output by 2 in space and time and compress the values to 8 bit

integers. The resulting dataset would have 1260 time steps and 500

thousand spatial grid points for a total of 6 billion bytes of storage.

The distributed system can be understood bv looking at the sequence

of operations involved in visualizing the hurricane data set. We would

seek to produce real-Lime animations from this data set at about five ----'-

frames per second. During each 0.2 second frame time, the system wouid

execute the following steps:

a. The Stardent will send to the CRAY the user's controls for

selecting which combination of physical variables to view, for selecting

which time step to view (which 8 minute step out of a week), for selecting

iso-levels for contouring variables, and for selecting the geographic

extents of the region to view.

b. The CRAY will read the grids for the selected time step and

physical variables from the disk. If we limit -the number of simultaneous

variables to three, this would be five frames per second by three

variables by 500 thousand bytes per grid giving 7.5 million bytes per

second of disk bandwidth. This transfer rate is achievable with

supercomputer disk systems.

c. The CRAY will generate subgrids of about 50 thousand points each,

by subsectoring and possible resolution blow-down, according to the user's

selection of geographic extents.

d. The CRAY will generate polygonal con=our surfaces from the subgrids

for each selected physical variable, according to the user's selection of

iso-levels. The surfaces will contain very roughly 50 thousand triangles.



This is a heavy computational load and will require polygon-finding

algorithms adapted to exploit the parallel and vector facilities of the

CRAY.

e. The CRAY will transmit the triangles to =he $tardent. Fifty

thousand triangles require 3.6 million bytes of storage, so the overall

data rate would be 5 frames per second by 3.6 million bytes of triangles

by 8 bits per byte giving 14& million bits per second. The current

Stardent renderer requires that the triangles be compressed into

polytriangle strips, with one vertex per triangle. This alters the

storage to 1.2 million bytes per 50 thousand triangles and the dat_ rate

to &8 million bits per second. However, polytriangle strips present some

problems for processing and image quality, so a solution without

polytriangle strips is preferable.

f. The Stardent will render the triangles according to the user's

selections for 3-D pan, zoom and rotation, surface color and transparency,

and light source placement. This calls for the Stardent to render 5 times

50 thousand or 250 thousand triangles per second.

Note that the images generated will include a variety of visual

elements such as wind trajectories and maps. They are much easier to

handle than contour surfaces, so we have left them out of the above

discussion. Also note that the distributed system could be applied to

interactively visualize other weather and climate simulations of similar

size. :___

+_ %+l_!+..-y

5. INTEraCTIVE MODEL DEVELOPMENT

_e are also interested in using distributed algorithms to help

scientists interactively develop thunderstorm simulations, a task

requiring numerous trial and error adjustments to initial atmospheric

conditions and to model parameters. This is done throuBh an iterative

cycle of short simulation runs, inspecting the model output data and

comparing them to known storm behavior, and adjusting the initial

conditions and model parameters.

Interacting with a running model is tricky because of man-machine

coupling mismatches. Large simulations are much too slow for interaction,

and we would concentrate on simulations with about i00 thousand spatial

grid points. Even this size of simulation would progress too slowly to be

directly visually interesting, so the visualization must be asynchronous

with the model. The system will maintain an accumulating model output

data set on the CRAY, and let the user move around in the time steps,



rather than being in lock s=ep with the model. To control cumulative

error, the model needs to calculate many more time steps than the user

wants to see. The storm model will calculate time steps for every two

seconds of storm time but only store a time step in the data set for every

minute of storm time. The user will visualize from the accumulating data

set, using the same distributed software system that was described for

visualizing the hurricane above. When the user wants to change the

simulation, the system will enter a new operating mode allowing the

initial conditions and model parameters to be changed and the model to be

restarted at an earlier time step. This iteration will continue until the

simulation behaves to the satisfaction of the scienr_ist.
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i. INTRODUCTION

We have chosen the UNIX operating system

and X Windows as the basis for our Interactive

4-D McIDAS (Man-computer Interactive Data Access

System) Workstation, which is being implemented

on the Stellar GS-1000 Graphics Supercomputer.

These choices are the overwhelming standards in

the workstation market and are thus really

independent of our choice of hardware. We are

also planning to use TCP/IP for communications

with data sources. The Mc!DAS running under

UNIX has all of its low level system code

written in the C language, in place of the

assembler code used in previous McIDAS

implementations. The applications are written

in FORTRAN and are very compatible with other

McIDAS implementations. The use of UNIX, X

Windows, TCP/IP, C and FORTRAN makes this an

easy McIDAS implementation, and also offers

advantages for portability and for connectivity

among McIDAS systems and with foreign systems.

The computer industry has built a Tower

of Babel of incompatible machines, languages,

operating systems and cogitations protocols,

driven by the "not invented here" motive and by

the profit motive. However, a growing group of

users and vendors are trying to establish a set

of standards, starting with science and

engineering users and their workstations and

supercomputers. Earth scientists will benefit

greatly from adopting these standards for all of

their interactive systems.

2. THE CHANGING NATURE OF WORKSTATIONS

In traditional interactive earth science

systems, processors and workstations have been

separate units connected by co_,,unications lines.

The workstations consist of large image memories

wlth video output generation circuits, and

possibly a microcomputer acting as a controller.

Our large software systems run on general

purpose computers which co---unicate with the

workstation at bandwidtbs of between I0 thousand

and i0 million bits per second. In these

traditional systems it is possible for the main

processor, running the large software base, to

be independent of the workstation, connected

only by a serial line. Thus the workstation can

change without changing the hardware platform

for the large software investment.
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New systems t such as our interactive &-D

McIDAS, are changing this. In order to give

scientists complex real-time interaction with

their large data sets, powerful processors must

be integrated into the workstation. Current

high end workstations include processors execut-

ing hundreds of millions of instructions per

second. In these systems, the integrated

processors will evolve with the workstation,

threatening the large software investment we

will make in them. Commercial standards will

make it easier to port our software between

workstation generations.

Traditional workstations have been

capable of a limited set of real-time inter-

actions, such as c_anging color enhancement, pan

and zoom. These are provided with hardwired

circuits and limited to their special functions.

However, real-time interaction in three dimen-

sions, or with the analyses underlying the

display, require a generally programmable

processor running complex software. The inclu-

sion of a high speed general processor into a

workstation is a complex task. The engineering

development of the GS-1000 cost Stellar roughly

i00 times as much as the development of the

McIDAS Wide Word Workstation cost SSEC. This

testifies both to the efficiency of SSEC's

engineers and to the huge gulf separating

workstations with and without integrated

processors. We can no longer afford to design

and support state-of-the-art workstations

specifically for our earth science applications.
We must use workstations from the commercial

market, and their commercial software standards.

