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Final Technical Report

This contract, NAS5-30752, was to support my participation on the EOS -
LAWS (Earth Observing System - Laser Atmospheric Wind Sounder) Science
Team. The principal work prepared under this contract was to prepare for,
attend, and contribute to nine LAWS Science Team meetings where I provided
input on the design and operations plan for the LAWS instrument. In addition to
the Science Team participation, this contract supported studies of digital signal
processing techniques of revelance to LAWS. Results of these studies are
described in the two attached appendices. The contract work ended with the
de-selection by NASA of the LAWS instrument.



Appendix 1

From Technical Digest on Coherent Laser Radar: Technology and Applications,
1991 (Optical Society of America, Washington, D.C., 1991, Vol. 12, pp. 216 - 218.
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High Performance Velocity Estimators for
Coherent Laser Radars

John R. Anderson
Space Science and Engineering Center
University of Wisconsin-Madison

The use of high performance Doppler velocity estimators to enhance the
performance of laser radars has taken on an added importance in the context of space
based wind measurement systems such as the Laser Atmospheric Wind Sounder
(LAWS) instrument. The LAWS mission is designed to make wind measurements
throughout the troposphere using scattering from atmospheric aerosols at CO3 laser
wavelengths. The need to make velocity estimates in very clean upper tropospheric
conditions coupled with the strict limits imposed on the system power and aperture
by the orbital platform require that usable velocity measurements be made at the
lowest possible signal-to-noise ratios.

The topic of interest here is the problem of estimating the mean frequency of a
relatively narrow-band signal hidden by a white noise interference process. This is a
problem which has been of significant interest in both the laser and microwave radar
communities and has been discussed in some detail by Zrnic'(1979) who analyzed
the performance of the traditional estimators for signals of this class.

Zrnic' has also calculated an asymptotic form for the Cramer-Rao (C-R) error
bound, the performance of a Maximum Likelihood(ML) velocity estimator. This
work is interesting due to the fact that the reported bound significantly outperforms
traditional estimators in many cases. In the case of the LAWS instrument, the C-R
bound would indicate that performance increases of up to 13 dB over the
conventional pulse-pair velocity estimators are possible. There are two caveats to
this apparently optimistic result. The first is that the analysis of the C-R bound is
asymptotic and is only valid for realizations consisting of a large number of samples
of the time series. The second relates to the unfortunate fact that a knowledge of the
bound implies that an estimator of the specified performance is possible, it does not
guarantee that it will ever be found.

Much of the recent work in velocity estimators has focused on techniques
which find the peak value of some sort of a spectral estimator. For example
Klostermeyer (1989) has examined the performance of an algorithm which finds the
peak of the Burg maximum entropy spectral estimate. He has reported results
approaching the Zrnic' C-R bound for some of the points in his parameter space. In
an attempt to further explore this approach we have constructed algorithms based on
this peak finding methodology for a number of different spectral estimation
techniques.

The most promising of these operates by finding the spectral peak of the so
called "Maximum Likelihood Spectral Estimate" (MLSE) first described by Capon
(1969). A good description of the MLSE technique for spectral estimation and it's
relationship to optimal filtering theory is given in Kay and Marple (1981). Although
the Capon MLSE estimator is not a true ML estimate of the spectrum of a process, it
has several properties to recommend it for our purposes. In particular it produces
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the best ( in the ML sense) velocity estimates of any algorithm which we have tested,
and it is very robust, showing only a weak sensitivity to tuning parameters. Another
encouraging aspect of the Capon estimator is that is reduces to the ML velocity
estimator for the only case where the ML estimator has a known closed form,
namely the frequency of a pure sinusoid in noise.

A key element of the Capon estimator involves the inversion of the process
autocorrelation matrix which must in itself be estimated. The results presented here
are based on performing a forward /backward least squares fit to an AutoRegressive
(AR) process model using the Marple technique. The covariance matrix is then
taken to be the covariance matrix of the AR model. Other techniques for the
estimation of the matrix can be used but care must be taken to ensure that the matrix
has positive definite eigenvalues.

We have evaluated the performance of the Capon estimator by making a
Monte Carlo simulation of the estimator using a synthetically generated Gaussian
signal in white noise. The results presented here are for a typical LAWS parameter
choice with 72 samples of a process having a 1 m/s intrinsic spectral width (s) on a
125 m/s Nyquist interval. A plot of the error probability distribution for the Capon
and traditional pulse pair estimators at a signal to noise ratio of -13 dB is given in
Figure 1.

