
NASA-CR-198007

A Final Report to

/O
National Aeronautics and Space Administration (NASA)

prepared for

George C. Marshall Space Flight Center (MSFC)
Marshall Space Flight Center

Alabama 35812

for

Interactive Access and Management for Four-Dimensional
Environmental Data Sets Using McEDAS

Grant # NAG8-828

University of Wisconsin Account # 144-BQ02
^
00o- sa-

fer the period of JH <S o
t f* CO

1/1/90 thru 9 / 3 1/94 2 3 0

in
<#

submitted by ^
o

William L. Hibbard £
Gregory J. Tripoli £ "*

LU < U
> H O

£ J ̂ >

at the University of Wisconsin - Madison < o i ^ >t
1225 West Dayton Street g "• g ^ g:

2 ^ > ,S ̂
•-t 01 Z U. .

sc uj a
ai i/> <u <

Space Science and Engineering Center
University of Wisconsin - M

1225 West Dayton Street
Madison, Wisconsin 53706

April 1995
0 < a u m c
CD z M ac a
w> m i
«-i O Z UJ C
1 Z UJ 2 O •-

ot < s: 1-1 o- w
U 1-1 (/) ^ C
I Irt O 3 i- O
< to i u
to UJ ot to • in
< u 3 v- c —
2 U O UJ flj X
sx < U. to -7 xrf

I. INTRODUCTION

This grant has fundamentally changed the way that meteorologists look at the
output of their atmospheric models, through the development and wide distribution of the
VisSD system. The VisSD system is also gaining acceptance among oceanographers and
atmospheric chemists. VisSD gives these scientists an interactive three-dimensional movie
of their very large data sets that they can use to understand physical mechanisms and to
trace problems to their sources.

This grant has also helped to define the future direction of scientific visualization
through the development of the VisAD system and its lattice data model. The VisAD
system can be used to interactively steer and visualize scientific computations. A key
element of this capability is the flexibility of the system's data model to adapt to a wide
variety of scientific data, including the integration of several forms of scientific metadata.

This grant has also contributed to the development of the UW-NMS (University of
Wisconsin Non-hydrostatic Modeling System), derived from the RAMS model.

n. WORK SUMMARY

We will briefly describe the accomplishments under this grant according to the
outline of the Proposed Work Section of the grant proposal. The papers included in
Appendix B provide a more detailed description of the accomplishments under this grant.

A. DEVELOPMENT OF FOUR-DIMENSIONAL ANALYSIS TECHNOLOGY

1. Data Management

We developed a five-dimensional grid file format, called v5d format, that serves as
the input data format for the VisSD system. This five-dimensional structure is a two-
dimensional array of three-dimensional spatial grids, where the two-dimensional array is
indexed by time and model output field. This structure is diagrammed in our paper
Interactive Visualization of Earth and Space Science Computations, included in Appendix
B. This file format can accommodate:

1. A mix of three-dimensional fields and two-dimensional fields (i.e., fields with a
single vertical level such as surface pressure).

2. A variety of map projections.
3. Missing data indicators.
4. Variable data compression.

Because atmospheric and ocean models produce data in a wide variety of different
file formats, we have provided a set of well-documented and easy-to-use tools to help
users convert data from their native format to vSd format. Users have written converters

for standard formats such as HDF, GRIB and GRADS, and we include these converters
with the ftp distribution of VisSD.

We provide tools to help users import their own topographical data into VisSD.
We also provide simple formats for users to import image data into VisSD for overlay on
the topographical map - this may be used to visually compare satellite images with model
output.

The VisAD system has very sophisticated internal data management, but does
provide this as a file format. Rather, VisAD includes built-in functions for importing a
variety of data formats from McIDAS, and also allows users to write their own data
import functions in either C or Fortran.

The VisAD system tightly integrates visualization with computation, providing
support for computational steering and visual analysis of high-level science algorithms. In
order to do this, the VisAD data model is extensible, allowing users to define data types
appropriate to their applications. This data model users lattice theory as the foundation
for integrating a variety of scientific metadata into its data management. For example,
satellite navigation and missing data indicators fit very naturally into this data model.
Detailed descriptions of this data management are available in several of the papers
included in Appendix B.

2. Data Analysis

It is important for scientific visualization systems to de-couple data analysis from
data management and visualization, so that Earth scientists and system designers can each
concentrate on their area of expertise. We have taken this attitude in the VisSD and
VisAD systems. VisSD supports user-written data analysis in two ways:

1. Through simple type-in formulas that define new fields as functions of existing
fields. For example, users may calculate wind speed by typing
"SPD=SQRT(U*U+V*V)".

2. By writing Fortran programs that are dynamically linked with VisSD to compute
new fields as more complex functions of existing fields.

The VisAD system includes a programming language in order to support the close
integration of visualization with computation. This provides a very flexible way for users
to write data analysis algorithms. This programming language can dynamically link with
functions written by users in either C or Fortran, which is useful for large computations
and for supporting users' existing data analysis software.

3. Visualizing Data

Both VisSD and VisAD provide interactive, animated, three-dimensional
visualization. That is, images are rendered in a fraction of a second so that users can
interactively rotate them in three dimensions and interactively control images in other
ways.

The VisSD system renders scalar volume data by:

1. Volume rendering (i.e., semi-transparent colored "fog"). Users can interactively
adjust the mapping from data values to colors and transparencies.

2. Iso-surfaces. Users can interactively control the iso-levels of surfaces.
3. Horizontal and vertical 2-D plane slices filled with iso-lines. Users can slide these

planes through the volume using the mouse, and can interactively control the
spacing between contour lines.

4. Horizontal and vertical 2-D plane pseudo-colored slices. Users can slide these
planes through the volume using the mouse, and can interactively adjust the
mapping from data values to colors.

The VisSD system renders vector volume data (i.e., wind and current velocities) by:

1. Trajectory ribbons. Users can dynamically generate these from a starting point
defined using a 3-D cursor. They are integrated both forward and backward in time.

2. Horizontal and vertical 2-D plane slices filled with wind arrows. Users can slide
these planes through the volume using the mouse, and can interactively adjust the
spacing and length scaling of vectors.

Users can interactively select various combinations of fields and rendering techniques, as
well as controlling animation and three-dimensional viewpoint (i.e., rotation, panning and
zooming).

In both the VisSD and VisAD systems, quantitative information can always be
extracted from visual information through cursor locations, contour labels, color scale
legends and data probes.

4. Interactive Workstation

The tremendous advancement of technology has ended the era of the custom
designed meteorological workstation. That is, custom designs should now be confined to
software. We have adopted the Unix workstation as the platform for the VisSD system,
including SGI, IBM, HP, DEC and SUN. The initial version of VisAD only runs on SGI
workstations because it is less mature than VisSD and because it places greater demands
on graphics performance. However, it will ported to other Unix workstations. Both
systems use the X, GL and OpenGL libraries for graphics. We will port these systems to

personal computers as there graphics performance improves and as software standards
emerge in the personal computer market.

5. System Integration

The VisSD system is designed for a single purpose, visualizing the output of
atmospheric and ocean models, and this specialization permits a high degree of integration
in its user interface and overall structure.

The VisAD system is designed for the broader purpose of interactively visualizing
and steering scientific computations, but achieves coherence based on its simple but
flexible models of scientific data, computations and displays. In each of these areas, the
system gives users a few simple techniques that they can combine to design complex data
structures, programs and displays.

B. ANALYSIS OF REMOTE SENSED DATA

The VisAD system is a flexible tool for analyzing remote sensed data, as
demonstrated by the sample programs included in the system's ftp distribution. Its data
model can adapt to the wide variety of sampling geometries and data characteristics of
different remote sensing instruments. Its programming language allows the expression of
a wide variety of data analysis algorithms. Its display architecture can be used to look at
the same data in many different ways.

The VisAD system also provides the capability to compare data from different
remote sensing instruments, and to compare such data with model output data, in
geographically aligned Earth frames of reference.

The VisSD system also provides a capability to compare satellite image data with
model output data.

C. ANALYSIS OF MODEL DATA

The VisSD system is focused on the task of visualizing model data. It also allows
users to define data analysis algorithms, either by simple type-in formulas or by writing
Fortran programs.

The VisAD programming language provides an extremely flexible capability for
defining analysis algorithms for model output. It also provides the capability for
interactive steering of models. This is demonstrated by an application of VisAD to Bob
Aune's two-dimensional shallow water model. For example, the user can interactively
adjust the time interval between time steps. If the interval is set over a critical value, the
visualization reveals high frequency waves due to the development of numerical instability.

Another interactive control allows the user to apply a spatial filter and damp out the
waves. This demo is included with the VisAD ftp distribution as the shallow.v program.
This simple demo is primarily useful as a teaching tool, but it does illustrate the possibility
for interactive steering of models.

m. ON-LINE INFORMATION

The results of the SSEC 4-D Visualization Project are available via the World
Wide Web at the URL:

http://www.ssec.wisc.edu/~billh/vis.html

The UW-NMS model is used to make daily U. S. forecasts in VisSD format, and these are
available via the World Wide Web at the URL:

http://java.meteor.wisc.edu/vis5d-oper.html

The VisSD and VisAD systems are also available by anonymous ftp. The VisSD
system is available as follows:

% ftp iris.ssec.wisc.edu
or

% ftp 144.92.108.63

login: anonymous
password: myname@location

ftp> cd pub/visSd
ftp> ascii
ftp> get README
ftp> bye

See section 2 of the README file for complete installation instructions.

The VisSD ftp distribution includes:
1. Complete source code and makefiles.
2. Documentation and porting guide.
3. Sample data sets.
4. Support for importing data from various formats.
5. Executable files for SGI and IBM also available.

The VisAD system is available as follows:

% ftp iris.ssec.wisc.edu
or

% ftp 144.92.108.63

login: anonymous
password: myname@location

ftp> cd pub/visad
ftp> ascii
ftp> get README
ftp> bye

See section 2 of the README file for complete installation instructions.

The VisAD ftp distribution includes:
1. Complete source code and makefiles.
2. Documentation and on-line help facility.
3. A large number of demo programs and data sets.
4. Built-in functions for reading McIDAS data files.
5. Support for importing data from other formats.
5. Support for linking with software written in C and Fortran.
6. Executable files for SGI are also available.

IV. APPENDICES

Appendix A. List of Publications

Appendix B. Copies of Selected Publications

APPENDIX A

This is a list of the papers written and videos produced under this grant. Copies of
selected papers are included in Appendix B.

Hibbard, W., and D. Santek, 1990; Cold fronts moving across the north Atlantic.
SIGGRAPH Video Rev., No. 61.

Hibbard, W., and D. Santek, 1990; The VIS-5D system for easy interactive visualization.
Visualization '90, San Francisco, IEEE. 28-35.

Santek, D., T. Whittaker, J. Young, and W. Hibbard, 1991; The implementation plan for
McEDAS-ADC. Preprints, Conf. Interactive Information and Processing Systems for
Meteorology, Oceanography, and Hydrology. New Orleans, American Meteorology
Society. 177-179.

Hibbard, W., D. Santek, and G. Tripoli, 1991; Interactive atmospheric data access via high
speed networks. Computer Networks and ISDN Systems, 22, 103-109.

Hibbard, W., 1991; Access - end user (scientist) view and environment subgroup. Part of
SIGGRAPH '90 workshop report, data structure and access software for scientific
visualization. Edited by Lloyd A. Treinish. Computer Graphics 25(2), 104-118.

Hibbard, W., and C. Dyer, 1991; Automated display of geometric data types. Univ. of
Wise. Comp. Sci. Dept. Tech. Report #1015.

Hibbard, W., and B. Paul, 1991; El Nino Satellite Observations and Downburst
Simulation. SIGGRAPH Video Rev., No. 74.

Aune, R., G. Callan, and W. Hibbard, 1991; A 4D visualization of a 4D assimilation
system. AMS conference, Denver, Oct. 14-18.

Tripoli, G. J., 1992; An explicit three-dimensional nonhydrostatic numerical simulation of
a tropical cyclone. Meteorology and Atmospheric Physics 49, 229-254.

Hibbard, W., 1992; A highly parallel approach for satellite archive processing. Preprints,
Conf. Interactive Information and Processing Systems for Meteorology, Oceanography,
and Hydrology. Atlanta, American Meteorology Society. 82-83.

Hibbard, W., C. Dyer and B. Paul, 1992; A development environment for data analysis
algorithms. Preprints, Conf. Interactive Information and Processing Systems for
Meteorology, Oceanography, and Hydrology. Atlanta, American Meteorology Society.
101-107.

Hibbard, W., and B. Paul, 1992; Energy generation by controlled thunderstorm.
SIGGRAPH Video Rev., No. 82.

Hibbard, W., and B. Paul, 1992; Distributed visualization at the Space Science and
Engineering Center. Notes for SiGGRAPH course 7, Distributed Scientific Visualization
on High-Performance Networks, 4.1-4.22.

A-l

Hibbard, W., 1992; Systems issues for the 120 Terabyte GOES archive. Proc., Managing
Terabyte Databases in the 90s and beyond. NOAA and the MITRE Corp. 24-25.

Hibbard, W., C. Dyer and B. Paul, 1992; Display of scientific data structures for algorithm
visualization. Visualization '92, Boston, IEEE, 139-146.

Hibbard, W., C. Dyer and B. Paul, 1992; Using VIS-AD to visualize a cloud
discrimination algorithm. Video proceedings of Visualization '92, Boston, IEEE.

Rhyne, T., M. Bolstad, P. Rheingans, L. Petterson, W. Shackleford, M. Botts, E. Pepke,
K. Johnson, W. Hibbard, C. Dyer. B. Paul, and L. Treinish, 1992; Visualization
requirements in the Atmospheric and Environmental Sciences. Visualization '92, Boston,
IEEE, 428-435.

Hibbard, W., C. Dyer and B. Paul, 1992; Graphical representations of scientific data.
Proceedings, Workshop on Two and Three Dimensional Spatial Data: Representation and
Standards, University of Western Australia.

Hibbard, W., W. Lagerroos, D Wade and N. Troxel-Hoehn, 1993; Design for and
experience with the McIDAS GOES inventory. Preprints, Conf. Interactive Information
and Processing Systems for Meteorology, Oceanography, and Hydrology. Anaheim,
American Meteorology Society. 140-143.

Hibbard, W., C. Dyer and B. Paul, 1993; VIS-AD data management. Preprints, Conf.
Interactive Information and Processing Systems for Meteorology, Oceanography, and
Hydrology. Anaheim, American Meteorology Society. 158-161.

Paul, B., A. Battailoa and W. Hibbard, 1993; Progress with VIS-5D / distributed VIS-5D.
Preprints, Conf. Interactive Information and Processing Systems for Meteorology,
Oceanography, and Hydrology. Anaheim, American Meteorology Society. 162-164.

Hibbard, W., B. Paul, C. Dyer and A. Battaiola, 1993; Interactive visualization techniques
for large environmental data sets. Notes for SiGGRAPH course 71, Visualizing Planet
Earth, 3.1-3.28.

Hibbard, W., and B. Paul, 1993; Interactive visualization of the computations of air quality
models. Proceedings, Regional Photochemical Measurements & Modeling Studies. San
Diego, Air & Waste Management Association.

Hibbard, W. L., B. E. Paul, D. A. Santek, C. R. Dyer, A. L. Battaiola, and M-F. Voidrot-
Martinez, 1994; Interactive visualization of Earth and space science computations. IEEE
Computer 27(7), 65-72.

Hibbard, W., C. Dyer and B. Paul, 1994; A lattice model for data display. IEEE
Visualization '94, 310-317.

Hibbard, W., C. Dyer and B. Paul, 1994; The VIS-AD data model: integrating metadata
and polymorphic display with a scientific programming language. In Database Issues for
Data Viualization, Lecture Notes in Computer Science number 871. Edited by J. P. Lee
and G. G. Grinstein. Springer-Verlag. 37-68.

A-2

Bergeron, R., W. Cody, W. Hibbard, D. Kao, K. Miceli, L. Treinish and S. Walther, 1994;
Database issues for data visualization: developing a data model. In Database Issues for
Data Visualization, Lecture Notes in Computer Science number 871. Edited by J. P. Lee
and G. G. Grinstein. Springer-Verlag. 3-15.

Hibbard, W., and B. Paul, 1994; Classifying and modeling data in the physical and natural
sciences. Notes for SiGGRAPH course 27, Visualizing and Examining Large Scientific
datasets: a Focus on the Physical and Natural Sciences, 1-1 to 1-27.

Hibbard, W., and B. Paul, 1994; Hurricane Gilbert. SIGGRAPH Video Rev., No. 105.

Hibbard, W., and B. Paul, 1994; Real-time volume rendering of downbursts. SIGGRAPH
Video Rev., No. 105.

Hibbard, W., and B. Paul, 1994; Visualizing atmospheric chemistry and physics with
V1S-5D. Proceedings, International Specialty Conference on Computing in Environmental
Management. Raleigh, NC. Air and Waste Management Association. 46-50.

Hibbard, W., C. Dyer and B. Paul, 1995; Interactivity and the dimensionality of data
displays. IFBP WG5.10 Workshop on Perceptual Issues in Visualization. Edited by G.
Grinstein and H. Levkowitz. Springer-Verlag.

A-3

APPENDIX B

These are copies of selected papers written under this grant.

B-l

reprinted from

COMPUTER

Interactive Visualization
of Earth and Space
Science Computations
William L. Hibbard, Brian E. Paul, David A. Santek, and

Charles R. Dyer, University of Wisconsin-Madison

Andre L. Battaiola, Institute Nacional de Pesquisas Espaciais

Marie-Francoise Voidrot-Martinez,

Service Centrale d'Exploitation de la Meteorologie

Scientists often
view computer
algorithms as

risk-filled black boxes.
These visualization

packages help
scientists see the

internal workings of
their algorithms

and thus
understand then-

computations.
July 1994

omputers have become essential tools for scientists simulating and observing
nature. Simulations are formulated as mathematical models but are imple-
mented as computer algorithms to simulate complex events. Observations are

also analyzed and understood in terms of mathematical models, but the number of
these observations usually dictates that we automate analyses with computer algo-
rithms.

In spite of their essential role, computers are also barriers to scientific understand-
ing.1 Unlike hand calculations, automated computations are invisible and, because of
the enormous numbers of individual operations in automated computations, the re-
lation between an algorithm's input and output is often not intuitive. This problem is
illustrated by the behavior of meteorologists responsible for forecasting weather. Even
in this age of computers, many meteorologists manually plot weather observations on
maps, then draw isolines of temperature, pressure, and other fields by hand (special
pads of maps are printed for just this purpose). Similarly, radiologists use computers
to collect medical data but are notoriously reluctant to apply image-processing algo-
rithms to that data. To these scientists with life-and-death responsibilities, computer
algorithms are black boxes that increase rather than reduce risk.

The barrier between scientists and their computations can be bridged by tech-
niques that make the internal workings of algorithms visible and that allow scientists
to experiment with their computations. Here we describe two interactive systems
developed at the University of Wisconsin-Madison Space Science and Engineering
Center (SSEC) that provide these capabilities to Earth and space scientists.

Visualizing Earth simulations
Numerical models of the Earth's atmosphere and oceans form one important class

of scientific algorithms. The history files produced by these models are traces of their
computations, and our Vis-5D system2 is widely used by scientists for interactively vi-
sualizing these history files. This system takes its name from the fact that model his-

0018-9162/94/$4.000 1994 IEEE
PRECEDING PAGE BLANK NOT FILMED

Model field

Generate
primitives

:-V r:̂
Adjust

isosurface levels
iosline Intervals
locations of slices
color maps

Each cell in
the table is a
3D rectangle of data

orizontal cofor"slice3
Vertical isoline slices

Vertical color'sftces
Volume renejerf

Isosurfaces "

Select columns in
field x primitive

Animate time steps by
iterating down columns

Figure 1. Vis-5D transforms simulations of the Earth's atmosphere and oceans into
an interactive graphical environment: (a) array of 3D grids indexed by time step
and field; (b) array of graphics primitives indexed by time step, field, and primitive
type.

tory files are 5D rectangles of data, orga-
nized as 2D arrays of 3D spatial grids.
The 2D arrays are indexed by time and by
model field (for example, temperature,
pressure, salinity, wind or current veloc-
ity, and so on).

Figure 1 shows the pipeline for ren-
dering this data into 3D animations under
the user's interactive control. The system
transforms data grids into graphical prim-
itives that consist of 3D vectors and poly-
gons. (On large workstations, we also use
an efficient interactive volume-rendering
technique.3) The rendering of graphical
primitives creates a virtual Earth envi-
ronment behind the workstation screen.
Users can reach into this virtual environ-
ment with a mouse to move slices
through the data grids, place seed points
for wind trajectories, and rotate and
zoom their view. In Figure 2, the window
on the right contains the virtual Earth en-
vironment. The array of icons on the left
allows users to select combinations of
fields and rendering techniques and to
control animation, isolevels, trajectories,
color maps, and so on.

Modern workstations can respond to
these controls within the time of an ani-
mation step (usually between 1/30 and
1/5 second), giving users the sense of in-
teracting with a small virtual atmosphere
or ocean. To explore the 3D geometry of
their fields, as well as cause-and-effect re-
lationships between different fields, users
should be able to rotate images and
change the combinations of fields dis-
played without interrupting the smooth
animation of model dynamics. Thus, we

66

do not synchronize animation with the
computation of graphical primitives; in-
stead, we store primitives in intermedi-
ate tables indexed by time and field.

The size of a model history file is the
product of five numbers and can be quite
large. For example, a data set spanning
100 latitudes by 100 longitudes by 20 ver-
tical levels by 100 time steps by 10 model
fields contains 200 million grid points. To
maximize data set size, we compress grid
data and derived graphics by scaling them
linearly to one- or two-byte integers. To
preserve fidelity, we use different scaling
factors for each horizontal slice of each
3D grid. With compression, we can store
one grid point, plus derived graphics, in
2.5 bytes of virtual memory. For history
files that are too large for workstations,
the system splits into a graphics client on
a workstation and a data server on a su-
percomputer connected via network.4

Sometimes users need to see derived
quantities, such as the vorticity or diver-
gence of air flow, to understand the
physics of a simulation. Users can write C
and Fortran functions for deriving new
diagnostic fields and invoke them during
a visualization session (they are dynami-
cally linked with Vis-5D via sockets). To
maximize data fidelity, these calculations
use floating-point grid values in disk files
rather than compressed values.

To illustrate how Vis-5D works, Fig-
ure 2 shows a snapshot of a numerical ex-
periment performed by Gregory Tripoli
and Peter Pokrandt of the University of
Wisconsin-Madison using their UW-
NMS (Nonhydrostatic Modeling System)

weather model and visualized using Vis-
5D. They are modeling a novel idea pro-
posed by William Gray of Colorado State
University for generating energy by cre-
ating a permanent rainstorm over a
hydroelectric generator. The white ob-
ject is a balloon 7 kilometers high in the
shape of a squat chimney that floats in
the air above a patch of tropical ocean.
The purpose of the numerical experiment
is to verify that once air starts rising in
the chimney, the motion will be self-sus-
taining and create a perpetual rainstorm.
The vertical color slice shows the distri-
bution of heat (as well as the flow of heat
when model dynamics are animated); the
yellow streamers show the correspond-
ing flow of air up through the chimney;
and the blue-green isosurface shows the
precipitated cloud ice (a cloud water iso-
surface would obscure the view down the
chimney, so it has been toggled off for
this snapshot). The simulation takes
many hours to run, even on the largest
computers, so the virtual time of the vi-
sualization is not in lock step with the
model's computations. Rather, model
output accumulates in a history file, and
users are free to move around in simu-
lated time, searching for problems. Once
problems are found, users trace their root
causes by working back through time and
by comparing different model fields.

Michael McCann and Matthew
Koebbe of the Naval Postgraduate
School (NPS) applied Vis-5D to visual-
ize the ocean simulation shown in Figure
3. This is a view from the north, looking
at a region of the Pacific Ocean strad-
dling the equator, including ocean bot-
tom topography and a volume render-
ing of ocean current speed. Ocean
models produce history files similar to
atmosphere models, although the NPS
model is remarkable for its high resolu-
tion and challenges the capacity of our
visualization system.

Visualizing a
broader class of
computations

While Vis-5D is effective for visualiz-
ing simulations of the atmosphere and
oceans, scientists also design and use a
much broader class of algorithms that re-
quires more general visualization tech-
niques. We developed the Vis-AD (Vi-
sualization for Algorithm Development)
system to meet this need.5 Whereas Vis-

ORIGINAL PAGE IS
OF POOR QUALITY

COMPUTER

5D runs as a postprocess to simulations.
Vis-AD serves as the execution envi-
ronment for scientists' algorithms, sup-
porting a greater variety of visual exper-
iments with algorithms. Where Vis-5D
assumes that data are organized as a
five-dimensional rectangle and that 3D
graphical space always represents 3D
physical space, Vis-AD lets scientists de-
fine their own data organizations and ab-
stract graphical spaces to support a
broad class of algorithms. The Vis-AD
system combines

(1) A data model that includes complex
data types defined in terms of tuples
and functional relations. The data
model integrates several forms of
metadata based on a conceptual
model of computer data objects as
finite approximations to mathemat-
ical objects.

(2) A computational model based on a
high-level interpreted programming
language that supports distributed
computing and can link to user-writ-
ten functions in C and Fortran.

(3) A display model based on interac-
tive, animated 3D voxel volumes. A
novel technique lets scientists con-
trol how their data is displayed with-
out placing a substantial burden of
graphics knowledge on them.

(4) A graphical user interface that is
highly interactive and gives scientists
an integrated view of data, compu-
tation, and display.

The system functions like an interac-
tive debugger with high-level data man-
agement and visualization. While a

Figure 2. Simulation of William Gray's novel idea to generate energy by creating a
permanent rainstorm over a hydroelectric generator.

Figure 3. Volume
rendering of cur-
rent speed from a
simulation of the
Pacific Ocean. The
model's high reso-
lution lets users
see currents and
eddies.

System availability
, -V -V^.:,.

Vis-5D is available at no charge by anonymous ftp from
iris.ssec.wisc.edu (144.92.108.63) in the pub/vts5d directory.
The README file contains complete instructions for retriev-
ing and installing the software. The system includes source
code and documentation.

Simon Baas and Hans de Jong of Rijks Universiteit, Leiden,
modified the Vis-5D source code so that on machines without

'special graphics hardware it can run under the X Window
System (that is, without the GL library for 3D graphics) and,
thus, on a wide class of workstations. We enhanced their
work and include it as an option with our standard ftp distribu-
tion. We are also adding support to Vis-5D for various non-
Cartesian map projections and vertical coordinate systems.

*^-
Although there is great interest in data format standards,

the scientific community is only starting to adopt them. Thus,
we have found that the most important element for making
our system usable has been a set of data import utilities.
These include template programs (with versions in both C
and Fortran) to help users convert their history files into a
form that our software can read. Users can modify these
template programs to read their own history file
formats.

Vis-AD is also available by anonymous ftp from
Iris.ssec.wisc.edu. It is located in the pub/visad directory.
Again, see the README ffle in that directory for complete
information. ' •• --vy^ -

July 1994 67

goes_sequence:
array indexed by [time]
H-i ' ' i i of:

array indexed by [region]
u-n i i i i i i i i i i of:
Varray indexed by [latjon]

of:

X structure {ir; vis; variance; texture;}
pr | vis | variance | texture!

histogram_partition:
array indexed by [region]
+ i i i ii i i i i i i of:
k structure {array ...; latjon;}

array indexed by [ir]
i i i i i i i~m of:

(a)
| count

Select a set of data
objects to display 1 |

. -
Define mappings . ;

selector-1
f:^ . ~

animation
;

color

Columns indexed by
'̂combinations of selectors

'.£*'•

Adjust color tables * - '•*

Choose ranges of
values for selectors •",*

Control animation

Rotate and zoom
3D voxel volume

Adjust contour levels
and intervals

(b)

Each voxel contains a
color and a set of values
depicted by contour
surfaces and lines

(color | contour-11 — | contour-n|
(c)

Figure 4. The Vis-AD data and display models: (a) examples of data types that users can define in the data model; (b) user
interface for controlling scalar mappings that control how data are depicted in the display model; (c) a diagram of the voxel-
based display model.

debugger prints values of variables and
arrays to help users track down low-level
program bugs, Vis-AD generates visual-
izations of complex data objects to help
scientists understand the high-level be-
havior of their algorithms. Coupled with
a graphical interface for steering com-
putations, these visualizations enable a
wide variety of visual experiments with
algorithms.

Designing data types for scientific al-
gorithms. To scientists designing algo-
rithms, the data model appears as a set
of three rules for designing data types ap-
propriate to their algorithms. Scientists
can

(1) Define a scalar type for a primitive
variable. Scalar types may be real
variables like time or ir (an infrared
radiance); they may be pairs or
triples of real numbers like latjon
(a pair of real numbers for the lati-
tude and longitude of an Earth loca-
tion); they may be integers like
count (a frequency count used in a
histogram); or they may be text
strings like satellite_id.

(2) Define a data type as a tuple of val-
ues of other types (this is like a struc-
ture in the C programming lan-
guage).

(3) Define an array type as a finite sam-
pling of a functional relation from
one type (the domain of the function
— this must be a scalar type) to an-

other type (the range of the function
— this can be a complex type). An
array data object is a finite set of ob-
jects of the range type indexed by
values of the domain type.

Arrays and tuples can be combined in
hierarchies to build complex data types.
The left-hand column of Figure 4 shows
how the rules can be applied to define two
data types appropriate for a cloud dis-
crimination algorithm. A data object of
the goes_sequence type is a time sequence
of satellite images, each partitioned into a
set of rectangular regions. The image in
each region is an array of pixels indexed
by lat_lon values (the latitudes and longi-
tudes of the pixels' Earth locations). Each
pixel is a tuple containing is(visible) and
ir (infrared) radiances, as well as variance
and texture values computed by the algo-
rithm from ir radiances. A data object of
the histogram_partition type is an array
of histograms computed by the algorithm,
one in each image region, specifying fre-
quency counts for the ir radiances of pix-
els in the region. Calculation of his-
tograms is an important step in the cloud
discrimination algorithm, and displays of
these histograms are very useful for track-
ing down problems with the algorithm.

The center column shows how users
can control the displays of complex data
objects by mapping scalar types to the
components of the voxel-based display
model diagrammed in the right-hand col-
umn. That is. users define mappings from

scalar types to the x, y, and z coordinates
of voxels in the display, to the colors of
voxels, to animation step number, and so
on. Because complex data types are ulti-
mately defined in terms of scalar types,
the system can derive depictions for com-
plex data types from the mappings de-
fined for their scalar components.

Figure 5 shows a data object of type
goes_sequence displayed according to
four different frames of reference. Its top
right window shows the data object dis-
played as a colored terrain, as defined by
the examples of scalar mappings in the
center column of Figure 4. In the top left
window, both ir (red) and vis (blue-
green) radiances are mapped to color. In
the bottom right window, ir is mapped to
selector (only pixels whose ir radiances
fall in the selected range are visible), and
time is mapped to the vertical axis, pro-
ducing a stack of four images. In the bot-
tom left window ir, vis, and variance are
mapped to the three axes and texture is
mapped to color, producing a colored 3D
scatter diagram (latjon is not mapped).

These displays are highly interactive.
Users can rotate and zoom displays us-
ing the mouse, animate them, interac-
tively adjust the mapping of scalars to
color using a color-map icon, and change
the subsets of data objects selected for
display using slider icons. The voxel-
based display model fits naturally with
volume rendering techniques,6 and as
graphics speeds improve we will extend
the display model to include transparency

68 COMPUTER

and reflectivity values at each voxel. We
will also add vector values at each voxel
to provide a model for flow-rendering
techniques.

Figure 6 illustrates the system's overall
user interface via its application to a sim-
ple bubble-sort algorithm. The window
on the left is used to edit the text of the
sort program. This program is written in
an interpreted language (the syntax for
user-defined data types is part of this lan-
guage). Scientists' programs can call func-
tions written in C or Fortran, including
those running remotely across a network.
Users can start and stop their programs,
set breakpoints by clicking on program
lines, and execute single steps. They can
also connect program values to graphical
icons for interactively steering their com-
putations. The dark horizontal bar across
the program window indicates the cur-
rent line of execution, and the short dark
strings are the names of data objects se-
lected for display. Users select data ob-
jects by clicking on their names, and their
depictions appear in the window on the
right. The scalar mappings that define a
display frame of reference are edited in
the small text window at the top of the
screen. The system can display data in
several different frames of reference si-
multaneously (Figures 5 and 9 show mul-
tiple frames of reference).

The data object being sorted in Figure
6 is an array of temperatures indexed by
time. We have mapped time to the hori-
zontal axis and temperature to the verti-
cal axis, so the array is displayed as a
graph (the set of white points) of tem-
perature versus time. The bubble-sort al-
gorithm is organized as two nested loops.
The index of the outer loop has type time
and is displayed as a small green sphere
on the lower horizontal axis (note that
the white points to the right of the green
sphere are sorted). The index of the inner
loop also has type time and is displayed as
a small red sphere; it marks the horizon-
tal position of the current maximum
value bubbling up through the array. The
small blue sphere on the left-hand verti-
cal axis depicts an object of type temper-
ature used as a temporary variable for
swapping array values.

Integrating metadata into the data
model. Mathematical models define in-
finite-precision real numbers and func-
tions with infinite domains, whereas com-
puter data objects contain finite amounts
of information and must therefore be ap-
proximations of the mathematical objects

Julv 1994

Figure 5. A time
sequence of satel-
lite images dis-
played in four
different frames of
reference.

* sort.v */
type big = real, savle = li
type te«perature = real, saip
type tire = real, sMple = h

Figure 6. Visualizing the computations of a bubble-sort algorithm.

they represent. Several forms of scientific
metadata serve to specify how computer
data objects approximate mathematical
objects, and we have integrated these into
our data model. For example, missing
data codes (used for fallible sensor sys-
tems) can be viewed as approximations
that carry no information. Any value or
subobject in a Vis-AD data object can be
set to the missing value. Scientists often
use arrays for finite samplings of contin-
uous functions, as, for example, satellite
image arrays are finite samplings of con-

tinuous radiance fields. Sampling meta-
data, such as those that assign Earth lo-
cations to pixels and real radiances to
coded (for example, 8-bit) pixel values,
quantify how arrays approximate func-
tions and are integrated with Vis-AD ar-
ray data objects.

The integration of metadata into our
data model has practical consequences
for the semantics of computation and dis-
play. For example, we define a data type
goes_image as an array of ir radiances in-
dexed by latjon values. Arrays of this

ORIGINAL PAGE IS
OF POOR QUALITY

69

data type are indexed by pairs of real
numbers rather than integers. If
goes_west is a data object of type
goes_image and loc is a data object of
type lat Jon, the system evaluates the ex-
pression goes_west[loc] by picking the
sample of goes_west nearest to loc. If loc
falls outside the region of the Earth cov-
ered by goes_west pixels, goes_west[loc]
evaluates to the missing value. If
goes_east is another data object of type
goesjmage generated by a satellite with
a different Earth perspective, then the
expression

goes_west - goes_east

is evaluated by resampling goes_east to
the samples of goes_west (that is, by
warping the goes_east image) before sub-
tracting radiances. In Earth regions where
the goes_west and goes_east images do
not overlap, their difference is set to miss-
ing values. Thus, metadata about map
projections and missing data contributes
to the semantics of computations.

Metadata similarly contributes to dis-
play semantics. If we have selected both
goes_east and goes_west for display, the
system uses the sampling of their indices
to coregister these two images in a com-
mon Earth frame of reference. The sam-
plings of 2D and 3D array indices need
not be Cartesian. For example, the sam-
pling of lat Jon may define virtually any
map projection. Thus, we can display data
in non-Cartesian coordinate systems.

Visualizing analyses of satellite obser-
vations. A pair of Geostationary Opera-
tional Environmental Satellites (GOES)
located at eastern and western stations
over the US generate one 1,024 x 1,024

70

Figure 7. Percent-
age of cumulus
clouds derived
from satellite
data, mapped
onto a Midwest
topography.

image every 4 seconds. NASA's Earth
Observing System, as planned, will gen-
erate about five 1,024 x 1,024 images per
second. These data volumes are too large
to be understood by direct visualization.
Thus, the proper role of visualization for
satellite observations is helping scientists
to develop algorithms for automating
their analysis.

Robert Rabin et al. of the National Se-
vere Storms Laboratory, working at the
University of Wisconsin-Madison, have
developed algorithms for analyzing cu-
mulus clouds in GOES images.7 These
algorithms identify which pixels are part
of cumulus clouds and calculate a sea-
sonal percentage of cumulus cloud cover
as a function of time of day and location.
The results of this computation are called
a cloud census. We designed a census Jm-
age data type as an array of pixels indexed
by lat_lon, where each pixel is a tuple
containing a cumulus_percent and a to-
pography value (elevation of the Earth's
surface above sea level). The cloud cen-
sus is stored in an object of the census,
sequence type, defined as an array of cen-
sus Jmage data objects indexed by time.
Figure 7 is a census_sequence data ob-
ject displayed in a frame of reference de-
fined by mapping latjon to the x-z plane,
mapping topography to the y axis, map-
ping cumulus_percent to color, and map-
ping time to animation. (Note Lake
Michigan in the upper right corner of the
image.) The color map icon in the upper
left corner shows that we have chosen
yellow for low cumulus percentages and
blue for higher percentages. This display
shows a clear correlation between cumu-
lus percentage and topography, and when
animated helps us to understand how cu-
mulus clouds develop during the day.

Since ignorance of the mechanics of
cloud formation is a major cause of un-
certainty in efforts to predict the climatic
consequences of the increase in green-
house gases, such understanding may
have important long-term consequences.