Workstations with integrated processors

provide more flexible use for their large

expensive memories than just image storage. 7he

memory can storm grldded data for interactive

four-dimensional visualization, it can store

state data when the processor is running a

numerical simulation, and it can provide a ve_'

large data space for an interactive analysis.

3. DISTRIBUTED AND HETEROGENEOUS SYSTD_S

Distributed systems offer numerous

advantages to earth scientists. An important

lesson of our old McIDAS, based on a network o:

Harris minicomputers, was that a distributed

system is more reliable than its parts. Despi_e



numerous component failures, the distributed

HcIDAS aC the National Severe SCorNs Forecast

Center has never been down, except when iC was

being moved.
Distributed systems create hard parti-

tions between machines being used for operations

and for development. The operaClonal users are

protected from machine crashes due to testing

new sofuaare and hardware interfaces.

Many functions of interactive systems

are inherently geographically distributed, such

as gathering data from diverse sources and

providing data communications between users at
different sites. A distributed system design is

a more natural fit co such problems.

A distributed system allows dissimilar

components, such as large and small workstations,

large database machines, numerical modelling

supercomputerso and special purpose data acqul-

sition machines. Furthermore, a distributed

system allows independent evolution of these

different components.

In order to reap the benefits of

distributed systems we need to adopt co---ercial

software standards. These are the UNIX operat-

ing system, the X Windows video interface,

TCP/IP and other true communications standards,

as they emerge, and the C and FORTRAN languages.

These standards minimize the effort of integrat-

ing our earth science application packages into

the network system software. They do chat by

providing the same operating system (UNIX) and

languages (C and FORTRAN) on all machines in

the network, by providing the uniform and

network transparent user Interface of X Windows,

and by providing a network protocol (TCP/IP)

which is supported by most machines and fits

naturally with L_IX and X Windows.

_. UNIX, X WTNDOWS, TCP/TP, C AND FORTRAN

UNIX is a general purpose operating

system available for virtually all computers,

and it is the only operating system available

£or many workstations. UNIX was originally

written co support systems progr_ers and

suffered from performance problems. Now

however, chose problems have been solved, and

L_IX is the standard on supsrcomputers and high

end workstations where performance is important.

UNIX is somewhat complex to learn, but so is any

real operating system. As we learn the system,

we are impressed by the powerful tools it

provides for developing soft-ware.

X Windows is a video and user interface

system which is available for a wide range of

workstations. Networking is integrated into X

Windows, so that a user at a workstation may be

running applications on many machines simultane-

ously, communicating with each in a different

window. X Windows is complex, primarily because

it is a fairly successful attempt to provide a

universal interface to cover the huge range of

video system architectures. It supports opera-

tions on graphics, images, color enhancement,

keyboard input, mouse input and interprocess

communication.

TCP/IP is a communications protocol

standard which runs on several types of network

hardware, and which has been implemented on a

large number of computers. It is sometimes

criticized for limiting bandwidth. However,
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TCP/IP can deliver bandwidth one or two orders

of magnitude greater than what we currently

require for connections co MclDAS workstations.

As new standards emerge at higher bandwidths,

they should be adopted for interactive earth

science systems.

C is a high level programming language

which also provides some of the flexibility of

assembly language. It is the "native" language

of UNIX and X Windows, and has taken the place

of assembly language for our UNIX and X Windows

implementation of McIDAS. FORTRAN has been the

programming language of science, and chore is no

good reason to replace it in our earth science

applications. It is a standard as universal as

UNIX and has been a benefit to the sciences for

many years.

5. STANDARDS FOR THE BENEFIT OF EARTH

SCIENCES

Most InsCltutions in the earth sciences

own a variety of computers running many different

operating systems. However, the size of earth

science problems requires large groups of people

from several institutions to work together. The

variety of Systems is a real barrier co this

collaboration. By adopting standards the earth

science community can help remove this barrier.

We need a uniform application program interface,

so that appllcacions soft'ware can be ported

between systems easily. We also need a uniform

user interface, so thac people can use each

other's systems. The standards of UNIX, X

Windows, TCP/IP, C and FORTRAN provldea start

at _hese uniform interfaces. Of course, _here

are areas of these interfaces which are not

settled and where we must wait for further

standards to emerge. The important thing is a

general movement towards standards in the earth

science community.
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I. INTRODUCTION

We have implemented a version of McIDAS

(Man-computer Interactive Data Access System)

running under UNIX and X Windows, on the Stellar

GS-IO00 Graphics Supercomputer. This system

goes a significant ways toward satisfying the

goals described at this conference two years ago
in "A Next Generation MclDAS Workstation."

The UNIX and X Windows McIDAS includes

keyins, macros, a traditional McIDAS video

interface, areas (image files), LW (long word)

files, MD (meteorological data) files, grids,

3-D grids and on-line help. The source code for

applications is ver 7 compatible wlch other

McIDAS implementations. The UNTX version

extends the usual McIDAS functions to include

dynamic creation and deletion of variable sized

image frames, real-time pan and z0omvithin

images, and allocation of video bits to images

versus graphics on McIDAS startup. It also
includes a new set of cmmaands for interactive

visualization of large gridded model output date

sets, using three-dimensional images. R_muin S

on the Stellar GS-1000 it has the performance to

run large numerical weather models.

This has been a relatively easy McLDAS

implementation because we exploited the existing

tools of UNIX and X Windows as far as possible.

We plan to use TCP/IP for co_munlcations, and

expect that thls will be relatively easY, by

using the existing functions of TCP/IP as much

as possible.

An implementation of McIDAS using these

software standards, and avoiding the use of

assembly language, should be eae 7 Co transport

Co other computer systems, and co connect wlth

other systems. The critical question for

porting to another system is the performance of

the X server on the target system.

2. THE USER'S VIEW

The ccm_-ands and data structures of our

UNIX MclDAS are virtually identicaL with other

MclDAS implementations. The system includes new

commands, but the existing commands have not

changed. Macros and string tables are the same

as on other MclDAS implementations. The video

system (which is implemented in a window) is

sin/let to the traditional McIDAS workstation,

with images overiayed by graphics and cursor,

independently enabled and looped. The video

system is controlled by the same short commands

(for example LB to set loop bounds, DR to set

dwell races, EG to erase graphics, etc.) and

single keystrokes (for example A Co advance a

frame, L co enable and disable looping, g and W

to enable and disable images and graphics, T and

E to report frame and earth cursor positions,
etc.) Thus this McIDAS should feel familiar to

users of other McIDAS implexentations.