As you can see the error character of the Capon estimator is unusual in that it .
produces a central core of "good" estimates which rises out of a background of
essentially random choices for the velocity. This type of behavior has important
implications for subsequent processing stages and also poses some difficulty in terms
of the choice of an estimator "figure of merit". The standard deviation of the
estimate is quite high and is entirely determined by the large error tails. One useful
measure of estimator performance is the fraction of the estimates which are in this
central core. In Figure 2 we have plotted the fraction of estimates which are within 1
m/s of the correct value for the Capon estimator. We have also included the pulse-
pair estimator performance and the C-R lower bound from Zmic'(1979).

The performance presented in Figure 2 is in fact a substantial improvement on
the pulse-pair performance, however it is still about 5 dB short of the C-R bound
and an important question is whether any of that potential 5 dB improvement can
still be realized.

We have not been able to find a closed form solution to the full ML estimation
problem however we have found a way to express this problem as a non-linear
optimization problem which can be solved numerically, albeit at enormous
computational expense. We have performed this calculation for a few choices of the
system parameters and believe that the Zmic' C-R bound is in fact overoptimistic for
typical parameters and that the potential improvement over the Capon estimator
errors is only about 1.5 dB . Since the Zrnic' bond is an asymptotic result it is also
possible to test the relative performance of the Capon estimator at that asymptotic
limit. We have performed this calculation and can confirm that the Capon
estimator does come within 1.5 - 2 dB of the C-R bound for large sample lengths
however the sample lengths required to reach this convergence are extremely long,
on the order of 2000 samples.
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In conclusion we believe that high performance techniques can indeed play an
important role in improving lidar velocity measurements. The estimators such as
the one described here and others such as the "poly-pulse-pair" method can
substantially improve on the pulse-pair technique. These improvements are likely
to be on the order of 8-10 dB for typical laser radar parameters, not the 13 dB that one
might have expected from earlier estimates based on the Cramer-Rao bound.
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An Initial Study of the Use of High
Performance Signal Processing Algorithms

for the LAWS Instrument

John R. Anderson
Space Science and Engineering Center
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Summary

In this study | have attempted to assess the potential improvement in low
signal to noise ratio LAWS wind sounding performance that can be achieved
through the use of high performance velocity estimation techniques. Although
an optimum algorithm for the LAWS velocity estimation problem is not known |
have investigated a number of potential estimators based on three basic
approaches. The first kind of estimator is a multiple filter bank scheme based
on the optimum estimator for the detection of a sinusoid in noise, which is
known. The second set of estimators is based on AutoRegressive (AR) spectral
estimation techniques that have been claimed to have near optimum
performance in some of the literature. The third class of estimators appears to
be new to the problem of velocity estimation and is based on the Capon
spectral estimation procedure which is sometimes referred to as Maximum
Likelihood(ML) spectral estimation.

Each of the estimators were evaluated in terms of the signal to noise
ratios required to achieve a velocity error of less than 1 m/s with a probability of
50% and 75% for nominal LAWS parameters. All of the estimators performed
significantly better than the Pulse Pair(PP) autocorrelation based estimator at
low and moderate signal to noise ratios. The best performance was achieved
by one of the Capon based estimators and exhibited a performance
improvement of 6.6 dB over the PP estimate for 50% probability of less than 1
m/s error, and required 8.4 dB less signal than the PP estimator to achieve a
75% probability.

An important question for the design of the LAWS system is whether this
performance is in fact the best that can be achieved or if there is some as yet
unknown algorithm waiting to be discovered which is significantly better. Zmic'
has derived an information theory based Cramer - Rao bound which in principle
defines the performance of the optimum (true maximum likelihood) estimator.
His derivation of the bound is valid only for long data samples and indicates that
it would seem to be possible to improve on the performance of the Capon



estimator by another 5dB. | have performed some numerical calculations with
long data samples which indicate that the use of this asymptotic bound may be
somewhat overoptimistic for the LAWS parameter range and the actual
potential performance improvement is probably only about 2.5 dB. About 1dB of
the 2.5 dB difference between the two bound estimates is known to result form
data end effects which can be recovered in LAWS processing by using
overlapping data blocks.