Visualizing analyses of astrophysical
observations. Because of the flexibility
of its data and display models, Vis-AD is
not limited to image processing applica-
tions. Figure 8 was generated from an al-
gorithm for processing observations from
an astrophysics mission. The Diffuse X-
ray Spectrometer flew on the space shut-
tle in January 1993 and recorded several
million events, each potentially an ob-
servation of an X ray emanating from in-
terstellar gas.8 However, most of the
recorded events are spurious, so Wilton
Sanders and Richard Edgar of the Uni-
versity of Wisconsin-Madison needed to
develop an algorithm for identifying valid
events. For this algorithm, we defined the
xray_event data type as a tuple contain-
ing scalars for an event's time, wave-
length, longitude, pulse_height, posi-
tion_bin, goodness_of_fit, occulted_flag,
and many other fields. We also defined a
data type eventjist as an array of
xray_event tuples indexed by event_num-
ber. The figure shows a data object of the
eventjist type, displayed in a frame of
reference defined by mapping longitude,
wavelength, and time to the three axes,
by mapping pulsejieight to color, and
by mapping positionjiin and good-
ness_of Jit to selector. Each X-ray event
is displayed as a colored dot. Slider icons
in the upper right comer are used to se-
lect ranges of values for position J>in and
goodness_of Jit, so that only those events
whose field values fall in the selected
ranges are displayed. This provides an
easy way to experiment with event selec-
tion criteria.

To ferret out the mechanisms that pro-
duced spurious events, we defined many
different frames of reference to see cor-
relations among various sets of event
fields. We also displayed the distribution
of events as functions of various fields in
the form of ID and 2D histograms. Our
ability to change the display mappings of
scalars as easily as we could rotate im-
ages was a key to successfully under-
standing the sources of spurious events.

Visualizing computations for educa-
tion. Figure 9 was generated from a sim-
ple simulation of a 2D cell of atmosphere.
The dynamics of this cell are governed

ORIGINAL PAGE IS
POOR QUALITY

COMPUTER

by a system of three differential equa-
tions developed by E.N. Lorenz9 to study
turbulence. Roland Stull chose to use this
2D simulation in his course on atmo-
spheric turbulence at the University of
Wisconsin-Madison. The right window
shows wind streamlines (isolines of the
"stream function") and temperatures
(warm air is red and cool air is blue) in the
2D cell of atmosphere. The lower left
window shows the solution to Lorenz's
equations as a path through a 3D phase
space, revealing the two lobes of the fa-
miliar Lorenz attractor. The upper left
window shows this same path in two
phase-space dimensions versus time, il-
lustrating the apparently random (that is,
chaotic) temporal distribution of alter-
nations between the two-phase-space
lobes. The state of the 2D atmosphere in
the right window corresponds to a single
blue point overlaid on the red phase-
space path in the lower left window. As
the simulation algorithm runs, these dis-
plays of changing data objects animate
the relation between the changing 2D at-
mosphere and the blue point moving
along the phase space path, showing that
the two lobes of the Lorenz attractor in
phase space correspond to clockwise and
counterclockwise rotation in the 2D cell
of atmosphere.

Comparisons with
other techniques

The dataflow technique — represented
by AVS (Application Visualization
System), Iris Explorer, and Data Ex-
plorer — gives users the flexibility to de-
sign their own rendering pipelines as net-
works of basic modules. Although we
recognize the value of this approach, we
designed Vis-5D with a fixed rendering
pipeline (diagrammed in Figure 1), which
we felt could meet the needs of atmo-
sphere and ocean modelers without ask-
ing them to design a module network. In
fact, Vis-5D denies many choices to its
users (for example, shading model pa-
rameters, and colors and locations of light
sources) to keep its user interface simple.

Because it interprets arrays as finite
samplings of functional relations, the
Vis-AD data model is similar to the data
models of Data Explorer and Super-
Glue, which are based on fiber bundles.
However, not all data models based on
fiber bundles support complex hierar-
chies of tuples and functional relations,

July 1994

Figure 8. X-ray events from a 1993 Diffuse X-ray Spectrometer flight on the space
shuttle.

Figure 9. Three views of the chaotic dynamics of the Lorenz equations.

as the Vis-AD data model does. Vis-
AD's scalar mappings define display
functions that can be applied to any data
type. This is similar to the polymorphic
display functions defined in object-ori-
ented systems like SuperGlue and Vis-
age. However, users of object-oriented
systems define display functions in a pro-
gramming language, whereas users of
Vis-AD define display functions by sets
of scalar mappings. Just as the dataflow
systems define a user interface for con-
trolling data display based on the ab-
straction of the rendering pipeline, the
Vis-AD system defines a user interface

ORiGs.N&i. PAGE IS
Of- POOR QUALITY

for controlling data display based on the
abstraction of mappings from scalars to
display scalars.

Interactive visualization techniques
are making a difference in the work
of scientists who have the means and

who make the effort to use them. We
have exploited special assumptions about
data organization to make it easy for sci-
entists to apply Vis-5D to their data. The
result is a system that is widely used by at-
mosphere and ocean modelers.

Scientists have needs that do not fit the

71

by a system of three differential equa-
tions developed by E.N. Lorenz9 to study
turbulence. Roland Stull chose to use this
2D simulation in his course on atmo-
spheric turbulence at the University of
Wisconsin-Madison. The right window
shows wind streamlines (isolines of the
"stream function") and temperatures
(warm air is red and cool air is blue) in the
2D cell of atmosphere. "Fh.e lower left
window shows the solution t^ Lore nz's
equations as a path through a 3D^ phase
space, revealing the two lobes of the fa-
miliar Lorenz attractor. The upperteft
window shows this same path in two
phase-space dimensions versus time, il- \
lustrating the apparently random (that is,
chaotic) temporal distribution of alter-
nations between the two-phase-space
lobes. The state of the 2D atmosphere in
the right window corresponds to a single
blue point overlaid on the red phase-
space path in the lower left window. As
the simulation algorithm runs, these dis-
plays of changing data objects animate
the relation between the changing 2D at-
mosphere and the blue point moving
along the phase space path, showing that
the two lobes of the Lorenz attractor in
phase space correspond to clockwise and
counterclockwise rotation in the 2D cell
of atmosphere.

Comparisons with
other techniques

The dataflow technique — represent
by AVS (Application Visualiza
System), Iris Explorer, and Data Ex-
plorer — gives users the flexibility to de-
sign their own rendering pipelines as net-
works of basic modules. Although we
recognize the value of this approach, we
designed Vis-5D with a fixed rendering
pipeline (diagrammed in Figure 1), which
we felt could meet the needs of atmo-
sphere and ocean mode'lers without ask-
ing them to design a module network. In
fact, Vis-5D denies/many choices to its
users (for example, shading model pa-
rameters, and colors and locations of light
sources) to keep its user interface simple.

Because it interprets arrays as finite
samplings of functional relations, the
Vis-AD data model is similar to the data
models of Data Explorer and Super-
Glue, wnich are based on fiber bundles.
Howej/er, not all data models based on
fibec/bundles support complex hierar-
chies of tuples and functional relations,

Figure 8. X-ray events from a 1993 Diffuse X-ray Spectrometer flight on tbe space
shuttle.

Figure 9. Three views of the chaotic dynamics of tbe Lorenz equations.

as the Vis-AD data model does. Vis-
AD's scalar mappings define display
functions that can be applied to any data
type. This is similar to the polymorphic
display functions defined in object-ori-
ented systems like SuperGlue and Vis-
age. However, users of object-oriented
systems define display functions in a pro-
gramming language, whereas users of
Vis-AD define display functions by sets
of scalar mappings. Just as the dataflow
systems define a user interface for con-
trolling data display based on the ab-
straction of the rendering pipeline, the
Vis-AD system defines a user interface

for controlling data display based on the
abstraction of mappings from scalars to
display scalars.

Interactive visualization techniques
are making a difference in the work
of scientists who have the means and

who make the effort to use them. We
have exploited special assumptions about
data organization to make it easy for sci-
entists to apply Vis-5D to their data. The
result is a system that is widely used by at-
mosphere and ocean modelers.

Scientists have needs that do not fit the

71

special assumptions of Vis-5D, so we de-
veloped the Vis-AD system by general-
izing some of the concepts of Vis-5D. Be-
cause of its flexibility, this system
confronts its users with complex choices.
However, we have organized these
choices in a consistent framework of data,
display, and computational models. Vis-
AD has demonstrated its utility to scien-
tists working with its developers. When
we complete its documentation and on-
line help functions, we are confident that
it will be useful to a wide community of
scientists. •

Acknowledgments
This work was supported by NASA Grant

NAG8-828, and by the National Science Foun-
dation and the Advanced Research Projects
Agency under Cooperative Agreement NCR-
8919038 with the Corporation for National Re-
search Initiatives.

References
1. B. McCormick, T. DeFanti, and M.

Brown, "Visualization in Scientific Com-
puting," Computer Graphics, Vol. 21, No.
6, Nov. 1987.

2. W. Hibbard and D. Santek, "The VIS-5D
System for Easy Interactive Visualiza-
tion," Proc. Visualization 90, IEEE CS
Press, Los Alamitos, Calif., Order No.
2083,1990, pp. 28-35.

3. W. Hibbard and D. Santek, "Interactivity
is the Key," Proc. Chapel Hill Workshop
Volume Visualization, Univ. of North Car-
olina, Chapel Hill, 1989, pp. 39-43.

4. W. Hibbard, D. Santek, and G. Tripoli,
"Interactive Atmospheric Data Access
Via High-Speed Networks," Computer
Networks and ISDN Systems, Vol. 22,
No. 2, Sept. 1991, pp. 103-109.

5. W. Hibbard, C. Dyer, and B. Paul, "Dis-
play of Scientific Data Structures for Al-
gorithm Visualization," Proc. Visualiza-
tion 92, IEEE CS Press, Los Alamitos,
Calif., Order No. 3090-02, 1992, pp. 139-
146.

6. A. Kaufman, D. Cohen, and R. Yagel,
"Volume Graphics," Computer, Vol. 26,
No. 7, July 1993, pp. 51-64.

7. R.M. Rabin et al., "Observed Effects of
Landscape Variability on Convective
Clouds," Bull. Am. Meteorological Soc.,
Vol. 71, No. 3, Mar. 1990, pp. 272-280.

8. W.T. Sanders et al., "Preliminary Results
from the Diffuse X-ray Spectrometer."
EUV, X-ray, and Gamma-ray Instrumen-
tation for Astronomy IV, Soc. Photooptical

Instrumentation Engineers, Vol. 2.006,
July 1993, pp. 221-232.

9. E.N. Lorenz, "The Mechanics of Vacilla-
tion," /. Atmospheric Science, Vol. 20,
Sept. 1963, pp. 448-464.

William L. Hibbard is a researcher at the
Space Science and Engineering Center of the
University of Wisconsin-Madison. He is the
principal investigator under the NASA grant
that supported the development of the Vis-5D
and Vis-AD systems and has been an investi-
gator of the Blanca Gigabit Testbed. Hibbard
has been a member of the program commit-
tees for the IEEE Visualization Conferences
from 1990 to 1994.

He received a BA in mathematics in 1970
and an MS in computer science in 1974, both
from the University of Wisconsin-Madison.

Brian E. Paul is a computer scientist at the
Space Science and Engineering Center. His
research interests include computer graphics
and programming languages.

He received his BS in computer science at
the University of Wisconsin-Oshkosh and is
pursuing his master's degree at UW-Madison.
He is a member of the ACM.

David A. Santek is a team leader in the scien-
tific applications area at the Space Science and
Engineering Center. His research interests in-
clude satellite data analysis, image analysis,
and computer graphics.

He received a BS in atmospheric and
oceanic science from the University of Michi-
gan in 1975 and an MS in meteorology from
the University of Wisconsin in 1978.

Charles R. Dyer is a professor in the Depart-
ment of Computer Sciences at the University
of Wisconsin-Madison. His research interests
include computer vision, robotics, and visual-
ization.

He received his BS degree from Stanford,
his MS from the University of California at
Los Angeles, and his PhD from the Univer-
sity of Maryland in 1979. He is on the Advisory
Board of IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence and is program
cochair of the 1996 IEEE Conference on Com-
puter Vision and Pattern Recognition.

Andre Luis Battaiola is a researcher at the In-
stitute National de Pesquisas Espaciais (Na-
tional Institute of Space Research) in Brazil.
His research interests are computer graphics
and scientific visualization.

He received his BS in physics and an MS
and a PhD in electrical engineering from the
University of Sao Paulo, Brazil, in 1982,1987,
and 1992, respectively.

Marie-Francoise Voidrot-Martinez is a com-
puter scientist at Meteo-France. Her research
interests include interactive computer graph-
ics and user-interface design. She received a
degree in meteorology from the French Na-
tional Meteorological School in 1986 and a
master's degree in computer science from the
school of Centrale Paris in 1989.

Readers can contact William Hibbard at the
Space Science Engineering Center, University
of Wisconsin-Madison, 1225 W. Dayton St..
Madison, WI 53706; e-mail whibbard@macc.
wisc.edu.

72
Copyright © 1994 The Institute of Electrical and Electronics Engineers, Inc.

Reprinted with permission from COMPUTER, COMPUTER

Meteorol. Atmos. Phys. 49. 229 254(1992) Meteorology
and Atmospheric

Physics
C Springer-Verlag 1992
Printed in Austria

Department of Meteorology, University of Wisconsin-Madison, Madison, Wisconsin. U.S.A.

An Explicit Three-Dimensional Nonhydrostatic Numerical
Simulation of a Tropical Cyclone

G. J. Tripoli

With 12 Figures

Received January 31, 1992
Revised June 28, 1992

Summary

A nonhydrostatic numerical simulation of a tropical cyclone
is performed with explicit representation of cumulus on a
meso-/? scale grid and for a brief period on a meso-)' scale
grid. Individual cumulus plumes are represented by a combi-
nation of explicit resolution and a 1.5 level closure predicting
turbulent kinetic energy (TKE).

The results demonstrate a number of expected and
unexpected important scale interaction processes. Within
the central core of the developing cyclone, meso-/? convective
regions grow and breakdown into propagating inertia-
gravity waves throughout the lifecycle of the cyclone. In the
early stages, the amplitude of pressure fluctuations associated
with the meso-/? scale convection exceed the central pressure
of the cyclone and strongly modulate its intensity. With each
meso-/? scale pulsation, the cyclone core increases in strength,
measured by the central pressure deficit. The increasingly
strong inertia! frequency of the storm core acts to increasingly
trap the convection induced heating within the core by
balancing the tangential wind against the low central pressure,
before the meso-/? scale convection breaks down and sends
the warmth away as a propagating wave. Eventually, the slow
manifold's amplitude exceeds the amplitude of the meso-/?
scale oscillations and a stable eye region is formed. As inertial
instability increases, increasingly high thermal warmth can
be protected in the core, allowing persistent subsidence to
form and to clear out the cyclone eye.

On the outside of the eye wall, strong inertial stability
gradients in the troposphere cause convective warming to
split the inflow to the eye wall and spawn outwardly
propagating inertia gravity waves. These waves carry away
all of the heating forced by convection that is not inertially
trapped by the eye wall and act as a moderating influence
on storm intensity.

Inertia gravity waves are also spawned in the stratosphere
at the top of the eye wall by the revolution of asymmetric
cumulus structures. In all instances, the tropospheric waves
are coupled to the propagating stratospheric waves which
both move at 35ms"1 . although there are many instances
where the stratospheric waves seem to have no tropospheric
counterpart. Hence the anvil top forcing and low level
breakdown are linked.

The outwardly propagating inertia gravity waves act to
initiate outer bands of convection. This initiation is with the
assistance of low level boundary layer variations of density
related to previous convection and to virga falling from the
anvil which moistens and destabilizes the mid levels of 0,
minimum. The convection initiated by these waves does not
move substantially outward with the wave, although may
appear to develop outward discontinuously.

1. Introduction

The notion of CISK (Conditional Instability of
the Second Kind) was first described by Charney
and Elliasen (1964) as a way to explain the growth
of a hurricane from a weak tropical depression.
The underlying principle is that an ensemble of
deep precipitating cumulus result in deep tropo-
spheric heating which lowers the surface pressure
within the storm, increasing the tangential winds
of the balanced vortex. The friction layer induces
radial inflow which, in turn, forces the convergence
of warm moist marine layer flow into the storm
to fuel the convection. The critical link in this
chain of events was the relationship between

PRECEDING PAGE BLANK NOT FILMED

230 G. J. Tripoli

the surface convergence and the heating function
which is the role played by deep cumulus convection.

Early attempts to model this interaction by
Ooyama (1964) were thwarted by the existence of
nonlinear instability. Charney and Elliasen (1964)
were successful in achieving vortex growth because
they introduced the concept of cumulus param-
eterization which attempted to represent the
effects of cumulus without explicitly resolving
cumulus circulations. Their success together with
Ooyama's experiences led to massive observational
and parameterization development efforts in the
community to accurately define the heating
function hoping that tropical cyclone genesis
could be accurately predicted. Parameterization
theory spread to other areas of meteorological
prediction and theoretical analysis where cumulus
were deemed important, such as general circulation
theory (Arakawa and Schubert, 1974), wave CISK
theory (Lindzen, 1974; Raymond, 1975; Raymond,
1976), mesoscale convective systems (Fritsch and
Chappel, 1980; Kreitzberg and Perky, 1976) and
so on. In all applications, the use of cumulus
parameterization schemes to represent scale
interaction has resulted in little or no increase in
the knowledge of the processes they were designed
to represent. As model resolution increases to
resolve the meso-/? scale, the underlying cumulus
parameterization assumption of scale separation
breaks down.

The development of three dimensional cumu-
lus/mesoscale models in the mid 1970s (Klemp
and Wilhelmson, 1978; Cotton and Tripoli, 1978;
Clark, 1977) led to massive breakthroughs in the
1980s in the understanding of cumulus scale
overturning and gravity wave behavior. At the
same time, scientists were beginning to recognize
important aspects of the CISK process beyond
the effects of Ekman pumping which were highly
dependent upon the structures of the small circu-
lations within the cumulus ensemble. For instance,
gravity waves were proposed as a major component
of spiral bandedness in tropical cyclones (Kurih-
ara, 1976; Willoughby, 1977; Willoughby, 1978;
Willoughby, 1979), the degree to which inertia
gravity waves were spawned by deep convection
was shown to strongly modulate the cyclone
growth rate (Schubert and Hack, 1982), and the
existence of asymmetric wave-like features in the
cyclone circulation were shown to significantly
affect radial momentum transport (Holland, 1983).

In order to build a scale interaction three-
dimensional model of a tropical cyclone, all
thermodynamical and dynamical processes must
be represented simultaneously. Hydrostatic, axi-
symmetric, and cumulus parameterized models
are inadequate for this purpose because of the
built-in biases and restrictions inherent in their
design.

Since Rosenthal (1978) demonstrated that
Ooyama's (1964) concern of nonlinear instability
was somewhat overstated and that explicit con-
vection models on the tropical cyclone scale
were possible, there has been renewed interest in
explicitly representing latent heat release rather
than parameterizing it. With model resolutions
allowed under present computing constraints in
three dimensions, it is still not quite possible to
realistically resolve the true scale of cumulus
plumes. So the debate becomes one of whether
the parameterized approach, with assumed subgrid
scale cumulus ensembles with clouds of assumed
simplistic structures, is more realistic or whether
explicitly predicted convective overturning on the
scale of mesoscale convective systems rather than
individual plumes, is more realistic in a model of
the entire cyclone.

In a relatively short while, that debate will
become irrelevant because plausible model
resolutions will dramatically increase so that
cumulus can be explicitly resolved realistically.
In this paper a nonhydrostatic tropical cyclone
simulation will be presented which has sufficient
grid resolution to explicitly resolve convective
overturning on the full meso-/? scale, and for a
shorter period of simulation, a portion of the
meso-y scale near the eye wall. Unresolved con-
vection was represented by a 1.5 level turbulence
closure scheme.

The purpose of this paper is to explore the
types of internal scale interactions which arise in
a fully three-dimensional non-hydrostatic model
of a tropical cyclone when cumulus are explicitly
represented. As a consequence, it is desirable to
keep the interaction with the initial state and the
initial environment as simple as possible so the
results can be easily understood. It is elected
to simulate the growth of an axi-symmetric
modified Rankine vortex perturbation in an initial
undisturbed marine environment with thermo-
dynamic structure typical for tropical cyclone
development and without mean wind.

An Explicit Three-Dimensional Nonhydrostatic Numerical Simulation of a Tropical Cyclone 231

The next section will describe the numerical
model employed briefly and will be followed by
a section discussing the experimental design. Next
the results will be presented for a 56 hour simulation
period. This will be followed by a section which
attempts to tie the results together to form a
coherent picture of the scale analysis process as it
can be modeled today. Finally, in section 6,
conclusions concerning the implications of these
results will be drawn.

2. Numerical Model

The numerical model used was the Tripoli (1992)
nonhydrostatic mesoscale model. The model was
based on the non-Boussinesq quasi-compressible
dynamical equations. Model thermodynamics
were calculated by integrating the enthalpy con-
serving 0;, along with the total water and several
ice and liquid water precipitating hydrometeor
specific humidities. The thermodynamic system
was closed under the assumption of zero super-
saturation over liquid which also defined diagnostic
relationships for vapor and cloud water. For
these simulations, it was assumed that the entire
grid lies over a body of water and so the model's
terrain following coordinate system was not
implemented. A spherical horizontal coordinate
transformation was implemented for this simula-
tion.

This numerical experiment utilized no cumulus
parameterization despite its meso-/? scale hori-
zontal resolution over the first 50 hours of
simulation. In this way wave scale interactions
generated by the convective motions could be
simulated explicitly, although at times these motions
could significantly depart from realism due to
deficiencies of the resolution. Some of the limitations
of this approach were softened by utilizing a 1.5
level turbulence closure, where turbulent kinetic
energy (TKE) was predicted using a modified form
of the closure developed by Redelsperger and
Someria (1981, 1982), and subsequently used to
form the vertical down-gradient mixing terms.
Some modifications were included to represent
the effects of saturation, ice phase, and precipitation
loading on turbulence generation. A more
complete explanation of the closure is given in
Appendix A.

The 1.5 level closure enabled the mixing effects
of cumulus to be transported by the explicitly

resolved motions. Upscale transport, such as that
caused by subgrid scale motions transporting
subgrid scale fluctuations, and transilient turbu-
lence (Stull, 1989) cannot be represented by the
TKE closure used here. Nevertheless, it has been
found that the simpleTKE closure in conjunction
with partially resolved cumulus updrafts created
realistic vertically oriented plumes of high TKE
which significantly enhance explicitly predicted
vertical transport locally. Also, horizontal advec-
tion of the TKE acted to spread the effects of
cumulus mixing downstream, and in particular,
around the eye wall. This can be significant since
the time scale of turbulent dissipation was
approched by the inertial frequency as the storm
increases in strength. This will be shown in the
discussion of results below.

The surface fluxes of moisture, sensible, and
radiative heat were calculated assuming an ocean
of uniform temperature 301 K. The surface layer
parameterization was based on the Louis (1979)
surface layer, with surface roughness specified as
a function of wave height (Delsol et al., 1971).

Horizontal mixing was based on a deformation
based 2nd order eddy viscosity closure described
by Tripoli and Cotton (1982) with a background
fourth order diffusion as described by Klemp and
Wilhelmson (1978). The 1.5 level closure was
deemed inappropriate for the horizontal because
the issues controlling turbulence were more closely
tied to numerical as well as physical enstrophy cas-
cade rather than subgrid scale dry and moist con-
vective processes which control vertical diffusion.

Radiative transfer in a cloudy atmosphere was
predicted with the radiation parameterization
developed by Chen and Cotton (1983). A modified
form of the Cotton et al. (1986) (hereafter referred
to as CEA) explicit microphysics prediction scheme
was employed. The scheme predicts rain, graupel,
pristine crystals, and snow crystals. Major modi-
fications made were to:

(1) Divide the original pristine ice category into
a snow and pristine category. The modified
pristine category was assumed to be composed
of newly nucleated hexagonal plate crystals of
uniform mass 1 . 5 x l O ~ 1 2 k g . This size was
determined in separate axisymmetric simulations
of a tropical cyclone with explicitly predicted
pristine crystal sizes. The new snow category
was assumed to follow a Marshall-Palmer

232 G. J. Tripoli

distribution with slope and intercept derived
from an explicitly predicted number con-
centration per unit mass, similar to the number
concentration prediction of CEA. The snow
was assumed to have grown from its nucleation
size and to be somewhat rimed.

(2) Aggregated crystals were assumed to be part
of the snow category. Aggregation of snow
and pristine crystals was represented by
appropriate transfers of mass to snow from
pristine crystals and appropriate adjustments
of the predicted snow concentration. The
characteristic snow diameter was limited to
not exceed 0.33 x 10 ~2 m, which was consistent
with the Cotton et al. (1986) aggregate distri-
bution slope.

The CEA model originally grouped both
nucleated and new crystals together. Since a
constant size distribution had been assumed,
massive nucleation at cold temperatures would
drastically alter the average crystal size and
would remove all memory of the growth that
some of the larger crystals had been through.
Here, growth processes were assumed to convert
only a given number of crystals at the specified
mass to the snow category, which itself was
logarithmically distributed. Hence, new and
mature populations of crystals would continue
to exist where massive nucleation occurred.
This was especially important to the simula-
tions of cirrus anvils.

(3) Graupel was represented with a constant slope
Marshall-Palmer distribution, with a charac-
teristic diameter of 2 x 10" 4m. This value was
derived from explicit axi-symmetric simulations
with predicted graupel mixing ratio and
concentration where it was found to be charac-
teristic of the graupel size predicted.

The numerical infra-structure of the model was
based on a hybrid leap frog (dynamics) and
forward (thermodynamics) time integration on
advection with a semi-implicit time split approach
to representing the high frequency pseudo-sound
wave terms. An enstrophy conserving leap frog
advection scheme was used for the integration of
wind and pressure while a forward 6th order
Crowley was used for the integration of the
thermodynamical quantities.

A two-way multiply nested Arakawa "C" grid
system was employed, using a form of the meshing

technique employed by Tremback et al. (1990)
and Clark and Farley (1984) modified for a hybrid
time differencing scheme and to accommodate a
fourth order smoothing operator in the grid
center. The grid nesting scheme was also modified
to allow any nest to move along a specified
trajectory or to move with the surface pressure
minimum.

As shown by Tripoli (1992), the model's mean
mass field must be specified externally because of
the quasi-compressible closure produces a pres-
sure solution unique only to within a constant.
This constant was determined by requiring the
mean surface pressure across the outer domain
to remain constant by making an adjustment to
the mean exner function over the entire domain
at every large grid time step. The adjustment was
made to the exner function so that local hydrostatic
balance was unaffected by the change. In addition
to this adjustment, the outward and inward changes
of mass flux predicted by the external boundary's
radiation condition were forced to balance by
reducing excessive inflow (or outflow) tendencies
on a percentage basis.

3. Experiment Design

The prescribed initial horizontally homogeneous
basic thermodynamic structure was taken from
the temperature and humidity profiles observed
at Kingston, Jamaica, 36 hours before the passage
of Hurricane Gilbert. Initial mean winds were
assumed to be zero.

The grid locations, spacings, lengths, timesteps
and implementation period appear in Table 1.
The outer grid was centered along the expected
path of the modeled storm, while the medium grid
was centered over the location of the initial
perturbation.

The initial mean state was perturbed by a modi-
fied Rankine vortex described in Appendix B. The
vortex was defined by its relative vorticity field
which was set to decrease from 2 x 10 ~4 near the
center, to slightly negative outside the center and
then to increase to zero again. The vorticity field
is adjusted so that the total area weighted negative
vorticity exactly balances the positive vorticity at
a radius of 800 km. Hence no net vorficity was
added to the flow. The stream function field was
formed from the relaxation of the vorticity field
which was in turn used to calculate the wind field.

An Explicit Three-Dimensional Nonhydrostatic Numerical Simulation of a Tropical Cyclone 233

Table 1. Two- Way Nested Grid Setup

Grid

Period of activation
Central latitude
Central longitude
Zonal boxes
Zonal spacing
Zonal domain length
Meridional boxes
Meridional spacing
Meridional domain length
Vertical boxes
Vertical spacing
Domain height
Large timestep
Small timestep

0-56 hr
17.5N
71.0W
64
60km

3840km
64
60km

3840km
42

400-800 m
26km

120s
40s

0-56 hr
16.5N
68.0 W
60
20km

1200km
60
20km

1200km
42

400-800 m
26km
40s
13.3s

8-56 hr
16.5N
68.0 W
64
10km

640km
64
10km

640km
42

400-800 m
26km
20s
6.67s

50-56 hr
18.5N
69.7 W
60
3.3km

198km
60
3.3km

198km
42

400-800 m
26km
6.33s
2.11s

100

200

1000
20 m/s

Fig. 1. Initial sounding observed at Kingston, Jamaica at
0000 UTC 11 September, 1988

The perturbation produced a maximum tangential
wind of 11 ms~ ' at the surface at a radial distance
of 150km from the vortex center.

Corresponding virtual potential temperature
and pressure fields were then calculated using the
nonlinear balance equation. The outer grid per-
turbation pressure field was first found using
Neuman boundary conditions and then normalized
to the observed sounding at the location of
Kingston, Jamaica (Fig. 1). The potential tempera-
ture field was determined by assuming hydrostatic
balance. The medium mesh was dynamically
balanced using Dirchlet boundary conditions on

pressure determined from the integration of the
outer grid.

The third mesh was not implemented until 8
hours of integration in order to conserve computer
resources during the period when the model was
beginning to build an Ekman Layer. The fourth
grid, with a 3.3km horizontal resolution was
implemented for a 6 hour period "at the mature
stage of the simulated tropical cyclone. The limited
time of its use was both because of the high cost
of its use (8 hours of Cray-ymp for 1 hour of
simulation), and because the limited horizontal
extent of the grid required that the eye wall be
contained within a box 200km on a side.

4. Results

4.1 Evolution of Structure

4.1.1 Initial Rapid Growth Phase - Transition
to Tropical Storm

The simulation was initiated at 0000 LST. Because
the initial modified Rankine vortex was specified
to be nondivergent, the vortex must have developed
a divergent wind component by frictional processes
to initiate convective activity. In this section, the
modeled transition from a balanced1 and non-
divergent vortex, to a developing tropical cyclone

1 "Balanced" refers to the state where the wind and mass
fields are linked to each other so that the time tendency for
horizontal divergence vanishes, as dictated by the nonlinear
balance equation.

234 G. J. Tripoli

(e)

Fig. 2. Contours of zonal (u) and meridional (i-) wind components at intervals of 2ms ' over a region 600km across centered
near the vortex core and viewed from the second mesh. Simulation time is (a) 5hr, (b) 7hr, (c) 8hr, (d)9hr , (e) lOhr and f) 11 hr
of simulation

is described. Admittedly, the modeled transition
was strongly dependent on the initial structure of
the Rankine vortex, and such transitions in a real
developing cyclone were likely to be strongly
dependent on the nature of the initial perturbing

disturbance and large scale forcing. It was however
instructive to look at the modeled process of
transition in order to gain some insight into the
nature of the explicit interaction between a weakly
inertially stable vortex and relatively strong, and

An Explicit Three-Dimensional Nonhydrostatic Numerical Simulation of a Tropical Cyclone 235

at times dominant, deep convection processes in
three dimensions.

During the first 5 hours of simulation, surface
friction gradually weakened the initial tangential
wind in the lowest layer causing it to turn slightly
inward. Figure 2a depicts the variation of the
zonal and meridional wind components (w and v
respectively) at 5 hours. The intersecting « and r
contours formed a grid at the center of rotation.
The u and v grid direction, if defined to be the
direction of the central t; component contour
pointing toward negative u values, indicated the
relative degrees of convergent and rotational flow.
The initial u and v grid direction, with only a
cyclonic rotational wind, pointed directly north.
By five hours, a convergence was evident by the
slight veering of the u and i> grid direction.

By 7 hours, it was found that the surface u and
r grid in the inner vortex had begun to back,
indicative of the development of divergence in the
vortex center. This resulted from a maximizing of
surface convergence at a radius of 250-300 km
which was roughly equivalent to the radius of
peak velocity specified initially for the Rankine
vortex. This forced a shallow upward circulation
at the radius of maximum convergence, which
subsequently forced mass inward, above the surface
layer toward the vortex center. That, in turn,
caused the surface pressure in the center to rise
slightly, reducing the horizontal pressure gradient
at the center. As a result, the flow inside the
convergence ring became unbalanced and began
to diverge outward, strengthening the convergence.

As the convergence sharpened, a circular ring
of condensate formed from air being forced upward
to the lowest condensation level (LCL). Peak
vertical motions grew very slowly at this time
before the moisture reached the level of free
convection (LFC). By 8 hours, Fig. 2c showed an
amplified convergence ring. As a result of inward
angular momentum transport, peak winds had
increased slightly and regained most of the speed
lost to friction earlier.

Shortly after 9 hours (Fig. 2d) the forced cloud
ring reached the LFC and the vertical velocities
began to dramatically increase from magnitudes
of centimeters per second to meters per second.
The deepening convection warmed the air at mid
to upper levels, and resulted in a more rapid
lowering of the surface pressure which greatly
enhanced the surface convergence into the ring

and hence the vertical growth rate of the ring as
well.

In general, because convection favors the
smallest scales in both the radial and tangential
directions, any asymmetric perturbation will likely
initiate a tangential variation of the convection.
In this otherwise symmetric initial perturbation,
the only asymmetry, besides the beta effect, was
the tangential variation of the finite differencing
truncation error. This had a distinctly tangential
wave number four variation due to the rectangular
grid geometry. This very small tangential per-
turbation grew rapidly and by 10 hours (Fig. 2e),
a distinct pattern of four dominant convective
centers appeared, with some weaker meridional
variation of intensity superimposed from the beta
effect.

The role of convection in forcing surface con-
vergence became dominant over the frictional
effects by this time. As a result, the surface velocity
fields converged into these convective systems to
the point that the flow in the major vortex center
actually became anticyclonic while the four con-
vective centers each developed closed circulations
of their own. In fact, at 10 hours, the surface lows
beneath the convective systems reached a pertur-
bation pressure (perturbation from the horizontal
mean) of — 5.5hPa while the central pressure of
the parent vortex pressure was — 3.5 mb. This was
0.5 hPa greater than the initial surface pressure.
Hence, the initial modified Rankine vortex had
broken up into four separate meso-/J scale con-
vective systems.

Simulated precipitation formed within the
individual convective systems and, as with any
unbalanced convective system, maturity was
reached and the system progressed into a break-
down phase (Tripoli and Cotton, 1989). This
resulted in the formation of deep internal waves
radiating from the center of the collapse. Phase
speeds were calculated from animated sequences
of the vertical motion field and found to be about
35ms"'. The collapse also resulted in the rise of
the surface pressure beneath the convective centers.
Convergence, forced at upper levels within the
parent vortex center, resulted in a strong surface
pressure decrease to — 11 hPa by 11 hours (Fig. 2f).
Also evident were outward propagating waves in
the M and v fields indicated by the wave like
structures in the contours away from the center.
Three dimensional visualization of these waves

236 G. J. Tripoli

16
U

12
10

10 15 20 25 30 35

9°
80
70

•2 60
S 50
1 40
| 30
I 20

r:s o(
,5101000
~ 100000
g 99000
t 98000
t 97000
5 96000
£ 95000
| 94000
E 93000

92000

40 45 50

10 15 20 25 30 35 40 45 50 55

50 55

Fig. 3. Graphs of (a) peak updraft, (b) peak wind
speed and (c) minimum surface pressure over the
storm integration volume of the finest grid activated
as a function of time from 0 to 56 hr

(not shown for this particular time) showed these
waves to be spiral bands of vertical motion, not
associated with deep convection outside the inner
convergence ring. The bands sloped upward and
outward, indicative of upward and outward
propagation (Durran, 1981).

It must be recognized that the precise number
and sizes of the mesoscale convective systems
formed were probably greatly affected by the
initiating mechanism from which they were created.
In this simulation it was the tangential variation
resulting from numerical truncation that caused the
four cell convective system structure. The model
grid resolution of the simulation was also an
important factor, but not thought to be the
dominant one since the meso-/? scale systems were
over 15 grid lengths across and so not near the
smallest scale possible. It is most reasonable to
expect that in a more realistic scenario, the con-
vection would have developed a strong tangential
variation as it did here, although the size and
number of systems would have been dependent on
variations in initial conditions. It is also likely that
given no radial variation initially, there is an
optimal size and number of convective systems

that would form. Nevertheless, these results
suggested that even minor departures from axi-
symmetry would take precedence over any tendency
for an optimal size in determining the scale of the
initial convective systems forming in the vortex. It
is perhaps unsettling to this study that there is no
reason to believe that this would not have a
significant impact on the evolution of the cyclone.

After the 11 hour integration time, another
period of meso-/? scale growth ensued. Here, the
low pressure again became most intense beneath
three primary convective systems, reaching
— 7.5 hPa between the most intense system,
compared to —6.5 hPa beneath the parent vortex
central pressure. Note, however, that the parent
vortex had closed the gap between its intensity
and that of the meso-/? scale convective systems
of the first growth period. This was a result of the
growth of the slow manifold2 in response to long-
term inertial adjustment to the convective heating.

: The slow manifold here reverses to the balanced part of
the system, which evolves with inertial freq uencies as opposed
to fast manifold modes which evolve with frequencies related
to the Brunt Vaisala frequency.

An Explicit Three-Dimensional Nonhydrostatic Numerical Simulation of a Tropical Cyclone 237

The growth and decay cycle of mesoscale con-
vective system (MCS) activity surrounding the
cyclone core continued for several hours. During
this time, the amplitude of the slow manifold
increased in strength and eventually reached the
point where it could maintain inflow over and
above the modulated inflow and outflow of the
surrrounding convective systems. This occurred
between 16 and 18 hours of simulation. This
pulsating development process was also shown by
Tripoli and Cotton (1989) to be an important
component of the organization of erogenic
mesoscale convective systems and could be viewed
as the realization of the geostrophic adjustment
process described theoretically by Schubert and
Hack (1982).

During this period of growth which began at 9
hours of simulation, a rapid acceleration of the
tangential wind occurred. Figure 3 shows the
evolution of peak vertical motion, peak horizontal
wind gust, and lowest surface pressure. The peak
wind gust was somewhat less related to the
tangential wind during the early stages because of
the strong divergent wind in the early stages of
storm development. Sustained tangential winds
were found to be near 15ms"1 at 11 hours and
20ms'1 at 13 hours and 22 ms'1 at 14 hours.
Hence, the tropical storm phase was reached
around 14 hours of simulation, approximately 5
hours after the first free convection. The surface
low at the center of the storm vortex was — 8.5 hPa
perturbation pressure of 1002mb. Since the 14
hour time was actually in a peak MCS phase, the
surface pressure was actually 0.5 hPa higher in the
center than it was at 13 hours. Nevertheless, the 14
hour time marked the first point where the surface
pressure remained equal to or lower than the MCS
pressure lows surrounding the vortex center during
the MCS phase.