The biggest change in our user interface

is the use of multiple windows and the way the

user manages those windows. When the user logs

on to the system iC creates a McIDAS video

window and one or more MclDAS cmmand windows.

The co_and windows accept McIDAS toe.ands and

show text output. The video window accepts

single keystroke controls and shows images and

graphics. The user's text input is routed to

whichever window contains the cursor, according

to the X Windows mechanism for keyboard focus.

The user moves the cursor by moving the mouse.

Thus the mouse is the mechanism for selecting

between single keystroke control of the video

and entering McIDAS commands, and for selecting
between different MclDAS co.and windows. When

the cursor is in the McIDAS video window, the

mouse is also used to control panning and

zooming of the images and graphics.

In applications where it is desireable

to have separate screens for video output and

McIDAS commnd input, the Stellar GS-2000 (which

is totally cou_atible with the GS-1000) has an

option for multiple display screens which would

make a more familiar McIDAS two screen system

possible.

In previous McIDAS implementations, the

image and graphics frames are all of fixed size

and exactly fit into the display screen. In the

X Windows implementation, however, the frames

can be dynamically created (and deleted) with

any reasonable size, and the video window can be

dynamically resized within the screen. The

alignment of frames to the video window can be

moved by panning with the left mouse button

pushed, and the frame masnlficstlon can be

dynamically adjusted between one, two and four

times zoom with the right mouse button. X

Windows provides simple mechanisms for

dynamically moving and resizing all of the
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windows on the screen, for cre_tiug new windows,

_ and for controlling which windows are visible

i when windows overlap. With a little practice auser becomes adept at these controls, and the

way they flt with MclDAS co_mande and single

keystroke video controls.
The user has the option, when MclDAS is

started, to adjust the number of bits per plxel

for images and graphics. On the GS-1000 the

default is eight bits of depth for images and

three blcs for graphics, and any choice whose

sum is no greater than I i is legal. Thus the

GS-1000 McIDAS could be used to display 10-blt

IR data from GOES wlth a one bit graphic.

Because McIDAS commands are entered co a

standard UNIX shell, all of the shell tools are

available to users who want to exploit chem.

This includes the history mechanism for retriev-

ing and modifllns previously entered commands,

shell scripts for writing high level programs

which invoke HclDAS commands, allaeing for

creating short versions of coney used

rounds, and many ocher mechanisms. In situa-

tions where the power of UNIX co, ands may be

dangerous for users, it is possible to disable

all co----nds except MclDAS commands. The X

Windows sofc-_are also provides powerful tools

which users may want to exploit. The user may

scroll back over hundreds or thousands of lines

of output in a Mc_DAS comnand window. Sections

of thls output can be retrieved using the

cursor, and entered into another window, for

example for insertion Into a doclment in a word

processor.

3. MAJOR EXTENSIONS

The UNIX McI/AS includes new functions

to exploit the power of the Stellar GS-1000.
These include interactive four-dimensional

visualization, image processing, numerical

models, and graphical user interface.

The four-dlmenslonal visualization

includes a sac of coI_tnds for man#gins and

displaying large grldded data sets such as are

produced by numerical weather models. The

display shows a three-dimensional scene

containing a box, a topographical map, wind

trajectories and contour surfaces of scalar

variables. The user can interactlvely rotate

and zoom in three dimensions, can control the

cou_InaClon of displayed variables, Can start

and stop cizm animation and single step Cimm

forward and backward, and can change the

leo-level of contour surfaces. On a 64 megabyte

system the user can inceracclvely visualize a

data sac of 20 million grid points. On a 128

megabyte system thls can be up co 50 million

grid points.

Image processing funcClons include the

pan and zoom mentloned earlier. Another

function is being developed for mapping images
onto surfaces in three dimensions with

inceracclve rotation, which could be useful for

radar scan cones or multiple lidar slices. The

power of the GS-1000 and G$-2000 will make it

possible for a large variety of image processing

operations to be defined as ordlrmry MclDAS

commands and co be performed ac interactive

speeds.

Greg Tripoli of the UniverslCy of

Wisconsin Meteorology Department has ported the

RAMS (Regional Atmospheric Hodelling System)
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model to the ca-1000. The model can be run

locally on the workstation and sac better

turnaround than is available on many shared

supercowpuCera. Because the history output is

stored locally on the workstation, it can be

4mmedlately visualized using the interactive

four-dimenslonal tools.

We use graphical widgets co control the

user interaction wlth the four-dlmensional

visualization. These widgets, which are parr of

Stellar's Application Visualization System

(AVS), include push buttons and sliders which

can be made Co appear and disappear dynamically.

We have also developed our own widgecs, such as

one showing a grey wedge and a set of red, green

and blue graphs, which the user can redraw with

the cursor to alter image enhancement tables.

When applied thoughtfully these tools can make

soft-ware _uch easier to use and improve

inceraccivi_7. We plan to use these tools to

create alternate mechanisms for controlling

MclDAS, in addition to the usual MclDAS text

co.Ands.

4. IMPLEMENTATION

L_

The overwhelming majority of thls MclDAS

implementation consists of FORTRAN modules which

are nearly identical with the 05/2 implementa-

tion of McI_AS. The UNIX and X Windows specific

parrs are limited co a few short shell scripts

and two C modules of about 900 llnss each (this

does noC include the interactive four-dimensional

displa 7 comand, which is a major McIDAS

extension). One of the C modules is the source

for the McLDAS process, which creates and

manages the MclDAS video window and frames and

the shared memory region used for co_nmicatlon

with McIDAS co_Mnds. The ocher C module is

linkJd with all McIDAS commands and provides low

level support for retrieving command parameters,

file access, writing images and graphics, and

cona-unlcating via shared memory. The shared

memory sepmnC is used for communicating X

Windows resource ID's, frame sizes, the current

enhancement cables, and the traditional MclDAS

user co--on.