In summary it seems that we are now in possession of a velocity
estimator whose performance is within about 2.5 dB of the best possible for the
LAWS parameter range. Future work should confirm this conclusion by
extending the Zrnic' analysis to a finite length time series. In addition it must be
understood that in the low S/N regime the nature of the estimation error of these
algorithms is far from Gaussian and some serious thought needs to be given to
the combination of multiple estimates into the level-2a wind products since any
kind of simple averaging will yield substantially suboptimal performance.
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A critical issue in the design of the LAWS instrument is the ability of the
sensor to make wind soundings in clean upper troposphere and lower
stratosphere regions. Due to the large costs of increasing either the laser
power or the telescope size it is important to ensure that the signal processing
algorithms used in the velocity estimation process work as well as possible in
these marginal signal to noise regions which are expected to occur frequently
during the instrument operation. The purpose of this study is to make a
preliminary assessment of the role high performance signal processing
algorithms can play in enhancing the LAWS performance. No analytical
expressions for the variance of the candidate algorithms are known so | will be
performing a series of Monte Carlo simulations to evaluate the performance of
the estimators.

Before beginning to perform the evaluations we must first decide what
performance criteria are appropriate to characterize estimator performance.
Traditionally estimators have been evaluated by considering the variance of the
estimator error. For situations with large numbers of samples and high signal to
noise where the estimator statistics are normal this has proven to be an
acceptable statistic however for our case where the time series are rather shorn
and signal to noise ratios(SNR) are not high it is very difficult to get a stable
estimate of the error variance. In this study | have chosen instead to rate the
estimators in terms of the fraction of the estimates which can be considered
"good", that is they lie within some error tolerance of the actual mean velocity of
the process which generated the time series. | have arbitrarily chosen to
defines estimates which lie within 1 m/s of the true mean velocity as "good”
however as long as this number is a small fraction of the Nyquist interval the
comparative results are not a strong function of this particular choice. It should
be noted that this criteria is quite similar to evaluating the error probability
density function of the estimator at zero error.

The estimator which maximizes the error probability distribution at zero
error is referred to as the Maximum Likelihood (ML) estimator. Although an ML
algorithm is not known for signal models applicable to LAWS there are a
number of useful results which arise from information theory concerning ML



estimators. The most important of these is the existence of an achievable
bound, known as the Cramer - Rao bound which defines the performance of the
ML estimator even when no explicit form of the estimator is known.

The problem of velocity estimation from a coherent Doppler radar has
been examined in some detail by Dusan Zrnic' in a paper which appeared in
IEEE transactions on Geoscience Electronics (GE-17, October 1979). In this
paper Zrnic' presents two important results: the first is an analytic expression for
the error of the Pulse Pair (PP) autocovariance velocity estimator (his eq 4.14)
which frequently appears in the LAWS literature. The second is an expression
for the Cramer - Rao bound for the problem of a random Gaussian signal in
white noise (his eq A.29). It should be noted that both expressions are
asymptotic approximations with respect to the number of samples and are
strictly valid only for a "large” number of samples. For the case of the PP
estimator we can easily evaluate the accuracy of the approximation using
Monte Carlo simulations, the evaluation of the accuracy of the C-R bound is
more problematic and will be considered in the final section.

Th ign of the Mon rl imulation

In order to perform a Monte Carlo study we will have to chose a synthetic
signal model. The one which | have chosen consists of starting with two time
series of Gaussian white noise. One of the series is then filtered using a long
(100 point) Gaussian impulse response Finite Impulse Response(FIR) filter
which is constructed to have the appropriate spectral width and a randomly
selected mean velocity, uniformly distributed across the Nyquist interval. The
filtered series, which represents the Doppler signal, is then scaled to the
appropriate mean Signal to Noise Ratio and added to the white noise
sequence. To produce the resuits presented in this report this process is
repeated 250 times for each of a number of SNR values and the fraction of good
estimates at each SNR is tabulated. A diagram showing the general processing
geometry appears in Figure 1. All simulations have been performed on the
baseline LAWS configuration described in the memo from Emmitt which
assumes a 9.11 micron laser wavelength, a +25 m/s Nyquist processing
interval, 1 km slant range resolution consisting of 72 time series samples, and a
1 m/s intrinsic signal spectrum width due to wind shear and turbulence effects.