Figure 4 shows the microphysical, TKE, 9'v,
vertical motion (viewed from below to see the
low-level vertical motion), 6e and potential vorticity
at 14 hours. The Ertel potential vorticity (Z) used
is defined as:

= prj-V6, (1)

where p is air density, rj is the absolute vorticity
vector and 9 is the potential temperature. The view
is from the 2nd grid nest in order to attain a storm
scale perspective.

Note that at that time, spiral bands were already
apparent in the cloud water field. Precipitation
was evident beneath the developing storm. At that
time, a cirrus anvil was in the initial stages of
formation. There was a false eye within the con-
densate field resulting more from the absence of
convective towers than from forced subsidence.
This can be seen from the lack of a warm core in
the 0,./.

The microphysics of the convective regions
were dominated by pristine crystals at 12-15 km,
snow at 5-12 km, graupel at 5-7 km AGL, and
rain below the melting level. Primary precipitation
growth occurred by the Bergeron-Findeisen pro-
cess followed by riming within the supercooled
liquid water to produce graupel. The graupel then
melted and formed rain. The snow, composed
primarily of aggregates and rimed crystals reached
average water contents in excess of 0.6 x 10"6

g m ~ 3 at 10 km AGL (above ground level). Graupel
reached contents near 2 x 1 0 ~ 6 g m ~ 3 and melted
entirely before reaching 3km AGL. The massive
melting between 3 and 5km AGL was found to
have a major impact on the entire storm evolution
and will be discussed in more detail below. Rain
reached contents near 5x 1 0 ~ 6 g m ~ 3 from colli-
sion coalescence growth. This produced peak
rainfall rates of over 9 cm per hour at the surface.

Figure 4 also shows that the TKE field formed
vertically erect plumes of vertical mixing in the
vicinity of the deep convective towers. The TKE
reached peak magnitudes of 10-20 m2s ~2, showing
that considerable vertical mixing assisted the
explicit vertical transport. Nevertheless, peak
vertical velocities within explicit convective
motions were reaching 6-12ms"1 at that time.
This was large considering the meso-/? scale of the
fine mesh.

Vertically propagating internal waves within
the stratosphere were evident in the 0J. field.
Animated visualization of the development showed
that they emanated from overshooting updrafts
and were spawned in a spiral with an angular
frequency at the center equal to the angular
frequency of the cyclone. This frequency was
related to the combined lifecycle of the elevated
cloudtop and the time it took to pass a point while
circling the storm core. The outward propagation
phase speed was 35ms"1, calculated by clocking
the wave front through a 40 minute animated
propagation sequence. The vertical wavelength of

238 G. J. Tripoli

(a)

Y

Fig. 4. The simulated three-dimensional storm viewed over the entire second grid (region is 1200km across) and at 14 hr
showing: (a) and overhead view of the 0.01 x 10~ 6 gm" 3 condensate surfaces with north pointing up (the rain and graupel surfaces
are darkely shaded, the cloud water and snow surfaces are lightly shaded, and the pristine crystal surface is partially transparent),
(b) the view of the condensate surfaces described in a) from the south, (c) the view of the 2m2 s2 TKE surface from the south, (d)
an oblique view of the 5.1 K ffv surface from the west, (e) oblique view of the 0.3 ms~' (lightly shaded) and —0.3ms"1 (darkly
shaded) vertical motion surface from below with north facing up (note east is to the left here) (f) oblique view of the 0.5 PVU
surface from the south, and (g) an oblique view of the 355 k Ot surface from the south

the internal waves was about 9km while the
horizontal wave length was approximately 150km.
Defining the linear gravity phase speed of:

N
(2)

where N is the Brunt Vaisala frequency of the
stratosphere calculated to be 2.4 x 10 ~2 and / is
the vertical wavenumber given by:

(3)

An Explicit Three-Dimensional Nonhydrostatic Numerical Simulation of a Tropical Cyclone 239

Fig. 5. Same as Fig. 4, except for 26 hr of integration

and L. is the vertical wavelength, then cp = 34.6
ms"1, which is precisely the simulated phase
speed.

The vertical motion field, viewed from below,
showed the geometry of both the vertical motion
associated with the MCSs and that associated
with the gravity waves at all vertical levels. Some
spiral bands were visible aloft in this figure,
associated with the propagating stratospheric

waves. Deep vertical plumes of vertical motion in
excess of 1 ms ~', not depicted in this figure existed
in association with the MCS activity.

The potential vorticity field showed a small
mid-tropospheric maximum had begun to develop
in association with diabatic sources within the
convection at 14 hours. Finally, the 9e field showed
growth of the 355 K. surface, near the ocean
surface, but not yet a consistent vertical plume of

240 G. J. Tripoli

the 355 K surface on the scale of the 20km
averaged grid. The peak 6e at the surface roughly
coincided with the strongest surface winds and
hence the strongest moisture fluxes resulting from
the bulk surface flux formulation.

4.1.2 Development of Inertially Stable
Vortex Center - Transition to Hurricane

Figure 5 depicts the storm structure at 26 hours as
the first rapidly deepening phase (which began just
after 14 hours of simulation) was concluding. The
local time was 0200 LST. By that time the surface
pressure had decreased to 950 mb, for a net drop
of 52 hPa in the 12 hr period since the 14 hour time
discussed earlier. Peak horizontal winds had
increased to average speeds approaching 70 ms ~ ',
clearly reaching the hurricane intensity range.

The condensate field showed that the convective
activity had greatly spread outward from the eye
wall in a banded structure. Low elevation liquid
only stratiform cloudiness was associated with
much of the banded cloudiness, showing that the
clouds were forced by the bands rather than the
clouds forcing the bands.

The vertical motion field exhibited a good eye
wall within the troposphere with a series of spiral
vertical motion bands radiating outward from the
center at all levels. The spiral bands of vertical
motion were most apparent within the stratosphere
and had amplitudes of 0.25 to 0.5ms"1. Over
approximately 30% of the region, however, the
stratospheric bands extended downward into the
troposphere, where a second vertical motion
maximum was found approximately one vertical
wavelength below the stratospheric maximum.
The spiral bands were associated with a temperature
perturbation of 5-10K amplitude in the strato-
sphere and less than 2 K in the troposphere.

Over much of the region, the bands extending
into the lower troposphere were coincident with
the condensate discussed above. Animated
visualization of the condensate field and vertical
velocity field demonstrated that the condensate
field was not moving outward with the waves.
Instead, the waves tended to organize and amplify
existing cloudiness as they propagated through
the cloudiness. The clouds within the bands,
tended to be short lived when compared to the
propagating bands. This made individual groupings
of clouds impossible to track for more than a

couple of hours. Over the period they did exist,
however, and they seemed to spiral slightly inward,
with the low level flow. In this sense, they behaved
similarly to the mesoscale convective systems at
earlier times.

The outlying regions of cloudiness were found
to have a significant impact on the surface layer
de field, creating relatively cold pockets. It was
found that these cold pockets grew strongest from
the melting of graupel at the melting level. In fact,
in at least one case, a 6e minimum was formed at
the surface from melting above, which was less
than the environmental minimum. These thetae

minima proved to be long-lived and subsequently
worked their way into the eye wall. Moreover, the
stronger maximum seemed to initiate new con-
vection when intersecting with outward propagating
waves. As these density currents became caught up
in the vortex, they tended to elongate in the
horizontally sheared flow and become band-like
themselves.

The surface beneath regions of convection within
the eye wall was found to be associated with a
relative 8e minimum itself for the reasons discussed
above for the outer bands. This produced a mild
density current and a local pressure increase at the
surface. This undoubtedly enhanced the con-
vergence into the eye wall. Moreover these density
currents together with the density currents merging
from the outer bands enhanced the asymmetry of
the eye wall, sometimes resulting in deep convec-
tion over only half of the eye wall. In fact, it was
rare to have a completely closed pattern of heavy
surface rain beneath the eye wall.

As these density currents moved around the
eye wall, they seemingly split off the outer edges
of the surface pressure gradient field, giving rise
to the outwardly propagating bands which were
distinctly visible in animated sequences of surface
pressure. Since the outward propagating bands
were also closely connected with the stratospheric
forcing, the split in surface pressure gradient
occurring at the formation of the band was
inherently coupled to the stratospheric formation
associated with the moving elevated cloudtop.

The predicted TKE structure showed that there
was a continued existence of deep mixing processes
in support of the crudely resolved explicit deep
convection. The TKE within the eye wall had
begun to form a closed cylinder in the lower
portion of the eye wall, with individual plume

An Explicit Three-Dimensional Nonhydrostatic Numerical Simulation of a Tropical Cyclone 24!

structures remaining aloft. This was indicative of
the emphasis of storm scale spiraling eye wall
convection in the lower levels. This resulted from
increasing inertial stability which suppressed the
development of divergent wind in response to the
heating in favor of a rotational flow. Note also the
extensive anvil level canopy of high TKE produced
as a result of both shear production from the outflow
layer and byoyant production from radiative
cooling at the anvil top.

The 0j, field showed clear evidence of a warm
core by 26 hours, forced by subsidence from the
stratosphere. The development of the warm core
was associated with the cessation of the growth
and breakdown process of MCS activity in the eye
wall discussed earlier. Prior to the development of
sufficient inertial stability of the vortex, the sub-
sidence warming forced by individual convective
plumes resulted in the breakdown of the convection
in the eye wall due to the destruction of low level
pressure gradients supporting the MCS inflow. As
the storm scale vortex increased in inertial stability,
inertial frequencies increased to the point where
the tangential wind of the vortex could adjust to
the warming so that divergent flow from the eye wall
into the eye would not form and act to destroy eye
wall convection. Hence by 18 hours of simulation,
the individual plumes ceased their periodic break-
down in the eye wall, and the growth of a persistent
warm core commenced.

This was shown clearly by Fig. 6 which depicts
a series of trajectories at the early stage of storm
development centered around 14 hours and the
maturing stage centered around 26 hours. Note
that in the early stage, the updraft trajectories
spiraled into the center at the surface and then
moved nearly straight up in deep convection
plumes. At the later time (Fig. 6b), the trajectories
spiraled upward in the lowest 5km and then
moved vertically upward. As the storm increased
in intensity toward 50 hours (Fig. 6c) the spiral
became deeper with little or no explicit vertical
movement suggestive of vertical convection. Instead
of spiral convection dominated, which was indi-
cative of the dominance of the inertial frequency
over the convective and gravity wave frequencies.

The continued growth of the inertially stable
vortex was also evident by the formation of a
strong potential vorticity maximum of up to 2
PVU at the storm core. A strongly varying potential
vorticity field was induced in the lower stratosphere

Fig. 6. Oblique view of air trajectories through storm core,
viewed from the south centered at (a) 14 hr, (b) 38 hr and
(c) 48 hr of integration time

by the penetration of convection from below. The
potential vorticity structure at the tropopause
was characterized by a core of high positive
potential vorticity surrounded by regions of negative
potential vorticity induced by convective momentum
transport from below.

At this time, the 355 6e surface had formed a
vertical conduit within the storm core and from
the surface to the stratosphere. The increased
surface values of 9e were distinctly banded, and
associated with the banded structure of the
cloudiness and vertical motion field.

The increased inertial stabilization of the eye
wall was clearly evident in the evolution of the
surface pressure and wind vector fields displayed
in Figs. 7 and 8. At 14 hours of simulation.

242 G. J. Tripoli

Fig. 7. Surface pressure field contoured at intervals of 1 hPa every four hours beginning at 14 hr of integration with (a) and
ending at 54 hr with (k). The pressure at 56 hr (1) is shown

multiple pressure centers were found, while the
velocity field was characterized by a series of
minor vortices within the primary circulation. By
18 hours a dominant storm core low pressure had
emerged and by 22 hours a nearly axi-symmetric

low pressure core was evident. At the same time a
convergent eye wall flow became more visibly
consolidated into a circular convergence band and
by 26 hours it became reduced in size to approxi-
mately 150 km in diameter.

An Explicit Three-Dimensional Nonhydrostatic Numerical Simulation of a Tropical Cyclone 243

Fig. 8. Same as Fig. 7 except wind vectors are shown instead of pressure at surface level

Outside the storm core, the tangential variation
of the pressure structure remained. It was asso-
ciated with the movement of gravity waves and
with regions of convection where density currents
were formed. With each major wave node emana-
ting from the core, the rate of pressure fall was

momentarily reduced, suggesting that the gravity
wave activity was weakening the warm core, and
hence reducing the rate at which the cyclone could
deepen. Thus, the convection heating was balanced
inertially within the core, but continued to form
wave activity outside the core where inertial

244 G. J. Tripoli

Fig. 9. Same as Fig. 4, except for 38 hr of integration

stability was less. This is again consistent with
adjustment theory posed by Schubert and Hack
(1982) (Schubert and Hack, 1982).

4.1.3 Inertially Stable Vortex Attains
Quasi-Steady Balanced State
at 38 Hours - Hurricane Stage

The three dimensional storm structure at 38 hours
(1400 LST) is depicted in Fig. 9. At this time the

minimum surface pressure had fallen to 942 mb,
or another 8 mb since the 26 hour time. In fact, all
of the pressure fall was before 30 hours when the
sun rose above the horizon. Overall, the pressure
evolution was much less dramatic than the previous
12 hours and, the times of maximum pressure fall,
roughly coincided with darkness.

At the 38 hour analysis lime the cirrus anvil,
composed of pristine crystals with contents of
about 0.5 gm "3, had expanded beyond the second

An Explicit Three-Dimensional Nonhydrostatic Numerical Simulation of a Tropical Cyclone 245

grid. The vertical motion continued to maintain
a circular eye wall, however, the banded structure
outside the eye wall had become somewhat
fragmented. This seemed to be a result of the
convection in the outer bands creating gravity
waves of its own, interfering with the more coherent
waves emanating from the eye wall.

Systematic warming of the anvil top in the
afternoon hours was evident in the O'c field. It was
also evidenced by a weaker TKE maximum at the
upper surface of the anvil and the more shallow
penetration of the TKE field due to increased
stability aloft . The lesser vertical penetration of
convection was also evident in the potential vorti-
city field, which seemed to produce less excitation
of stratosphere turbulence than earlier.

Significant outlying convective activity remained,
as evidenced by the condensate fields. Comparison
of this numerical simulation with a host of previous
similar simulations, suggested that much of the
outlying convection was supported by the anvil
itself. It has been found that the amount of outlying
convection was quite sensitive to the amount of
water carried out from the center in the anvil. The
precise reason why has not been investigated at
this time, however, it is speculated that the precip-
itation may have moistened and destabilized
the low to mid levels of the troposphere, releasing
the thermal "cap" imposed on outlying convection
created by forced subsidence. This enabled the
spiral inertia-gravity waves emanating from the
center to initiate convection more readily. In fact,
in one simulation similar to the one described in
this paper except that there was no radiation and
there was a slightly different setting on pristine
crystal size, the anvil size was dramatically reduced
and almost all of the outlying convection was
eliminated. This resulted in long term dramatically
coherent stratospheric bands over the entire 50
hours of simulation. It is likely that result was at
least partially a result of the radiation difference
and remains a topic for future research.

Associated with inertial stabilization at 38 hours
was the substantial weakening of peak convective
updrafts to 6-10 ms ~'. This was likely due at least
partially to the inertial stabilization of the vortex,
although outlying convective updrafts would not
be expected to decrease for that reason. Another
probable reason was the diurnal stabilization of
the upper troposphere in response to daytime
warming, which has already been suspected to

have weakened the TKE and potential vorticity
fields. The fact that the peak updraft and pressure
falls increased again after the next sunset, seem to
support this hypothesis.

4.1.4 Explosive Deepening Resumes
After Sunset

Shortly after sunset, which was at 42 hours of
simulation (1800 LST), strong deepening of the
storm resumed and the central pressure fell from
952mb at 45 hours to 922 hPa at 53 hours for a
total fall of 85 hPa from the initial vortex speci-
fication.

The simulation at 50 hours was depicted in
Fig. 10. At this time a massive "tree trunk" of
355 K 6e rose upward within the eye wall. Con-
vection was more limited to the eye wall and inner
bands.

TKE field again began to penetrate into the
lower stratosphere as they did at the 28 hour
analysis time, although there was an absence of
strong TKE along the upper surface of the cirrus
anvil, suggesting increased stability over the
previous night. It is expected that this may have
been a result of the accumulated warming of the
region during the day, the effects of which remained.

The warm core remained strong, but was con-
nected to strong warming spread along the base
of the anvil as a result of longwave absorption of
upwelling radiation from low levels. The potential
vorticity maximum continued to be maintained
also at 50 hours, although greater perturbation
of the stratospheric potential vorticity field again
commenced in response to the deepened convection.

The eye wall diameter remained at 120 km, with
an eye diameter of about 30km. Peak tangential
winds increased in response to the new growth to
80 ms ~' by 50 hours of integration.

4.1.5 Extended Simulation with Meso-y
Scale Resolution

Because the simulated eye wall had stabilized at
a mean diameter less than 200km, it was deemed
deemed feasible to add a fourth grid with 3.3 km
horizontal resolution to better resolve eye wall
processes. The grid was added at 50 hours, and
the integration was extended to 56 hours. The
vertical motion field shown in Fig. 10 shows that
the peak vertical velocities responded immediately
to the increase resolution but then tended back

246 G. J. Tripoli

(a > <

Fig. 10. Same as Fig. 4, except for 50 hr of integration

downward. This probably resulted from a short
term imbalance of the core resulting from less
overall horizontal dissipation in the balance as a
result of less numerically related smoothing. The
peak surface wind speed also momentarily gusted
to over 85ms""1, but then weakened to previous
levels. Surprisingly, the minimum surface pressure
continued on the same trend downward it began
at 45 hours and then stabilized at between 922
and 925mb.

Figure 11 shows the predicted three-dimensional
fields after 56 hours. Overall, they did not look
substantially different than they did with the
10 km resolution when interpolated to the second
grid. Some finer structure of the inner bands and
within the TKE field was apparent.

To better depict the structure of the inner core,
selected fields of the simulated eye wall within the
4th grid were displayed with full resolution.
Figure 12 depicts the cloud, TKE. w, potential

An Explicit Three-Dimensional Nonhydrostatic Numerical Simulation of a Tropical Cyclone 247

(a)

Fig. 11. Same as Fig. 4, except for 6hr of integration

vorticity and 9e fields on the high resolution grid.
Here the fine structure of the spiraling vertical
motion field was readily apparent. The eye wall
was constructed of several asymmetric bands of
vertical motion. The cloud field was shown to
almost totally lack cumulus structure and instead

gave the appearance of a spiral shaped stratiform-
like cloud. The spiral structure appeared strongly
in the upper surface of the cirrus canopy, as was
commonly observed by satellite.

Note also the more continuous spiraling ap-
pearance of the 6e surface maximum. This was a

248 G. J. Tripoli

Fig. 12. The simulated three-dimensional storm structure viewed over the fourth grid (region is 198km across) and at 56 hr
showing: (a) an overhead view of the 0.01 x 10 ~ 6 gm ~3 condensate surfaces with north pointing up (the rain and graupel surfaces
are darkly shaded, the cloud water and snow surfaces are lightly shaded, and the pristine crystal surface is partially transparent),
(b) oblique view of the condensate surfaces described in a) from the south showing wave like texture to upper cloud surface, (c)
oblique view of the 2m2 s~2 TKE surface from the northwest, (d) overhead view of the 0.5ms"1 (lightly shaded) and —0.5ms"1

(darkly shaded) vertical motion surface from below with north facing up (note east is to the left here) (e) oblique view of the 0.5
PVU surface from the south, and (f) an oblique view of the 359 K. 0, surface from the south

An Explicit Three-Dimensional Nonhydrostatic Numerical Simulation of a Tropical Cyclone 249

result of the higher resolution depiction of the eye
wall density current next to the inwardly spiraling
flow.

The TKE field was confined to a considerably
smaller region of the plume. This might be expected
because a greater portion of the updraft was
resolved explicitly and so the subgrid scale became
relatively laminar, except for some local instabi-
lities within bands.

The potential vorticity field shows considerably
more structure presented on this grid. Contour
cross sections through the field at low levels (not
shown here) show that the potential vorticity was
layered into the main center forming a spiral itself.

The inertial stability can be defined as:

(4)

where C is the relative vorticity,/is the coriolis
parameter, R is the distance to the vortex center,
and VT is the tangential wind of the vortex.

Examination of the low level inertial field (not
shown) showed that the minimum of potential
vorticity within the spiral was associated with a
minimum of inertial stability just outside the eye
wall. In fact, the inertial stability formed a spiral
relative to the near spiral bands and even became
negative within the split where the band formation
was occurring at 56 hours. The inertial stability
was maximum within the band, but still very
strong within the eye itself. Hence where outward
propagating bands were forming, a strong gradient
of inertial stability was apparent across the region
of convection.

This explains why the outer edge of the eye wall
convection split forming the band. On the inside of
the eye wall, the subsidence warming by the con-
vection resulted in gradient wind adjustment
and thus not weakening the eye wall. On the
outside edge of the eye wall, angular momentum
transported in and brought around the storm led
to weakened inertial stability. This caused
convergence into the eye wall to be weakened,
throwing the eye wall convection into a breakdown
mode. This in turn caused the surface pressure in
that region of the eye wall to rise while the pressure
outside the eye wall had fallen. This weakened the
updraft and gave rise to an outwardly propagating
inertia-gravity wave.

It is clear that a coherent relationship between
the stratospheric wave and the tropospheric wave

was maintained throughout the inertia-gravity
wave spawning process. The extent to which
resonance helped determine the frequency of con-
vection, the optimal storm rotation rate and a host
of other possibilities, will remain an intriguing
topic for future research.

5. Discussion of Scale Interactions

The above results described several scale inter-
action processes occurring during the simulated
tropical cyclogenesis. These processes have not
been widely discussed before, primarily because
previous numerical simulations have used
simplified hydrostatic, axisymmetric and cumulus
parameterized frameworks which poorly represent
such processes. Although all of the processes
described have not been proven to exist in nature,
their existence in this simulation raises interesting
questions and gives valuable insight into how
three-dimensional tropical cyclones might explicitly
interact with convection. The following is a brief
summary of the major types of scale interaction
noted and their impact on the lifecycle of the
simulated storm.

5.1 Simulated Mesoscale Convective Systems

Convective plumes were simulated to preferentially
separate into meso-/? scale entities in the early
stages of storm development, before strong inertial
balance evolved. These entities, showing both a
strong gradient balanced and divergent part,
appeared in the pressure field as Rossby wave-like
disturbances as described by Challa and Pfeffer
(1980). The divergent part of the circulation,
driven by the latent heating aloft, acted to contract
the vorticity field to produce the wave.

The simulated embedded MCSs underwent
growth and breakdown cycles similar to those
described by Tripoli and Cotton (1989a). These
cycles were characterized by a period of growth
where low level convergence was drawn into the
system at sufficient magnitudes to fuel the system
growth, while divergence or detrainment was
produced at upper levels. When low level con-
vergence was interrupted, the level of no horizontal
divergence in the updraft moved upward leading
to the entrainment of lower 6e air and further
interruption of the fuel supply. The process has
been described theoretically by Raymond (1984)
for the wave-CISK problem, where the growth

250 G. J. Tripoli

process was described as an advectire mode of
unstable growth. Raymond found breakdown
occurred when the surface divergence/convergence
was upset giving rise to propagating modes of
inertia-gravity waves.

The breakdown process, once initiated continues
because the propagating gravity waves become
the growth modes. This process was fundamentally
similar to that which led to the breakdown of
single cumulus plumes on the 20 minute time scale
except for the processes which initiate the break-
down phase. Hence, the field of growing and
collapsing MCSs continuously emitted inertia
gravity waves which move about the storm, and
eventually dissipate or move into the stratosphere
where the model's absorbing layer removed them.

5.2 Gravity Wave Formation Induced
by Locally Weakened Inertial Stability

Asymmetric surface deformation fields produced
by convergence of flow into the developing ring of
maximum winds produced a tangentially varying
angular momentum field, which when advected
around the vortex produced regions of weak
inertial stability or inertial instability. These
instabilities locally weakened the convergent flow
into the eye wall by allowing the flow to
respond to subsidence warming outside the eye
wall. This could initiate the local breakdown of
convection in the eye wall and could give rise to
the formation of a propagating inertia gravity
waves in the form of outward propagating bands
of vertical motion, temperature and pressure.
These waves, which propagated radially outward
at approximately 35ms~ ', appeared to be always
coupled with a stratospheric wave of similar phase
speed.

The relationship between the upper and lower
inertia-gravity waves was by no means just a
coincidence, since the breakdown of the eyewall
convection at lower levels was also tied to a
collapsing cloud top. It is interesting that the
growth and breakdown process seemed to take on
a continuous form in the eye wall. The convection
moved around the eye wall with different sections
of the eye wall containing convections at different
stages of the process, and thus resulting in the
continuous emission of spiral gravity wave activity.
At later times, the simulation seemed to prefer a
tangential wave number one, with one dominate

side of upward motion. There were periods however,
where more continuous eye wall convective activity
was apparent.

5 J Simulated Eye Wall During the Hurricane
Stage

As the tangential wind of the vortex increased in
the hurricane stage, and the core reaches greater
inertial stability, the tendency for the low level
wave like MCSs within the eye wall jet were
suppressed. Whereas individual air trajectories
move vertically in the early phase of the storm
within the individual convective systems, the grid
scale air trajectories in the eye wall move in a
cyclonic upward spiral during the hurricane stage,
suggesting a dominance of the inertial frequency
over the convective frequency within the eye wall.
Since the predicted TKE magnitudes remained
high in the eye wall, this motion could be inter-
preted to mean that individual convective plumes
may have remained, although perhaps not always
traversing the entire depth of the troposphere. On
the other hand, MCSs, or substorm scale groupings
of convective plumes were eliminated during the
hurricane stage in favor of a single eye wall system.

The lowered production of gravity wave energy
in a hurricane has been discussed before as a
natural consequence of the geostrophic adjustment
process (Schubert and Hack, 1982). The lesser
production of gravity wave energy has been linked
to greater efficiency of growth and hence an
acceleration of the growth rate of tropical cyclones
as they approach maturity. In this simulation, this
process was seen explicitly as a changing form
of the mesoscale convective entity from cyclic
convective entities to a quasi-steady eye wall
circulation.

5.4 Simulated Eye During the Hurricane Stage

Another consequence of the inertial stabilization
of the eye wall convection was the formation of a
true "eye". In the early depression and tropical
storm stages, an intermittent clearing in the storm
center resulted by the emphasis of convection
along the annulus of high winds where the surface
fluxes of 6e were highest. This appearance would
be less likely if a mean wind was considered, which
would somewhat negate that effect. The early
eye-like structure exhibited only intermittent
subsidence within and was too large in diameter.

An Explicit Three-Dimensional Nonhydrostatic Numerical Simulation of a Tropical Cyclone 251

As the storm reached hurricane stage, however,
and upward motion became more axisymmetric
along the eye wall, mean subsidence developed to
the surface producing an eye 20-30 km in diameter.
This resulted because the inertial frequency of the
storm increased to exceed that of the formation of
divergent wind in response to the convective
heating. As a result, the central warming no longer
forced nor fueled convective breakdown in the eye
wall and became long-lived.

5.5 Microphysics Feedbacks

It was found that the convective regions produced
surface Oe minima, primarily as a result of extensive
melting in the 3-5 km AGL layer. These surface Qe

minima outside the eye wall showed long-term
persistence and, once formed, tended to be asso-
ciated with more long term convection.

The 9e minima, became entrained into the inward
spiral of inflow and seemed to be focal points for
the initiation of new convection by spirally banded
banded gravity waves passing overhead.

The ice anvil also appeared to have a substantial
impact on storm structure and growth. It is expec-
ted that the radiative feedback was of importance
because of its affect on increasing upper tropo-
spheric stability during the day and decreasing it
during the night. This may have helped to duct
tropospheric gravity waves beneath the unstable
anvil top, enabling spiral cloud band formation at
greater distances from the core.

The other major impact hypothesized was the
anvil's impact on low level stability as a result of
the virga falling into the 9e minimum. This would
have tended to weaken tropospheric stability to
the point that outwardly propagating inertia-
gravity waves could more easily initiate clouds or
unstable convection.

The present results combined with earlier studies
such as Kanak (1990), Kanak and Tripoli (1990)
and other unreported preliminary experiments
suggest, that in the absence of a high ice water
content in the cirrus anvil, the diurnal radiative
effect of the anvil dominates and the existence of
outlying convective activity took on a diurnal
fluctuation in intensity. When essentially no anvil
was present, outlying convection became virtually
nonexistent. Hence radiative transfer combined
with microphysical processes seemed to have a
dramatic influence on storm intensity, structure,

growth rate and nature of internal scale inter-
action.

6. Conclusions

This paper described nonhydrostatic and three-
dimensional scale interaction simulations of a
tropical cyclone. The numerical model successfully
simulated tropical cyclogenesis using a 1.5 level
turbulence closure to represent cumulus activity
on a meso-/? scale nested grid system. Although
the simulation was not of a real storm situation,
the storm genesis from a prescribed initial vortex
appeared to be realistic. Important features of
simulated scale interaction were demonstrated,
some of which have been implied in the literature
previously and some of which are apparently new.
The major conclusions are as follows:

• The scale interaction within the simulated
tropical cyclone occurred in two major phases
summarized as follows:

(1) The "tropical depression" stage made up the
first phase of scale interaction, and was
characterized by the proliferation of meso-
/? scale growing and decaying convectively
forced disturbances which spawned deep
propagating inertia-gravity waves. Waves
were spawned in both the stratosphere and
troposphere. The amplitude of the pressure
ocscillation beneath the MCSs exceeded the
central pressure of the storm.

(2) The "tropical storm" stage marked the period
where the storm's central pressure exceeded
the amplitude of the fluctuation in the sur-
rounding convection. This enabled a
continuous warm core to grow and maintain
mean subsidence for increasingly long
periods. Convective entities within the eye
wall became longer lived as a result of an
increasing portion of the induced warming
being captured within the inertially stable
eye wall without loss of surface convergence.

(3) The "hurricane" stage was characterized by
inertially balanced eye-wall convection which
maintained continuous eye subsidence which
allowed the subsidence to work it way to the
surface. At that time the cyclone pressure
became nearly axisymmetric inernally
although important asymmetries existed
outside the eye wall due to inertia-gravity

252 G. J. Tripoli

wave activity. Convection in the eye wall
became less cellular with updrafts taking on
the scale and geometry of the eye wall itself.
The eye wall at times seemed to behave as a
single convective cell.

• Simulation with a meso-y resolving grid of
3.3 km spacing within the eye wall had a surpri-
singly small impact on the storm evolution,
although much smoother and more coherent
looking features were simulated. The results
suggested that a 10km horizontal resolution
was likely sufficient to approximate mature
tropical cyclone dynamics.

These simulations crudely begin to unfold the
explicit scale interaction processes which exist, but
offer the reader little confidence that the answer has
been found. Instead, they instill a sense of uneasiness
that there are important essential processes within
convective weather systems that have never been
addressed theoretically or within predictive model
frameworks. As research numerical models become
capable of better representing these process by
simulating a greater range of wave numbers using
larger grids, a better understanding of the processes
will be achieved, new questions will be posed and
requirements for accurate prediction will be made.

Acknowledgements

The author would like to thank Kathy Kanak, who helped
develop the tropical cyclone model and analysis system
and ran the first high resolution three-dimensional experi-
ments. Thanks also to Pete Pokrandt for useful comments
and his help with model development. Thanks to Mr. Brain
Paul for his considerable help in customizing visualization
software for this paper. Jill Bushner and Bonnie Tripoli
helped editing the manuscript and preparing the figures. The
numerical computations were performed, on the NCAR
(National Center for Atmospheric Research) CRAYs and on
the University of Wisconsin-Madison Space Sciences and
Engineering Center Stellar GS-2000 super graphics work
station. NCAR is partially supported by the National Science
Foundation. This work was supported under NSF Grants
ATM-88-05460 and ATM-91-01434and NASA grant NAG8-
828 for the visualization.

Appendix A

Level 1.5 Closure

The level 1.5 closure scheme is based on the scheme presented
by Redelsperger and Sommeria (1981) (hereafter referred to
as RS) with some modification. For a complete derivation,
the reader is referred to that paper. Here, the modifications

to the RS scheme are presented and the final form of the
implementation of the scheme is given.

The closure simply involves an alternate procedure for
computing the mechanical (KM) and thermal (K.H) eddy
mixing coefficients used in the second order diffusion term.
In the case of the hurricane, the scheme is only applied to
the calculation of vertical eddy mixing coefficient. The TKE
is defined as:

e = 0.5u1. (A l)

where u, is the three dimensional velocity tensor and the
prime refers to the turbulent deviation from the resolved
scale. Retaining only the largest order terms defined in RS,
the vertical mechanical mixing coefficient is defined as:

(A2)
1 -t-max<0. C,/?,-)

where /. is the vertical grid spacing, C,, = ~, and R, is the
Richardson number, given by:

.V2

/?,=
D2 '

(A3)

where N is the Brunt-Vaisala frequency and DfJ is the
deformation tensor. The constant C, is defined to be:

C,=
3CC9

(A4)

where C = 4.0 and C0=1.2. The thermal eddy mixing
coefficient is related to the mechanical mixing coefficient by
the formula:

KM 2C H '

where CH = 4.

The tendency equation for TKE is given by:

di

(A5)

+max(0,C,R i)

3
(A6)

where ut is a velocity tensor, x, is the cartesian distance, and
C, is the dissipation coefficient which is set to C, = 0.7 except
near the surface where it is ramped up to C£ = 2.7.

The buoyancy production (term involving ,V2 in A6) is
the primary term driving the development of deep subgrid
scale moist convective overturning. The vertical thermal
buoyancy driven acceleration of velocity can be defined as:

T-l "A
buoyancy ^0

(A7)

where 00 is a reference state potential temperature and 0,.,,
is a mixed phase virtual potential temperature defined as:

+0.61<f,
-On (A8)

1.0 + q,

where 9 is the potential temperature, <j,, q,, and q, are the

An Explicit Three-Dimensional Nonhydrostatic Numerical Simulation of a Tropical Cyclone 253

specific humidities of vapor, liquid and ice in the system.
This form of virtual potential temperature is useful because
it takes into account both the effects of vapor and water
loading in addition to that of temperature in creating buoyancy.

Following RS, the buoyancy production term is related
to the vertical heat flux by:

(A9)

where cp is the specific heat at constant pressure, Tis the
temperature and Lm is the latent heat of phase change defined
as:

(A10)

where L,., and Ln are the latent heats of evaporation and
sublimation respectively and w, is a weighting function used
to represent the change from liquid to ice in the temperature
range of 253-273 K given by:

/, / AT-273.16\\
, = mm l,max 0,

V V 20.0))
(A l l)

The latent heating term is to take into account the effects of
heat released or absorbed by phase changes associated with
either saturated ascent or melting and evaporation on
unsaturated decent. The vapor change is defined as:

\dqm
•f. = \ .-

(.£ -

tor «. > 4,
m'm(dqm + (q, - qv), q, + «j,.) for qc < q,'

(A 12)

where q, is the phase weighted saturation mixing ratio, Ef

is an assumed precipitation vaporization efficiency, taken
here to be Ep = 0.5, and qm is the change in vapor mixing
ratio due to phase change over one grid volume which
can be estimated (Cotton and Tripoli, 1978) as:

' -I

eLmgv

RcJ2

(A 13)
- 1

where R is the gas constant and e = 0.622.
The Brunt-Vaisala frequency implied by Eq. A9, is also

used to define the Richardson number. This from of the
Brunt-Vaisala frequency has been found to effectively force
deep mixing plumes, which represent cumulus reasonably
well, when the circulation is partially resolved by the grid.

Appendix B

Rankine Vortex Initialization

The initial wind circulation is built from a specified vorticity
field by solving the Poisson equation for stream function.
The vorticity field is given by:

._K(x,)(;,
'"lo

(o r R < R 2

R2

(Bl)

are relative vorticity values for the
components comprising the vortex

respectively and R and K2 = 800km are the great circle

where
vortex

£, Ci. and £2
and two

distances to the vortex center for an arbitrary location and
the location and the outer limits of the circulation
respectively. The vortex strength is varied with height by
the relationship:

for .x 3<r,
(B2)

where 2, = 10km and r 2 = 1 3 k m . The inner vorticity
component is defined:

- _" Jn(O.IK*/Jli)'
»l ~ ^mai K » (B3)

where Rt = 400km is the radius by which the inner vorticity
is reduced by one order of magnitude, and £„,,„ = 2.0 x 10 ~4

is the center vorticity value.
The outer vorticity field is added to force the average

vorticity added by the perturbation to zero and is given by:

K.]
RJ\ . f R' sinf

(B4)

where the horizontal averaging operator is defined for some
arbitrary variable f to be:

YdA

[(B5)

dA

where A is the area over which the average is taken, which
in this case, is the area within R2.

References

Arakawa, A., Schubert, W. H., 1974: Interaction of a cumulus
ensemble with the large scale environment. Part I. J. Atmos.
Sci., 31,674-701.

Challa, M., Pfeffer, R. L., 1980: Effects of eddy fluxes of
angular momentum on model hurricane development. J.
Atmos. Sci.,31,1603-1618.

Charney, J., Eliassen, A., 1964: On the growth of the hurricane
depression. J. Atmos. Sci., 21,68-75.

Chen, C, Cotton, W. R., 1983: A one-dimensional simulation
of the stratocumuluscapped mixed layer. Bound-Layer
Meteor., 25,289-321.

Clark, T. L, 1977: A small scale dynamic model using a
terrain-following coordinate transformation. J. Comp. Phys.,
24,186-215.

Clark, T. L., Farley, R. D., 1984: Severe downslope windstorm
calculations in two and three spatial dimensions using
anelastic interactive grid nesting: A possible mechanism for
gustiness. J./4tmos. Sc/., 41,329-350.

Cotton, W. R., Tripoli, G. J., 1978: Cumulus convection in
shear flow - three-dimensional numerical experiments.
J. Atmos. Sci., 35,1503-1521.

Cotton, W. R., Tripoli, G. J., Rauber, R. M., Mulvihill. E. A.,
1986: Numerical simulation of the effects of varying ice
crystal nucleation rates and aggregation on the processes
on orographic snowfall. J. Climate. Appl. Meteor., 25,
1658-1680.