The McIDAS process uses X Windows

resources Co 4_ulaCe the Craditlonal MclDAS

video imcerface. The screen is created as a

pseudo-color Window and frames are created as

Pixmaps. The HcIDAS enhancement cables for

images and graphics are combined into four

different Colormaps, one for each combination of

images and graphics enabled or disabled. The

GS-1000 has 12 bits for pseudo-color, but

because soma of chase are allocated beyond

MclDAS, we use 11 bits for images plus graphics.

We allocate a contiguous interval of pixel
values between 1024 and 3071, to avoid alloca-

clone ac the cop and the bottom of the 12 bit

range. The secclons of code dealing with this

color allocation may need to change if chls

MclDAS is ported Co a different computer.

The independence of images and graphics

is implemented using the XCopyAree call and

u_nlpulacin K the funcclon and plane mask in the

sraphlcs context. Anlmaclon and panning are

t=plemenced by repeated calls to XCopyArea, L..j
chansin 8 the source P_map and the source
coordinates. This works because of the

performance of the X Server on the GS-IO00, and

X Server performance is a crlclcal quesclon for
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porting this HcIDAS to another computer. Zoom

is implemented with a GS-[000 extension to X

Windows, and could only be ported by finding an

equivalent extension.

The McIDAS process uses XNextEvent to

retrieve mouse and keyboard events directed at
the MclDA5 video window. The mouse events are

used to control pan and zoom, and the keyboard

events are interpreted as single keystroke video

controls,

McZDAS co_nands are entered to the C

shell in xterm windows. They invoke shell

scripts which invoke the co_mzand with an

ampersand appended after the arguments, causing

commands to run in the background. Text output

from commands is written to an xterm window.

Text output from the McIDAS process, for example

to report the earth coordinates of the cursor,

are routed to one of the xterm windows.

McIDAS LW files are implemented with the

standard UNIX calls to lseek, read, write and

open. All other MclDAS file structures,

including image areas, are implemented using LW

files. These other file structures ar e imple-

mented in FORTRAN with code that is identical to

the 0S/2 MclDAS.

5. COMMUNICATIONS

The Stellar GS-IO00 supports the TCP/IP

protocol over ethernet, as well as NFS (network

file system). These can be used to transfer

files from another computer, or to provide a
byte stream between applications on different

machines. The OS/2 McIDAS includes applcations

for transfering all the HcIDAS file structures

to and from the McIDAS mainframe. We will port

these OS/2 co_unicatlons programs to our UNIX

implementation and link them with the raw data

transfer via TCP/IP. This will be a simple task

and will provide access to all the data source

of the HcIDAS mainframe. We have no plans to

port the HcIDAS satellite data ingest soft-_are

to the GS-1000.

TCP/IP is supported on almost all

supercomguters, so this will provide an easy way

to get model data into the GS-1000 for inter-

active four-dimensional visualization. The

primary difficulty here is to write an applica-

tion for translating the model output data

format to our McIDAS file structures, a task

which we have done for many different data

SOUrCes.

6. CONCLUSIONS

UNIX and X Windows are the overwhelming

standards for the high performance workstations

which are necessary for very interactive

systems. Our UNIX and X Windows impiementatiou

of HcIDAS runs on the Stellar GS-[O00 Graphics

Supercomputer giving earth scientists highly

interac¢Ive access to their large data sets.

This implementation combines the traditional

power and flexibility of McIDAS with interactive

four-dlmenslonal visualization, interactive

image processing, and supercomputer performance

for running models.

By ex_lolting the existing fumctlons of

L_IX and X Windows, this was an easy implementa-

tion of HclDAS. It is also one that should be

easy to transport to other comguters and to

connect to other systems.
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The VIS-SD System for Easy Interactive Visualization

Bill Hibbard and Dave Santek

Space Science and Engineering Center
University of Wisconsin - Madison

Abstract

The V[S-5D system provides highly
interactive visual access to 5-dimensional

data sets containing up to 50 million data
points. The user has easy and intuitive
control over animated 3-dimensional

depictions of multiple interacting physical
variables. VIS-5D is runs on the Stardent

•ST-IO00 and ST-2000 workstations and is

available as freeware from the Space Science

and Engineering Center.

T.he VIS-5D System
We wrote the VIS-5D software system to

help earth scientists understand their large
and complex data sets. VIS-SD runs on the
Stardent ST-1000 and ST-2000 workstations

and generates animated 3-dimensional
graphics from gridded data sets in real
time. It provides a widget-based user
interface and fast visual response which

allows scientists to interactively explore
their data sets. VIS-5D generates literal
and intuitive depictions of data, has user
controls which are data oriented rather

than graphics oriented, and provides the
WYSIWYG (w hat-you-se¢-is-what-you-get)
response familiar to users of word
processors and spread sheets. The result is

a system which is easy for scientists to use,
so that they can become the producers and
directors of their own animations. VIS-5D

can be applied to any data set in the

MclDAS grid file format and containing
up to 50 million grid points. Data sets
containing hundreds of millions of grid
points can be resampled to this 50 million
point limit for interactive visualization.

We were motivated to write VIS-5D by our
experiences using our 4-D MclDAS system
running on IBM mainframe computers [I].

The 4-D MclDAS system generates 3-
dimensional images in about 30 seconds
each, with another 30 seconds each to load

the images into a workstation for
animation. We used this system to produce

animated visualizations for many earth

scientists. They were constantly wanting
to change the animations and frustrated by
the turnaround time. They found the

video tapes we produced useful for public
presentations and for teaching, but not for
their own insight into their data sets,

which they continued to get from the 2-
dimensional graphics systems which they
could use directly. Thus we wrote the

highly interactive VIS-5D system which
makes 3-dimensional graphics easy for
scientists to use directly [2].

The VIS-SD system is available from the
University of Wisconsin Space Science and

Engineering Center as freeware. In
addition to the visualization software, it

includes tools for managing and analyzing

large griddcd data sets, a skeleton program
for converting external data to the
MclDAS grid file formats, documentation
on how to use the software, and sample
data sets to practice using the software.

Five-dimensional Data Sets
VIS-5D works with data in the form of a

5-dimensional rectangular grid of points.

In a FORTRAN or C program these data
sets could be declared as arrays with five
dimensions. Three of the dimensions are

spatial, one is time, and one is used to

enumerate multiple physical variables.
Thus these data sets sample a spatial
volume at a regular lattice of points,
sample dynamics at multiple steps over a
time interval, and include multiple
interacting physical variables.