In order to present the theoretical estimator performances from Zrnic'
which are derived in terms of error variances in our "good estimate fraction"
form we will assume that the theoretical estimates are representative of a
Gaussian error distribution so that the probability of a good estimate is given by
the error function, erf(Af), of the 1 m/s threshold normalized by the theoretical
estimator standard deviation.

In Figure 2 the results of a Monte Carlo simulation of the PP estimator are
shown on a plot that also includes the theoretical PP estimator performance and
the C-R bound as presented by Zrnic’. The general agreement between the PP
estimator performance and the theoretical curve is quite good. At high SNR the
theoretical curve tends to be somewhat optimistic, a property noted by Zrnic'
while at very low signal to noise the PP estimator outperforms expectations due
to the fact that in the finite 50 m/s Nyquist interval there is a probability of 0.04 of
getting a "good" estimate with no information whatsoever.

One can also see form Figure 2 that there is substantial room for
improvement between the performance of the PP algorithm and the C-R bound.
In fact if the C-R bound in this form is applicable to these parameters a
performance improvement over the PP estimator of 11.3 dB for 50% probability
of a good estimate and 13.6 dB for a 75% probability should be possible.

ndi timator Performan

The first estimator which we will consider is one that is based on the
known ML estimator for a signal model consisting of a sinusoid in white noise.
The ML estimator for this case consists of a filter bank of an infinite number of
the narrowest possible Doppler filters which is applied to the time series. The
frequency corresponding to the filter with the largest output amplitude provides
a ML estimate of the sinusoid frequency. The estimator described here which |
will refer to as a Block Filter Bank (BFB) estimator is based on the observation
that over a short enough time interval the signal from our signal model appears
very much like a sinusoid. The estimator then consists of dividing the time
series into a number of blocks, in this case 12 points long, and computing a
bank of 256 filters for each block using a zero padded FFT and then averaging



the output powers for each block. The BFB estimate is defined as the center
frequency of the filter with the peak average amplitude. This estimator bears an
obvious relationship to the Welsh averaged periodogram spectral estimator.

The performance of the BFB estimator is presented in Figure 3. Note that
in spite of the simplicity of this estimator, for a large range of signal to noise
ratios it significantly outperforms the PP estimator. There are many ways to
refine this particular sort of estimator and | have tried a number of them of which
none provide more than about 1 dB of further improvement in spite of a
significant increase in processing cost. It should also be noted that the
computation requirements of the BFB estimator are by no means small, they are
in fact larger than the higher performance estimators which follow.

The second family of estimators which | will consider is based on
AutoRegressive(AR) spectral estimation strategies. These estimators,
sometimes called maximum entropy, are known for producing high spectral
resolution representations of narrow band processes. A good discussion of
various spectral estimators including the AR and Capon techniques appears in
the 1981 article by Kay and Marple (Proc. of the IEEE, Vol 69. no. 11). The use
of an AR based velocity estimator has been recently advocated by Klostermeyer
(Radio Science, Vol 24, no. 1, 1989) where he explores the use of an AR based
spectral peak velocity estimator for VHF wind profiling radars. In this paper he
reports performance near the C-R bound for a limited range of signal to noise
values.

One problem with using AR estimators is related to the difficulty of
choosing the correct order for the AR process model which one is going to fit to
the data. This is illustrated in Figure 4 where | present the results for an AR
estimator using a Least Squares prediction filter form(see Kay and Marple) with
a fixed order of 10 which is near optimal for low s/n cases. As one can see this
estimator provides a substantial improvement over the PP estimates at low SNR
but disappointing results at higher SNR. As explained by Klostermeyer this
degradation of performance is due to the tendency of the AR estimator to split
the signal into several peaks none of which is aligned with the true signal center
frequency. This problem can be controlled by limiting the estimator order at
high SNR using some form of “order trimming" procedure. In Figure 5 the



results of applying the Marple order trimming procedure where the order is
limited to that which explains 55% of the total signal energy are presented. This
result is somewhat more encouraging in that it exhibits an improvement of about
2 db over the BFB estimator, about 6 dB better than PP, at low SNR while
remaining superior to the PP estimator at higher SNR although the high SNR
performance is still perhaps somewhat disappointing.

The final class of estimators which we will consider is based on a finding
the spectral peak of a Capon power spectrum estimate. The Capon spectral
estimate is sometimes called the maximum likelihood spectral estimator
however it is not the ML estimate of the power spectral density. A discussion of
Capon spectral estimators appears in Kay and Marple.