254 G. J. Tripoli: An Explicit Three-Dimensional Nonhydrostatic Numerical Simulation

Delsol, F., Miyakoda. K., Clarke. R. H., 1971: Parameterized
processes in the surface boundary layer of an atmospheric
circulation model. Quart. J. Roy. Meteor. Soc..97.181 -208.

Durran, D. R., 1981: The effects of moisture on mountain lee
waves. Technical Report PhD Thesis NTIS PB82I56621,
Massachusetts Inst i tute of Technology.

Fritsch, J. M., Chappel, C. F., 1980: Numerical simulation of
convectively driven mesoscale pressure systems. Part I.
Convective parameterization. J. Annas. Sci.. 37,1722-1733.

Holland, G. J., 1983: Angular momentum transports in tro-
pical cyclones. Quart. J. Roy. Meteor. Soc.. 109.187-209.

Kanak, K. M., 1990: Three-Dimensional Nonhydrostatic
Numerical Simulation of a Developing Tropical Cyclone.
Master's thesis. University of Wisconsin-Madison.

Kanak, K. M., Tripoli, G. J., 1990: Three-dimensional, non-
hydrostatic simulation of scale interaction within a tropical
cyclone. In: Preprints, Fourth Conference on Mesoscale
Processes. Boulder, Colorado, pp. 28 - 29. Boston, MA:
American Meteorological Society.

Klemp, J. B., Wilhelmson, R. B., 1978: The simulation of
three-dimensional convective storm dynamics. J. Atmos.
Sfi.,35,1070-1096.

Kreitzberg, C. W., Perky, D. J., 1976: Release of potential
instability: Part I. A sequential plume model within a
hydrostatic primitive equation model. J. Atmos. Sci.. 33,
456-475.

Kurihara, Y., 1976: On the development of spiral bands in
tropical cyclones. J. Atmos. Sci., 33,940-958.

Lindzen, R. S., 1974: Wave-CISK in the tropics. J. Atmos. Sci.,
31,156-179.

Louis, J. F., 1979: A parameteric model of vertical eddy fluxes
in the atmosphere. Bound.-Layer Meteor.. 17,187-202.

Ooyama, K., 1964: A dynamical model for the study of
tropical cyclone development. Ceofis. Intern.. 4,187-198.

Raymond, D. J., 1975: A model for predicting the movement
of continuously propagating convective storms. J. Atmos.
Sci.. 32,1308-1317.

Raymond, D. J., 1976: Wave-CISK and convective meso-
systems. J. Atmos. Sci.. 33,2392-2398.

Raymond, D. J., 1984: A Wave-CISK model of squall lines.
././Irnios. Sci.. 41,1946-1948.

Redelsperger, J. L., Sommeria, G., 1981: Methode de repre-
sentation de la turbulence d'echelle inferieure a la maille

pour un modele tri-dimensional de convection nuageuse.
Bound.-Layer Meteor.. 21.509-529.

Redelsperger, J. L., Sommeria, G.. 1982: Methode de repre-
sentation de la turbulence associe aux precipitations dans
unmodele tri-dimensional de convection nuageuse. Bound.-
LayerMeteor..24,23\-252.

Rosenthal. S. L., 1978: Numerical simulation of a tropical
cyclone development with latent heat release by the
resolvable scales I: Model description and preliminary
results. J. Atmos. Sc i. 35,258-271.

Schubert. W. H., Hack, J. J., 1982: Inertial stability and
tropical cyclone development. J. Atmos. Sci.. 39,1687-1697.

Stull, R. B., 1989: An Introduction to Boundary Layer Meteoro-
logy. Kluger Academic press.

Tremback, C. J.. 1990: Numerical Simulation of a Comet live
Comple: Model Development and Numerical Results. PhD
thesis. Colorado State University. Fort Collins. CO 80523.

Tripoli, G. J., 1992: A nonhydrostatic numerical model
designed to simulate scale interaction. Man. Wea. Rev.. 120,
(in press).

Tripoli. G. J., Cotton, W. R., 1982: The Colorado State
University three-dimensional model - 1982. Part I: General
theoretical framework and sensitivity experiments. J. Rech.
Atmos.. 16,185-220.

Tripoli, G. J., Cotton, W. R., 1989: Numerical study of an
observed erogenic mesoscale convective system. Part 1:
Simulated genesis and comparison with observations.
Man. Wea. Rev.. 117,273-304.

Willoughby, H. E., 1977: Inertia-buoyancy waves in hurri-
canes. J. Atmos. Sci.. 34,1028-1039.

Willoughby, H. E., 1978: A possible mechanism for the
formation of hurricane rainbands. J. Atmos. Sci., 35,
838-848.

Willoughby, H. E., 1979: Excitation of spiral bands in hurri-
canes by the interaction between the symmetric mean
vortex and a shearing environmental steering current.
J. A tmos. Sci.. 36,1226-1235.

Author's address: G. J. Tripoli, University of Wisconsin-
Madison, Department of Meteorology, Madison, Wisconsin
53706. U.S.A.

Verleger: Springer-Verlag KG, Sachsenplalz 4—6, A-1201 Wien. - Herausgeber: Prof. Dr. Elmar R. Reiter, Wels Research Corporation. Boulder. CO 80301, L'.S A. -
Redaktion. TurkenschanzstraBe 18, A-1180 Wien. — Satz und Umbruch: TTiomson Press (India) Lid.. New Delhi; Reproduktion und Offseldruck: Dnickerei O. Grasl.

A-2540 Bad Voslau. — Verlagsort: Wien. — Herslellungson Bad Voslau — Printed in Austria.

Offenlegung gem § 25 Abs 1 bis 3 Mediengesetz
Unternehmensgegensland: Verlag von wissenschaftlichen Buchern und Zeitschriften.

An der Springer-Verlag KG isl betciligt: Dr Konrad F Springer, Sachsenplau 4—6, A-1201 Wien. a!s Kommanditist zu 52,38% Geschaflsfuhrer: Dr Konrad F. Springer.
Prof Dr. Dietrich Gdlze. Ing. Wolfram F Joos. Dipl.-Kfm Claus Michaletz und Rudolf Siegle. alle Sachsenplatz 4-6. A-1201 Wien

A Lattice Model for Data Display

William L. Hibbard1&2, Charles R. Dyer2 and Brian E. Paul1

1 Space Science and Engineering Center
2Computer Sciences Department

University of Wisconsin - Madison

Abstract

In order to develop a foundation for visualization,
we develop lattice models for data objects and displays
that focus on the fact that data objects are
approximations to mathematical objects and real
displays are approximations to ideal displays. These
lattice models give us a way to quantize the information
content of data and displays and to define conditions on
the visualization mappings from data to displays.
Mappings satisfy these conditions if and only if they are
lattice isomorphisms. We show how to apply this result
to scientific data and display models, and discuss how it
might be applied to recursively defined data types
appropriate for complex information processing.

1 Introduction

Robertson et.al. have described the need for formal
models that can serve as a foundation for visualization
techniques and systems [13]. Models can be developed
for data (e.g., the fiber bundle data model [4] describes
the data objects that computational scientists use to
approximate functions between differentiable manifolds),
displays (e.g., Benin's detailed analysis of static 2-D
displays [1]), users (i.e., their tasks and capabilities),
computations (i.e., how computations are expressed and
executed), and hardware devices (i.e., their capabilities).

Here we focus on the process of transforming data
into displays. We define a data model as a set U of data
objects, a display model as a set V of displays, and a
visualization process as a function D: U -* F. The usual
approach to visualization is synthetic, constructing the
function D from simpler functions. The function may be
synthesized using rendering pipelines [5, 11, 12],
defining different pipelines appropriate for different types
of data objects within U. Object oriented programming
may be used to synthesize a polymorphic function D [9,
15] that applies to multiple data types within U.

We will try to address the need for a formal
foundation for visualization by taking an analytic
approach to defining D. Since an arbitrary function
£>:[/-» V will not produce displays D(u) that effectively
communicate the information content of data objects
u e U, we seek to define conditions on D to ensure that it
does. For example, we may require that D be injective
(i.e., one-to-one), so that no two data objects have the
same display. However, this is clearly not enough. If we
let [/and Fboth be the set of images of 512 by 512 pixels
with 24 bits of color per pixel, then any permutation of U
can be interpreted as an injective function D from U to V.
But an arbitrary permutation of images will not
effectively communicate information. Thus we need to
define stronger conditions on the function D. Our
investigation depends on some complex mathematics,
although we will only present the conclusions in this
paper. The details are available in [7].

2 Lattices as data and display models

The purpose of data visualization is to communicate
the information content of data objects in displays. Thus
if we can quantify the information content of data objects
and displays this may give us a way to define conditions
on the visualization function D. The issue of information
content has already been addressed in the study of
programming language semantics [14], which seeks to
assign meanings to programs. This issue arises because
there is no algorithmic way to separate non-terminating
programs from terminating programs, so the set of
meanings of programs must include an undefined value
for non-terminating programs. This value contains less
information (i.e., is less precise) than any of the values
that a program might produce if it terminates, and thus
introduces an order relation based on information content
into the set of program meanings. In order to define a
correspondence between the ways that programs are
constructed, and the sets of meanings of programs, Scott

PRECEDING PAGE BLANK NOT FILMED
310

developed an elegant lattice theory for the meanings of
programs (16).

Scientists have data with undefined values, although
their sources are numerical problems and failures of
observing instruments rather than non-terminating
computations. An undefined value for pixels in satellite
images contains less information than valid pixel
radiances and thus creates an order relation between data
values. Data are often accompanied by metadata [18]
that describe their accuracy, for example as error bars,
and these accuracy estimates also create order relations
between data values based on information content (i.e.,
precision). Finally, array data objects are often
approximations to functions, as for example a satellite
image is a finite approximation (i.e., a finite sampling in
both space and radiance) to a continuous radiance field,
and such arrays may be ordered based on the resolution
with which they sample functions.

In general scientists use computer data objects as
finite approximations to the objects of their mathematical
models, which contain infinite precision numbers and
functions with infinite ranges. Thus metadata for
missing data indicators, numerical accuracy and function
sampling are really central to the meaning of scientific
data and should play an important role in a data model.
We define a data model U as a lattice of data objects,
ordered by how precisely they approximate mathematical
objects. To say that U is a lattice [2] means that there is
a partial order on U (i.e., a binary relation such that, for
all Mj, M2, Uj e [/, ttj < Hj, Mj < M2 & M2 ̂ «j => Wj = «2

and & - " - "3) tnat

MJ, i/2 e U have a least upper bound (denoted by «j v «2)
and a greatest lower bound (denoted by t/j A w2).

The notion of precision of approximation also
applies to displays. They have finite resolutions in space,
color and time (i.e., animation). 2-D images and 3-D
volume renderings are composed of finite numbers of
pixels and voxels and are finite approximations to
idealized mathematical displays. Thus we will assume
that our display model V is a lattice and that displays are
ordered according to their information content (i.e.,
precision of approximation to ideal displays). In Sections
4 and 5 we will present examples of scientific data and
display lattices.

We assume that U and V are complete lattices, so
that they contain the mathematical objects and ideal
displays that are limits of sets of data objects and real
displays (a lattice is complete if any subset has a least
upper bound and a greatest lower bound). Just as we
study functions of rational numbers in the context of
functions of real numbers (the completion of the rational
numbers), we will study visualization functions between
the complete lattices U and V, recognizing that data

objects and real displays are restricted to countable
subsets of U and V.

3 Conditions on visualization functions

The lattice structures of U and V provide a way to
quantize information content and thus to define
conditions on functions of the form D: U -> V. In order
to define these conditions we draw on the work of
Mackinlay [10J. He studied the problem of automatically
generating displays of relational information and defined
expressiveness conditions on the mapping from relational
data to displays. His conditions specify that a display
expresses a set of facts (i.e., an instance of a set of
relations) if the display encodes all the facts in the set,
and encodes only those facts.

In order to interpret the expressiveness conditions we
define a fact about data objects as a logical predicate
applied to U (i.e., a function of the form P: U -> {false,
true}). However, since data objects are approximations
to mathematical objects, we should avoid predicates such
that providing more precise information about a
mathematical object (i.e., going from ul to u2 where
i/j < «/2) changes the truth value of the predicate (e.g.,
P(u}) = true but P(u2) = false). Thus we consider
predicates that take values in {undefined, false, true}
(where undefined < false and undefined < true), and we
require predicates to preserve information ordering (that
is, if w, < u2 then /"(MJ) < P(u2); functions that preserve
order are called monotone). We also observe that a
predicate of the form P: U -> {undefined, false, true} can
be expressed in terms of two predicates of the form
P: U -» {undefined, true}, so we will limit facts about
data objects to monotone predicates of the form
?:£/-> {undefined, true}.

The first part of the expressiveness conditions says
that every fact about data objects is encoded by a fact
about their displays. We interpret this as follows:

Condition 1. For every monotone predicate
P: U -> {undefined, true}, there is a monotone predicate
Q: V -» {undefined, true} such that P(u) = Q(D(u)) for
each u e U.

This requires that D be injective (if MI * «2 then
there are P such that />(«,) * P(i/2), but if Z)(u,) = D(u2)
then Q(D(ul)) = Q(D(u2)) for all Q, so we must have

The second part of the expressiveness conditions
says that every fact about displays encodes a fact about
data objects. We interpret this as follows:

311

Condition 2. For every monotone predicate
Q: y -+ {undefined, true}, there is a monotone predicate
P: U -» {undefined, true} such that Q(v) = P(frl(v)) for
each v e V.

This requires that £H be a function from Kto t/, and
hence that D be bijective (i.e., one-to-one and onto).
However, it is too strong to require that a data model
realize every possible display. Since U is a complete
lattice it contains a maximal data object A" (the least
upper bound of all members of U). Then D(X) is the
display of X and the notation iZ)(AO represents the
complete lattice of all displays less than D(X). We
modify Condition 2 as follows:

Condition 2'. For every monotone predicate
Q: ^D(X) -> {undefined, true}, there is a monotone
predicate P: U -> {undefined, true} such that Q(v) =
P(D~l(v)) for each v e

These conditions quantify the relation between the
information content of data objects and the information
content of their displays. We use them to define a class
of functions:

Definition. A function D: U -> V is a display
function if it satisfies Conditions 1 and 2'.

In [7] we prove the following result about display
functions:

Proposition 1. A function D: U -> V is a display
function if and only if it is a lattice isomorphism from U
onto ^D(X) [i.e., for all «j, 1/2 e U> D(u\ v u2) =
D(u\) v D(u2) and D(MJ A u2) = D(M,) A D(u2)].

This result may be applied to any complete lattice
models of data and displays. In the next three sections
we will explore its consequences in one setting.

4 A Scientific data model

We will develop a scientific data model that
integrates metadata for missing data indicators,
numerical accuracy and function sampling. We will
develop this data model in terms of a set of data types,
starting with scalar types used to represent the primitive
variables of mathematical models. Given a scalar type s,
let 75 denote the set of possible values of a data object of
the type s. First we define continuous scalars to represent
real variables, such as time, temperature and latitude. If
s is continuous then /5 includes the undefined value,

which we denote by the symbol 1 (usually used to denote
the least element of a lattice), and also includes all closed
real intervals. We interpret the closed real interval [x, y\
as an approximation to an actual value that lies between
x and v. In our lattice structure, these intervals are
ordered by the inverse of set containment, since a smaller
interval provides more precise information than a
containing interval. Figure 1 illustrates the order
relation on a continuous scalar type. Of course, an actual
implementation can only include a countable number of
closed real intervals (such as the set of rational intervals).

[0.0,0.0] [0.01,0.01] [0.5,0.5]

[0.0, 0.01]

[0.0,0.1]

[0.945, 0.945]

/ \
[0.93, 0.95] [0.94, 0.97]

\ /
[0.9,1.0]

Figure 1. The order relations among a few values of a
continuous scalar.

We also define discrete scalars to represent integer
and string variables, such as year, frequency_count and
satellite_name. If s is discrete then Is includes _L and a
countable set of incomparable values (no integer is more
precise than any other integer). Figure 2 illustrates the
order relation on a discrete scalar type.

. . . - 3 - 2 - 1 0 1 2 3 ...

Figure 2. The order relations among a few values of a
discrete scalar.

Complex data types are constructed from scalar data
types as arrays and tuples. An array data type represents
a function between mathematical variables. For example,
a function from time to temperature is approximated by
data objects of the type (array [time] of temperature;).
We say that time is the domain type of this array, and
temperature is its range type. Values of an array type are
sets of 2-tuples that are (domain, range) pairs. The set
{([1.1, 1.6], [3.1, 3.4]), ([3.6, 4.1], [5.0, 5.2]), ([6.1, 6.4],
[6.2, 6.5])} is an array data object that contains three
samples of a function from time to temperature. The
domain value of a sample lies in the first interval of a
pair and the range value lies in the second interval of a
pair, as illustrated in Figure 3. Adding more samples, or

312

increasing the precision of samples, will create a more
precise approximation to the function. Figure 4
illustrates the order relation on an array data type. The
domain of an array must be a scalar type, but its range
may be any scalar or complex type (its definition may not
include the array's domain type).

[1.1,1.6] [3.6,4.1] [6.1,6.4]

Figure 3. An array samples a real function as a set of
pairs of intervals.

{([1 .33, 1 .40], [3.21 , 3.24]), {([1 .1 , 1 .6], [3.1 , 3.4]),

([3.72, 3.73], [5.09, 5.12]), ([3.6, 4.1], [5.0, 5.2D,

([6.21 , 6.23], [6.31 , 6.35])} ([6.1 , 6.4], [6.2, 6.5]).

([7.3, 7.5], [8.1, 8.4])}

{([1.1, 1.6], [3.1, 3.4]),

([3.6, 4.1], [5.0, 5.2]),

([6.1, 6.4], [6.2, 6.5])}

{([1.1.1.6], 1),

([3.6, 4.1], [5.0, 5.2]).

([6.1.6.4], 1)}

<J> (the empty set)

Figure 4. The order relations among a few arrays.

Tuple data types represent tuples of mathematical
objects. For example, a 2-tuple of values for temperature
and pressure is represented by data objects of the type
struct {temperature; pressure;}. Data objects of this type
are 2-tuples (temp, pres) where temp e Itemperature

and pres e Ipressure. We say that temperature and

pressure are element types of the tuple. The elements of
a tuple type may be any complex types (they must be
defined from disjoint sets of scalars). A tuple data object
x is less than or equal to a tuple data object y if every
element of x is less than or equal to the corresponding
element of>>, as illustrated in Figure 5.

([0.3,0.4], [2.3, 2.4])

([0.0,0.9], [2.3,2.4]) ([0.3,0.4], [2.0,2.9])

(1, [2.3, 2.4]) ([0.0,0.9], [2.0,2.9]) ([0.3,0.4], 1)

(1, [2.0, 2.9]) ([0.0,0.9], 1)

\ /
(-L.-L)

Figure 5. The order relations among a few tuples.

This data model is applied to a particular application
by defining a finite set S of scalar types (these would
represent the primitive variables of the application), and
defining T as the set of all types that can be constructed
as arrays and tuples from the scalar types in S. For each
type / e T we can define a countable set Ht of data objects
of type t (these correspond to the data objects that are
realized by an implementation).

In order to apply our lattice theory to this data
model, we must define a single lattice U and embed each
Ht in U. First define X = X{/5 | s e S} as the cross
product of the value sets of the scalars in S. Its members
are tuples with one value from each scalar in S, ordered
as illustrated in Figure 5. Now we would like to define U
as the power set of A' (i.e., the set of all subsets of X).
However, power sets have been studied for the semantics
of parallel languages and there is a well known problem
with constructing order relations on power sets [14]. We
expect this order relation to be consistent with the order
relation on X and also consistent with set containment.
For example, if a, b e X and a < b, we would expect that
{a} < {b}. Thus we might define an order relation
between subsets ofXby:

(1) . 3b e B. a<.b)

However, given a < b, (1) implies that {b} £ {a, b} and
{a, b} < {b} are both true, which contradicts {b} *

313

{a, b}. This problem can be resolved by restricting the
lattice U to sets of tuples such every tuple is maximal in
the set. That is, a set A c X belongs to the lattice U if
a < b is not true for any pair a, b e A. The members of
U are ordered by (1), as illustrated in Fig. 6, and form a
complete lattice (see [7] for more details).

{(A.B.1)}

B,1)}

\
.-

\
{(1,1,1)}

(the empty set)

Figure 6. The order relations among a few members
of a data lattice U defined by three scalars.

(tempi, presl)

object of a
tuple type

{(1, tempi, presl)}

set of one tuple with
time value =1

Figure 7. An embedding of a tuple type into a lattice.

{(timel, tempi),

(time2, temp2),

(timeS, tempS),

(timeN, tempN)}

array of temperature
values indexed by
time values

{(timel, tempi,±),

(time2, temp2,l),

(time3, tempS, 1),

(timeN, tempN.l)}

set of tuples with
pressure values = _|_

Figure 8. An embedding of an array type into a lattice.

To see how the data objects in Ht are embedded in U,
consider a data lattice U defined from the three scalars
time, temperature and pressure. Objects in the lattice U
are sets of tuple of the form (time, temperature,
pressure). We can define a tuple data type
struct{temperature; pressure;}. A data object of this type
is a tuple of the form (temp, pres) and can be mapped to
a set of tuples (actually, it is a set consisting of one tuple)

in U with the form {(1, temp, pres)}. This embeds the
tuple data type in the lattice U, as illustrated in Figure 7.

Similarly, we can embed array data types in the data
lattice. For example, consider an array data type (array
[time] of temperature;). A data object of this type
consists of a set of pairs of (time, temp). This array data
object can be embedded in U as a set of tuples of the form
(time, temp, 1). Figure 8 illustrates this embedding. The
basic ideas presented in Figs. 7 and 8 can be combined to
embed complex data types, defined as hierarchies of
tuples and arrays, in data lattices (see [7] for details).

5 A scientific display model

For our scientific display model, we start with
Berlin's analysis of static 2-D displays [1]. He modeled
displays as sets of graphical marks, where each mark was
described by an 8-tuple of graphical primitive values
(i.e., two screen coordinates, size, value, texture, color,
orientation and shape). The idea of a display as a set of
tuple values is quite similar to the way we constructed the
data lattice U. Thus we define a finite set DS of display
scalars to represent graphical primitives, we define Y =
\{Ij | d e DS} as the cross product of the value sets of
the display scalars in DS, and we define V as the
complete lattice of all subsets A of Y such that every tuple
is maximal i n . l .

set of animation steps:

interval that mark
persists during
animation

location and size
of mark in volume

x

D

tuple of display
scalar values
for a graphical
mark

(time, x, y, z, red, green, blue)

ranges of values
of mark's color
components

red green blue

Figure 9. The roles of display scalars in an animated
3-D display model.

314

We can define a specific lattice V to model animated
3-D displays in terms of a set of seven continuous display
scalars: (x, y, z, red, green, blue, lime}. A tuple of values
of these display scalars represents a graphical mark. The
interval values of x, y and z represent the locations and
sizes of graphical marks in the volume, the interval
values of red, green and blue represent the ranges of
colors of marks, and the interval values of lime represent
the place and duration of persistence of marks in an
animation sequence. This is illustrated in Figure 9. A
display in V is a set of tuples, representing a set of
graphical marks.

Display scalars can be defined for a wide variety of
attributes of graphical marks, and need not be limited to
simple values. For example, a discrete display scalar
may be an index into a set of complex shapes (i.e., icons).

6 Scalar mapping functions

Proposition 1 said that a function of the form
D: U -> V satisfies the expressiveness conditions (i.e., is
a display function) if and only if D is a lattice
isomorphism from U onto ^D(X), a sublattice of V. We
can now apply this to the scientific data and display
lattices described in Section 4 and 5.

The scalar and display scalar types play a special
role in characterizing display functions in the context of
our scientific models. Given a scalar type s e 5, define
C/j c U as the set of embeddings of objects of type s in U.
That is, Us consists of sets of tuples of the form
{(.L,...,6,...,-L)} (this notation indicates that all
components of the tuple are 1 except the s component,
which is b). Similarly, given a display scalar type
d e DS, define Vd c V as the set of embeddings of objects
of type d in V. In [7] we prove the following result:

Proposition 2. If D: U -> V is a display function,
then we can define a mapping MAPD: S -» POWER(DS)
(this is the power set of DS) such that for all scalars s e S
and all for a e Us, there is d e MAPD(s) such that
D(d) e Vj. The values of D on all of U are determined
by its values on the scalar embeddings Us. Furthermore,
(a) If 5 is discrete and d e MAPD(s) then d is

discrete,
(b) If s is continuous then MAPD(s) contains a

single continuous display scalar.
(c) If s * s" then MAPD(s) o MAPD(s") = <fr.

This tells us that display functions map scalars,
which represent primitive variables like time and
temperature, to display scalars, which represent
graphical primitives like screen axes and color

components. Most displays are already designed in this
way, as, for example, a time series of temperatures may
be displayed by mapping time to one axis and
temperature to another. The remarkable thing is that
Proposition 2 tells us that we don't have to take this way
of designing displays as an assumption, but that it is a
consequence of a more fundamental set of expressiveness
conditions. Figure 10 provides examples of mappings
from scalars to display scalars (lotJon is a rea!2d scalar,
as described in Section 7).

type image_sequence =

array [time] of array [latjon] of structure {ir; vis;}

red green blue

Figure 10. Mappings from scalars to display scalars.

In [7] we present a precise definition (the details are
complex) of scalar mapping functions and show that
D: U -> V is a display function if and only if it is a scalar
mapping function. Here we will just describe the
behavior of display functions on continuous scalars. If s
is a continuous scalar and MAP^(s) = d, then D maps Us

to Vj. This can be interpreted by a pair of functions
gs:R x R -> R and hs:R x R -> R (where R denotes the
real numbers) such that for all {(!,...,[x, y],...,!.)} in f/y,

which is a member of Vj. Define functions g's:R -» R
and h's:R ->• R by g'/z) = g/z, z) and h'^z) = h^z, z).
Then the functions gs and hs can be defined in terms of
g's and h's as follows:

(2)
(3)

These functions must satisfy the conditions illustrated in
Figure 11.

Although the complete lattices U and V include
members containing infinite numbers of tuples (these are
mathematical objects and ideal displays) in [7] we prove
the following:

315

Proposition 3. Given a display function D: U -» F,
a data type t e T and an embedding of a data object from
ff f loa e (7, then a contains a finite number of tuples and
D(a) e V contains a finite number of tuples.

r^and

determine
mapping to
interval in a
continuous
display
scalar

no upper bound

^above 04

h% and gs both continuous
and increasing (could
both be decreasing)

interval in a
continuous scalar

no lower bound

Figure 11. The behavior of a display function O on a
continuous scalar interpreted in terms of the
behavior of functions h's and g's.

7 Implementation

The data and display models described in Sections 4
and 5, and the scalar mapping functions described in
Section 6, are implemented in our VIS-AD system [6, 8J.
This system is intended to help scientists experiment
with their algorithms and steer their computations. It
includes a programming language that allows users to
define scalar and complex data types and to express
scientific algorithms. The scalars in this language are
classified as real (i.e., continuous), integer (discrete),
string (discrete), real2d and realSd. The real2d and
real3d scalars have no analog in the data model
presented in Section 4, but are very useful as the domains
of arrays that have non-Cartesian sampling in two and
three dimensions. Users control how data are displayed
by defining a set of mappings from scalar types (that they
declare in their programs) to display scalar types. By
defining a set of mappings a user defines a display
function D: U -> V that may be applied to display data
objects of any type.

The VIS-AD display model includes the seven
display scalars described for animated 3-D displays in
Section 5, and also includes display scalars named
contour and selector. Multiple copies of each of these
may exist in a display lattice (the numbers of copies are
determined by the user's mappings). Scalars mapped to
contour are depicted by drawing isolevel curves and
surfaces through the field defined by the contour values
in graphical marks. For each selector display scalar, the

user selects a set of values and only those graphical
marks whose selector values that overlap this set are
displayed. Contour is a real display scalar and selector
display scalars take the type of the scalar mapped to
them. We plan to add real display scalars for
transparency and reflectivity to the system (to be
interpreted by complex volume rendering of graphical
marks), as well as a realSd display scalar for vector (to
be interpreted by flow rendering techniques).

VIS-AD is available by anonymous ftp from
iris.ssec.wisc.edu (144.92.108.63) in the pub/visad
directory. Get the README file for complete
installation instructions.

8 Recursively defined data types

The data model in Section 4 is adequate for scientific
data, but is inadequate for complex information
processing which involves recursively defined data types
[14). For example, binary trees may be defined by the
type bintree = struct{bintree\ bintree; value;} (a leaf
node is indicated when both bintree elements of the tuple
are undefined). Several techniques have been developed
to model such data using lattices. In the current context,
the most promising is called universal domains [3, 17].
Just as we embedded data objects of many different types
in the domain U in Section 4, data objects of many
different recursively defined data types are embedded in a
universal domain (which we also denote by U).
However, these embeddings have been defined in order to
study programming language semantics, and have a
serious problem in the visualization context. Data
objects of many different types are mapped to the same
member of U. For example, an integer and a function
from the integers to the integers may be mapped to the
same member of U, and thus any display function of the
form D: U -> V will generate the same display for these
two data objects. Thus, in order to extend our lattice
theory of visualization to recursively defined data types,
other embeddings into universal domains must be
developed.

A suitable display lattice V must also be developed
such that there exist lattice isomorphisms from a
universal domain U into V. Displays involving diagrams
and hypertext links are analogous to the pointers usually
used to implement recursively defined data types. Thus
the interpretation of V as a set of actual displays may
involve these graphical techniques. However, since a
large class of recursively defined data types can be
embedded in U, and since V is isomorphic to U, these
graphical techniques must be applied in a very abstract
manner to define a suitable lattice V.

316

9 Conclusions

It is easy to think of metadata as secondary when we
are focused on the task of making visualizations of data.
However, it is central to the meaning of scientific data
that they are approximations to mathematical objects,
and lattices provide a way to integrate metadata about
precision of approximation into a data model. By
bringing the approximate nature of data and displays into
central focus, lattices provide a foundation for
understanding the visualization process and an analytic
approach to defining the mapping from data to displays.
While Proposition 2 just confirms standard practice in
designing displays, it is remarkable that this practice can
be deduced from the expressiveness conditions.

Although we have not derived any new rendering
techniques by using lattices, the high level of abstraction
of scalar mapping functions do provide a very flexible
user interface for controlling how data are displayed.

There will be considerable technical difficulties in
extending this work to recursively defined data types, but
we are confident that the results will be interesting.

Acknowledgments

This work was support by NASA grant NAG8-828,
and by the National Science Foundation and the Defense
Advanced Research Projects Agency under Cooperative
Agreement NCR-8919038 with the Corporation for
National Research Initiatives.

[8] Hibbard, W. L, B. E. Paul, D. A. Santek, C. R. Dyer, A. L.
Battaiola, and M-F. Voidrot-Martinez, 1994; Interactive
visualization of Earth and space science computations.
IEEE Computer special July issue on visualization.

[9] Hultquist, J. P. M., and E. L. Raible, 1992; SuperGlue: A
programming environment for scientific visualization. Proc.
Visualization '92, 243-250.

[10] Mackinlay, J., 1986; Automating the design of graphical
presentations of relational information; ACM Transactions
on Graphics, 5(2), 110-141.

[11] Nadas, T. and A. Foumier, 1987; GRAPE: An environment
to build display processes, Computer Graphics 21(4), 103-
111.

[12] Potmesil, M. and E. Hoflert, 1987; FRAMES: Software
tools for modeling, animation and rendering of 3D scenes,
Computer Graphics 21(4), 75-84.

[13] Robertson, P. K., R. A. Eamshaw, D. Thalman, M. Grave,
J. Gallup and E. M. De Jong, 1994; Research issues in the
foundations of visualization. Computer Graphics and
Applications 14(2), 73-76.

[14] Schmidt, D. A., 1986; Denotational Semantics.
Wm.C.Brown.

[15] Schroeder, W. J., W. E. Lorenson, G. D. Montanaro and C.
R. Volpe, 1992; VISAGE: An object-oriented scientific
visualization system, Proc. Visualization '92, 219-226.

[16] Scott, D. S., 1971; The lattice of flow diagrams. In
Symposium on Semantics of Algorithmic Languages, E.
Engler. ed. Springer-Verlag, 311-366.

[17] Scott, D. S., 1976; Data types as lattices. Siam J. Comput,
5(3), 522-587.

[18] Treinish, L. A., 1991; SIGGRAPH '90 workshop report:
data structure and access software for scientific
visualization. Computer Graphics 25(2), 104-118.

References

[1] Berlin, J., 1983; Semiology of Graphics. W. J. Berg, Tr.
University of Wisconsin Press.

[2] Davey, B. A. and H. A. Priestly, 1990; Introduction to
Lattices and Order. Cambridge University Press.

[3] Gunter, C. A. and Scott, D. S., 1990; Semantic domains. In
the Handbook of Theoretical Computer Science, Vol. B., J.
van Leeuwen ed., The MIT Press/Elsevier, 633-674.

[4] Haber, R. B., B. Lucas and N. Collins, 1991; A data model
for scientific visualization with provisions for regular and
irregular grids. Proc. Visualization 91. IEEE. 298-305.

[5) Haberli, P., 1988; ConMan: A visual programming language
for interactive graphics; Computer Graphics 22(4),
103-111.

[6] Hibbard, W., C. Dyer and B. Paul, 1992; Display of
scientific data structures for algorithm visualization.
Visualization '92, Boston, IEEE, 139-146.

[7] Hibbard, W. L., and C. R. Dyer, 1994; A lattice theory of
data display. Tech. Rep. # 1226, Computer Sciences
Department, University of Wisconsin-Madison. Also
available as compressed postscript files by anonymous ftp
from iris.ssec.wisc.edu (144.92.108.63) in the pub/lattice
directory.

317

Display of Scientific Data Structures for Algorithm Visualization

William Hibbard142, Charles R. Dyer2 and Brian Paul1

1 Space Science and Engineering Center 2Department of Computer Sciences
University of Wisconsin-Madison

Abstract
We present a technique for defining graphical

depictions for all the data types defined in an algorithm,
The ability to display arbitrary combinations of an
algorithm's data objects in a common frame of
reference, coupled with interactive control of algorithm
execution, provides a powerful way to understand
algorithm behavior. Type definitions are constrained so
that all primitive values occurring in data objects are
assigned scalar types. A graphical display, including
user interaction with the display, is modeled by a special
data type. Mappings from the scalar types into the
display model type provide a simple user interface for
controlling how all data types are depicted, without the
need for type-specific graphics logic.

1: Introduction

Designing scientific algorithms is something of an
art. For example, algorithms for extracting useful
information from remotely sensed data are based on well
understood mathematical and statistical techniques, but
often combine these techniques in problem specific ways
that can only be determined experimentally. Scientists
can usually recognize incorrect results in graphical
depictions of the output of their algorithms. To find the
source of errors they need a way to apply this same
visual understanding to the internal logic of their
algorithms. Interactive debugging systems allow
scientists to step through program logic and to print the
values of program variables and arrays, in order to track
down low-level bugs. They need the same sort of
interactive capability applied to diagnosing problems
with high-level algorithm behavior. However, where
low-level logic can be understood from a few printed
values, high-level behavior involves masses of data that
can only be understood through visualization. Thus
there is a need for techniques for generating graphical
depictions of the internal data objects of scientific
algorithms. In order to be useful to scientists, the user
interface for controlling these depictions should be
simple and not require graphics expertise.

The data flow architecture [3] is widely used for
scientific visualization, with implementations including
AVS [9], SGI Explorer, Khoros [7] and apE [2]. It

provides a graphical user interface for specifying
algorithms as networks of modules. The data flow
architecture is popular because of the flexibility of
mixing calculation modules with display modules, and
because of its easy graphical user interface. However,
data flow networks are not generally used for developing
detailed algorithms. Current data flow implementations
support finite sets of data structures; in order to support
algorithm details they would need to support user-
definable, application-specific data structures.

The Balsa and Zeus systems [1] provide a set of tools
for designing visualization environments for algorithms.
Demonstration environments produced using Zeus
provide very detailed and effective views of the internal
workings of complex algorithms. However, the
environment must be custom designed for every
algorithm.

The Powervision system [6] uses an object-oriented
language to support interactive development of image
processing algorithms. The system includes a fixed set
of display methods, defined in terms of a set of virtual
functions for accessing data objects. As algorithm
designers define new object classes, they must ensure
that the virtual access functions extend to those classes,
and may need to design new display methods for
particularly novel classes. The Powervision system
exploits object-oriented techniques to reduce the amount
of program logic needed to display new object classes,
but the system does not eliminate it.

In this paper we describe a technique, that we call the
"scalar mapping technique", for generating graphical
depictions of the internal data objects of scientific
algorithms, without the need for type-specific display
logic. We also describe an implementation of this
technique in the VIS-AD (Visualization for Algorithm
Development) system, an experimental laboratory for
developing algorithms.

2: The scalar mapping technique

The scalar mapping technique defines an infinite set
of data types that can serve as the types of data objects in
a programming language. The data types are defined in
such a manner that every primitive value occurring in a
data object has one of a finite set of scalar types. The
technique also models a graphical display, including user

0-8186-2897-9/92 $03.00 & 1992 IEEE
139

PRECEDING PAGE BLANK NOT FILMED

interaction with the display, as a special data type whose
primitive values have one of a finite set of display scalar
types. Mappings from the scalar types to the display
scalar types provide a simple user interface for
controlling how all data types are displayed, since the
graphical depiction of a data object of any data type can
be derived from the scalar mappings.

2.1: Data types

Define T as the set of types for the data objects in an
algorithm. It is common for a programming language to
define a set of primitive types (e.g. int, real), and to
define a set of type constructors for building the types in
T from the primitive types. We modify this by
interposing a finite set S of scalar types between T and
the primitive types. We define the primitive types as:

PRIM= {int, string, real, real2d, real3d}

where real2d and realSd are pairs and triples of real
numbers. An algorithm designer defines a finite set S of
scalar types, and binds them to the primitive types by a
function P:S -» PRIM. An infinite set T of types can
be defined from S by:

(for/

where (*],...,/„) is a tuple type constructor with element
types tf, and (s -» t) is an array type constructor with
value type t and index type s.