Although a 5-dimensional grid may seem
like a specialized format, it is the usual

format for output from atmospheric
simulations. It is also a common output

CH2913-2/901000010028/$01.00 - 1990 IEEE 2I
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format for oceanography and hydrology
simulations, and for some remote sensing
instruments like radars which can scan

quickly enough to produce time varying
volumetric images. The most general
setting for the earth's physical systems is
multiple variables over three spatial
dimensions plus time. Our 5-dimensional

rectangles are just this setting, subject to
discrete and uniform sampling of space
and time. Thus the data format for

VIS-5D is actually widely applicable to
earth science data. For meteorological data

the spatial dimensions are often latitude,
longitude and altitude and the variables

might be temperature, pressure, moisture
and three wind vector components. For

oceanography data the spatial dimensions

are latitude, longitude and depth and the
variables might be temperature, salinity,
density and three ocean current vector
components. For hydrology data the
variables might be proportions for
different rock and soil types, and three
ground water flow vector components.

motion vector fields, and management

functions for listing, copying, merging and
deleting data sets.

What ScientistsNeed

We accumulated considerable experience

producing visualizationswith scientists

using our 4-D McIDAS system. Because 4D

McIDAS requires an hour or more to

produce each new animation sequence, this

experience gave us an understanding of

which types of changes to an animation

sequence earth scientistsreallycare about.
These arc:

A. change the viewpoint in three
dimensions.

B. change the combination of simul-

taneously depicted variables.

C.

The VIS-5D system provides a high degree
of interaction by storing the entire data set
in the main memory of the workstation.
Because of its compressed formats, this can

be up to 50 million grid points. For
example, these 50 million points can be D.

factored as 50 latitudesby 50 longitudes

by 20 altitudesby 100 time steps by 10

different physical variables. VIS-5D

includes functions for managing much
largerdisk based data sets,and for

rcsampling them clown to smaller extents or
to lower resolution in order to fit the size

limit for interactivevisualization. A

factor of 2 reduction in resolution in time

and space yieldsa 16 times reduction in F.
data volume, which would allow a simula-

tion data set of 800 million points to be

reduced to the 50 million point limit.

The VIS-5D system supports a data format
for trajectory paths, which are used to
represent wind, ocean currents,ground
water flow, and other motion fields,and a

global topographical map data set, which is
useful for large scale earth based data sets.
The system includes a program for

calculating trajectoriesfrom gridded

change the depiction of a variable.
For an iso-levclcontour surface this is

a change to the defining value. For
contour lines on a surface this is a

change to the position of the surface

and the density of the contour lines.
For trajectory lines, this is a change to
the density of the lines or placing
trajectories through specific points.

change the time dynamics. This
includes the choice of whether to

enable time stepping, whether to step

forward or backward (useful for

tracing effects back to theircauses),

and how fast to step.

E. change the spatial extents of the
depicted region.

calculatenew variables from existing
variables,including arithmetic,

differentialand integral operators.

G. make objects semi-transparent,

H. avoid depicting different variables

using the same color.

It is worth noting that the types of
controls the scientists care about relate to

data rather than graphics. The value
system of scientists is very different from
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the value system of film and television

producers. Scientists need to clearly
perceive 3-dimensional geometry and time
dynamics, and thus require some minimum
standards of graphics quality. However,
the benefits of advanced photorealistic

techniques are often outweighed by the
negative impact of their computational
difficulty on system response time to user

changes. Of course, many of the controls
scientists care about are also

computationally difficult, and this results

in compromises in the user interface.

The VIS-SD User Interface

The goal of VIS-5D is to provide the
scientist with an easy user interface for
controlling the display, and fast visual
response to changes. The workstation
should feel like a steerable window which

the scientist "flys" through a huge data set,
hunting for interesting information hiding
in the mass of data.

VIS-SD is able to present a simple and
intuitive interface to the scientist because

it deals specifically with the 5-dimensional

rectangles of data produced by environ-
mental simulations, because it generates

very literal data depictions, and because it
concentrates on the data oriented choices
which scientists want.

The figure below shows a scene generated
by VIS-SD which is part of a video
depicting cold fronts moving across the
North Atlantic. The data are taken from a

forecast for February 4, 1988 by the

European Center for Medium-range
Weather Forecasts. The scene shows a

topographical map, a transparent specific
humidity contour surface at 6.38 grams per
kilogram, and pressure contour lines at an
altitude of 0.89 kilometers with a spacing
of 5 millibars. The small clock hand in the

upper left corner of the 3-D window shows
where the scene is within the data set's

time span. The highlighted widget buttons
on the left show that the map, Q (specific

humidity) and P (pressure) are enabled for
display. The slider widgets show the level
of the Q contour surface, the altitude and

Figure 1 (ColorPlate 14, pmge 462)
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spacing of the P contour lines, and the
color (white) and transparency (0.55) of the

Q contour surface.

The three spatial dimensions of the data
set rectangle are depicted with a single
3-dimensional box, and all the graphical

elements depicting the data set are drawn

in this common frame. The 3-D box

contains either a staticdepiction of a

single time step,or an animated depiction

sequencing through the data set'stime

steps. The graphical elements of the

depiction may include a topographical

map, trajectorylines,and iso-levelcontour
surfaces and contour lines for the data

s¢t'sphysical variables,alldrawn in the

common geometry of the 3-D box. The

user can rotate,zoom and pan the 3-D box,

control the time stepping, and

independently enable or disable the

depicted graphical elements. This provides

a very literalrepresentation of the 5-

dimensional rectangle;the spatial

dimensions are mapped into the 3-D box,
the time dimension can be animated, and

the physical variables can be viewed in

arbitrary combinations.

The intuitivefeel of the user interfaceis

further enhanced by the fast response of
VIS-SD to user controls. The 3-D box

rotates,the time steps,and the depictions

of variables appear and disappear, all
within a fraction of a second of the

appropriate mouse movement or button

click. This immediate visual feedback is a

criticalelement of a word processor'sor

spread sheet'suser interface,and itiseven
more crucial for scientificvisualization

systems.

The McIDAS grid fileformat includes

information specifying the time and

location of each grid point,and the names

of the physical variables in the data set.

VIS-5D uses thisinformation to generate a

set of graphical widgets appropriate to the
data set,and to automate the management

of the components of the data set. For

example, VIS-5D creates widgets for each

physical variable,labelled with the names

taken from the grid file,which are used to

independently enable and disable graphical

depictions of the variables. It also creates
sliders for each variable used to change the
values of their iso-level contour surfaces,

and to change the altitude and density of
their contour lines. A change to a slider

value is applied to the appropriate variable
for all the data set's time steps.