The Capon estimator of order P is based on an optimum filtering theory
derivation where for each frequency a filter of length P is constructed which
maximizes the ratio of output power at the particular frequency to sum of the
powers passed at all other frequencies. Once these filters are computed it is
much like the ML estimator for sinusoidal signals except that the filter bank is
computed from the above constraint using an estimate of the autocorrelation
function to lag P rather than assuming that the appropriate filters are sinusoids.
It can be shown that for a signal consisting of a long time series of a sinusiod in
noise it will reproduce the ML estimator for for that signal model. A plot of the
velocity estimation performance of a P=12 Capon based velocity estimator
appears as Figure 6. It can be seen that the low signal to noise performance of
the Capon estimate is slightly better than the AR algorithm and in the -5 to 0 dB
s/n range the estimator is from 1 to 2 dB better than the AR values. At high
signal to noise ratios there is still some evidence of the a problem caused by the
use of too high an estimator order. Although the problem is much less serious
than for the AR system it possible to exploit some of the relationships between
the Capon and AR estimates to perform an order trimming operation and
improve the high SNR estimates. The results of this refinement are shown in
Figure 7 which at the present time is the best performance | have found for any
estimator operating in the parameter regime defined by the LAWS baseline.

Discussion



A summary of the results presented above appear in Table 1 where |
have listed the SNR values required to achieve either 50% or 75% "good"
estimates based on the 1 m/s error threshold. It can be seen that the order
trimmed Capon estimator exhibits a substantial performance improvement over
the traditional pulse pair velocity estimator for nearly all signal to noise values
however it is appears to still be 5dB away from the best possible performance
as indicated by the Cramer - Rao bound. It is important to determine if the C-R
bound is in fact achievable for this set of operating parameters or if the Capon
estimator is already near optimum in performance.

About 1 dB of the 5 dB difference results from the fact that the Capon
estimator underutilizes the P points on either end of the 72 point long segment
due to the edge effects on the autocorrelation estimates. In a real LAWS
implementation this 1 dB can be recovered by overlapping the segments by P
points. In order to understand the remaining 4 dB difference we will need to go
back and examine the assumptions behind the C-R bound derivation.

The weakest assumption for our part of the parameter space is the fact
that the estimator is assumed to operate on a long time series. It is not
immediately obvious if the 72 point sample used in this study is long enough to
satisfy this condition. One experiment that we can perform is to look at the
performance of the Capon estimator on a substantially longer series. the
results of repeating the Monte Carlo calculations for a 2000 point series is
shown as Figure 8. It can be seen in this figure that the performance of the
Capon estimator is now substantially closer to the C-R bound being only 2-3 dB
lower in performance than the bound. Based on this result it seems that some
of the missing 4 dB may in fact be due to a limitation of the C-R bound analysis
itself. There is however probably the potential to achieve another 2 dB
performance improvement over the order trimmed Capon algorithm. It seems
that a reasonable future effort would be to extend the Zrnic' analysis to the case
of a shorter time series. Although algebraically tedious the procedure is
straightforward and should be tractable through the use of symbolic computer
algebra systems or by numerical evaluation of the likelihood functions.



In conclusion we have been able to substantially narrow the range of
possible LAWS velocity estimation performance. We now have an estimation
strategy whose performance is probably within 2-3 dB of the best possible
algorithm for the LAWS parameters. This performance of this estimator can be
used to provide a useful input for the lidar system design studies. It should be
emphasized that the later processing stages where the radial estimates are
combined into wind estimates are far from trivial. At low SNR the velocity error
distribution is far from normal and it not yet known if we will be able to assign a
confidence indication to the estimate or if that will have to be derived in the
context of the other observations. It is important to address these issues as
soon as possible since they may also have a significant impact on the overall
system design.



Table 1

Estimator Performance Summary

All SNR values are for £25 m/s Nyquist bandwidth

Estimator

Pulse Pair (actual)

Cramer - Rao bound
after Zrnic'

Block Matched Filter

Autoregressive
least squares form
order 10

Autoregressive
least squares form
order trimmed

Capon
order =12

Capon
AR autocorrelations
with order timming

SNR Required for 50%

errors < im/s

-3.9
-15.2

-8.2
-9.7

-10.0

-10.5

-10.3

SNR Required for 75%
errors < 1m/s

+0.7
-12.9

-4.8

-6.0
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Figure 1. Estimator evaluation processing geometry
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