Every primitive value, including an array index
value, occurring in a data object of type t c T, has a
scalar type in 5. This is the key to providing a simple
user interface for controlling the display of all algorithm
data objects. By defining mappings from the scalar
types into a type model of a graphical display, the user
can control the way that all data types are displayed.

2.2: Model of a graphical display as a data type

We model a graphical display by defining a special
display data type. The contents of the display, including
the way its contents change in response to user controls,
form the value of a data object of type display.

The display type is defined in terms of a set DS of
display scalars:

DS={x_axis, yjvds, z_axis, xy_plane, xtjlane,
yz_plane, xyz_yolume, color, contour_l, ...,
contourji, animation, selector_l selectorjn}

The scalar xyz_yolume has primitive type real3d and is a
three-dimensional voxel coordinate. The scalars xjms,
yjvds, Z_axis, xy_plane, xz_plane and yz_plane are real
and real2d Cartesian factors of xyz_volume. The three-
dimensional array of voxels is projected onto the two-
dimensional display screen, and the projection can be

interactively rotated, panned and zoomed under user
control. The scalar color has primitive type real 3d and
is the color value of a voxel. The scalars contourji have
primitive type real and are values attached voxels that
are depicted by iso-value surfaces or iso-value lines
drawn through voxels. The scalar animation has
primitive type int and is the index of an array of voxel
volumes that can be rendered in sequence for animation,
under user control. The scalars selector_i have any of
the primitive types (real, real2d, real3d, int or string)
and are indices of display contents. The display contents
change in response to user control of selector_i values,
providing a way for the display type to model abstract
user interactions with a graphical display.

The display type is defined by:

voxel = (color,contour_l,...,contour_n)

display = (selector _1 -»... (selector _m -»
(animation -» (xyz volume -» voxel)))...)

Each voxel object includes a color value and a set of zero
or more contour_i values that are depicted by iso-level
contours. The number of contour_i values in the voxel
tuple is the number of scalars s e S such that
F(s)=contour, where the function F is part of the display
frame of reference described in Section 2.3. The voxel
objects are organized into a three-dimensional volume
array. An array of voxel volumes is used to model
animation, and nested arrays indexed by selector_i are
used to model user control over the display. The
number of selector_i indices in the display type is the
number of scalars s « S such that F(s)=selector.

2.3: Display frame of reference

Types in 7 are defined in terms of the scalar types S,
and the display type used to model a graphical display is
defined in terms of the display scalar types DS.
Mappings from S to DS create a frame of reference for
generating graphical depictions of data objects with types
in 71. A display frame of reference is defined by
functions:

F:S
FD(s):D(s)

DS\->

D(F (i for s € S

where D(t) is the set of data objects a type t. If F(s)=nil
then FD(s) is undefined and the values of 5- arc ignored
in the display. The function FD determines how display
scalar values are computed from scalar values. The
function:

DISPLAY(F,FD,t):D(t)^ D(display)

is derived from F and FD, and produces data objects of
the display type from data objects of any type t <• T.
The functions F and FD provide a simple way for the
user to control the DISPLAY function, and therefore to
control the display of data objects.

140

3: The VIS-AD system

The scalar mapping technique is implemented in the
VIS-AD system [5], which has been used to demonstrate
the effectiveness of the technique for supporting
experiments with a variety of algorithms, including an
algorithm for discriminating clouds in multi-spectral
satellite images.

The VIS-AD system provides a simple syntax for
defining the set S of scalar types and the function
P:S-* PRIM. The following are examples of scalar
types defined for the cloud discrimination algorithm:

type brightness = real;
type temperature = real;
type variance = real;
type earthjocation = rea!2d;
type image_region = int;
type time = real;
type count = int;

Here brightness and temperature are the visible and
infrared radiance values of pixels in satellite images,
variance is derived from temperature, earthjocation is a
pair of values for the latitude and longitude of pixel
locations, image_region is an index into rectangular sub-
images, time is an index for image sequences, and count
is used for histograms.

The VIS-AD system also provides a simple syntax
for defining types in T using the tuple and array type
constructors. The keyword structure is used for the
tuple constructor. The following are examples of
complex types defined for the cloud discrimination
algorithm:

type visir_image =
array [earth_location] of

structure {
.visir_ir = temperature;
.visir_vis = brightness;

}; e
type visir_set= array [image_region] of visir_image;
type visir_set_sequence = array [time] of visir_set;
type wi_image =

array [earthjocation] of
structure {

.wi_ir = temperature;

.wi_var = variance;

.wi_vis = brightness;
}'»

type wi_set = array [image_region] of wi_image;
type var_image = array [earthjocation] of variance;
type var_set = array [image_region] of varjmage;
type histogram = array [temperature] of count;
type histogram_set =

array [image_region] of
structure {

.histjocation = earthjocation;

.hist_histogram = histogram;

Data objects of type visirjmage are two-dimensional
images of temperature and brightness values, indexed by
earthjocation values. The cloud discrimination
algorithm partitions images into regions, and a data
object of type vLsir_set is an image with partitions
indexed by image_region values. A data object of type
visir_set^sequence is a time sequence of partitioned
images. The wijmage and wijet types are similar to
the visirjmage and visir_set types, with temperature,
variance and brightness values at each image pixel. The
varjmage and var_set types are also similar to the
visirjmage and visirjset types, with only a variance
value at each image pixel. A histogram data object
attaches a frequency count to a set of temperature values,
and a histogram_set object contains a histogram and an
earthjocation value for each image_region value.

The VIS-AD system provides a simple syntax for
specifying a display frame of reference. An example of
a frame of reference definition is:

map earthjocation to xz_plane;
map temperature to y_axis;
map brightness to color;
map variance to y_axis;
map time to animation;
map count to x_axis;
map image_region to selector,

Each of these map statements defines the value of the
function F for a single scalar type in S. Map statements
can also specify values for the FD function; these
examples specify none so defaults are used. F(s)~nil for
any s e S that does not occur in a map statement.

Figure 1: Cloud discrimination algorithm input.

Using this frame of reference, the lower-right
window of Figure 1 shows a top-south view of a data
object of type visir_set_sequence. This data object is the
input to the cloud discrimination algorithm. The text
editor window on the left shows a section of the cloud
discrimination algorithm coded in a language similar to

(See color plates, p. CP-17.)

141
ORIGINAL PAGE IS
OF POOR QUALITY

C. A data object is selected for display by placing the
cursor over any occurrence of its name in this window
and clicking a mouse button. Any combination of data
objects may be selected for display, and all occurrences
of their names are highlighted in reverse video.
Execution breakpoints are set and cleared using the
mouse in this window, and the next program statement
to be executed is highlighted. The small text editor
window at the top of the screen contains the display
frame of reference. The widgets in the upper-right
corner of the screen are used to control animation, to
select ranges for scalars mapped to selector, to adjust
color look-up tables for real scalars mapped to color,
and to select iso-levels for scalars mapped to contour.

Since F(time)=animation in the frame of reference
example, only a single visir_set sub-object is displayed
in Figure 1. Toggling the ANIMATE widget causes the
display to sequence through the object's visir_set sub-
objects. Since F(image_region)=selector, two slider
widgets in the upper-right comer are used to select a
range of values for image_region; all visirjmage sub-
objects are selected in Figure 1. Since F(brightness)=
color, the pixel colors are functions of their brightness
values, according to the color widget in the upper-right
corner of the screen. Since F(earth_loeation)=xz_plane,
the pixels are laid out horizontally. Since
F(temperature)=y_axis, the temperature values of pixels
determine their height in the display. The object
depiction may be interactively rotated, zoomed and
translated in 3-D with simple mouse controls.

Figure 2: A step in discriminating clouds.

Objects are depicted in monochrome when no object
component is mapped to color. When several
monochrome objects are displayed simultaneously, each
object has a different color. Figure 2 shows a south-
west view of five monochrome data objects. The tall
white graph is an object of type histogramjset. The
small blue and yellow spheres indicate the values of
scalar objects ef type temperature, calculated by the

cloud discrimination algorithm as the 10th and 90th
percentiles of the histogram. The purple sphere indicates
the value of a scalar object of type variance, calculated
from the temperature percentiles. The blue-green object
near the bottom has type var_set, and is calculated from
another var_set object by setting those pixels whose
variance is greater than the value depicted by the purple
sphere to a special missing value; these missing pixels
are invisible in the display. Only a single value of
image_region is selected in Figure 2, so the depictions
of the histogram_set and var_set objects are restricted to
single histogram and varjmage sub-objects.

Figure 3: The discriminated clouds.

Figure 3 shows an object of type visir_set_seauence
that is the output of the cloud discrimination algorithm.
It is identical to the object in Figure 1, except that the
values of pixels judged by the algorithm not to be in
clouds have been set to the missing value.

Figure 4: A 3-D scatter diagram of an image.

(See color plates, p. CP-17.)

142

ORIGINAL PAGE IS
OF POOR QUALITY

A second frame of reference example is:

map temperature to x_axis;
map brightness to z axis;
map variance to y axis;
map count to y_axis;
map image_region to selector;
map time to animation;

Since earthjocation does not occur in these map
statements, F(earth_location)=nil and earthjocation
values are ignored in the display. Using this frame of
reference, Figure 4 shows an object of type wi_sa as a
three-dimensional scatter diagram. The view in Figure 4
shows temperature along the horizontal axis and
variance along the vertical axis, and is restricted to a
single wi_image sub-object.

The mappings of temperature and time in the first
frame of reference example can be edited to get:

map earthjocation to xz_plane;
map temperature to selector;
map brightness to color;
map variance to y_axis;
map time to y_axis;
map count to x_axis;
map image_region to selector;

Figure 5 shows the visir_set_sequence object from
Figure 1 in this frame of reference. Since
F(temperature) =selector, two slider widgets in the
upper-right corner of the screen are used to select a
range of values for temperature, and the display is
restricted to those pixels whose temperature values are
within the selected range. Since F(time)=y_axis, the
object's four visir_set sub-objects are stacked along the
yjvds, showing the motion of cloud features.

Rgure 5: A time sequence image object

The frame of reference can be edited again to get:

map earthjocation to xz_plane;
map temperature to color;

map brightness to color;
map variance to y_axis;
map time to animation;
map count to x_axis;
map image_region to selector;

Figure 6 shows the visir_set_sequence object from
Figure 1 in this frame of reference. Since
F(temperature)=color and F(brightness)=color, the
color at each pixel is the average of the colors defined by
the look-up tables for temperature and brightness. The
color map widgets show red intensity proportional to
temperature and blue-green intensity proportional to
brightness. This way of looking at multi-spectral data is
familiar to earth scientists.

Rgure 6: Looking at multiple spectra with color.

The essential feature of the VIS-AD system is its
ability to generate displays of any combination of
algorithm data objects, in a variety of frames of
reference. Editing the algorithm, editing the frame of
reference definitions, setting execution breakpoints,
starting, stopping and single stepping algorithm
execution, and displaying various combinations of data
objects, can all be done highly interactively in an
integrated environment. Data objects may be displayed
in multiple frames of reference simultaneously. If a data
object is enabled for display while the algorithm is
executing, every time the object is modified it will be
flagged for re-display. Thus VIS-AD can be used to
produce animations of running algorithms.

4: Data semantics and data display

4.1: Data semantics

The DISPLAY function was defined in Section 2.3 as
a function from the domain D(f) of data objects of a type
t e T to the domain D(display), so we will describe
these domains. The domains of scalar types are
determined from the domains of their primitive types, by

(See color plates, p. CP-17.)

143

D(s)=D(P(s)). The domain of the primitive type int is
the union of a set of finite sub-domains, each an interval
of integers, as follows:

D(int)= {missing} v \J. .£>(int. .)
* •« j

where i, j and k are integers and the missing value
indicates the lack of information (the use of special
"missing data" codes is common in remote sensing
algorithms). The domain of the primitive type real is
the union of a set of finite sub-domains, each a set of
half-open intervals, as follows:

D(real / 2n),/((*

D(reat) - {missing} u Uf € FWUL s j>n 2 QD(rea/f . . J

where i, j, k and n are integers and Fid is a set of
increasing continuous bijections from R (the set of real
numbers) to R; the functions in Fid provide non-
uniform sampling of real values. The domains
D(real2d), D(real3d) and D(sTring) are similarly defined
as the unions of finite sub-domains.

D((s -> t)) is defined as the union of a set of
function spaces, rather than as the single space of
functions from D(s) to D(r), as follows:

'))= {missing} D(0)

where subs ranges over the finite sub-domains of the
scalar domain D(s), and (O^i,,) -» £(0) denotes the
set of all functions from the set D(sjubf) to the set D(t).
Every array object in D((j -» /)) contains a finite set of
values from D(t), indexed by values from one of the
finite sub-domains of D(s).

The domains of tuple types are defined by:

£>(('l '„))= {missing} u D(r,)x...x D(/n)

Each domain D(t) has a lattice structure [8], with the
missing value as its least element. The half-open
intervals in D(reat) are approximations to values in R
and are ordered by the inverse of set inclusion; that is, in
the lattice structure, an interval is "less" than its sub-
intervals. Values in D(real2d) and D(real3d) form
similar lattices and are approximations to values in R2

and R3. The lattice structure can be extended to array
and tuple types.

The lattice structure of domains, and the definition of
array domains as unions of function spaces, provide a
formal basis for interpreting array data objects whose
indices have primitive types real, real2d or rea!3d as
finite samplings of functions over R, R2 or R3. For
example, a satellite image is a finite sampling of a

continuous radiance field. The VIS-AD programming
language allows arrays to be indexed by real, real2d and
rea!3d values. Navigation (earth alignment) and
calibration (radiance normalization) for satellite images
can be implemented by appropriately defined sub-
domains of D(real2d) and D(real), so that raw satellite
images can be accessed directly in terms of latitude,
longitude and temperature. An expression like
image[loration] is evaluated by resampling the value of
location to the nearest index value of the image array;
the expression evaluates to missing if location is outside
the range of index values of image. Furthermore,
arithmetic expressions evaluate to missing if any operand
is missing. Thus algorithms can combine data from
multiple sources without the need for detailed logic for
resampling, for checking data boundaries, and for
checking for missing data. Although VIS-AD
implements simple resampling for access to arrays with
real, real2d and realSd indices, it would be possible to
implement one or more interpolation schemes.

4.2: The DISPLAY function

There are two equivalent formulations of the
DISPLAY function. One formulation composes the
DISPLAY function from a sequence of basic type
transformations [4]. The other is in terms of a tree
structure defined for data objects, and is described here.
The tree structure TR(o) for objects o is defined
recursively as follows:

1. If o is an array containing value objects o-t,
i= l , . . . ,n , with corresponding scalar index values v-,
then TR(o) is a branch node with sub-nodes TR(o$,
and the value vt is attached to TR(o$. If o has the
missing value, then TR(o) is a leaf node and the
missing value is attached to TR(o).

2. If o is a tuple containing scalar element objects vt,
i=l , . . . ,m, and non-scalar element objects o-t,
i=l , . . . ,n , then TR(o) is a branch node with sub-
nodes 777(0;), and all the values v, are attached to
each TR(o). If n=0 (o has only scalar elements)
then TR(o) is a leaf node, and the values \-t are
attached to that node. If o has the missing value,
then TR(p) is a leaf node and the missing value is
attached to TR(o).

3. If o is a scalar not occurring as a tuple element, then
TR(o) is a leaf node and the value of o is attached to
TR(o).

Define PATH(o) as the set of paths in TR(o) from the
root node to any leaf node. For any p * PATH(o)
define V(p)=v,V2...vn as the string of scalar values
attached to nodes along the path p. Then a string of
display scalar values is calculated from V(p) as:

VD(p)=

144

where Vj e D(J;) and where any spatial coordinate
display scalar values among the FD(sj(v$ are factored
into xjvds, y_axis and z_axis values in VD(p).

The DISPLAY function is computed as:

DlSPLAY(F,FD,t)(o) =
COMPOS1TE((D1SP(VD(p)) \p « PA TH(o)})

where DlSP(VD(p)) is a display object computed from
the string of display scalar values VD(p), and the
COMPOSITE function computes a sbgle object in
D(display) from a set of such objects.

If the leaf node of the path p is generated from an
object with the missing value, then
DISP(VD(p))=missing. Otherwise the DISP function is
computed as follows. Given a string VD(p), for each
s c D5 define N, as the number of values of type s that
occur in VD(p). Compute a voxel object vox=

w j) " f o l l o w s :
"

contourj conu,ur

•f Ncofcr=° and for •=! n. N^,^ ,.=0
then vox=(SPEClALcolor , missing, ..., 'missing)
else

for ^= color, contour _1, ..., contour _n
if N,=0 then wf=missing else wg=(u,+...+uN)/Nf

where SPECIALcofor is the monochrome color value
described in Section 3, and the u-t are the values of type s
occurring in VD(p). For s=x_axis, yjvds and
zjtxis, compute w§ as follows:

if N,=0 then wt=SPECIALt else w/=«1 + ...+«N

where SPECIAL^ is the spatial coordinate of a
distinguished plane perpendicular to the s axis, and the ut
are the values of type s occurring in VD(p). For
s= animation and selector _i, compute wf as follows:

If N,=0 then wt=D(s) else H>,=HN

where wf=D(s) indicates that all values in D(s) arc used
for wt, and UN is the value of type s occurring farthest
from the root in VD(p).

Now the display object d=D!SP(VD(p)) is computed
as follows:

If wf=D(s) was selected for s=animation or selector_it
then the equation above applies for all values of wf in
D(s). All other voxel sub-objects of d are set to missing.

Thus, if the string VD(p) contains exactly one value
for each display scalar, then the color and coniourj
values of VD(p) are set in a single non-missing voxel
sub-object of DISP(VD(p)), indexed by the spatial,
animation and selector _i values of VD(p). However,
undefined and multiply-defined display scalar values are
more complex, and the DISP function handles them in a
way that varies between display scalars. If the value of a
spatial coordinate is undefined in VD(p), the depiction of
p is embedded in a distinguished plane. However, if the

value of s—animation or selector_i is undefined in
VD(p), sets of voxel sub-objects in DlSP(VD(p)) are set
to vox so that the depiction of p it invariant to user
control of 5. Multiply-defined color and contour_i
values are composited by taking their mean, but
multiply-defined spatial coordinates are combined by
taking their sum, so that, for example, the histogram in
Figure 2 is positioned over the appropriate image region.

The COMPOSITE function computes an object in
D(display) from a set of such objects. This computation
is done independently for each voxel sub-object (i.e. for
each combination of sdectorj, animation and spatial
values indexing a voxel sub-object). The color value of
a voxel is computed as the mean of the non-missing color
values of the corresponding voxel sub-objects of the set
of objects, and similarly for contour_i values. The
COMPOSITE function is also used to combine depictions
of multiple objects into a single display.

43: Discussion of data display

Although the spatial coordinate display scalar
xyt_yolume is factored into the one- and two-dimensional
Cartesian factors xjads, yjvds, ijuds, xy_plane,
xz_plane and yijlane, the generated displays need not
conform to Cartesian coordinate systems. Two- and
three-dimensional scalars may be mapped to spatial
display scalars, and the FD functions for those scalars
may include mathematical coordinate transformations
into non-Cartesian coordinate systems. Similarly, three-
dimensional scalars may be mapped to the color display
scalar, and the FD functions for those scalars may
include mathematical color transformations into color
systems other than RGB (Red, Green and Blue).

The scalar mappings provide a flexible tool for
projection pursuit for data sets in many dimensions.
Given a higher dimensional data set, the user can map
different dimensions of the data set to three spatial
coordinates, three color dimensions, animation, and a
variable number of selector dimensions.

It is certainly possible for the user to define a display
frame of reference that produces depictions that poorly
communicate the information content of data objects.
However, the interactivity of the system allows the user
to experiment with the scalar mappings, in order to
understand how the mappings work and to find effective
object depictions.

Since interactive response times are important, the
VIS-AD implementation of the DISPLAY function uses
shared-memory parallelism and is optimized for
vectorization. It traverses paths in an object's tree
structure in parallel. It divides the ranges of values of
array indices into sections, and the paths through each
section are traversed by a different processor. Also, the
internal storage format for data objects has been
designed to allow efficient vector processing of arrays of
scalars and arrays of tuples of scalars. Running on an
SGI 340 VGX, the DISPLAY function generated each of
the figures in this paper in less than one second. This

145

performance permits interactive visualization of data
objects large enough for real scientific algorithms, and
smooth animations of the behavior of some algorithms.

Because of the nested arrays in the display type, a
display data object may be very large. The VIS-AD
implementation of the DISPLAY function minimizes this
size by:

1. computing values for only those sub-objects of a
display object that affect visible screen contents, and
re-applying the DISPLAY function to data objects as
animation and selector indices change.

2. Splitting the display type into two arrays, one for
contour values and the other for color values.

3. Limiting the sampling resolution of xyz._yolume for
the array of contour values.

4. Using sparse representations for the array of color
values; texture maps are used for voxels lying on the
distinguished 2-D planes determined by the values
SPECIAL, ̂ SPECIALy_axit and SPECIAL,,^,
and lists of non-missing voxels are used outside of
the distinguished planes.

When data objects are transformed into dense sets of
non-missing voxels it is impossible to see all the voxels,
so VIS-AD provides a user-controlled clipping plane for
creating a cut-away view of the display. •

5: Plans for further development

We are generating a library of standard image
analysis and remote sensing functions callable by
VIS-AD programs. We are also adapting VIS-AD for
distributed execution, enabling programs to call
functions on remote computers.

We plan to extend the definition of the display type
by including real display scalars for transparency and
reflectivity, and a realBd display scalar for vector, in the
voxel tuple. Scalars mapped to these new display scalars
would be depicted by complex volume rendering and
flow rendering techniques.

We plan to extend the set T of data types by adding
type constructors for lists, trees and other complex
linked structures. We will extend the DISPLAY function
to generate diagrams of linked structures, and to provide
interaction mechanisms that allow the user to traverse
linked structures. In order to do this, linked structures

I will probably be included in an extended definition of
Ithe display type.

We plan to extend the parallel algorithm for the
DISPLAY function to a scalable algorithm running on

numbers of processors, in order to increase
iteractivity for large data objects.

We plan to adapt VIS-AD to generate graphical
sxecution traces of algorithm data objects, and graphical

>ictions of the way that algorithm behavior varies with
to varying algorithm parameters and varying

iput data sets. These functions are possible because of
flexibility to define arrays of any data type. The

system can trace a data object during execution by
deriving a new array type of values of the data object,
indexed by a scalar for algorithm step number. The
system will execute the algorithm and store the value of
the selected object in the derived array at user-declared
trace points. Similarly, algorithm behavior over an
ensemble of invocations can be studied by deriving a
new array type of values of a selected algorithm data
object, indexed by a scalar for a parameter that varies
between algorithm invocations (this may be a string
scalar for the name of an input data set that varies
between invocations). The system would invoke the
algorithm for each value of the parameter and save the
final value of the selected object in the derived array.
By mapping the index scalar of the derived array to a
display scalar, the user will be able to generate flexible
displays of an execution trace or of the way algorithm
behavior varies over an ensemble of invocations.

Acknowledgment

We would like to thank James Dodge and Gregory
Wilson for their support. This work was funded by
NASA/MSFC (NAG8-828) and NSF (IRI-9022608).

References

[1] Brown, M., and R. Sedgewick, 1984; A system for
algorithm animation; Computer Graphics 18(3), 177-
186.

[2] Dyer, D., 1990; A dataflow toolkit for visualization;
Computer Graphics and Applications, 10(4), 60-69.

[3] Haeberli, P., 1988; ConMan: A visual programming
language for interactive graphics; Computer Graphics
22(4), 103-111.

[4] Hibbard, W. and C. Dyer, 1991; Automated display
of geometric data types. UW Computer Sciences
Technical Report #1015.

[5] Hibbard, W., C. Dyer and B. Paul, 1992; A
development environment for data analysis
algorithms. Preprints, Conf. Interactive Information
and Processing Systems for Meteorology,
Oceanography, and Hydrology. Atlanta, American
Meteorology Society. 101-107.

[6] McConnell, C. and D. Lawton, 1988; IU software
environments; Proc. IUW, 666-677.

[7] Rasure, J., D. Argiro, T. Sauer, and C. Williams,
1990; A visual language and software development
environment for image processing; International J. of
Imaging Systems and Technology, Vol. 2, 183-199.

[8] Schmidt, D. A., 1986; Denotational Semantics. Win.
C. Brown Publishers.

[9] Upson, C., T. Faulhaber, Jr., D. Kamins, D.
Laidlaw, D. Schlegel, J. Vroom, R. Gurwitz, A. van
Dam, 1989; The application visualization system: a
computational environment for scientific
visualization; Computer Graphics and Applications,
9(4), 30-42.

146

Computer Networks and ISDN Systems 22 (1991) 103-109
North-Holland

103

Interactive atmospheric data access via high-
speed networks

William Hibbard, David Santek
Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wl, USA

Gregory Tripoli
Meteorology' Department, University of Wisconsin-Madison, Wl, USA

Abstract

Hibbard, W. and D. Santek. Interactive atmospheric data access via high-speed networks. Computer Networks and ISDN
Systems 22 (1991) 103-109.

The VIS-5D system running on large workstations lets scientists interactively explore atmospheric simulation data sets
containing up to 5 x 107 points. A distributed version of VIS-5D running on a workstation and a supercomputer will make it
possible to interactively explore data sets containing up to 1010 points. Wide area gigabit networks will bring this capability to
scientists at most academic and research institutions. This software will help scientists to interactively develop numerical
models of atmospheric phenomena.

Keywords: visualization, networking, interactivity, earth science.

1. Introduction

A basic problem for atmospheric scientists is
the sheer size of their data sets. Numerical simula-
tion models normally require several hours on the
largest supercomputers and generate output data
sets in excess of 109 grid points. Model runs for
state-of-the-art simulations require hundreds of
hours of supercomputer time and generate output
data sets containing up to 1011 grid points. We are
currently providing interactive access to data sets
of up to 5 X 107 grid points. A wide area high-
speed network will make it possible to extend this
access to data sets of up to 1010 points. It will also
make it possible to interactively develop small
simulations.

2. Current applications

The VIS-5D (Visualization of 5-Dimensional
data sets) system developed at the University of
Wisconsin Space Science and Engineering Center

(SSEC) gives scientists interactive access to model
output data sets. VIS-5D runs on the Stardent
GS-1000 and GS-2000 workstations. It is used to
manage and analyze data sets containing up to 109

grid points, and to interactively visualize subsets
containing up to 5 X 107 grid points [1,2].

The GS-2000 is a high-performance graphics
workstation, with a peak vector floating point rate
of 80 MFLOPS (million floating point operations
per second) and capable of rendering 6 X 105 10-
pixel Z-buffered 3-D vectors or 1.5 X 10s 100-pixel
2-buffered 3-D Gouraud shaded polygons per sec-
ond. Z-buffering is the standard hidden surface
removal algorithm for 3-D graphics workstations,
and Gouraud shading is a standard technique for
interpolating shading across a polygon. Memory
size is up to 128 Mb (megabytes) with a memory
bandwidth of 640 Mbps. The GS-1000 is very
similar to the GS-2000, except that the peak float-
ing point rate is 40 MFLOPS.

A numerical forecast of cold fronts moving
across the North Atlantic is typical of the model
output data sets visualized using VIS-50. This data

0169-7552/91/S03.50 © 1991 - Elsevier Science Publishers B.V. All rights reserved

PRECEDING PAGE BLANK NOT FILMED

104 W. Hihhard el al. / Interactive atmospheric data access

set was produced by the European Center for
Medium-range Weather Forecasts (ECMWF)
using their global weather forecast model. The
North Atlantic region, at a resolution of 2.5 de-
grees, was extracted from their global 1.25 degree
resolution grid, at one hour time steps over a
period of one week. The data set includes values
for pressure, temperature, potential temperature,
specific humidity, horizontal wind speed, vertical
wind speed, wind divergence and wind vorticity,
at each three-dimensional spatial grid point and at
each time step, yielding a total data set of about
2.2 x 107 points for visualization. VIS-5D stores
these grid point data as scaled 8-bit integers in
order to fit into the memory of the GS-2000 for
visualization.

Figure 1 shows isobars (constant pressure lines)
at a level 0.89 kilometers above sea level, and a
semi-transparent surface of constant specific
humidity, over a topographical map. The scene
shows Europe, Greenland and the North Atlantic,

viewed from the south. The western edge of the
specific humidity surface marks the approximate
location of a cold front moving across the North
Atlantic from west to east. This front produced
the record storm of February 1988 in England.
The model at the ECMWF predicted this storm
with great accuracy one week in advance of its
development over England. Thus this data set
combines the high resolution of a simulation with
the accuracy of observations, and provides a val-
uable look into atmospheric processes.

The best way to understand VIS-5D is to use it
interactively. Images like that shown in Fig. 1 are
produced at between 5 and 10 per second, with
the GS-2000 drawing the images as fast as they
are displayed. If the "Animate" widget is selected,
then the frames will show a succession of model
time steps, and the iso-level contour surfaces and
contour lines will show the time evolution of the
storm. Independent of whether "Animate" is
selected, the user can rotate and zoom the images

William Hibbard is a researcher at the space Science and Engineering Center (SSEC) of the University of
Wisconsin-Madison. His research interests are interactive visualization and image processing for earth
sciences. He is a member of ACM, SIGGRAPH. SIGART. and the IEEE Computer Society. Hibbard
received a BA in Mathematics and an MS in Computer Science from the University of Wisconsin-Madison
in 1970 and 1974, respectively. His address is: SSEC, 1225 W. Dayton St.. Madison. WI 53706. and email:
whibbard@vms.macc.wisc.edu.

David Santek is a scientific programmer at the Space Science and Engineering Center (SSEC) of the
University of Wisconsin-Madison. His research interests include satellite data analysis, image analysis, and
computer graphics. Santek received a BS in Atmospheric and Oceanic Science from the University of
Michigan in 1975 and an MS in Meteorology from the University of Wisconsin in 1978. His address is:
SSEC, 1225 W. Dayton St., Madison, WI 53706.

Oregon Tripoli is an Assistant Professor in the Department of Meteorology of the Uiversity of Wisconsin-
Madison. His research interests include mesoscale meteorology, cloud dynamics, mesoscale and cloud
modeling. Dr Tripoli received BS and MS degrees in Meteorology from Florida State University in 1972 and
1973 respectively, and a PhD in Atmospheric Science from Colorado State University in 1986. His address is
Dept. of Meteorology, 1225 W. Dayton St., Madison, WI 53706.

W. HibbarJ et al. / Interact ire atmospheric Jala access 105

Fig. 1.

in three dimensions, to look at the physics from
any angle. The user can also select arbitrary com-
binations of iso-level contour surfaces, to track
down cause and effect relations between physical
variables. Figure 1 shows the 6.38 grams per kilo-
gram iso-level contour of specific humidity. The
user may change this iso-level value using the
slider widget labelled "0 = 6.38", and VIS-5D will
compute the new surfaces and display them as
quickly as possible. Because this cannot be done
at the animation rate of between 5 and 10 frames
per second, the new surfaces replace the old as
they are computed, asynchronously with the
animation. In other words, VIS-5D has an
asynchronous user interface, which allows the user
to explore the data in other ways while waiting for
computationally expensive interactions.

The goal of VIS-5D is to give the user highly
interactive exploration of very large data sets. In
order to provide a high degree of interactivity, the
data set must reside in main memory, because of
the limited bandwidth of the workstation disk
storage. The 128 Mb memory limit of the GS-2000
translates to a limit of 50 X 106 grid points. The
computing speed of the GS-2000 also limits the
rate at which new iso-level contour surfaces can be
computed, to about two time steps per second for
data sets such as shown in fig. 1 and 2. Increasing
the size limit of data sets, and decreasing the

response time for interactions, would both in-
crease the utility of VIS-5D.

3. Interactive access to very large data sets

A high-speed wide-area network would provide
a way to extend our visualizations to much larger
data sets. The VIS-5D software would be distrib-
uted between a supercomputer and a high-perfor-
mance workstation. This design exploits the large
storage capacity and transfer rate of supercom-
puter disks, the arithmetic speed of the supercom-
puter, and the rendering performance of the
workstaion. It will require network transfer rates
in the region of 108 bits per second. Like many
research institutions, the University of Wisconsin
has several high-performance workstations, but it
does not have a supercomputer. Wide-area net-
working is required to make visualization of very
large data sets available to the scientists at the
University of Wisconsin and at the majority of
other institutions.

The distributed version of VIS-5D could be
used to visualize a data set such as a hurricane
simulation which has been produced using UW-
RAMS and 100 hours of time on a CRAY-2. The
hurricane data set consists of about 7 x 105 spa-
tial grid points by 10 physical variables by 577

106 H Hibbard el al. / Interactive atmospheric data access

time steps (every 225 seconds for 36 hours). This
data set contains 4 X 109 grid points, which will
be stored in scaled 8-bit integers for visualization.
This simulation provides a view of a relatively
large-scale atmospheric phenomenon, namely a
hurricane, modelled using the small-scale physics
usually only applied to thunderstorms. Thus, in-
teractive visual exploration of this data set would
be quite useful.

The distributed version of VIS-5D can be un-
derstood by looking at the sequence of operations
involved in visualizing the hurricane data set. We
would seek to produce interactive animations from
this data set at between 5 and 10 frames per
second. Like the current version of VIS-5D, the
system would compute the images fast enough for
the user to perceive motion, and would give the
user frame by frame control over the animation.
During each frame time, the system would execute
the following steps:

(a) The workstation will send to the supercom-
puter the user's controls for selecting which com-
bination of physical variables to view, for selecting
which time step to view, for selecting iso-levels for
contouring variables, and for selecting the geo-
graphic extents of the region to view.

(b) The supercomputer will read the grids for
the selected time step and physical variables from
the disk. If we limit the number of simultaneous
variables to 3, this would be 5 to 10 frames per
second by 3 variables by 7 X 105 bytes per grid
requiring between 1.05 X 107 and 2.1 X 107 bytes
per second of disk transfer bandwidth. Because
supercomputer disks have high enough transfer
rates to support this access, the sizes of the data
sets to be explored are not limited by main mem-
ory size.

(c) The supercomputer will generate subgrids
of about 105 points each, by subsectoring and
possible resolution reduction, according to the
user's selection of geographic extents. Current
limits on computer power require this reduction in
grid size.

(d) The supercomputer will generate polygonal
contour surfaces from the subgrids for each
selected physical variable, according to the user's
selection of iso-levels. The surfaces will contain
very roughly 105 triangles. This is a heavy compu-
tational load and will require polygon-finding al-
gorithms adapted to exploit the parallel and vector
facilities of the supercomputer. Generating poly-

gons from grids is adaptable to highly parallel
architectures, depending on the speed of distrib-
uting the gridded data from the disks to the paral-
lel computing elements, and the speed of collect-
ing polygons for transmission.

(e) The supercomputer will transmit the trian-
gles to the workstation. 105 triangles require 7.2 x
106 bytes of storage, so the overall data rate
would be 5 to 10 frames per second by 7.2 X 106

bytes of triangles by 8 bits per byte giving between
2.88 x 108 and 5.76 x 108 bits per second. With
some compression of the triangle data, this may be
reduced to about 108 bits per second. The decision
about how much compression to apply is a trade
off between computational and communications
resources.

(f) The workstation will render the triangles
according to the user's selections for 3-D pan,
zoom and rotation, surface color and trans-
parency, and light source placement. This calls for
the workstation to render between 5 x 105 and
106 triangles per second. Workstations capable of
this rate are now available.

The images generated will include a variety of
visual elements other than contour surfaces, such
as wind trajectories, contour lines on planes, and
maps. We have left these other elements out of the
simple operation sequence described above be-
cause they present a much smaller computational
load than contour surfaces. The polygons and
lines depicting the maps can be stored locally in
the workstation. The vectors representing trajecto-
ries may also fit in the workstation's memory.
Contour lines on planes are generated from the
gridded data stored in the supercomputer. How-
ever, the effort needed to compute them, and the
bandwidth needed to transmit them, are small
compared to the resources needed for contour
surfaces.

4. Network traffic

The actual behavior of the system will vary
somewhat, depending on the number of variables
selected by the user for display and the complexity
of the iso-level contour surfaces generated for
those variables. The frame rate for the animation
may vary between 2 and 10 frames per second.
However, because the animation rate will be in-
versely linked to the number of polygons in a

W. Hibbard el al. / Interactive atmospheric data access

frame, the total volume of data per second should
be less variable.

A typical workstation session lasts from 30
minutes to 2 hours. The system will generate mes-
sages from the workstation to the supercomputer
containing the user's controls. These will be sent
at the frame rate (between 2 and 10 times per
second) and be no longer than 2000 bits each. The
messages from the supercomputer containing
polygons and vector lines will be very large, with a
volume of between 108 and 6 X 108 bits divided
into as few as 5 or 10 messages per second. The
user of interactive visualization will be sensitive to
the magnitude and variance of network delays.
Anyone who has used a screen editor on a virtual
memory system knows how paging delays can
disrupt the user's visual interaction with the text.

Standard data compression algorithms may not
be effective with the polygon data communicated
by this application. However, polygon data can be
effectively compressed using techniques based on
their special properties. We are assuming that the
polygons are triangles, and that they are each
represented by the coordinates and surface nor-
mals of their three vertices. First, we recognize
that triangles can be collected into sequences called
polytriangle strips, representing N triangles with
N + 2 vertices. When N is large, this representa-
tion provides a 3 to 1 compression. In general, it is
possible to represent iso-level contour surfaces as
long polytriangle strips. In fact, this representa-
tion is necessary for efficient rendering on the
Stardent GS-1000 and GS-2000 workstations.
However, this representation can adversely affect
rendered image quality for semi-transparent
surfaces. The polytriangle representation is also
very difficult to produce if polygon generation is
running on a highly parallel architecture.

Another compression is available in the numeric
precision of the three coordinate and three surface
normal components of triangle vertices. They are
produced as 32 bit floating point numbers, and
the rendering process uses them in that format.
However, for intermediate storage and transmis-
sion, there is no real loss of information if the
vertex coordinates are compressed to 16 bit in-
tegers and the vertex normals are compressed to 8
bit integers. This yields an 8 to 3 compression. It
is possible to compress further by using dif-
ferences between successive vertex coordinates,
and by encoding normals, which have unit length,

as two spherical angles rather than three cartesian
components.