Changes to defining levelsof contour

surfaces and contour lines require a

compromise in the user interface,because

of the computational difficulty in

computing new polygons and vectors for

their graphical depictions. Ideally,the

graphics would change as the user moved
the slider,and VIS-SD does achieve this

for changing altitude of contour lineson
some data sets. However, new contour

surfaces and complex contour line sets may

require a couple of seconds for

computation. When time dynamics arc

static,the new surface replaces the old
surface as soon as itis computed. When

time dynamics are animating, the new

surfaces appear asynchronously with the

animation sequence, gradually replacing

the surfaces for all the data set'stime

steps.

VIS-SD provides pop up slider widgets
which allow the user to change the color of
contour surfaces and lines and the

transparency of surfaces. When a data set
includes ten different variables, each
depicted by both surfaces and lines, it is

hard to avoid multiple graphical elements
with similar colors. With the color widgets

the scientist can adjust the colors as
variables are viewed in different

combinations. The widget buttons used to
enable graphical elements for display are

highlighted with the color of the
corresponding surface or lines, to help the
scientist identify which graphics depict
which variables.

We have avoided other graphical choices in
our user interface. For example, there is a

single light source which is always placec_
pointing along the view axis (actually
there is a second light source pointing the
other direction on the same axis to
accommodate either sign of surface
normals). The surfaces are drawn

v

v

V !
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according to a Gouraud shading model

with fixed properties. In our experience

these choices arc lessinterestingto

scientistsand they tend to clutterup the

user interface. Interactiverotation isa

very powerful way to understand 3-D

geometry, and these other controls offer
only marginal improvement. Surface

properties like specular highlights may

actually be counterproductive by slowing

the response time to interactiverotation.

Surface property techniques liketexture

mapping can be useful when they arc used

to add data content to the display,

although we have not yet included texture

mapping into the VIS-5D system.

The Structure of VIS-SD

In order to maximize the size of the data
set for visualization, VIS-5D uses a

compressed format for the raw gridded

data and the large polygon and vector lists
used to represent contour surfaces and
lines. The natural format of these data is

4 byte floating point, but they can be
quickly compressed by a linear mapping
into 1 or 2 byte integers, depending on the
needed resolution. This compression allows

a data set of 50 million grid points plus its
associated polygon and vector lists to fit in
128MB of workstation memory.

The principal data structures of the VIS-
5D visualization program include:

A. a 5-dimensional array of bytes, •

containing a compressed version of the
raw griddcd data. This array is
organized into a series of 3-D spatial
arrays indexed by time-step and
variable. Each variable has a separate

linear mapping for compression from
its range of values to 1 byte integers.

Bo a linear array which isdynamically

allocated for the polygon and vector

listsused to represent contour surfaces

and contour lines. There isa polygon
list and a vector list for each

combination of time-step and variable
(some lists may be empty), and an
index by time-step and variable into
the linear array. Vertex components

are compressed by a linear mapping

from the box extents to 2 byte

integers, and normal components are
compressed by a linear mapping from

the interval (-I.0, 1.0) to 1 byte
integers.

C. vector lists for trajectory lines. Each
trajectory is stored as a single poly-

vector with an index by time-step into

the poly-vector.

D. a polygon mesh for the topographical
map and vector lists for the map
boundary lines.

E. a queue containing time-step and
variable indices identifying 3-D grids

for which contour surface polygon
lists or contour line vector lists need

to be computed.

Fo arrays of values of iso-levelcontour
surfaces and altitudesand densitiesof

contour lines,indexed by variable.

Go colors and transparencies for contour

surfaces and colors for contour lines,

indexed by variable.

Ho state information for the display,

including the current time-step,
whether animation is enabled, whether
the mat) is enabled, whether the

trajectories are enabled, and the
transformation matrix for the 3-D to

2-D projection. This state information
also includes arrays indicating
whether contour surfaces and contour

lines arc enabled, indexed by variable.

ordered lists of variables recording
which contour surfaces and lines have

been most recently enabled for
display.

J. intermediate structures used for

computing contour surfaces and

contour lines from 3-D grids.

VIS-5D runs under Stellix (UNIX System V
with Berkeley extensions) and X Windows

Version 11 Release 3. The tot) level pseudo-
code for the visualization 0rogram is:
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read the data set into the compressed 5-D byte array
create the linear array for polygon and vector lists

initialize the polygon and vector lists to empty
initialize the contour surface and line queue to empty
if the user specified a trajectory data set

read the trajectory file
build the trajectory vector lists and time-step indices

end if

if the user specified a map
read the topography and map outline files

resample these map data to a reasonable resolution

build the map polygon mesh and vector lists

end if
set defaults for colors of contour surfaces and lines

set defaults for iso-levelsof contour surfaces

set defaults for altitudesand densitiesof contour lines

create a window for the 3-D display

create widgets according to data setcontents

initializethe display to the firsttime-step with no graphics

enabled and nominal 3-D to 2-D projection

fork into 4 parallelthreads
thread I

do forever

clear the display
render a rectangular box

render the map if enabled
render the trajectoriesif enabled
for each variable

if the contour lines are enabled

decompress the line vector listfor the current time-step

render vector listaccording to color for the variable

end if

end for

for each variable (in order of decreasing opacity)

if the contour surface isenabled

decompress the surface polygon listfor the current time-step

render polygon listaccording to color and transparency
for the variable

end if
end for

check for X events and widget callbacks

adjust the projection matrix according to mouse moves

toggle map enable/disable if requested

toggle trajectory enable/disable if requested

toggle contour surface and lineenable/disables if requested and re-order listsof

variables recording which have been most recently displayed

toggle time animation enable/disable if requested
if time animation isdisabled

increment, decrement or resettime-step if requested

end if

change colors and transparencies if requested

change contour surface levelsif requested

change contour linealtitudesand densitiesif requested

v _
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if a contour surface or line recomput= is requested
for each time-step

if time animation is disabled and time-step=current
add the selected variable and time-step to the head of the queue

else

add the selected variable and time-step to the tail of the queue
end if

end for

end if

exit visualization program if selected
end check for X events and widget callbacks
if time animation is enabled

incremeht the time-step
end if

end do forever
end thread

threads 2, 3 and 4 (they are identical)
do forever

if the queue contains any contour line requests
remove the firstrequest for contour lines