Wide area gigabit networks will require large
system buffers for storing data for retransmission
in case of errors. However, visualization applica-
tions can tolerate errors, since any visual informa-
tion will be replaced quickly and is not used as
input to further computing processes. Thus, we
would like to see a network that gives some con-
trol over error handling to the applications. The
application should be able to determine whether
to correct any detected errors, and whether the
network system should maintain a buffer for re-
transmission or the application should be respon-
sible to regenerate data for retransmission. This is
a resource tradeoff between a system buffer which
may contain 10 megabytes and significant com-
puting, and the application designer should have
control over that tradeoff.

There are periods during a session when the
user is not animating time dynamics or changing
the iso-levels of contour surfaces. The system can
exploit these periods by storing the most recent
polygons in the workstation and transmitting from
the supercomputer only when the polygon sets
change. Thus the session will alternate between
intervals of full bandwidth and virtually zero
bandwidth. The duration of these intervals is sec-
onds to minutes.

5. Interactive model development

We are also interested in using distributed al-
gorithms to help scientists interactively develop
thunderstorm simulations, a task requiring numer-
ous trial and error adjustments to initial atmo-
spheric conditions and to model parameters. This
is done through an iterative cycle of short simula-
tion runs, inspecting the model output data and
comparing them to known storm behavior, and
adjusting the initial conditions and model parame-
ters.

Interacting with a running model is tricky be-
cause of man-machine coupling mismatches.
Large simulations are much too slow for interac-
tion, and we would concentrate on simulations
with about 105 spatial grid points. Even this size
of simulation would progress too slowly to be
directly visually interesting, so the visualization
should be asynchronous with the model. The sys-

108 W. Htbbard et al. / Interactive atmospheric data access

tern will maintain an accumulating model output
data set on the supercomputer, and let the user
move around in the time step sequence, rather
than being in lock step with the model. For
numeric reasons, the model's time steps are gener-
ally much shorter than the time during which the
storm makes visually interesting changes. Thus a
storm simulation may calculate time steps for
every two seconds of storm time but only store a
time step in the accumulating data set for every
minute of storm time. The user will visualize from
the accumulating data set, using the same distrib-
uted software system that was described for
visualizing the hurricane above. When the user
wants to change the simulation, the system will
enter a new operating mode allowing the initial
conditions and model parameters to be changed
and the model to be restarted at an earlier time
step. This iteration will continue until the simula-
tion behaves to the satisfaction of the scientist.

Almost all of the network traffic generated by
this application is for visualiztion, and will be very
similar to the traffic described above in Section 4.

6. Research issues for distributed interactive appli-
cations

The development of VIS-5D has included
numerous experiments with the best ways to use
the computing resources of the workstation to give
the user fast and flexible interactions with large
data sets, and how to control those interactions
and resources through the user interface. The
computing resources of the distributed version of
VIS-SD are much more complex, involving two
processors of unequal capabilities (workstation and
supercomputer) and a communications network
between them. Furthermore, the supercomputer
and the communications network must usually be
shared with other users, unlike the workstation.

In order to explore these issues, the simple
operation sequence described above in Section 3
will be elaborated to provide more loosely coupled
interactions between computational resources and
to provide a more asynchronous user interface.
Intermediate data structures, such as the subsec-
tored grids on the supercomputer and the polygon
lists on the workstation, can be cached according
to various strategies, so that they need not be
regenerated every time they are needed. The best

caching strategies will depend on the patterns of
user interactions and availability of computing
resources, and will be determined experimentally.

Even where computing and communications
rates are high there may be relatively long laten-
cies. These can be addressed with a pipelined
application design, so that the computations for
several visual frames are simultaneously at differ-
ent stages of the operation sequence. It may also
be useful for the application to try to anticipate
what the user will want to see.

Perhaps most important, we will structure dif-
ferent interactions to be done asynchronously, so
that long computing and communications delays
for one interaction do not block other interac-
tions. For example, three-dimensional rotation
which is implemented locally in the workstation
should not be affected by delays in the communi-
cation network or the supercomputer. More com-
plex examples arise when the application can cache
intermediate data in the workstation.

Finally, the application should be able to pro-
vide useful service under a wide range of availabl-
ity of the shared resources. These issues will re-
quire numerous experiments with the design of the
application and its user interface.

7. Conclusion

Understanding very large earth science data
sets requires interactive visualization. Current
high-performance workstations provide this for
data sets of up to 5 X 107 points. High-bandwidth
networking between supercomputer centers and
scientists' workstations will make it possible to
extend interactive visualization to data sets con-
taining up to 1010 points for scientists in their own
institutions. The network traffic for this applica-
tion consists of very long messages at regular time
intervals between a tenth and a half of a second.
The total bandwidth is around 108 bits per sec-
ond, depending on the speed of the computers and
the use of compression. This application can also
be adapted to interactive development of small
numerical weather models.

Acknowledgements

We wish to thank Marie-Francoise Voidrot-
Martinez, Dave Kamins, Jeff Vroom, Greg Wilson

W. Hibbard el al. / Interactive atmospheric data access 1(14

and James Dodge for their help and support de-
veloping the VIS-5D system. We would also like
to thank Francis Bretherton, Larry Landweber,
Murray Thompson and Robert Kahn for their
encouragement of the networking application. This
work is being supported by the NASA Marshall
Space Flight Center and the Gigabit Testbed Pro-
ject being managed by the Corporation for Na-
tional Research Initiatives.

References

[1] W. Hibbard and D. Santek. Visualizing large data sets in
the earth sciences. IEEE Comput. 22 (8) (1989) 53-57.

[2] W. Hibbard and D. Santek. Interactive earth science visu-
alization. SIGGRAPH Video Rec.. (43) (1989).

[3] G.J. Tripoli, A nonhydrostatic mesoscale model designed
to simulate scale interaction. Monthly Weather Rev..
accepted for publication.

The VIS-5D System for Easy Interactive Visualization

Bill Hibbard and Dave Santek

Space Science and Engineering Center
University of Wisconsin - Madison

Abstract
The VIS-SD system provides highly
interactive visual access to 5-dimensional
data sets containing up to 50 million data
points. The user has easy and intuitive
control over animated 3-dimensional
depictions of multiple interacting physical
variables. VIS-SD is runs on the Stardent
ST-1000 and ST-2000 workstations and is
available as freeware from the Space Science
and Engineering Center.

The VIS-5D System
We wrote the VIS-5D software system to
help earth scientists understand their large
and complex data sets. VIS-SD runs on the
Stardent ST-1000 and ST-2000 workstations
and generates animated 3-dimensional
graphics from gridded data sets in real
time. It provides a widget-based user
interface and fast visual response which
allows scientists to interactively explore
their data sets. VIS-5D generates literal
and intuitive depictions of data, has user
controls which are data oriented rather
than graphics oriented, and provides the
WYSIWYG (what-you-see-is-what-you-gct)
response familiar to users of word
processors and spread sheets. The result is
a system which is easy for scientists to use,
so that they can become the producers and
directors of their own animations. VIS-SD
can be applied to any data set in the
McIDAS grid file format and containing
up to SO million grid points. Data sets
containing hundreds of millions of grid
points can be resampled to this SO million
point limit for interactive visualization.

We were motivated to write VIS-SD by our
experiences using our 4-D McIDAS system
running on IBM mainframe computers [1].
The 4-D McIDAS system generates 3-
dimcnsional images in about 30 seconds
each, with another 30 seconds each to load

CH2913-2/90/0000/0028/$01.00 - 1990 IEEE 21

the images into a workstation for
animation. We used this system to produce
animated visualizations for many earth
scientists. They were constantly wanting
to change the animations and frustrated by
the turnaround time. They found the
video tapes we produced useful for public
presentations and for teaching, but not for
their own insight into their data sets,
which they continued to get from the 2-
dimensional graphics systems which they
could use directly. Thus we wrote the
highly interactive VIS-SD system which
makes 3-dimensional graphics easy for
scientists to use directly [2].

The VIS-SD system is available from the
University of Wisconsin Space Science and
Engineering Center as freeware. In
addition to the visualization software, it
includes tools for managing and analyzing
large gridded data sets, a skeleton program
for converting external data to the
McIDAS grid file formats, documentation
on how to use the software, and sample
data sets to practice using the software.

Five-dimensional Data Sets
VIS-SD works with data in the form of a
5-dimensional rectangular grid of points.
In a FORTRAN or C program these data
sets could be declared as arrays with five
dimensions. Three of the dimensions are
spatial, one is time, and one is used to
enumerate multiple physical variables.
Thus these data sets sample a spatial
volume at a regular lattice of points,
sample dynamics at multiple steps over a
time interval, and include multiple
interacting physical variables.

Although a S-dimensional grid may seem
like a specialized format, it is the usual
format for output from atmospheric
simulations. It is also a common output

PRECEDING PAGE BLANK NOT FILMED

format for oceanography and hydrology
simulations, and for some remote sensing
instruments like radars which can scan
quickly enough to produce time varying
volumetric images. The most general
setting for the earth's physical systems is
multiple variables over three spatial
dimensions plus time. Our 5-dimcnsional
rectangles are just this setting, subject to
discrete and uniform sampling of space
and time. Thus the data format for
VIS-5D is actually widely applicable to
earth science data. For meteorological data
the spatial dimensions are often latitude,
longitude and altitude and the variables
might be temperature, pressure, moisture
and three wind vector components. For
oceanography data the spatial dimensions
are latitude, longitude and depth and the
variables might be temperature, salinity,
density and three ocean current vector
components. For hydrology data the
variables might be proportions for
different rock and soil types, and three
ground water flow vector components.

The VIS-5D system provides a high degree
of interaction by storing the entire data set
in the main memory of the workstation.
Because of its compressed formats, this can
be up to 50 million grid points. For
example, these SO million points can be
factored as SO latitudes by SO longitudes
by 20 altitudes by 100 time steps by 10
different physical variables. VIS-5D
includes functions for managing much
larger disk based data sets, and for
resampling them down to smaller extents or
to lower resolution in order to fit the size
limit for interactive visualization. A
factor of 2 reduction in resolution in time
and space yields a 16 times reduction in
data volume, which would allow a simula-
tion data set of 800 million points to be
reduced to the 50 million point limit.

The VIS-5D system supports a data format
for trajectory paths, which are used to
represent wind, ocean currents, ground
water flow, and other motion fields, and a
global topographical map data set, which is
useful for large scale earth based data sets.
The system includes a program for
calculating trajectories from gr iddcd

motion vector fields, and management
functions for listing, copying, merging and
deleting data sets.

What Scientists Need
We accumulated considerable experience
producing visualizations with scientists
using our 4-D McIDAS system. Because 4D
McIDAS requires an hour or more to
produce each new animation sequence, this
experience gave us an understanding of
which types of changes to an animation
sequence earth scientists really care about.
These are:

A. change the viewpoint in three
dimensions.

B. change the combination of s imul -
taneous ly depicted variables.

C. change the depiction of a variable.
For an iso-level contour surface this is
a change to the defining value. For
contour lines on a surface this is a
change to the position of the surface
and the density of the contour lines.
For trajectory lines, this is a change to
the density of the lines or placing
trajectories through specific points.

D. change the time dynamics. This
includes the choice of whether to
enable time stepping, whether to step
forward or backward (useful for
tracing effects back to their causes),
and how fast to step.

E. change the spatial extents of the
depicted region.

F. calculate new variables from existing
variables, including arithmetic,
differential and integral operators.

G. make objects semi-transparent.

H. avoid depicting different variables
using the same color.

It is worth noting that the types of
controls the scientists care about relate to
data rather than graphics. The value
system of scientists is very different from

the value system of film and television
producers. Scientists need to clearly
perceive 3-dimensional geometry and time
dynamics, and thus require some minimum
standards of graphics quality. However,
the benefits of advanced photorealistic
techniques are often outweighed by the
negative impact of their computational
difficulty on system response time to user
changes. Of course, many of the controls
scientists care about are also
computationally difficult , and this results
in compromises in the user interface.

The VIS-5D User Interface
The goal of VIS-5D is to provide the
scientist with an easy user interface for
controlling the display, and fast visual
response to changes. The workstation
should feel like a steerable window which
the scientist "f lys" through a huge data set,
hunting for interesting information hiding
in the mass of data.

VIS-SD is able to present a simple and
intuitive interface to the scientist because

it deals specifically with the S-dimensional
rectangles of data produced by environ-
mental simulations, because it generates
very literal data depictions, and because it
concentrates on the data oriented choices
which scientists want.

The figure below shows a scene generated
by VIS-5D which is part of a video
depicting cold fronts moving across the
North Atlantic. The data are taken from a
forecast for February 4, 1988 by the
European Center for Medium-range
Weather Forecasts. The scene shows a
topographical map, a transparent specific
humidity contour surface at 6.38 grams per
kilogram, and pressure contour lines at an
altitude of 0.89 kilometers with a spacing
of 5 millibars. The small clock hand in the
upper left corner of the 3-D window shows
where the scene is within the data set's
time span. The highlighted widget buttons
on the left show that the map, Q (specific
humidity) and P (pressure) are enabled for
display. The slider widgets show the level
of the Q contour surface, the alti tude and

Figure 1 (Color Plttt 14, p»gt 462)

30

spacing of the P contour lines, and the
color (white) and transparency (0.55) of the
Q contour surface.

The three spatial dimensions of the data
set rectangle are depicted with a single
3-d imens iona l box, and all the graphical
elements depicting the data set are drawn
in this common frame. The 3-D box
contains either a static depiction of a
single time step, or an animated depiction
sequencing through the data set's time
steps. The graphical elements of the
depiction may include a topographical
map, trajectory lines, and iso-level contour
surfaces and contour lines for the data
set's physical variables, all drawn in the
common geometry of the 3-D box. The
user can rotate, zoom and pan the 3-D box,
control the time stepping, and
independently enable or disable the
depicted graphical elements. This provides
a very literal representation of the 5-
dimensional rectangle; the spatial
dimensions are mapped into the 3-D box,
the time dimension can be animated, and
the physical variables can be viewed in
arbitrary combinations.

The intuitive feel of the user interface is
further enhanced by the fast response of
VIS-5D to user controls. The 3-D box
rotates, the time steps, and the depictions
of variables appear and disappear, all
within a fraction of a second of the
appropriate mouse movement or button
click. This immediate visual feedback is a
critical element of a word processor's or
spread sheet's user interface, and it is even
more crucial for scientific visualization
systems.

The McIDAS grid file format includes
information specifying the time and
location of each grid point, and the names
of the physical variables in the data set.
VIS-5D uses this information to generate a
set of graphical widgets appropriate to the
data set, and to automate the management
of the components of the data set. For
example, VIS-5D creates widgets for each
physical variable, labelled with the names
taken from the grid file, which are used to
independently enable and disable graphical

depictions of the variables. It also creates
sliders for each variable used to change the
values of their iso-level contour surfaces,
and to change the altitude and density of
their contour lines. A change to a slider
value is applied to the appropriate variable
for all the data set's time steps.

Changes to defining levels of contour
surfaces and contour lines require a
compromise in the user interface, because
of the computational difficulty in
computing new polygons and vectors for
their graphical depictions. Ideally, the
graphics would change as the user moved
the slider, and VIS-SD does achieve this
for changing altitude of contour lines on
some data sets. However, new contour
surfaces and complex contour line sets may
require a couple of seconds for
computation. When time dynamics are
static, the new surface replaces the old
surface as soon as it is computed. When
time dynamics are animating, the new
surfaces appear asynchronously with the
animation sequence, gradually replacing
the surfaces for all the data set's time
steps.

VIS-5D provides pop up slider widgets
which allow the user to change the color of
contour surfaces and lines and the
transparency of surfaces. When a data set
includes ten different variables, each
depicted by both surfaces and lines, it is
hard to avoid multiple graphical elements
with similar colors. With the color widgets
the scientist can adjust the colors as
variables are viewed in different
combinations. The widget buttons used to
enable graphical elements for display are
highlighted with the color of the
corresponding surface or lines, to help the
scientist identify which graphics depict
which variables.

We have avoided other graphical choices in
our user interface. For example, there is a
single light source which is always placed
pointing along the view axis (actually
there is a second light source pointing the
other direction on the same axis to
accommodate either sign of surface
normals). The surfaces are drawn

31

according to a Gouraud shading model
with fixed properties. In our experience
these choices are less interesting to
scientists and they tend to clutter up the
user interface. Interactive rotation is a
very powerful way to understand 3-D
geometry, and these other controls offer
only marginal improvement. Surface
properties like specular highlights may
actually be counterproductive by slowing
the response time to interactive rotation.
Surface property techniques like texture
mapping can be useful when they are used
to add data content to the display,
although we have not yet included texture
mapping into the VIS-5D system.

The Structure of VIS-5D
In order to maximize the size of the data
set for visualization, VIS-5D uses a
compressed format for the raw gridded
data and the large polygon and vector lists
used to represent contour surfaces and
lines. The natural format of these data is
4 byte floating point, but they can be
quickly compressed by a linear mapping
into 1 or 2 byte integers, depending on the
needed resolution. This compression allows
a data set of 50 million grid points plus its
associated polygon and vector lists to fit in
128MB of workstation memory.

The principal data structures of the VIS-
SD visualization program include:

A. a S-dimensional array of bytes,
containing a compressed version of the
raw gridded data. This array is
organized into a series of 3-D spatial
arrays indexed by time-step and
variable. Each variable has a separate
linear mapping for compression from
its range of values to 1 byte integers.

B. a linear array which is dynamically
allocated for the polygon and vector
lists used to represent contour surfaces
and contour lines. There is a polygon
list and a vector list for each
combination of time-step and variable
(some lists may be empty), and an
index by time-step and variable into
the linear array. Vertex components
are compressed by a linear mapping

from the box extents to 2 byte
integers, and normal components are
compressed by a linear mapping from
the interval (-1.0, 1.0) to 1 byte
integers.

C. vector lists for trajectory lines. Each
trajectory is stored as a single poly-
vector with an index by time-step into
the poly-vector.

D. a polygon mesh for the topographical
map and vector lists for the map
boundary lines.

E. a queue containing time-step and
variable indices identifying 3-D grids
for which contour surface polygon
lists or contour line vector lists need
to be computed.

F. arrays of values of iso-Ievel contour
surfaces and altitudes and densities of
contour lines, indexed by variable.

G. colors and transparencies for contour
surfaces and colors for contour lines,
indexed by variable.

H. state information for the display,
including the current time-step,
whether animation is enabled, whether
the map is enabled, whether the
trajectories are enabled, and the
transformation matrix for the 3-D to
2-D projection. This state information
also includes arrays indicating
whether contour surfaces and contour
lines are enabled, indexed by variable.

L ordered lists of variables recording
which contour surfaces and lines have
been most recently enabled for
display.

J. intermediate structures used for
computing contour surfaces and
contour lines from 3-D grids.

VIS-5D runs under Stellix (UNIX System V
with Berkeley extensions) and X Windows
Version 11 Release 3. The top level pseudo-
code for the visualization program is:

read the data set into the compressed 5-D byte array
create the linear array for polygon and vector lists
initialize the polygon and vector lists to empty
initialize the contour surface and line queue to empty
if the user specified a trajectory data set

read the trajectory file
build the trajectory vector lists and time-step indices

end if
if the user specified a map

read the topography and map outline files
resample these map data to a reasonable resolution
build the map polygon mesh and vector lists

end if
set defaults for colors of contour surfaces and lines
set defaults for iso-levels of contour surfaces
set defaults for altitudes and densities of contour lines
create a window for the 3-D display
create widgets according to data set contents
initialize the display to the first time-step with no graphics

enabled and nominal 3-D to 2-D projection
fork into 4 parallel threads

thread 1
do forever

clear the display
render a rectangular box
render the map if enabled
render the trajectories if enabled
for each variable

if the contour lines are enabled
decompress the line vector list for the current time-step
render vector list according to color for the variable

end if
end for
for each variable (in order of decreasing opacity)

if the contour surface is enabled
decompress the surface polygon list for the current time-step
render polygon list according to color and transparency

for the variable
end if

end for
check for X events and widget callbacks

adjust the projection matrix according to mouse moves
toggle map enable/disable if requested
toggle trajectory enable/disable if requested
toggle contour surface and line enable/disables if requested and re-order lists of

variables recording which have been most recently displayed
toggle time animation enable/disable if requested
if time animation is disabled

increment, decrement or reset time-step if requested
end if
change colors and transparencies if requested
change contour surface levels if requested
change contour line altitudes and densities if requested

33

if a contour surface or line recompute is requested
for each time-step

if time animation is disabled and t ime-s tep-current
add the selected variable and time-step to the head of the queue

else
add the selected variable and time-step to the tail of the queue

end if
end for

end if
exit visualization program if selected

end check for X events and widget callbacks
if time animation is enabled

increment the time-step
end if

end do forever
end thread
threads 2, 3 and 4 (they are identical)

do forever
if the queue contains any contour line requests

remove the first request for contour lines
decompress the 3-D grid for time-step and variable
compute contour lines at altitude and density for variable
compress vector list for lines
deallocate previous vector list for time-step and variable
if there is not adequate free space in the linear array

delete the least recently used vector and polygon lists
until there is adequate space

end if
allocate space in linear array and insert vector list
add index to vector list for time-step and variable

else if the queue contains any contour surface requests
remove the first surface request
decompress the 3-D grid for time-step and variable
compute contour surface at iso-level value for variable
compress polygon list for surface ..
deallocate previous polygon list for time-step and variable
if there is not adequate free space in the linear array

delete the least recently used vector and polygon lists
until there is adequate space

end if
allocate space in linear array and insert polygon list
add index to surface list for time-step and variable

end if
end do forever

end thread
end fork

The ST-1000 and ST-2000 execute four fast response is important to VIS-5D, data
instruction streams in parallel, so VIS-5D should be accessed from main memory
forks into four threads to take advantage rather than disk. VIS-5D allocates a single
of this parallelism. The X server is also a large array from which to allocate polygon
heavy computing load while VIS-SD is and vector lists in order to control the
running and increases parallelism. Because total use of main memory. This way it can

34

avoid paging delays which would occur if
allocated memory became significantly
larger than physical memory.

The parallel threads implement critical
sections where simultaneous access to
common data structures could cause
interference. This true for insertion and
deletion in the queues, the allocation and
deallocation of space in the linear array,
and reading and updating the polygon and
vector lists and their associated index.

VIS-5D uses Stardent's XFDI library of 3-D
extensions to X for rendering, using a Z-
buffer and RGB true color. We also use a
modified version of Stardent's LUI widget
library, which is part of their Application
Visualization System (AVS).

Future Developments
We have received numerous suggestions for
additional functions for VIS-5D from
scientists, as well as shortcomings which
we recognize. Some of these are:

A. include contour lines drawn on
vertical planes which can be
arbitrarily positioned. This is
currently being developed.

B. dynamically calculate trajectories
through space-time points specified
with a 3-D cursor. This is currently
being developed.

C. represent planes through 3-D grids
with pseudocolored images in addition
to the current contour lines. This
would be useful for radar data which
are less smooth than model data.

D. texture map satellite images onto
surfaces in the 3-D box.

E. render 3-D grids as transparent fogs,
often referred to as volume images.
This may be difficult to do with fast
enough response for interactive
rotation.

F- provide interactive analysis operations
on the 5-D grid of data, including

arithmetic, differential and integral
operations. This is an open-ended
area of development, often dependent
on the particular source of the data
set

G. increase the size of the data sets
which can be interactively visualized.
This applies to the total 5-D rectangle
and the number of grid points in the
spatial 3-D box. Assuming the current
level of interactivity, this depends on
faster workstations, larger memories,
and disks fast enough to support
interactive access.

VIS-SD is aimed at 5-D data sets similar to
those produced by weather models. We are
also interested in developing systems for
interactively visualizing and analyzing
large image data sets. The same
workstation technology which makes VIS-
SD possible can also be exploited for
radical new ways of processing image data,
although the overall structure of such an
application may be quite different from
VIS-5D.

Acknowledgments
We wish to thank Dave Kamins and Jeff
Vroom of Stardent Computer, Inc., and
Marie-Francoise Voidrot-Martinez of the
French Meteorology Office for their help.
We also wish to thank the many scientists
we have worked with and NASA Marshall
Space Flight Center for their support
(NAS8-36292).

References
1. Hibbard. W., and D. Santek, 1989:

Visualizing large data sets in the earth
sciences. IEEE Computer 22(8), 53-57.

2. Tripoli, G., W. Hibbard, and D. Santek,
1989: Four-dimensional interactive
analysis: a tool for the efficient
understanding of large data sets.
Preprints, 12th Conference on weather
analysis and forecasting. Monterey,
American Meteorological Society,
J10-J12.

35

The VIS-AD Data Model: Integrating Metadata and
Polymorphic Display with a Scientific Programming

Language

William L. Hibbard1&2, Charles R. Dyer2 and Brian E. Paul1

1 Space Science and Engineering Center
^Computer Sciences Department

University of Wisconsin - Madison
whibbard@macc.wisc.edu

Abstract. The VIS-AD data model integrates metadata about the precision of
values, including missing data indicators and the way that arrays sample
continuous functions, with the data objects of a scientific programming
language. The data objects of this data model form a lattice, ordered by the
precision with which they approximate mathematical objects. We define a
similar lattice of displays and study visualization processes as functions from
data lattices to display lattices. Such functions can be applied to visualize
data objects of all data types and are thus polymorphic.

1. Introduction

Computers have become essential tools to scientists. Scientists formulate
models of natural phenomena using mathematics, but in order to simulate complex
events they must automate their models as computer algorithms. Similarly,
scientists analyze their observations of nature in terms of mathematical models, but
the volumes of observed data dictate that these analyses be automated as computer
algorithms. Unlike hand computations, automated computations are invisible, and
their sheer volume makes them difficult to comprehend. Thus scientists need tools
to make their computations visible, and this has motivated active development of
scientific visualization systems. Explicitly or implicitly, these systems are based on:

1. A data model - how scientific data are defined and organized.
2. A computational model - how computations are expressed and executed.
3. A display model - how data and information are communicated to a the user.
4. A user model - the tasks and capabilities (e.g., perceptual) of users.
5. A hardware model - characteristics of equipment used to store, compute with,

and display data.

Robertson et. al. [11] describe the need for a foundation for visualization
based on such formal models. The user and hardware models help define the
context and requirements for a system design, whereas the data, computational and
display models are actually high level components of a system design. Because

37 PRECEDING PAGE BLANK NOT FILMED

scientists explore into unknown areas of nature, they need models of data,
computation, and display that can adapt to change.

2. Data Model Issues

2.1 Levels of Data Models

A data model defines and organizes a set of data objects. Data models can
be defined at various levels of functionality [16]. Data models can describe:

1. The physical layout and implementation of data objects. At the lowest level, a
data model may describe the physical layout of bits in data objects. It is
widely acknowledged that this level should be hidden from users, and even
hidden from systems developers as much as possible. At a slightly higher
level, a data model may describe the data objects of a visualization system in
terms of the data objects of the programming language(s) used to implement
the system.

2. The logical structure of data. This level describes the mathematical and
logical properties of primitive data values, how complex data objects are
composed from simpler data objects, and relations between data objects.

3. The behavior of data in computational processes. This is a pure object-
oriented view of data. The internal structure of data objects is invisible, and
all that is specified is the behavior of functions operating on data objects.

While purely behavioral models of scientific data are possible, it is rare to
see a behavioral data model that does not refer to the logical structural of data. That
is, the behaviors of functions operating on objects are usually explained in terms
like "returns a component object" or "follows a reference to another object." In
particular, most data models that are described as "object oriented" are object
oriented implementations of structural data models. In these cases, the internal
structure of objects is hidden in the sense of programming language scope rules, but
is not hidden in the user's understanding of object behavior. The idea of defining
complex things in terms of simpler things is extremely natural and convenient, so it
is not surprising that most data models are essentially structural. Furthermore,
structural data models permit automated analysis of data syntax (e.g., for query
optimization), but it is difficult to apply similar analyses to purely functional
specifications of data.

2.2 Structural Data Models

The physical and implementation levels address issues that should not be
visible to scientists using a system, and purely behavioral data models are rare.
Thus we focus on the structural level. At this level a data model needs to address
the following issues:

38

1. The types of primitive data values occurring in data objects. A primitive type
defines a set of primitive values. It may also define an order relation, basic
operations (e.g., addition, negation, string concatenation), and a topology
(e.g., the discrete topology of integers, the continuous topology of real
numbers) on the set of values.

2. The ways that primitive values are aggregated into data objects. These may
be simple tuples of values, they may be functional relations between
variables, or they may be complex networks of values.

3. Metadata about the relation between data and the things that they represent.
For example, given a meteorological temperature, metadata includes the fact
that it is a temperature, its scale (e.g., Fahrenheit, Kelvin), the location of
the temperature and whether it is a point or volume sample, the time of the
temperature, an estimate of its accuracy, how it was produced (e.g. by a
simulation, by direct observation, or deduced from a satellite radiance), and
whether the value is missing (e.g., in case of a sensor failure).

A structural data model defines behavior rather than implementation, but
does so in terms of an underlying structure. That is, primitive types describe the
operations that can be applied to primitive objects, but do so under the assumption
that the state of a primitive object is a simple mathematical value. Similarly,
aggregate types describe operations that return objects as functions of other objects,
but do so in terms of hierarchical and network relations between objects. A purely
behavioral model would not place such constraints on operations on objects.

2.3 Extensive Versus Intensive Models for Types of Data Aggregates

The way that a structural data model defines types of data aggregates is an
important issue in the context of data visualization. Many visualization systems
define data models that are essentially finite enumerations of those aggregate types
for which the systems have implemented display functions. For example, a
visualization system's data model may include images, 3-D scalar and vector fields,
vector and polygon lists, and color maps. On the other hand, scientists writing
programs require flexibility in defining aggregate types. Thus programming
languages usually define data models in terms a set of techniques that let users
define their own (potentially infinite) sets of aggregate types. That is, users are
given language features like tuples (i.e., structures in C), arrays and pointers for
building their own structures. Visualization systems stress aspects of their data
models related to display models, whereas programming languages stress aspects of
their data models related to computational models.

In set theory, a set may be defined extensively as a list of members, or
defined intensively by a logical condition for membership. We borrow these terms,
saying that an extensive data model is one that defines a finite enumeration of
aggregate types, and saying that an intensive data model is one that defines a set of
techniques for building a potentially infinite set of aggregate types. Systems
designed for particular applications, including many scientific visualization

39

systems, tend to define extensive data models, while programming languages tend
to define intensive data models.

Scientists need data models that can support general computational models
and can also support general display models for all data objects. Object oriented
techniques provide one approach to this need. Each aggregate type in an extensive
data model can be defined as a different object class. Inheritance between classes
simplifies the task of designing new types of aggregates, and polymorphism allows
analysis and display functions to be applied uniformly to many different aggregate
types. However, this approach still requires users to explicitly define new object
classes and their display functions. An approach based on intensive data models
may be easier for scientists to use.

2.4 Models for Metadata

Programming languages and visualization systems differ in their level of
support for metadata. While programming languages offer users the flexibility to
build their own logic for managing metadata, they have no intrinsic semantics for
the relation between data and its metadata. For example, scientists may adopt the
convention that -999 represents a missing value, but since the programming
languages that they use do not implement any special semantics for this value, their
programs must include explicit tests for this value. On the other hand, many
scientific visualization systems do intelligently manage the relation between data
and its metadata. For example, some systems implement missing data codes, some
systems manage information about the spatial locations of data (sometimes called
data navigation), and some systems manage information needed to normalize
observations to common scales (sometimes called data calibration).

3. Data Lattices

Mathematical models define infinite precision real numbers and functions
with infinite domains, whereas computer data objects contain finite amounts of
information and must therefore be approximations to the mathematical objects that
they represent. For example, a 32-bit floating point number represents real
numbers by a set of roughly 2A32 different values in the range between -10A38 and
+10A38, plus a few special codes for illegal and out-of-range values. Since most
real numbers are not members of this set of 2A32 values, they can only be
approximately represented by floating point numbers. As another example, a
satellite image is a finite sampling of a continuous radiance field over the Earth.
The image contains a finite number of pixels, and pixels sample radiance values in
finite numbers of bits (8-bit values are common). Thus the satellite image can only
approximate the continuous radiance field. Satellites and other sensor systems are
fallible, so scientists usually define missing data codes to represent values where
sensors failed. These missing data codes may be interpreted as approximations that
contain no information about the mathematical values that they represent.

40

We can define an order relation between data objects based on the fact that
some are better approximations than others. That is, if x and y are data objects,
then we define x < y to mean that y is consistent with x, and that y provides more
precise information than x does. We illustrate this order relation using closed real
intervals as approximations to real numbers. If w is a real number, and if [a, b] is
the real interval of numbers between a and b, then [a, b] is an approximation to w if
w belongs to the interval [a, b] (i.e., if a <, w <, b). Given two intervals [a, b]
and [c, d], we say that [a, b] ^ [c, d\ if [c, d] c [a, b]. This is because the smaller
interval provides more precise information about a value than the containing
interval does. Letting the symbol i. represent a missing data code, then 1 provides
less precise information about a real value than any interval, so we can say that _L <
[a, b] for any interval [a, b]. Figure 1 shows a few closed real intervals and the
order relations among those intervals.

[0.0,0.0] [0.01,0.01] [0.5,0.5]

\
[0.0, 0.01]

[0.0,0.1]

[0.945, 0.945]

/ \
[0.93, 0.95] [0.94, 0.97]

\
[0.9,1.0]

[0.0,1.0]

I
1

Figure 1. Closed real intervals are used as approximate representations of real numbers,
ordered by the inverse of containment (i.e., containing intervals are "less than" contained

intervals). We also include a least element _L that corresponds to a missing data indicator.
This figure shows a few intervals, plus the order relations among those intervals. The

intervals in the top row are all maximal, since they contain no smaller interval.

We interpret arrays as finite samplings of functions. For example, a
function of a real variable may be represented by a set of 2-tuples that are (domain,
range) pairs. The set {([1.1, 1.6], [3.1, 3.4]), ([3.6, 4.1], [5.0, 5.2]), ([6.1, 6.4],
[6.2, 6.5])} contains three samples of a function. The domain value of a sample lies
in the first interval of a pair and the range values lies in the second interval of a
pair, as illustrated in Fig. 2. Adding more samples, or increasing the precision of
samples, will create a more precise approximation to the function. Figure 3 shows
the order relations between a few array data objects.

In general we can order arrays to reflect how precisely they approximate
functions. If x and y are two array data objects that are both finite samplings of a
function, and if, for each sample of x, there is a collection of samples of y that
improve the resolution of the function's domain and range over the sample of x,
then x < y. Intuitively, y contains more information about the function than x does.

41

[1.1,1.6] [3.6,4.1] [6.1,6.4]

Figure 2. An approximate representation of a real function as a set of pairs of intervals.

{([1.33, 1.40], [3.21,3.24]),

([3.72, 3.73], [5.09, 5.12]),

([6.21,6.23], [6.31,6.35])}

{([1.1, 1.6], [3.1, 3.4]),

([3.6, 4.1], [5.0, 5.2]),

([6.1,6.4], [6.2,6.5]),

([7.3, 7.5], [8.1,8.4])}

{([1.1, 1.6], [3.1, 3.4]),

([3.6, 4.1], [5.0, 5.2]),

([6.1,6.4], [6.2,6.5])}

{([1-1,1.6], 1),

([3.6, 4.1], [5.0, 5.2]),

([6.1,6.4], ±)}

<)> (the empty set)

Figure 3. A few finite samplings of functions, and the order relations among them.

3.1 A Scientific Data Model

42

Now we will define a data model that is appropriate for scientific
computations. We describe this data model in terms of the way it defines primitive
values, how those values are aggregated into data objects, and metadata that
describes the relation between data objects and the mathematical objects that they
represent.

The data model defines two kinds of primitive values, appropriate for
representing real numbers and integers. We call these two kinds of primitives
continuous scalars and discrete scalars, reflecting the difference in topology
between real numbers and integers. A continuous scalar takes the set of closed real
intervals as values, ordered by the inverse of containment, as illustrated in Fig. 1. A
discrete scalar takes any countable set as values, without any order relation between
them (since no integer is more precise than any other). Figure 4 illustrates the
order relations between values of a discrete scalar. Note that discrete scalars may
represent text strings as well as integers. The value sets of continuous and discrete
scalars always include a minimal value _L corresponding to missing data.

1

Figure 4. A discrete scalar is a countable (possibly finite) set of incomparable elements, plus
a least element J_.

Our data model defines a set T of data types as ways of aggregating
primitive values into data objects. Rather than enumerating a list of data types in T,
the data model starts with a finite set S of scalar types, representing the primitive
variables of a mathematical model, and defines three rules by which data types in T
can be defined. These rules are:

1. Any continuous or discrete scalar in S is a data type in T. A scientist using
this data model typically defines one scalar type in S for each variable in his
or her mathematical model.

2. If fj, ..., tn are types in 7, then struct{ti;...;tn} is a tuple type in T with
element types r,. Data objects of tuple types contain one data object of each
of their element types.

3. If w is a scalar type in S and r is a type in T, then (array [w] ofr) is an array
type with domain type w and range type r. Data objects of array types are
finite samplings of functions from the primitive variable represented by their
domain type to the set of values represented by their range type. That is,
they are sets of data objects of their range type, indexed by values of their
domain type.

43

Each data type in T defines a set of data objects. Continuous and discrete
scalars define sets of values as we have described previously. The set of objects of a
tuple type is the cross product of the sets of objects of its element types. The set of
objects of an array type is not quite the space of all functions from the value set of
its domain type to the set of objects of its range type. Rather, it is the union of such
function spaces, taken over all finite subsets of the domain's value set.

A tuple of data objects represent a tuple of mathematical objects, and the
precision of the approximation depends on the precision of each element of the
tuple. One tuple is more precise than another if each element is more precise.
That is, (xj, ..., xn) < (y\, ...,yn) if x, <,yj for each /'. Figure 5 illustrates the order
relations between a few tuples.

(A, B, E)

(A, 1, E)

(A, 1,1)

(A, B, 1)

(-U 1, E)

(1, B, E)

(-U B, 1)

(JU -U1)

Figure 5. Defining an order relation on a cross product. Members of cross products are
tuples. This figure shows a few elements in a cross product of three sets, plus the order

relations among those elements. In a cross product, the least element is the tuple of least
elements of the factor sets.

An array data object is a finite sampling of a function, and the precision of
approximation depends on how precisely the function's domain is sampled and the
precision of the array's range values. If an array is indexed by a continuous scalar,
the interval values of the index indicate how precisely the function's domain is
sampled, as illustrated in Figs. 2 and 3.

By building hierarchies of tuples and arrays, it is possible to define data
types in T that represent virtually any mathematical model used in the physical
sciences. For example, consider a set of data types appropriate for analyzing
meteorological observations. The scalar types used to represent primitive variables
for this analysis include:

temperature - thermometer reading (continuous)

44

dew_point - wet bulb thermometer reading (continuous)
pressure - barometer reading (continuous)
count - frequency count of values in a histogram (discrete)
station_name - name of observing station (discrete)
latitude - latitude of observing station (continuous)
longitude - longitude of observing station (continuous)
time - time of observation (continuous)

The complex data types for this analysis include:

station_reading = struct{
.sta_temp = temperature;
.sta_dew = dew_point;
.sta_pres = pressure;

}
station_series = (array [time] of station_reading)
station_set = (array [station_name] of

struct{
.set_series = station_series;
.setjat = latitude;
.set_lon = longitude;

}
temperaturejustogram = (array [temperature] of count)

A data object of the station jeading type includes one value for each instrument at a
weather observing station. A data object of type station jseries contains a sequence
of station jeading objects, that finitely sample continuous functions of
meteorological fields over time. A data object of type station set is an array that
associates a time series of readings and latitude and longitude locations to each of a
finite set of stationjnames. A data object of the temperaturejiistogram type
contains frequency counts of intervals of temperatures. In this case, the interval
values of the temperature represent the bins used for histogram calculation.

The lattice data model defines certain metadata about the relation between
data objects and the mathematical objects that they represent, including:

1. Every primitive value in a data object is identified by the name of the
primitive mathematical variable.

2. An array data object is a finite sampling of a mathematical function. The set
of index values of the array specify how the array samples the function being
represented.

3. The interval values of continuous scalars are approximations to real numbers
in a mathematical model, and the sizes of intervals provide information
about the accuracy of their approximations.

45

4. Any scalar data object may take the missing value (denoted by 1) and this
provides information about accuracy (i.e., the fact that the value has no
accuracy).

3.2 Interpreting the Data Model as a Lattice

We view a data display process as a function from a set of data objects to a
set of display objects. Our data model defines a different set of data objects for each
different data type, suggesting that a different display function must be defined for
each different data type. However, we can define a lattice U of data objects and
natural embeddings of data objects of all data types into U. The lattice U provides
us with a unified model for all of our scientific data objects, and enables us to define
display functions that are applicable to all data types (i.e., these display functions
are polymorphic). Our analysis of the properties of display functions will thus be
independent of particular data types.

A lattice is an ordered set U in which every pair of elements x and y has a
least upper bound sup{x, y} [this is z such that x < z, y < z and Vw e U. (x < w
& y < w => z < w)] and a greatest lower bound inf{x, y}. A lattice U is complete if it
contains the least upper bound sup(A) and the greatest lower bound in/[A) for any
subset A c U.

We define a data lattice U whose members are sets of tuples. The primitive
domains of this data lattice are defined by a finite set S of scalar types, and the tuple
space is the cross product of the sets of values of the scalar types in S. Define Is as
the set of values of a scalar s e 5 and define X = X{/5 | s e S} as the cross product
of these scalar value sets. Members of our data lattice are subsets of X. Figures 1
and 4 illustrate the order relations on the scalar value sets Is, and Fig. 5 illustrates
the order relation on the set X of tuples.

Members of U are subsets of X. However, there is a problem with defining
an order relation between subsets of X that is consistent with the order relation on X
and is also consistent with set containment. For example, if a, b e X and a < b, we
would expect that {a} < {b}. Thus we might define an order relation between
subsets of Xby:

VA,Bc,X. (A < B < z > V a e A . 3 b e B. a < b) (1)

However, given a < b, (1) implies that {b} < {a, b} and {a, b} < {b} are both true,
which contradicts {b} # {a, b}. This problem can be resolved by restricting the
lattice U to sets of tuples such every tuple is maximal in the set. That is, a set
A c X belongs to the lattice U if a < b is not true for any pair a, b e A. (Actually,
the situation is a bit more complex - see [7] for the details.) The members of U are
ordered by (1), as illustrated in Fig. 6, and form a complete lattice.

46

,

\

{(A, 1,1), (1,3,1)}

/ \
{(A, 1,1)} {(1,B,1)}

/
, -L, -L)}

<(> = the empty set

Figure 6. A few members of a data lattice U defined by three scalars, and the order relations
between them.

To get an intuition of how data types are embedded in the lattices, consider
a data lattice U defined from the three scalars time, temperature and pressure.
Objects in the lattice U are sets of tuple of the form (time, temperature, pressure).
We can define a tuple data type struct{temperature; pressure}. A data object of this
type is a tuple of the form (temperature, pressure) and can be modeled as a set of
tuples (actually, it is a set consisting of one tuple) in U with the form {(1,
temperature, pressure)}. This embeds the tuple data type in the lattice U, and Fig.
7 illustrates this embedding.

embedding of a tuple type
into a lattice

(tempi, presl) 7 {(1, tempi, presl)}

an element of the tuple type a member of the lattice of sets of tuples
(temperature, pressure) of the form (time, temperature, pressure)

Figure 7. An embedding of a tuple type into a lattice of sets of tuples.

Similarly, we can embed array data types in the data lattice. For example,
consider the same lattice U defined from the three scalars time, temperature and
pressure, and consider an array data type (array [time} of temperature). A data
object of this type consists of a set of pairs of (time, temperature). This array data
object can be embedded in U as a set of tuples of the form (time, temperature, 1).
Figure 8 illustrates this embedding. The basic ideas presented in Figs. 7 and 8 can
be combined to embed complex data types, defined as hierarchies of tuples and
arrays, in data lattices. The details are explained in [6] and [7].

{(timel, tempi), {(timel, tempi,1),

(time2, temp2), embedding of an (tim«2, temp2,1),

(timeS, tempS), array type into (timeS, temp3,l),
a lattice

(timeN, tempN)} (timeN, tempN.l)}

array of temperature values set of tuples with pressure
indexed by time values values =1

Figure 8. An embedding of an array type (a functional dependency between scalar types) into
a lattice of sets of tuples.

If x e X is the embedding of a data object of a type t e T, and if the scalar 5
does not occur in the definition of /, then the 5 values of all the tuples in x will be ±.
Also, in order to embed data objects in the data lattice U, we must restrict T to the
set of data types t such that no scalar 5 occurs more than once in the definition of /.
We note that, for each type in t e T, the embedding of data objects of type r into U is
an order embedding. This means that if a and b are objects of type t then a < b if
and only if Et(a) < Et(b), where is Et is the embedding of objects of type t.

Lattices and other kinds of ordered sets have played an important role in
the denotational semantics of programming languages [2, 12, 13, 14, 15], and they
can also play an important role in visualization.

3.3 Display Lattices

Our lattice structure can also be used to model displays. This is motivated
by analogy with the display model of Berlin [1]. He defined a display as a set of
graphical marks, and identified eight primitive variables of a graphical mark: two
spatial coordinates of the mark in a graphical plane (he restricted his attention to
static 2-D graphics), plus size, value, texture, color, orientation, and shape. Berlin
defined diagrams, networks and maps as spatial aggregates of graphical marks. By
defining a graphical mark as a tuple of its graphical primitive values, a display can
be viewed as a set of tuples.

We define a finite set DS of display scalars that represent graphical
primitives and we interpret a tuple of values of the display scalars as a graphical
mark. Similar to the data lattice U, we define a display lattice V whose members
are sets of tuples of values of display scalars.

We can define a display lattice for static 2-D displays using five continuous
display scalars: two for image coordinates plus three for color components (e.g., red,
green and blue). In this model, a display is a set of colored rectangles. The interval
values of the image coordinate scalars in a tuple specify the size and location of the

48

rectangle on the screen, and the interval values of the color component scalars
specify the range of colors used in the rectangle. This model can be extended to
dynamic 3-D displays, by adding two more display scalars: one for a third image
coordinate and another for indicating a graphical mark's location in an animation
sequence. The three image coordinates then specify the locations and sizes of 3-D
rectangles that must be projected onto a 2-D display screen (where multiple
rectangles are projected to the same screen location, their colors must be combined
according to some compositing algorithm). The values of the animation scalar are
used to select tuples for display. At any instant during data display, an animation
index takes an interval value, and only those tuples whose animation scalar
intervals overlap this animation index value are displayed. By sequencing through
values of the animation index, the display screen contents will change, providing a
dynamic display. Figure 9 illustrates the role of the various display scalars in this
display model.

set of animation steps:

interval that mark persists
during animation

(time, red, green, blue, x, y, z)

tuple of display
scalar values
for a graphical
mark

location and size
of mark in volume

ranges of values of
mark's color components

red green blue

Figure 9. The roles of the display scalars in an animated 3-D display model.

Just like computer data objects, computer displays contain finite amounts
of information. Pixels and voxels have limited resolution, colors are specified with
limited precision, animation sequences consist of finite numbers of steps, etc. The
lattice structure of V orders displays based on their information content.

Display models need not be limited to such primitive values as spatial
coordinates, color components and animation indices. For example, consider a
display model where a display consists of a set of graphical icons distributed at
various locations in a display screen. This display model could be defined using

49

three display scalars: a horizontal screen coordinate, a vertical screen coordinate,
and an icon identifier. Then a single value of the icon identifier display scalar
would represent the potentially complex shape of a graphical icon. Or, a set of
display scalars may form the parameters of a complex graphical shape. For
example, 2-D ellipses may be used as graphical marks, parameterized by five
display scalars for their center coordinates, orientations, and the lengths of their
major and minor axes.

3.4 Data Display as a Mapping From a Data Lattice to a Display Lattice

We model a display process as a function D:C/-»Fthat generates a display
in Frrom any data object in U. Rather than defining such functions constructively,
in terms of algorithms for calculating a display D(u) from a data object u e U, we
will define conditions on D and study the class of functions satisfying those
conditions. For our conditions, we interpret Mackinlay's expressiveness conditions
[8] in the lattice context. These conditions require that a display encode all the
facts about a data object, and only those facts. As we show in [6] and [7], we can
interpret these conditions as:

Condition 1. W e MON(U^> {1, 1}).
3<2 e MON(lD(MAX(X)) -> {1, 1}). P = Q o D

Condition 2. Vu e U. D(u) e ±D(X) and \/Q e MON(±D(MAX(X)) -» {1, 1}).
3P e MON(U->• {1, 1}). Q = PoD~ l

U

{1,1}

Figure 10. Expressiveness Conditions 1 and 2 interpreted as a commuting diagram. The
conditions require that a display function D generate a one-to-one correspondence between

the set of monotone functions P and the set of monotone functions Q, going both ways around
the diagram.

Here MON(U —> {±, 1}) is the set of monotone functions from U to the set {J., 1},
MAX(X) is the set of maximal tuples in X and thus the maximal element of C7, and
i£>(M4A%¥)) is the set of all displays in V less than the display of MAX(X). A
function P is monotone if x < y implies P(x) < P(y). We interpret facts about data
objects as functions in MON(U -» {1 , 1}) and we interpret fact about displays as
functions in MON(V -»•{!, 1}) (however, we limit this to displays less than the

50

display of the maximal data object). Condition 1 says that for every P there is a Q
that makes the diagram in Fig. 10 commute, and Condition 2 says that for every Q
there is a P that makes the diagram commute.

We say that a function D:U^V is a display function if it satisfies
Conditions 1 and 2. In [7] we prove:

Proposition 1. Z):t/-»Fis a display function if and only if it is a lattice isomorphism
from U onto iD(MAX(X)), which is a sub-lattice of V.

The definition of display function, and the proof of this proposition, do not
refer to the construction of data and display lattices in terms of scalars (although
that construction motivates some of the discussion). The set MAX(X) plays a role in
the definition of display function and in our proofs, but only as the maximal
element of the lattice U. Since any complete lattice has a maximal element (i.e., the
sup of all its elements), this result is true for any pair of complete lattices (7 and V.

In the special case that the lattice f/and Kare constructed from scalars and
display scalars as described in Sects. 3.2 and 3.3, display functions can be
characterized by simple mappings from scalars to display scalars. Specifically, for a
scalar s e 5, define an embedding Es:Is-^>Uby E/A) = (JL,...,i,...,_L) (this notation
indicates that all components of the tuple are ± except b) and define Us = E^Iy) c
U. Similarly, for a display scalar d e DS, define an embedding Ejlj -> V by
Efj(b) = (_L,...,&,...,!) and define V^ = E^/^) c V. These embedded scalar objects
play a special role in the structure of display functions. In [7] we prove:

Proposition 2. If D\U-*V is a display function, then we can define a
mapping MAPD:S-+POWER(DS) such that for all scalars s e S and all for a e U^
there is d e MAP^s) such that D(a) e Vj. The values of D on all of U are
determined by its values on the scalar embeddings Us (see [7] for the details).
Furthermore,
(a) If s is discrete and d e MAPp(s) then d is discrete,
(b) If s is continuous then MAP^s) contains a single continuous display scalar.
(c) If s * s' then MAPD(s) n MAPD(s') = <|>.

This tells us that display functions map scalars, which represent primitive
variables like time and temperature, to display scalars, which represent graphical
primitives like screen axes and color components. Most displays are already
designed in this way, as, for example, a time series of temperatures may be
displayed by mapping time to one axis and temperature to another as illustrated in
Fig. 11. The remarkable thing is that Prop. 2 tells us that we don't have to take this
way of designing displays as an assumption, but that it is a consequence of a more
fundamental set of expressiveness conditions. Figure 12 in Sect. 4.4 provides a
more detailed example of how a display function is defined by a set of mappings
from scalars to display scalars.

51

T
E
M
P
E
R
A
T
U
R
E

TIME

Figure 11. A time series displayed as a graph.

Display functions of the form D:U-+V are polymorphic in that sense that
they can be applied to data objects of any type in T. Furthermore, our lattice results
show that we can define such functions in terms of a set of mappings from scalars to
display scaJars. Just as data flow systems define a user interface for controlling how
data are displayed based on the abstraction of the rendering pipeline, we can define
a user interface for controlling how data are displayed based on the abstraction of
scalar mappings.

4. The VIS-AD Data Model

The VIS-AD (Visualization for Algorithm Development) system was
designed to help scientists visualize their computations [5). The system can be
understood in terms of its data model, computational model and display model. The
VIS-AD computational model is an imperative programming language of the type
familiar to scientists (it is similar to C). The system's data model is based on the
data lattice defined in Sect. 3.2. The data types and data objects of the lattice are
just the types and objects of the VIS-AD programming language. Furthermore,
metadata is integrated into this data model and plays a special role in the semantics
of the programming language.

The biggest difference between the VIS-AD data model and the data lattice
defined in Sect. 3.2 is the way that users define scalar types in S. A VIS-AD
program defines scalar types as real, real2d. realSd, int or string. The int and
string scalars are discrete scalars, and the real scalars are continuous scalars. The
real2d and realBd scalars take pairs and triples of real intervals as values, and were
included in the VIS-AD system to simplify the definition of spatial data types (e.g.,
the scalar latitude Jongitude defined in the next section is a real2d scalar used as
an index for 2-D image arrays).
4.1 Examples of User Defined Data Types

52

Users of VIS-AD can build types as arbitrary hierarchies of tuples and
arrays, which provides the flexibility to adapt to scientific applications. VIS-AD's
two- and three-dimensional real scalars make it easier to define types for spatial
data like satellite images. The VIS-AD programming language provides a simple
syntax for defining data types, as illustrated by the following examples taken from
an algorithm for discriminating clouds in time series of multi-channel GOES
(Geostationary Operational Environmental Satellite) images.

type ir_radiance = real;
type vis_radiance = real;
type latitudejongitude = rea!2d;
type time = real;
type image_region = int;
type count = int;
type goes_image =

array [latitudejongitude] of
structure {

.im_ir = ir_radiance;

.im_vis = vis_radiance;
}

type goes_partition = array [image_region] of goes_image;
type goes_sequence = array [time] of goes_partition;
type histogram = array [ir_radiance] of count;
type histogram_partition =

array [image_region] of
structure {
.histjoc = latitudejongitude;
.histjiist = histogram;

In these examples, a goesjmage data object is an array of pixels indexed
by latitudejongitude values, where each pixel is a structure containing infrared and
visible radiances. A goes _partition object divides an image into regions, and
includes a goesjmage object for each value of image region. A goes sequence
object is a time sequence of goes partition objects. A histogram data object
provides a frequency count of the number of occurrences of each ir_radiance value
in an image _region, and a histogram partition object associates a histogram object
and a latitudejongitude value with each image _region.

4.2 Integrating Metadata with Programming Language Semantics

Unlike the situation in other programming languages, VIS-AD's arrays
may be indexed by real values, or even by two- or three-dimensional real values.
This is because VIS-AD's array types are defined as finite samplings of functional

53

relations from variables (i.e., from scalar types) to other data types. Thus metadata
about the sampling of values is built into the semantics of the VIS-AD
programming language. This has important consequences for the way that
scientific data are manipulated and displayed. For example, an Earth satellite
image is really a finite sampling of a continuous radiance field. If the pixels of an
image are stored in an array in an ordinary language, the pixels are indexed in the
array by integers, and the Earth locations of pixels must be managed separately.
Thus the programming language has no information about the association between
pixel values and their locations. However, if this satellite image is stored in a
goesjmage object, then the pixels are indexed with latitude Jongitude values, and
the programming language does have access to the locations of pixels. This enables
the system to display a goesjmage object in an Earth based frame of reference. If
images from different sources (each with its own Earth projection) are overlaid in a
display, the system can use the information about pixel locations to geographically
register these images.

In the VIS-AD data model, all scalar values are managed in terms of finite
samplings of infinite value sets. In addition to determining the values of array
indices, this also determines the sampling and accuracy of values in arrays and
tuples. For example, if a satellite sensor generates radiances as 8-bit quantities,
then pixel values are really indices into a set of 256 samples of real radiance values.
The scale of these real values may be a standard radiance, in which case the set of
256 values encodes the calibration of the satellite's sensor. Thus VIS-AD's
management of sampling information can be used to encode satellite navigation and
calibration information. Furthermore, sensor systems are fallible, so it is often the
case the no value is defined for some pixels. In the VIS-AD data model, any data
object or sub-object may take the special value missing, indicating the absence of
information. Because missing values are part of the data model, they can be part of
programming language semantics and display semantics.

We will use a satellite image example to illustrate how sampling
information and missing data indicators are integrated with programming language
semantics. In this example, we calculate the difference between images generated
by different satellites. Let goes_east, goes_west and goesjtiffbe data objects of
type goesjmage, and let he be a data object of type latitude longitude. Assume
that the goesjeast and goes_\vest images were generated by GOES satellites at East
and West stations over the U.S., so that they have different Earth perspectives.
Then the following program calculates the difference between these images:

sample(goes_diff) = goes_east;
foreach (loc in goes_east) {

goes_diff[loc] = goes_east[Ioc] - goes_west[loc];

The first line specifies that goes_diff will have the same sampling of array index
values (i.e., of pixel locations) that goes east has. The foreach statement provides
a way to iterate over the elements of an array. In this case it iterates loc over the

54

pixel locations of the goes_east image. The expression goes_west[loc] resamples
the goes_west image at the Earth location in loc. If loc falls in an area where i :re
are no goes_west pixels, then goes_west\loc\ evaluates to missing. VIS-AD's
arithmetic operations evaluate to missing if any of their operands are missing, so if
goes_west[loc] is missing then the difference goesjiiff[loc\ is also set to missing.

The VIS-AD programming language provides vector operations, so this
little program can also be expressed as:

goes_diff = goes_east - goes_west;

The resampling of goes_west index values, and the evaluation to missing where
there are no goes_west pixels, are implicit in this statement.

Users can access metadata about sampling and missing data explicitly. For
example, the statement:

foreach (loc in goes_east) { ... }

iterates loc over the samples of the goes_east array. Missing data indicators may be
explicitly accessed using these statements:

if (goes_east == missing) { ... }
goes_east[loc].im_ir = missing;

However, because of the special role of metadata in the semantics of the VIS-AD
programming language, users rarely need to do explicit calculations with this
metadata.

The integration of sampling information and missing data is generic, rather
than specific to images. Thus the techniques illustrated in this satellite image
example can be applied to any user-defined data types. As our simple programming
example shows, this can relieve users of the need to explicitly keep track of missing
data, the need to manage the mapping from array index values to physical values,
and the need to check bounds on array accesses. The key to these advantages is that
metadata is integrated into the data semantics of a programming language.

We can summarize the kinds of metadata that are integrated with the
VIS-AD data model. They are:

1. Sampling information; every value in a data object is taken from a finite
sampling of primitive values.

2. Missing data indicators; any value or sub-object in a data object may take the
special value missing which indicates the lack of information.

3. Names for values; every primitive value occurring in a data object has a scalar
type, and hence a name (i.e., the name of the scalar type).

Because these kinds of metadata are integrated with the data model, they are part of
the computational and display semantics of the VIS-AD system. Note that the

55

VIS-AD programming language semantics do not integrate the accuracy
information of interval values. However, this accuracy information could be
integrated using interval arithmetic [10].

4.3 Other Types of Metadata

There are a great variety of kinds of metadata that scientists use to interpret
their data. While some of these are integrated with the VIS-AD data model, the
flexibility to define data types gives users a means to include other kinds of
metadata in their data objects. For example, users of satellite images may want to
manage the following kinds of information with their images:

1. Sensor identification. Satellites often have redundant sensors for measuring
the same radiances, each with slightly different characteristics. Scientists
sometimes need to know which sensor was used to generate a particular
image.

2. Satellite sub-point. This is the Earth location (i.e., latitude Jongitude)
directly under the satellite, and is useful as a rough guide to image coverage.

3. Pixel scan rate. Images are often scanned over a significant time interval, and
the scan rate in pixels per second can help assign precise times to pixel
radiances.

4. Various measurements of the sensor systems, like voltages, temperatures and
pressures. These are often used to diagnose problems with image quality.

We can create a new image type that includes these kinds of information, as
follows:

type ir_radiance = real;
type vis_radiance = real;
type latirudejongitude = rea!2d;
type pixel_rate = real;
type sensor_id = string;
type temperature = real;
type voltage = real;
type annotated_goes_image =

structure {
.image_sensor = sensorjd;
.image_subpoint = latitude_longitude;
.image_pixel_rate = pixel_rate;
.image_sensor_temp = temperature;
.image_sensor_cathode = voltage;

56

.image_data =
array [latitude_longitude] of

structure {
.im_ir = ir_radiance;
.im_vis = vis_radiance;

»

While these kinds of metadata are not part of the semantics of the
programming language, they are part of data objects and can be accessed by users'
programs.

4.4 Data Display in VIS-AD

The VIS-AD display model is similar to the display lattice V described in
Sect. 3.3, and is realized as a set of interactive, animated, 3-D voxel volumes. It is
defined in terms of a set of display scalars that include:

x, y and z coordinates of graphical marks in a 3-D volume
color values of graphical marks
a set of contour values; for each contour display scalar iso-surfaces and iso-lines

are interpolated through the graphical marks in the 3-D volume
an animation value; graphical marks whose animation value overlaps an

animation index are selected for display
a set of selector values, used to model abstract user control over display

contents; the user selects a set of values for each selector display scalar, and
only those graphical marks that overlap that set are displayed

Figure 12 illustrates the way that user's of VIS-AD control how their data
types are displayed. An image ̂ sequence data object is a time sequence of images
with two spectral channels called ir (infrared) and vis (visible). Image pixels are
indexed by pairs of real numbers specifying their Earth locations. Users define
mappings from the scalar types of their application to the display scalar types that
define the VIS-AD display model. The mappings indicated by arrows in Fig. 12
will cause an image_sequence data object to be displayed as an animated sequence
of colored terrains, where the ir channel will determine the height of the terrain and
the vis channel will determine its color. Users can interactively change the
mappings from scalars to display scalars (e.g., change the mappings in Fig. 12 by
mapping ir to color and mapping time to y - this will create a time series of images
stacked up along the y axis). They can also interactively control the functions by
which scalar values determine display scalar values (e.g., by adjusting color tables
for the mapping of vis to color in Fig. 12). Data objects may be displayed according
to multiple sets of mappings simultaneously.

57 0-2.

type image_sequence =

array [time] of array [latjon] of structure {ir: vis;}

red green blue

Figure 12. Users of VIS-AD control how data are displayed by defining mappings from the
scalar types used to define complex data types to the display scalars used to define the

VIS-AD display model.

The interface for controlling displays, consisting of the definitions of scalar
mappings, is de-coupled from the VIS-AD programming language. This is
important, because it allows users to control the display of their data objects without
embedding explicit calls to display functions in their programs.

The VIS-AD system is available by anonymous ftp from iris.ssec.wisc.edu
(144.92.108.63) in the pub/visad directory. The README file contains
instructions for retrieving and installing the system.

5. Extending Data Lattices to More Complex Data Models

In Sect. 3.4 we described how a function D:U-*V satisfying the
expressiveness conditions must be a lattice isomorphism. Although we motivated
this result in the context of a specific lattice structure for U and V (i.e., their
members are sets of tuples of scalar values), the proof of this result only depends on
U and V being complete lattices. Thus it is natural to seek to apply this result to
other lattice structures for data and display models. The motive for new lattice
structures must be new data models, since display models are themselves motivated
by the need to visualize data. The data model defined in Sect. 3 includes tuples and
arrays as ways of aggregating data. We will describe the issues involved in
extending data lattices to data types defined by recursive domain equations, to
abstract data types, and to the object classes of object-oriented programming
languages. This discussions of this section are somewhat speculative.

58

5.1 Recursive Data Types Definitions

The denotational semantics of programming languages provides techniques
for defining ordered sets whose members are the values of programming language
expressions [4, 13, 14, 15]. An important topic of denotational semantics is the
study of recursive domain equations, which define epos (defined in the next
paragraph) in terms of themselves.

First, we present some definitions used in denotational semantics. A
partially ordered set (poset) is a set D with a binary relation < on D such that,
Vx, y, z e D

x<.x "reflexive"
x<,y & y £ x ^ > x = y "anti-symmetric"
x < y & y < z = > x < z "transitive"

A subset M c D is directed if, for every finite subset A c A/, there is an x e M such
that Vy e A. y < x. A poset D is complete (and called a cpo) if every directed subset
M c £> has a least upper bound sup(M) and if there is a least element _L e D (i.e.,
Vy e D. _L ^ y). If £> and E are posets, a function/!Z)-»E is monotone if Vx, y e D.
x < y => fix) < fly). A function f.D->E is continuous if it is monotone and if
f(inf(M)) = inflflM)) for all directed M c D. If D and E are epos, a pair of
continuous functions f.D->E and g:E-+D are a retraction pair if g o/< id/) and
/o g = id^. The function g is called an embedding, and/is called a projection.

We take the following example of a recursive domain equation from [12].
A data type for a binary tree may be defined by:

Bintree = (Data + (Data x Bintree x Bintree))^ (2)

Here "+", "x" and "(.)_!_" are type construction operators similar to the tuple and
array operators we discussed in Sect. 3.1. The "+" operator denotes a type that is a
choice between two other types (this is similar to the union type constructor in the C
language), "x" denotes a type that is a cross product of other types (this is
essentially the same as our tuple operator, so that (Data x Bintree x Bintree) is a 3-
tuple), and the "1" subscript indicates a type that adds a new least element 1 to the
values of another type. Equation (2) defines a data type called Bintree, and says
that a Bintree data object is either 1, a data object of type Data, or a 3-tuple
consisting of a data object of type Data and two data objects of type Bintree.
Intuitively, a data object of type Bintree is either missing, a leaf node with a data
value, or a non-leaf node with a data value and two child nodes.

The obvious way to implement binary trees in a common programming
language is to define a record or structure for a node of the tree, and to include two
pointers to other tree nodes in that record or structure. In general, the self
references in recursive type definitions can be implemented as pointers. Thus,
recursive domain equations correspond to defining data types with pointers.

59

5.1.1 The Inverse Limit Construction

The equality in a recursive domain equation is really an isomorphism. As
explained quite clearly by Schmidt in [12], these equation may be solved by the
inverse limit construction. This construction starts with BintreeQ = {_!_}, then
applies (2) repeatedly to get

Bintree j = (Data + (Data x BintreeQ x BintreeQ))j_

Bintree-^ = (Data + (Data x Bin tree j x Bintree j))j_

etc.

The construction also specifies a retraction pair (gj,fj):Bintreej <-> Bintree/+j for
all /', such that g, embeds Bintree, into Bintree,+j andyj projects Bintree/+1 onto
Bintree j. Then Bintree is the set of all infinite tuples of the form (IQ, f j, /2, • ••) such
that /, =fj(tj+i) for all /'. It can be shown that Bintree is isomorphic with (Data +
(Data x Bintree x Bintree))^, and thus "solves" the recursive domain equation.

The order relation on the infinite tuples in Bintree is defined element-wise, just like
the order relation on finite tuples defined in Sect. 3.1, and Bintree is a cpo. We
note that the inverse limit construction can also be applied to solve sets of
simultaneous domain equations.

One way of extending our data lattices would be to show how to apply the
inverse limit construction to recursive equations involving our tuple and array type
constructors. Our tuple constructor is equivalent to the cross product operator "x".
While our array constructor is similar to the function space operator "->" used in
denotational semantics, it is not the same. (A-*E) defines the set of all functions
from A to B, while our array constructor (array [A] ofB) defines the set of functions
from finite subsets of A to B. Thus we would need to show how to apply the inverse
limit construction to equations involving the constructor (array [A] ofB). The epos
defined by the inverse limit construction are generally not lattices, but can always be
embedded in complete lattices. Specifically, the Dedekind-MacNeille completion,
described in [2], shows that for any partially ordered set A, there is always a
complete lattice U such that there is an order embedding of A into U.

Note that the set of Bintree objects defined by the inverse limit construction
includes infinite trees. This is because this set is complete and infinite trees are
limits of infinite sequences of finite trees. The development of denotational
semantics was largely motivated by the need to address non-terminating
computations (the unsolvability of the halting problem showed that there was no
way to separate terminating from non-terminating computations), and non-
terminating computations may produce infinite trees as their values. Since our
result that display functions are lattice isomorphisms depends on the assumption
that data and display lattices are complete, it is likely that any extension of our data
lattice to include solutions of recursive domain equations must include infinite data
objects.

60

The inverse limit construction defines the set of data objects of a particular
data type that solves a particular recursive domain equation. However, our
approach in Sect. 3.2 was to define a large lattice that contained data objects of
many different data types. It would be useful to continue this approach, by defining
a lattice that includes all data types that can be constructed from our scalar types as
tuples, arrays, and solutions of recursive domain equations. This is the subject of
Sect. 5.1.2.

5.1.2 Universal Domains

A fundamental result of the theory of ordered sets is the fixed point
theorem, which says that, for any cpo D and any continuous function /D-»Z), there
isfix(f) e D such that/[//*(/)) =fix(f) (i.e.,fix(f) is a fixed point off) and such that
fix(J) is less than any other fixed point of/

Scott developed an elegant way to solve recursive domain equations by
applying the fixed point theorem [4, 14]. In a sense, the solution of a recursive
domain equation is just a fixed point of a function that operates on epos. Scott
defined a universal domain U and a set R of retracts of U (this may be the set of all
retracts on U, the set of projections, the set of finitary projections, the set of
closures, or the set of finitary closures - note that these terms are defined in [7]).
Then he showed that a set OP of type construction operators (these operators build
cpo's from other cpo's) can be represented by continuous functions over R, in the
sense that for o e OP there is a continuous function/on R that makes the diagram
in Fig. 13 commute.

cpo's 7 cpo's

range range

Figure 13. The type construction operator o is represented by function/

Note that range(\v) = {W(M) | u e U}. For unary o e OP this is range(f(w)) =
o(range(w)). Similar expressions hold for multiary operators in OP. Then, for any
recursive domain equation D = 0(D) where O is composed from operators in OP,
there is a continuous function F:R->R that represents O. By the fixed point
theorem, F will have a least fixed point fix(F), and O(range(fix(Fj)) =•
range(F(fix(F))) = range(fix(F)), so range(fix(F)) is a cpo satisfying the recursive
domain equation D = O(D). The solution of any domain equation (or any set of
simultaneous domain equations) involving the type construction operators in OP

61

will be a cpo that is a subset of the universal domain U. Thus this approach is
similar to the way that the data types of our data model define sets of data objects
that are embedded in a single data lattice.

Universal domains and representations have been defined for sets OP that
include most of the type constructors used in denotational semantics, including "+",
"x", "->", and H(.)i"- In order to apply universal domains to extend our data model

to include recursively defined types, we would need to show how our tuple and array
type constructors can be represented over some universal domain.

A common example of a universal domain is the set POWER(N\ which is
just the set of all subsets of the natural numbers N (i.e., non-negative integers).
POWER(N) is a complete lattice. However, it does not include natural embeddings
of our scalar data objects. Furthermore, the embeddings of mathematical types into
universal domains, as defined by papers in denotational semantics, are not suitable
for our display theory. For example, a simple integer and a function from integers
to integers are embedded to the same member of POWER(tf). A display function
applied to the lattice POWERQi), with these embeddings, would produce the same
display for the integer and the function from integers to integers. Since the goal of
visualization is to communicate information rather than to make it obscure, other
embeddings of types into universal domains must be developed. Specifically, an
extension of our display theory to recursively defined data types should include a
universal domain with natural embeddings of our scalar data types, and should
include representations of our tuple and array type constructors that will produce
natural embeddings of constructed types.

5.1.3 Display of Recursively Defined Data Types

Since the goal of visualization is to communicate the information content
of data to users, an extension of our theory must focus on the data lattice U.
However, since a display function D is a lattice isomorphism of U onto a sub-lattice
V, we should be able to say some things about the structure of V. If a subset A c U
is the solution of a recursive domain equation, then D(A) c V is isomorphic to A
and must itself be a solution of the recursive domain equation.

For example, if the set .4 is the solution of (2) for Bintree, then the set D(A)
must also solve this equation. The isomorphism provides a definition of the
operators "+", "x" and "(.)j_" in D(A) and thus also defines a relation between

objects and their "subtree" objects in D(A). The isomorphism does not tell us how
to interpret these operators and relations in a graphical display, but it does tell us
that such a logical structure exists. Given the complexity of this structure, it seems
likely that display objects in D(A) will be interpreted using some graphical
equivalent of the pointers that we use to implement data objects in A.

Two graphical analogs of pointers come to mind immediately:

1. Diagrams. Here icons represent nodes in data objects, and lines between
icons represent pointers.

62

2. Hypertext links. Here the contents of a window represents one or more nodes
in a data object, and an icon embedded in that window represents an
interactive link to another node or set of nodes. That is, if the user selects
the icon (say by a mouse point and click), new window contents appear
depicting whatever the icon points at.

In order to extend our display theory to data types defined with recursive domain
equations, we need to extend our display lattice V to include these graphical
interpretations of pointers. The most interesting problem is to find a way to do this
that produces a display lattice complex enough to be isomorphic to a universal
domain as described in Sect. 5.1.2.

5.2 Abstract Data Types and Object Classes

Abstract data types and the object classes of object-oriented programming
are ways of defining data types that hide the internal structures of data objects from
the programs that use those data objects. Definitions of abstract data types and
object classes include definitions of member functions for basic operations on data
objects. Data objects are accessed by applying these member functions, rather than
by selecting their primitive sub-objects. In fact, the hidden implementation of data
objects may not include sub-objects at all, but may be purely functional For
example, an array data object may be implemented either by explicitly storing
elements of the array, or by a function for computing the elements of the array as
they are accessed.

5.2.1 Abstract Data Types

In an algebraic setting [17], abstract data types are specified by a signature
X = (T, F) and a set of logical conditions E. T is a set of types and F is a set of
member functions among the types in T (that is, the types of the member functions,
and the numbers and types of their arguments, are specified). E is a set of first
order statements involving quantifiers, equality, the member functions of F, and
variables with types in T. It is undecidable whether the statements in E are
satisfiable (i.e., no algorithm exists which can tell, for given E, whether any set of
data objects and functions satisfy E), so there are no compilers that produce
implementations from T, F and E. However, abstract data types are used as the
basis of programming methods. System designers use heuristic methods to derive
conditions in E by analyzing system requirements, and use these conditions as a
guide for implementing the functions in F [9].

Because of the generality of the abstract data type formalism, it can be used
to express our lattice theory of display. To see this, define TLAT = {^> ̂ > ^LAT =

{infot/xU->U, supu\ £/xU-*U, infv:Vx V^V, supv\VxF-»F, D: U-*V\ and E^j =
{lattice axioms for U and V, expressiveness conditions on D}. That is, the data
types of TLAT are tne (^ata anc^ display lattices U and V, the functions in FLAT are

the lattice operations on U and V plus the display function D, and the logical

63

conditions in £LAX are the axioms defining U and V as lattices plus the
expressiveness conditions. Expressiveness Conditions 1 and 2, as defined in Sect.
3.4, quantify over MON(U -> {_L , 1}) and are thus second order statements
whereas EU^ is supposed to consist of first order statements. However, as shown
by Prop. 1, Conditions 1 and 2 are equivalent to conditions that can be expressed as
first order statements. There are obviously many different sets of lattice U and V
satisfying the abstract data type definition in T\jtf, F\JR and £LAT-

In Sect. 5.2.3 we will discuss the issues involved with extending our lattice
theory to display the data objects of abstract data types.

5.2.2 Object Classes

Like abstract data types, the object classes of object-oriented programming
languages define access to data objects in terms of a set of member functions.
However, rather than defining logical conditions that the member functions must
satisfy, object classes define these functions explicitly as programs. An object class
in C++ defines members as both data structures and functions, which are divided
into private and public parts [3]. The private members are only accessible from
member functions defined as part of the class (i.e., they are not accessible from
outside the class definition).

In addition to hiding the implementation of object classes, object-oriented
languages provide two mechanisms called polymorphism and inheritance that
provide a novel style of programming compared to traditional procedural languages.
Polymorphism means that the same member function name may be defined in the
public parts of multiple object classes. Calls to member functions are bound to the
appropriate function definitions at run time, determined by the classes of the objects
passed as arguments to the functions. Inheritance allows an object class to be
defined in terms of another. The new class "inherits" the members of the old class,
except where those data members are explicitly redefined.