decompress the 3-D grid for time-stepand variable

compute contour linesat altitude and density for variable

compress vector listfor lines

deallocate previous vector list for time-step and variable

if there is not adequate free space in the linear array
delete the least recently used vector and polygon lists

until there is adequate space
end if

allocate space in linear array and insert vector list
add index to vector list for time-step and variable

else if the queue contains any contour surface requests

remove the firstsurface request

decompress the 3-D grid for time-step and variable

compute contour surface at iso-lcvelvalue for variable

compress polygon listfor surface
deallocate previous polygon listfor time-step and variable

if there is not adequate free space in the lineararray

delete the leastrecently used vector and polygon lists

until there is adequate space
end if

allocate space in lineararray and insertpolygon list
add index to surface listfor time-stepand variable

end if

end do forever

end thread
end fork

The ST-1000 and ST-2000 execute four

instruction streams in parallel,so VIS-SD

forks into four threads to take advantage

of this parallelism. The X server isalso a

heavy computing load while VIS-SD is

running and increases parallelism. Because

fast response is important to VIS-SD, data

should be accessed from main memory

rather than disk..VIS-SD allocatesa single

large array from which to allocatepolygon
and vector listsin order to control the

totaluse of main memory. This way itcan
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avoid paging delays which would occur if

allocated memory became significantly

larger than physical memory.

The parallel threads implement critical
sections where simultaneous access to
common data structures could cause

interference. This true for insertion and

deletion in the queues, the allocation and

deallocation of space in the linear array,

and reading and updating the polygon and
vector lists and their associated index.

VIS,-SD uses Stardent's XFDI library of 3-D
extensions to X for rendering, using a Z-
buffer and RGB true color. We also use a

modified version of Stardent's LUI widget
library, which is part of their Application
Visualization System (AVS).

Future Developments
We have received numerous suggestions for
additional functions for VIS-5D from

scientists, as well as shortcomings which
we recognize. Some of these are:

A. include contour lines drawn on

vertical planes which can be
arbitrarily positioned. This is

currently being developed.

I. dynamically calculate trajectories
through space-time points specified

with a 3-D cursor. This is currently
being developed.

C. represent planes through 3-D grids

with pseudocolored images in addition

to the current contour lines.This

would be useful for radar data which

are lesssmooth than model data.

D. texture map satellite images onto
surfaces in the 3-D box.

E. render 3-D grids as transparent fogs,
often referred to as volume images.

This may be difficult to do with fast
enough response for interactive
rotation.

F. provide interactive analysis operations

on the 5-D grid of data, including

arithmetic, differential and integral

operations. This is an open-ended
area of development, often dependent
on the particular source of the data

set.

G. increase the size of the data sets

which can be interactively visualized.

This applies to the total 5-D rectangle
and the number of grid points in the

spatial 3-D box. Assuming the current
level of interactivity, this depends on
faster workstations, larger memories,
and disks fast enough to support
interactive access.

VIS-5D is aimed at 5-D data sets similar to

those produced by weather models. We ar,"
also interested in developing systems for
interactively visualizing and analyzing

large image data sets. The same
workstation technology which makes VIS-
5D possible can also be exploited for
radical new ways of processing image data,
although the overall structure of such an
application may be quite different from
VIS-5D.
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Appendix C

IGU3D -- 3-D Grid file utility

IGU3D LIST bgridf egridf <keywords>

IGU3D PRINT bgridf egridf <keywords>

IGU3D SET (gridf)

IGU3D COPY sgridf dgridf (RENUMBER)

IGU3D MAKE gridf maxsiz ("comment)

IGU3D DEL gridf-I gridf-2

IGU3D DIR gridf date project "comment
Parameters:

gridf I grid file number

_gridf I beginning grid file number

egridf I ending grid file number

sgridf I source grid file number

dgridf I destination grid file number

date .I creation date of file

project ] project number

maxsiz I maximum size for a 3-d grid (nr*nc*nl)

"comment I comment appended to grid file directory

Keywords:

PROJ- list grid files with project number(s)

DAY- list grid files with this date, YYDDD

IGG3D -- 3-D Grid utility

IGG3D LISt gridbeg gridend <keyword>

IGG3D INFo gridbeg gridend <keyword>

IGG3D DELete gridbeg gridend <keyword>

IGG3D GET sgridfile gridbeg gridend dgridfile gridbeg

IGG3D MAKe gridl oper <grid2> <keyword>

IGG3D COPy gridl grid2

IGG3D INTerp grid day time SETDEL=gstep ngrids LAG=uspd vspd

• IGG3D RH Q-grid T-grid P-grid (RH calculation)

IGG3D THE T-grid P-grid <offset> (Theta calculation)

IGG3D LAG grid rday rtime uspd vspd (Lagrangian coords)

IGG3D ADD gridl grid2 ... grid6 <NAME-> (combine up to 6 grids)

Parameters:

gridbeg [ beginning grid number

gridend I ending grid number

sgridfile I source grid file number

dgridfile I destination grid file number

oper I option applied to grid, SPD, SUB, SUBL, EXT

SPD - wind speed from u & v

SUB subtract grids

SUBL- subtract logarithmically

EXT level# - extract a level and file as 2-D grid

FIL value levi lev2 fill selected levels of 3-D

with value. (if value-MISS, for missing value)
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Keywords:

GR3DF- 3-D gridfile (default-from IGU3D SET)

GRIDF- gridfile (default-from IGU SET)

V- input v-grid if it does not follow u-grid (def=ugrid+l)

NAME- parameter name to assign to result of ADD option

TOPO3D -- Draws 3-D topographical maps

TOPO3D area ir (keywords)
Parameters:

area I number of area in which to draw topography

also creates depth map in area+l

Ir I I for left eye view (default), -i for right eye view

Keywords:

SPEC-OCEAn (flat ocean )

-LAND (flat land)

-ZERO (black area)

-BLACk (no bottom)

LAT-slat nlat latitude extents (default_20.O 50.0)

LON-elon wlon longitude extents (default-60.O 125.0)

HGT-bhgt thgt height extents in km (default=0.O 12.0)

.MAP- name of map file (NONE for none, default-OUTLUSAM)

MESH-

VROT-

HROT-

DEPTH-

DIM- dim

TRAJ-

GR3D-

GR3DF-

GRID-

number of mesh points (default-5000)

vertical rotation angle (default=O.O)

horizontal rotation angle (default=O.0)

view depth (default-l.O)

dimming factor (default-0.8)
TRAJECTORY TO DETERMINE LIMITS OF BOX

3-D GRID TO DETERMINE LIMITS OF BOX

3-D GRIDFILE FOR GRID- (DEF- IGU3D SET)

2-D grid of topography values

=:

DRAW3D -- 3-D Rendering program

DRAW3D area Ir marea (Keywords)
Parameters"

area I number of area in which to render

ir I i for left eye view (default), -i for right eye view

marea I area of topography map (also uses marea+l)

Keywords:

GRID- 3-d grid number (def-l)

LEV - contour level (no default)

TRAMS- opacity (0-I def-.5)

MONO- nearfact farfact taper. For depth cue (def, use -0)

DIAM- diameter of trajectories (def-7.0)

GR3DF- 3-D_file Grid file for 3-D grid (def-IGU3D SET)

DENSE- 3-d_grid_= (<0 to in_:ert) edge_flag t (def=l 0 0.8)

GSFC- grid int lev hgt (def- 0 4 220 O)

WIRE- grid value lev skip (def-O 0 245 i)

TEXT- file lev size (def-X 225 I0)

TRAJ- traj= yyddd hour (def for day & time from 3-d grid)

LEN- length scaling factor for trajectories (def-l.O)

COLOR- carea blue gsfc wire text for 12-bit color
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Remarks: The hgt - parameter in GSFCshould be set to a
positive number to use a height grid and should be set
to negative number to use a constant height & 0 for
surface

TRAJ4D-- Analyze 3-D grids for trajectories
TRAJ4Ditraj igrid nsets KEYWORD-...
Parameters:

itraj I index of trajectory analysis to make
igrid I index of 3-D grid with first data set
nsets I numberof data sets to analyze

Keywords:
SETDEL-set_spacing sets_per_file (def-3 I00)
GR3DF-3-D Grid file number (def-IGU3D SET)
DSP- spacing center_lat center_Ion (def-4.0 -I00.0 -I00.0)
NOTOPO-non-zero to turn below topo check off (def=0)
STEP-# of steps across box (def-lO0.0)

LISTTJ -- Lists 4-D grid trajectory analyses

LISTTJ low high
LISTTJ DUMPindex lowtraj hitraj npoints
LISTTJ COMBindexl index2 outdex
LISTTJ STATindex newval lowtraj hitraj
LiSTTJ BASEindex zbase
LISTTJ CElL index zceil
LISTTJ COPYindex outdex
LISTTJ APNDindex traj x y z tdel

RGB3D-- Load color table for 3-D images

RGB3DBLUEGSFCWIRETEXT (DEF-2055 61 56)
RGB3D-i iarea
Keywords:

SIX- I (low frame) or -I (high frame)

GG3D°- 3-D Grid resample

GG3DAVEgrid
GG3DSAMgrid
GG3DMAXgrid

Parameters:
grid I source grid number

Keywords:
LAT- lats latn Latitude extents (def from source grid)
LON- lone lonw Longitude extents (def from source grid)
SIZE- nr nc nl Grid size for Lat, Lon & Vert
HGT- HGTBHGTT Height extents (def from source grid)
GR3DF- 3-D gridfile (default-from IGU3DSET)
GLEV-grid level for adjustment
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RG3D- Generate 3D grid from gridded data (DAS)

RG3D yyddd hour parm <Keywords>

yyddd hour - Day/time of data (def- 0Z today)

parm - parameter to regrid

Keywords:
LAT- lats latn

LON- lone lonw

SIZE- nr nc nl

HGT- hgtb hgtt
LEV- levt levb

Latitude extents (def-20.O 50.0)

Longitude extents (def-60.O 125.0)

Grid size (def-30 30 i0)

Height extents (def-O.O 15.0 km)
Pressure level extents (def-lO0.0 I000.0)

GR3DF- 3-D gridfile "Grid file (def-IGU3D SET)

GRIDF- gridfile Grid file (def-IGU SET)

GRID- num Number to file 3-D grid (def-next)

RANGE- beg end Range of grids to search (def=l 159)

VT- valid-time Valid time for grid (def- not used)

GRID3D Produces a 3-D grid from RAOB data

GRID3D yyddd hour parml <parm2...> <Keywords>

yyddd hour - Day/time of RAOB data to grid (def- 0Z today)

parml <parm2..> - P, T, TD, SPD, THA, THAE, MIX, Z, U, V, W def-P

Keywords:

LAT- lats latn

LON- lone lonw

SIZE- nr nc nl

HGT- HGTB HGTT

LEV- levi levb

MD- mdmand mdsig
GRID- num

GR3DF- 3-D file

CUT- SD cutoff

Latitude extents (def-20.O 50.0)

Longitude extents (def-60.0 125.0)

Grid size (def-20 20 I0)

Height extents (def-O.O 12.0)

Pressure level extents (def-100.0 i000.0)

MD file numbers (def-current)

Number to file 3-D grid

Grid file for 3-D grid (def-IGU3D SET)

SD to throw out data (def-4)

CLD3D -- Make 3-D cloud images

CLD3D irarea varea darea marea ir (keywords)

Parameters:

irarea I IR source area number

varea I visible source area

darea I destination area (also darea+l for debug)

marea I area of topography map (also uses marea+l)

ir I choose eye for view, +I for left, -I for right (def-l)

Keywords:
LAT- lats latn latitude extents (def-30.0 40.0)

LON- lone lonw longitude extents (def-80.0 90.0)

HGT- hgtb hgtt height extents in meters (def-O.0 24.0)

VROT- vertical rotation angle (def-0.0)

HROT- horizontal rotation angle (def-O.0)

DEPTH- view depth (def-l.O)

MDF- MD file for surface temp (SVCA) (def-current)
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v Keywords for pattern recognition and rendering:

CUT- rat ivcut zcut (def-10.0 I00 3.0) ratio, vis pix, height

SHADE- vamb (def-0.25) visible fraction

STAT-wvar wtot ismth iwide (d-3.0 1.5 15 15) statistical params

Draws 3-D Lidar images

LID3D sarea darea Ir trans (keywords)

Parameters:

sarea [ number of first area containing lidar image

darea I number of area in which to draw 3°d radar image

ir I i for left eye view, -i for right eye view (def=l)

trans ] l-opaque, 2-constant trans, 3-variable trans defffil)

Keywords:

VROT- vertical rotation angle (default=0.0)

HROTffi horizontal rotation angle (default=0.0)

DEPTH= view depth (default-l.0)

CUT- invisible pixel cutoff (default-20)