Object-oriented visualization systems define polymorphic display
functions. These systems partition their data models into a number of object
classes, and their polymorphic display functions may be called to display any data
object in their data models. Thus the object oriented approach and our lattice
approach both define display functions that can be applied to data objects of any
type. However, where the object oriented visualization systems require constructive
definitions of display functions as programs, our approach defines data and display
lattices and defines display functions as any function satisfying the expressiveness
conditions. Thus it is still interesting to investigate how our lattice theory can be
extended to the object classes of an object-oriented language.

The private and public members of class definitions include data
structures. These may be displayed using the techniques that we developed in Sect.
3, and the techniques for displaying recursively defined data types suggested in
Sect. 5.1. However, this approach does not provide a systematic way to display data
objects defined by classes, since class definitions include functions as well as data

64

structures. In the next section we will discuss issues involved in extending our
lattice model of display to the member functions of object classes.

5.2.3 Lattice Models for Abstract Data Types and Object Classes

Because of the similarity between abstract data types and object classes, we
will discuss them together, using the notation of abstract data types. We let T
denote a set of types and let F denote a set of member functions. The types in T
may be abstract data types or may be object classes, and the functions in F may be
defined by a set E of logical conditions or by a set of programs. The important
point is that the functions in F define relations among data objects, and that these
relations take the place of a definition of data objects in terms of their internal
structure. In fact, we could say that the relations defined by functions in F are a
generalization of the relations between objects and their sub-objects that define the
internal structures of data objects. In Sect. 3.1 we defined tuple objects in terms of
their element sub-objects, and we defined array objects in terms of their domain and
range sub-objects. These relations between objects and their sub-objects are special
cases of relations between objects expressed by member functions.

Let A be the union of the sets of data objects of all types in T. We could
give A the discrete order (i.e., no object is greater than any other object), but this
would lead to a very boring theory of data display. In order to define a more
interesting order relation on A, we can start with the data lattice that we defined in
Sect. 3.2 (here we call it UQ). If T is a set of abstract data types, then we let the
objects of UQ serve as constants in the logical conditions of E. If T is a set of object
classes, then we take the continuous and discrete scalar types of UQ as the primitive
values of an object oriented programming language.

If we also assume that the member function in F are monotone, then we
can use these functions to derive order relations between objects in A from the order
relations between objects in UQ. However, there is no guarantee that there is a order
relation on . 1 that is consistent with the assumption that the functions in F are
monotone. For example, while it is easy to define monotone arithmetic operators on
the scalar types of UQ, there is no reasonable way to define monotone logical and
comparison operators on the scalar types of UQ (we run into inconsistencies
assuming either that false < true or that true and false are not ordered). This
suggests that a monotonicity assumption is a severe restriction on the member
functions in F.

However, in order to define an interesting order condition on A we may
assume that member functions are monotone. In this case, we need to verify that
the monotone functions of F are consistent with an order relation on A, although
this appears to be a difficult problem. If T is a set of object classes, and if member
functions are implemented in a programming language that includes logical and
comparison operators, then it is generally undecidable whether functions defined
among the objects of U0 are monotone. However, we may be able to design a
restricted programming language for member functions that allows us to verify that
monotone member functions are consistent with an order relation on A. If T is a set

65

of abstract data types, then the monotonicity requirement must be added to £ as a
set of logical conditions on the member functions in F (along with conditions that
define order relations on the types in T). This may cause a set of satisfiablc
conditions to become unsatisfiablc. and it is generally undecidable whether the
addition of monotonicity conditions causes a set F of conditions to become
unsatisfiable. Of course, this situation is no worse than without monotonicity
assumption, since the question of whether a set of logical conditions is satisfiablc is
generally undecidable.

Given an ordered set A of data objects (the union of the sets of data objects
of each type in T), we can use the Dedekind-MacNeille completion to embed A in a
complete lattice U. In order to apply our display theory we would need to construct
a display lattice V such that isomorphisms from U onto sub-lattices of V exist, and
develop interpretations of display objects in V in terms of a physical display device.
Since the display function D:U-*V is an isomorphism between the set of data
objects and a subset of the set of display objects, and since the relations between
data objects expressed by the member functions in F (and subject to the logical
conditions in E) are a generalization of the hierarchical relations between objects
and sub-objects in the data model defined in Sect. 3.1, it is natural to seek an
interpretation of display objects in terms of relations between display objects that
generalizes the relation between display objects and graphical marks as described in
Sect. 3.3. For example, we may represent data objects by icons in a display, and let
users interactively explore the relations between those icons as defined by the
functions in F. Finding a systematic way to interpret displays of abstract data types
seems like a very open ended and interesting problem.

It is interesting to note that in the case of abstract data types, we can use
the generality of the framework to add our display model to an existing set of
abstract data types defined by T, F and E. Take TLAJ, FLAT an^ ^LAT ^ defined
in 5.2.1, and define

r-7-uTLAT
F1 = Fu FLAT u {embeddings of the types in T into U}
E' = E u FLAT *-* {monotonicity conditions on the embeddings

from T into U}

Of course, there is no algorithm for deciding if the conditions in E' are satisfiablc or
for constructing the lattice U and V if they are. Furthermore, this tells us nothing
about how display objects in Fare interpreted in terms of a physical display device.

6. Conclusions

The design of the VIS-AD data model is tightly integrated with a
computational model and a display model. The result is a data model whose data
objects can be uniformly visualized using polymorphic display functions, and which
has the flexibility to adapt to scientists' computations. Several kinds of metadata are
integrated with this data model, providing a novel and useful programming

66

language semantics, and also providing the capability to display multiple data
objects in common frames of reference.

The VIS-AD data model is based on lattices. These lattices may be applied
to models of both data and displays. This provides an interesting context for
analyzing visualization processes as functions from data lattices to display lattices.
There are also interesting prospects for extending the lattice theory of visualization
to more complex data models that involve recursively defined data types, abstract
data types, and the object classes of object oriented programming languages.

References

[1J Berlin, J., 1983; Semiology of Graphics. W. J. Berg, Jr. University of
Wisconsin Press.

[2] Davey, B. A. and H. A. Priestly, 1990; Introduction to Lattices and Order.
Cambridge University Press.

[3] Gorlen, K. E., S. M. Orlow and P. S. Plexico, 1990; Data Abstraction and
Object-Oriented Programming in C++. John Wiley & Sons.

[4] Gunter, C. A. and Scott, D. S., 1990; Semantic domains. In the Handbook of
Theoretical Computer Science, Vol. B., J. van Leeuwen ed., The MIT
Press/Elsevier, 633-674.

[5] Hibbard, W., C. Dyer and B. Paul, 1992; Display of scientific data structures
for algorithm visualization. Visualization '92, Boston, IEEE, 139-146.

[6] Hibbard, W., C. Dyer and B. Paul, 1993; A lattice theory of data display.
Submitted to IEEE Visualization '94.

[7] Hibbard, W. L., and C. R. Dyer, 1994; A lattice theory of data display.
Tech. Rep. # 1226, Computer Sciences Department, University of
Wisconsin-Madison. Also available as compressed postscript files by
anonymous ftp from iris.ssec.wisc.edu (144.92.108.63) in the pub/lattice
directory.

[8] Mackinlay, J., 1986; Automating the design of graphical presentations of
relational information; ACM Transactions on Graphics, 5(2), 110-141.

[9) Mitchell, R, 1992; Abstract Data Types and Modula-2: a Worked Example
of Design Using Data Abstraction. Prentice Hall.

(10] Moore, R. E., 1966; Interval Analysis. Prentice Hall.
[11] Robertson, P. K., R. A. Earnshaw, D. Thalman, M. Grave, J. Gallup and E.

M. De Jong, 1994; Research issues in the foundations of visualization.
Computer Graphics and Applications 14(2), 73-76.

[12] Schmidt, D. A., 1986; Denotational Semantics. Wm.C.Brown.
[13] Scott, D. S., 1971; The lattice of flow diagrams. In Symposium on Semantics

of Algorithmic Languages, E. Engler. ed. Springer-Verlag, 311-366.
[14] Scott, D. S., 1976; Data types as lattices. Siam J. Comput., 5(3), 522-587.
[15] Scott, D. S., 1982; Lectures on a mathematical theory of computation, in: M.

Broy and G. Schmidt, eds., Theoretical Foundations of Programming
Methodology, NATO Advanced Study Institutes Series (Reidel, Dordrecht,
1982) 145-292.

67

[16] Treinish, L. A., 1991; SIGGRAPH '90 workshop report: data structure and
access software for scientific visualization. Computer Graphics 25(2), 104-
118.

[17] Wirsig, M., 1990; Algebraic specification. In the Handbook of Theoretical
Computer Science, Vol. B., J. van Leeuwen ed., The MIT Press/Elsevier,
675-788.

68

A Highly Parallel Approach for Satellite Archive Processing

William Hlbbard

Space Science and Engineering Center
University Of Wisconsin - Madison

1. INTRODUCTION

The Space Science and Engineering Center
(SSEC) has an archive of almost all the GOES
(Geostationary Operational Environmental
Satellite) data produced since 1978, stored on
roughly 26,000 videocassettes containing 120
trillion bytes (Suorai, 1982). SSEC is
investigating a system for periodically
processing this entire data set to derive
products such as cloud heights and effective
emissivity, cloud classification, cloud motion
winds, humidity fields, fire frequency in the
tropics, and diurnal variability of cloudiness.
SSEC has set the goal of processing the entire
archive once per year. This paper describes a
highly parallel approach to implementing a
climate archive processing system. This approach
has reduced projected hardware costs for the GOES
archive system to a fraction of the total cost of
archive processing, compared to hardware costs
that dominate total costs for other approaches.

2. SOLUTION BY PARTITION

Our system design concept is based on the
assumption that the archive can be partitioned
into sections, that the data in these sections
can be independently processed into intermediate
products reduced in volume by two or three orders
of magnitude, and that any necessary combinations
of data between sections can be done using these
intermediate products. In the case of the GOES
archive, the sections would consist of the data
from one satellite over a time period such as a
week or a month. Existing algorithms for most
GOES products can be applied Independently within
these sections. Cloud classification (Garand,
1982), percentage of cloud cover (Coakley and
Bretherton, 1982), cloud heights, effective
emissivity, and humidity fields are derived from
a single GOES image. Cloud drift winds (Merrill,
1989) are derived from short time sequences of
visible or infrared images from a single GOES
satellite.

The assumption of partitioning the
archive into sections allows the archive
iprocessing system to be partitioned into many
I loosely coupled identical subsystems, each
|processing one or more sections of the archive.
|The raw archive data would not flow between
subsystems. Instead, the much smaller volume of

L

processed data would flow from the subsystems
into a central product store. Because the raw
data do not need to flow through any single
system component, very high bandwidth components
can be avoided, reducing cost and risk and
increasing maintainability.

The GOES climate archive system would be
Implemented as a set of subsystem units, where
each unit consists of a RISC (Reduced Instruction
Set Computer - often used to mean fast and
inexpensive computer) processor, an archive tape
playback unit, a disk store, and a network
connection. The units would be connected over a
network to a larger central processor and store
for accumulating intermediate and final products.
If the number of units is very large, then they
may be divided among several networks, each
connected to the central processor. We estimate
that each unit will cost between $20K and $40K,
so the number of units may be large.

Dividing the 120 trillion bytes in the
GOES archive by the 30 million seconds in a year
gives an average processing rate of 4 million
bytes per second. Assuming playback at the
normal GOES stretched data transmission rate of
0.25 million bytes per second, this works out to
about 17 processing units, including a spare. A
40 MIPS (Million Instructions Per Second) RISC
processor can allocate 188 instructions to
processing each visible pixel or 3150
instructions to processing each IR pixel in the
GOES stream. Thus it should be possible to
generate many types of products "on the fly" as
the data are being ingested from the archive tape
into the RISC processor. In one experiment run
on*the IBM RISC 6000 Model 320, a program written
In C was able to unpack packed 6 bit GOES visible
pixels into one pixel per byte, at a rate 17
times faster than the normal GOES ingest rate.

I
Where it is not possible to process data

at the ingest rate, the data can be ingested onto
local disk store and processed after ingest. In
this case the system would periodically stop
ingesting data and allow processing to catch up,
resulting in a slower average rate of processing
and a need for a larger number of processing
units. As the system work load increases through
the addition of new products and the modification
of product algorithms, a system composed of many
identical units may be expanded gradually, by
increasing the number of units.

PRECEDING PAGE BLANK NOT FILMED

System management is potentially a large
problem for the highly parallel approach. The
system must:

Manage the flow of archive tapes through
processing and keep track of the status of
each tape.

Manage the product algorithms running in each
unit, making sure that they are consistent,
or that variations are intentional and
understood.

Monitor the correct functioning of the units,
and manage overall operations on a changing
subset of operational units (with a large
number of units, some will normally be down).

3. A SCALABLE APPROACH

The Earth Observing System (EOS) is
expected to generate much larger volumes of data
than GOES and other current instruments. A good
processing system design should be able to scale
to handle larger data volumes. System designs
'with single point data bottlenecks can only scale
by increasing the bandwidth of their components.
However, a system composed of many units can
scale by increasing the number of units.
Ultimately the scalability of our design concept
is limited by the central product store, which is
a single point for products, and by the
complexity of managing and operating a large
number of units. Given a reduction of volume
from raw data to products by a factor of 100, and
a central product store with 10 times the
bandwidth of each replicated unit, the system
design may scale to 1000 units. However,
operations would be extremely complex for a
system of 1000 units. As the number of units
increases, the system should probably evolve into
a hierarchical organization, with multiple
physical networks and multiple central product
[stores. This would prevent any single point
failure from bringing down a large and expensive
system, and it would allow a partitioning of
system management functions into a number of
smaller systems. At such large scales it would
also be very desirable to avoid replicating the
tape playback function for each unit. 1000 tape
units and a correspondingly large tape archive
would require a large number of people for
operations and maintenance.

Bandwidths of tape media, processors,
networks and disk stores will increase.
Nevertheless, the assumption of a partitioned
archive, and the consequent highly parallel
approach to processing system design, can help us
avoid the cost and risk of using the highest
bandwidth components.

5. REFERENCES

Coakley, J., and F. Bretherton, 1982; Cloud cover
from high resolution scanner data:
detecting and allowing for partially
filled fields of view; J. Geophys. Res.,
87, 4917-4932.

Garand, L., 1987; Automated classification of
oceanic cloud patterns with applications
to cloud type dependent retrievals of
meteorological parameters; Digital Image
Proc. and Visual Comm. Technologies in
Meteor., Cambridge, SPIE, 47-53.

Merrill, R. , 1989; Advances in the automated
production of wind estimates from
geostationary satellite imagery. 4th
Conf. on Satellite Meteor., San Diego,
AMS, 246-249.

Suomi, E., 1982: The Videocassette GOES Archive
System - 21 Billion Bits on a
Videocassette. IEEE Trans, on Geoscience
and Remote Sensing, GE-21(1), 119-121.

4. ACKNOWLEDGEMENTS

The ideas presented here grew out of
collective discussions with Francis Bretherton,
John Anderson, Robert Fox, J. T. Young, Joe
Rueden, Tom Whittaker, John Benson and others at
the Space Science and Engineering Center.

__ _.__ _L

5A.2
A//

PROGRESS WITH VIS-5D / DISTRIBUTED VIS-5D

Brian Paul 1, Andre Battaiola2 and Bill Hibbard1

1Space Science and Engineering Center
University of Wisconsin - Madison

2INPE/CPTEC, Brazil

<

1. INTRODUCTION

VIS-5D is a system for interactive visualization
of large atmospheric data sets such as those generated by
numeric weather simulations. It is a simple yet powerful
tool used by scientists for both analysis and presentation
of their data. VIS-5D is freeware; one can obtain the
software at no charge, evaluate it, and use it if it fits one's
needs.

VIS-5D was first demonstrated at the AMS
annual meeting in January 1989 and described in a paper
(Hibbard and Santek 1990). Originally, VIS-5D was only
available on Stellar workstations. Since then we have
ported the software to SGI and IBM workstations.
Coupled with the dramatic drop in prices for 3-D graphic
workstations, the number of people using VIS-5D has
increased greatly.

Distributed VIS-SD is a variation of VIS-5D
designed for visualization in a network environment.
With this system, the data do not have to be on the
workstation to visualize it. By splitting the program into
two parts which run on a supercomputer and graphics
workstation, larger data sets can be visualized than
practical with a single workstation.

2. OVERVIEW OF VIS-5D

VIS-5D works with multi-variable, time varying
data in the form of a five-dimensional grid. Three
dimensions correspond to space, one dimension is time,
and another data dimension enumerates multiple physical
variables. For example, a thunderstorm data set may
contain physical variables for potential temperature,
pressure, cloud water, and wind speed spanning 50 time
steps and a spatial volume of size 30 by 30 by 25 grid
points. In this case, the data set would contain 4.5 x 106

data points (4*50*30*30*25). On a workstation with 256
MB of memory, VIS-5D can visualize data sets containing
as many as 1.25 x 10* points.

The three space dimensions form a regular-
spaced, rectangular domain displayed as a 3-D box on the
screen. The physical variables which comprise the data
set can be depicted inside the box in the following
formats:

• Iso-level contour surfaces with optional
transparency.

• Horizontal and vertical contour line slices with
selectable contour interval.

• Horizontal and vertical color slices with
interactive data-to-color mapping.

• Interactive wind trajectory tracing using a 3-D
cursor.

• Horizontal and vertical wind vector slices with
adjustable scaling and density.

VIS-5D is completely controlled using a
graphical user interface. The mouse is used to rotate,
move, and animate the 3-D volume while buttons, sliders,
and type-in widgets control program options.

Most data sets visualized with VIS-5D are time
varying. The user controls animation and single stepping,
either forward and backward in time. A combination
analog/digital clock in the 3-D viewing window shows the
current time.

To manage the display of the physical variables
in the various formats there is a widget button for every
possible combination of variable and depiction format.
As implemented, the control panel window contains a
matrix of buttons in which each physical variable is
represented by a row and each depiction format is
represented by a column. To display a vertical contour
slice of the variable TEMP only requires clicking on the
button in the TEMP row and vertical contour slice
column. Similarly, if U, V, and W wind components are
available, extra buttons will be present for wind vector
slices and trajectories.

When the display of any variable is activated, a
pop-up window will appear which contains any applicable
options. For iso-level contour surfaces, the pop-up
window contains a slider to change the iso-level. For
wind vector slices, the pop-up window contains type-in
widgets to change the vector lengths and density. Only
one options window for each type of graphic is displayed
at a time to prevent screen clutter.

In addition to graphical widgets, direct
manipulation techniques are used in VIS-5D. For
example, the default location of a horizontal or vertical
slice is through the center of the box. To move the slice
to a different location we let the user drag it directly with

162 PRECEDING PAGE BLANK NOT FILMED

the mouse. Similarly, when tracing wind trajectory
motions an initial location must be selected in the 3-D
volume. This is done by dragging a 3-D cursor inside the
box using the mouse. We have found that direct
manipulation is the best way to handle these interactions
because it is simple to use and it eliminates extra slider or
dial widgets.

Other features of VIS-5D include:

• User-definable topography and map lines.
• Text annotations with any selected font.
• Antialiasing, transparency, line width, and full-

screen rendering options.
• Save and restore of current graphics.
• Graceful handling of missing data.

Because VIS-5D was designed to deal with a
singe type of data it works very efficiently. The 5-D grid
data is compressed and the internal representation of iso-
level contour surfaces, slices, etc. is in a compressed
format as well. VIS-5D also utilizes multiple processors
to compute the iso-level contour surfaces or slices for
each time step in parallel. By using coarse grained
parallel programming, near linear speedups can be
obtained by increasing the number of processors. For
these reasons a number of people have turned to VIS-5D
after finding that other visualization systems are too slow
or limit data capacity.

3. VIS-5D IN USE

VIS-5D has been used by atmospheric scientists
at the University of Wisconsin and other sites for several
years now. During that time it has evolved to serve three
distinct purposes:

• As a debugging/analysis tool: Those involved in
atmospheric modeling use VIS-5D as a
diagnostic tool. Typically, after a number of
time steps have accumulated, VIS-5D will be
used to visually inspect the progress of the
model. If there is a problem it can be quickly
discovered and diagnosed.

• As a teaching tool: It is not uncommon for a
teacher or researcher to bring groups of people
into the lab for a VIS-5D session. Concepts
which are difficult to explain verbally or display
in 2-D can be naturally illustrated with VIS-5D.

• As a presentation tool: It has become common
practice for scientists to produce a V1S-5D video
to accompany a research paper for presentation
at conferences. During only an afternoon's time,
some very informative and interesting videos
have been made.

Overall, users seem to be very happy with
VIS-5D's user interface. It has been our experience that
people become proficient with the program after only one
or two sessions and minimum instruction. This is very
important because the average scientist usually does not
have time to spend learning a complicated new software
system.

4. DISTRIBUTED VIS-5D

The purpose of Distributed VIS-5D is to allow
visualization of very large data sets (1.0 x 1010 data
points). This is accomplished by dividing the
visualization workload between two computers.
Essentially, the VIS-5D program is split into two parts: a
client and a server. The client program runs on the
user's graphic workstation.. It provides the user interface
and displays the 3-D graphics. The server runs on the
computer where the user's data are stored, typically a
supercomputer, and is responsible for converting data into
geometric primitives. When the user wants to view an
iso-level contour surface, slice, etc., a request is sent
from the client to the server. The server receives the
request, fetches the appropriate data, computes the iso-
level contour surface or slice, and sends the resulting
geometric description back to the client where it is
displayed.

The requests from the client to the server
require little network bandwidth. However, the resulting
geometric descriptions sent back may be quite large.
Descriptions of iso-level contour surfaces computed from
a 50 by 50 by 25 point grid are often 100KB in size. A
high speed network is required to sustain interactive rates.
In fact this project is in part funded by the Gigabit
Network Testbed project and intended to be a test
application of the network.

Our testing was done using an SGI 340VGX
workstation at the UW Madison and a CRAY-2
supercomputer at the NCSA in Urbana, IL connected by
a T-l (1.5 Mbps) network. We discovered two main
problems: network congestion and supercomputer
process scheduling. Since we were certainly not the only
users of the network it was inevitable that we would be
competing for bandwidth with other users. When the
network was congested we experienced a dramatic
decrease in bandwidth but only moderate increases in
latency. We found just the opposite problem while using
the CRAY-2; the server process would get alternating
short periods of high throughput followed by long periods
of low throughput. The combination resulted in the user
observing wildly varying performance.

For example, if the user selected an iso-level
contour surface for viewing and then turned on the

163

«rrim.n- option he would see a very uneven frame rate.
This is because Distributed VIS-5D only sends requests to
the server on an as-needed basis. When animation is
selected, a sequence of iso-level contour surface requests
are sent to the server. Since the server is a parallel
program and iso-level contour surfaces may require
different amounts of time to be computed they may be
send back to the client out of order. This, compounded
with the network and scheduling problems, results in an
uneven frame rate. In an attempt to solve the problem,
we experimented with various techniques to adoptively
control the animation rate depending on request/result
turn around time. While we were mostly successful, we
found no way to effectively deal with unexpected periods
of zero throughput.

What does this mean for the user? During
hours of heavy network or supercomputer use, one
encounters a cycle of delays and bursts in responsiveness.
This can be very distracting because slowness and delays
make the user wonder if the system has crashed. The
solution is to increase the network speed and to change
the process scheduling on the supercomputer to give a
more even throughput We may experiment in both of
these areas when our network is upgraded to T3 (45
Mbps) and by porting the server to another
supercomputer.

Despite the complications involved in
distributed visualization, it can be useful as long as it
allows you to do something not possible with a single
workstation. In our case Distributed VIS-5D allows
visualization of much larger data sets than possible
previously.

• Versatility: While VIS-5D has a rich variety of
visualization methods, the program itself can be
used in several unique ways.

There should be no question about the value of
scientific visualization. We are now concerned with how
to best apply the technology and make it accessible to the
people who need it.

6. OBTAINING VIS-5D

VIS-SD is available via anonymous ftp:

% ftp vls5d.ssec.wlsc.edu
(or % ftp 144.92.108.66)
login: anonymous
password: nyname@mylocation
f tp> cd pub/vlsSd
ftp> ascll
f tp> get README
ftp> bye

See section 2 of the README file for complete
installation instructions. Since VIS-5D is freeware there
is no warranty of any kind. However,' we will try to help
with any questions or problems addressed to us.

7. ACKNOWLEDGEMENTS

5. SUMMARY

This work was supported by NASA
(NAS8-36292 and NAG8-828). This work was also
supported by the National Science Foundation and the
Defense Advanced Research Projects Agency under the
Cooperative Agreement NCR-8919038 with the
Corporation for National Research Initiatives.

The developers of VIS-5D have worked closely
with its users resulting in an exceptional balance between
ease-of-use and features.

Three important themes run throughout VIS-5D:

• Interactivity: VIS-5D gives quick responses to
user input. When the user does not have to wait
for results, he is more likely to try new ideas and
explore data in more detail.

• Ease of use: Having a graphical user interface is
not sufficient to qualify a program as easy to use.
Our philosophy has been "less is more" when it
comes to windows and widgets - we avoid
presenting our users with unnecessary and
confusing choices.

8. REFERENCES

Hibbard, W., and D. Santek, 1990; The VIS-SD system
for easy interactive visualization. Visualization '90,
San Francisco, IEEE. 28-35. Also in 1991 Preprints,
Conf. Interactive Information and Processing Systems
for Meteorology, Oceanography, and Hydrology.
New Orleans, American Meteorology Society. 129-
134.

Hibbard, W., D. Santek, and G. Tripoli, 1991;
Interactive atmospheric data access via high speed
networks. Computer Networks and ISDN Systems,
22, 103-109.

164

VIS-AD DATA MANAGEMENT

Wifflmm Hibbard1*2, Charles R. Dyer2 and Brian Paul1

'Space Science and Engineering Center
Department of Computer Sciences
University of Wisconsin - Madison

1. INTRODUCTION

The VIS-AD system wai designed as aa
algorithm development system, enabling scientists to
visualize the results of experiments with their data analysis
algorithms. However, VIS-AD could also become a very
powerful data management system. VIS-AD provides a
programming language similar to C for expressing
scientific algorithms. The language provides a mechansim
for users to define complex data types for the data objects
of their algorithms. Data types can be defined for images,
multi-spectral images, image sequence*, gridded data,
randomly located data, geometrical data such as boundary
lines, and virtually any other data structures used in earth
science. Furthermore, VIS-AD manages all these data
types in a uniform way, and provides access to data
through its programming language. These features could
form the basis for a new way to manage environmental

2. DATA TYPES

VIS-AD enables its users to define data types for
the data objects of algorithms, as follows. Define T as the
set of types for the data objects in an algorithm. It is
common for a programming language to define a set of
primitive types (e.g. int, real), and to define a set. of type
constructors for building the types in 7* from the primitive
types. We modify this by interposing a finite set 5 of scalar
types between 7 and the primitive type*. We define the
primitive types as:

PRIM={ini, string, real, real2d, real3d)

where rea!2d and rea!3d are pan and triple* of real
numbers. The user defines a finite set 5 of scalar types,
and binds them to the primitive types by a function
P~.S -> PRIM. An infinite set T of types can be defined
from S by:

(for i = !,..
ScT
ef) =>(*, O € T

where (tlt...,tj is a tuple type constructor with element
types /p and (*-» f) is an array type constructor with value
type / and index type j.

The important consequence of the use of scalar
types is that every primitive value, including an array index
value, occurring in a data object of type t "î T , has a scalar
type in S. The names of primitive values are a form of
ancillary information, and the scalar types are a way of
requiring the user to supply this ancillary information with
data objects. The VIS-AD system uses this ancillary
information to intelligently generate graphical depictions of
data objects, but it may also be useful for supporting other
intelligent data management functions.

3. EXAMPLES OF DATA TYPES

The VIS-AD system provides a simple syntax for
data type definitions. We offer examples from an algorithm
for discriminating clouds in GOES images. The following
are examples of how the user defines scalar types in S and
the function P.S -> PRM:

type brightness = real;
type temperature = real;
type earth_location = realld;
type image_region = int;
type time = real;
type count = int;

Here brightness and temperature are the visible and
infrared radiance values of pixels in satellite images,
earthjooation is a pair of values for the latitude and
longitude of pixel locations, imagejegion is an index into
rectangular sub-images, time is aa index for image
sequences, and count is used for histograms.

The following are examples of how (he user
defines complex types in 7 (the keyword structure is used
to indicate the tuple constructor):

type visir_image •»
array [earthjocation] of

structure {
.visir_ir = temperature;
.visir vis = brightness;

type viar_set = array [image_region] of visir_image;

type visir_set_8equence = array [time] of visir_set;

type histogram = array [temperature] of count;

158 PRECEDING PAGE BLANK NOT FILMEP

type histogram_set -
•my [image_region] of

structure {
.histjocation = earth location;
.hist histogram = histogram;

Data objects of type visirjmage are two-dimensional
images of temperature and brightness values, indexed by
earth Jocation values. The cloud discrimination algorithm
partitions images into regions, and a data object of type
visirjset is an image with partitions indexed by
image j-egion values. A data object of type
visir_set_sequence is a time sequence of partitioned images.
A histogram data object attaches a frequency count to a set
of temperature values, and a histogram_set object contains
a histogram and an earth Jocation value for each
image _region value.

Type definitions can be used to attach ancillary
values to data objects. For example, the following type
deflations provide a way to attach a sensor name, a satellite
sub-point, and a table of errors as a function of
temperature, to each image in a time sequence:

type sensor_name = string;
type rms_error = real;

type visir_sequence =
array [time] of

structure {
.vs_sensor = sensor_name;
.vs_sub_point = earth_location;
.vs_error = array [temperature] of rms_error;
.vs_visir = visirjmage;

4. DATA OBJECTS

Define D(t) at the set of data objects of a type
' e 7", sometimes called the "domain" of a data type. The
domains of scalar types are determined from the domains
of their primitive types, by D(,j)=D (/%»))• The domain of
the primitive type int is the union of a set of finite sub-
domains, each an interval of integers, as follows:

|/ * k

D(nal) = (missing) v\Jf .. f , z 0 D(nal f i . n)

D(int) = {missing}

where i,j and k are integers and the missing value indicates
the lack of information (the use of special "missing data"
codes is common in remote sensing algorithms). The
domain of the primitive type real it the union of a set of
finite sub-domains, each a set of half-open intervals, as
follows:

where i, j, k and n are integers and Fid is a set of
increasing continuous Injections from R (the set of real
numbers) to R; the functions in Fid provide non-uniform
sampling of real values. The domains D(real2d),
D(real3d) and D(string) are similarly defined as the unions
of finite sub-domains.

D((s->t)) is defined as the union of a set of
function spaces, rather than as the single space of functions
from D(s) to D(r), as follows:

where subs ranges over the finite sub-domains of the scalar

domain D(J), and (£>0»»i,)-> /XO) denotes the set of all

functions from the set Db,̂ to the set D(t). Every array
object in D((s -» f)) contains a finite set of values from
D(t), indexed by values from one of the finite sub-domains

of £>(*)•
The domains of tuple types are defined by:

Each domain D(t) has a lattice structure, with the
missing value a* its least element. The half-open intervals
in D(real) are approximations to values in R and are
ordered by the inverse of set inclusion ; that is, in the lattice
structure, an interval is less" than its sub-intervals.
Values in D(real2d) and D(real3d) form similar lattices and
are approximations to values in RJ and R3. The lattice
structure can be extended to array and tuple types.

The lattice structure of domains, and the
definition of array domains as unions of function spaces,
provide a formal basis for interpreting array data objects
whose indices have primitive types real, real2d or reaBd
as finite sampling! of functions over R, R2 or R3. For
«fr«fry^t £ tatfllitiT image is a finite Campling of a
continuous radiance field. The VIS-AD !*'"£' »mming
language allows arrays to be indexed by real, real2d and
real3d values . Navigation (earth alignment) and calibration
(radiance normalization) for satellite images can be
implemented by appropriately defined sub-domains of
D(real2d) and D(reaT), so that raw satellite images can be
accessed directly in terms of latitude, longitude and
temperature*

Physical variables range over infinite sets of
values, such aa the set R of real numbers. However,
values must be stored in computers using a finite number of
bits, and thus are constrained to range over finite sets of
values, such aa the set of 32-bit floating point numbers.
These are finite samplings of infinite value sets. In most
programming languages, the finite samplings for variables

159

•re determined by the type of a variable (for example, real
or double in C). la (he VIS-AD programming language,
however, the finite sampling! are specified as part of the
data object. A scalar domain D(i) is a union of a aet of
finite sub-domains, and each tub-domain if a different finite
sampling of the infinite set that ia the completion of the
lattice D(s) (for example, R is the completion of D(real)).

The pixel locations in a satellite image form a
finite sampling of an infinite set of points on the earth. Hi*
usual to store image data as arrays. Since arrays indices
are identified as scalar types in VIS-AD, and since the
finite sampling of the array index ia part of an array data
object, the navigation information for the satellite image ia
part of the image data object Similarly the 256 radiance
values of an 8-bit pixel are a finite sampling of
temperatures, so the calibration information for a satellite
image is also part of the image data object Thus the
domains for VIS-AD data objects provide a uniform way to
manage these ancillary information aa part of the data
objects themselves.

One simple consequence of the VIS-AD data
domain structure is support for variable length arrays.
That is, the sizes of arrays an not fixed in their
declarations, but may vary. Thus arrays can be used to
model list structures. For example, a map boundary can be
defined with the following data types:

type listjndex - int;

type map_bou ndary —
array (listjndex] of earth Jocation;

A map_boundajy data object ia a variable length array of
earthjocation points. Thus, although VIS-AD does not
explicitly support linked data structures, it can easily model
simple list structures.

The VIS-AD support for missing data is
motivated by its use for managing remote sensing data.
However, missing data can also be used as a data
structuring tool. For example, a data object image_area of
type visirjmage can be used to represent an arbitrarily
shaped image region simple by setting

image_area[earlh_location\ = missing;

for all values of earthjocation not in the image region.
Thus navigation, calibration and mi««in£ data

indicators can be buflt into the values of data objects,
variable length arrays can be used to model list structures,
and missing data can be used aa a data structuring tooL
Combined with the flexibility of type definitions illustrated
in Section 4, VIS-AD provides very powerful tools for
managing earth science data.

5. ACCESS TO DATA OBJECTS

The VIS-AD programming language provides a
transparent way to access the finite sampling information of

data objects. For example, if goes is an object of type
visirjmage and loc is an object of type earthjocation,
then VIS-AD evaluates the expression goesflocj aa:

if fee is outside me range of the finite sampling of index
values of goes, then evaluate goesflocj = missing

otherwise, resample loc to the actual index value loc' of
the goes array closest to loc, and evaluate
goes floe] - goes [Toe1]

Thus array accesses may evaluate to missing.
VIS-AD provides a transparent way to manage operations
on missing values. If OP is a binary arithmetical operator
(+ , -, * or /) and vail and va!2 are expressions with scalar
values, then VIS-AD evaluates the expression vail OP val2
to missing:

if vail = missing or
if vo/2 = missing or
ifOP=-/andvu£2 = = > 0

These evaluation rules make it easy to combine
data from different sources, with out the need to explicitly
remap one set of data to the projection of the other. For
example, let goesjvest and goes_east be two data objects
of type visirjmage, from die west and east GOES satellites
respectively. The pixels in these images are not co-located,
but the difference of these images can be calculated quite
simply by:

foreach (loc in goes_west) {
goes westfloc] = goes westfjoc] - goes_east[loc];

>;

where fee is a data object of type earthjocation. Inside
me foreach loop, the value of fee varies over all die array
index values of the array goes_west. The values of
goes_east are resampled to the index locations of
goesjvest, and the difference of these image arrays
evaluates to missing wherever they do not overlap.

VIS-AD also provides a simple means to access
sub-objects of data objects. For example, if hset is a data
object of type Ustogram_set and if reg is a data object of
type imagejegion, then the expression
hsel[reg]JiistJiistogram evaluates to a data object of type
histogram.

VIS-AD includes functions for converting objects
between their internal storage formats and external formats
suitable for storage in disk files and for transmission to
other processes or across computer networks. Bom the
internal and external object formats use memory efficiently.
Numerical values are stored as scaled integers rather than
aa floating point numbers, and use 8-bit or 16-bit integers
wherever possible. These formats minimi«a use of disk
storage and communications bandwidth. The absence of
any floating point values r£mn*tr* tfae need for converting

160

data objects between machine architectures (except for
possible problems with big-endian versus small-endian
machines, and machines that use non-ascii text).

6. HIGH-LEVEL FUNCTIONS

VIS-AD supports calls to three kinds of functions.
Internal functions are implemented in the VIS-AD
programming language, and users writing VIS-AD
programs are free to define as many internal functions as
they need. Intrinsic functions are implemented as part of
the VIS-AD system and should be viewed by users as part
of me language (like the MAX function in FORTRAN).
External functions are implemented in C or FORTRAN,
and give users a way to link their existing programs to
VIS-AD.

The VIS-AD system includes a variety of intrinsic
functions for transferring MctDAS data structures (for
example, image and grid files) into VIS-AD data objects,
and for analyzing data. We are constantly adding new
intrinsic functions to the system. Analysis functions are
currently defined for:

• Remapping two- and three-dimensional images and
grids.

• Low-pass filtering one-, two- and three-dimensional
data.

• Calculating histograms of data arrays.
• Finding clusters in histograms.
• Finding percentages of histograms.
• Selecting regions of arrays with values in selected

ranges.
• Boolean operations on regions of arrays.

VIS-AD external functions, written by the user in
C or FORTRAN, provide a way for users to access data
sets stored in any format, and a way for users to link to
their existing analysis functions.

7. CONCLUSION

The purpose of this paper is to point out that
VIS-AD contains many powerful functions for managing
earth science data. These include:

• An easy way for users to define new data structures,
such as images, multi-spectral images, image
sequences, histograms, spatial regions, region
boundaries, etc. These flexible data types also let
users define a variety of ancillary data as part of their
datatypes.

• An easy way to access data objects and their sub-
components a programming language, and an easy
way to write functions for analyzing those data.

• Uniform mechanisms for management of all data
structures.

• A special missing data indicator that can be used for
the value of any data object or sub-object.

• A uniform mechanism for managing finite samplings
of continuous quantities, as for example, the way that
satellite navigation and calibration finitely sample
earth locations and temperatures.

• A easy way for users to write C or FORTRAN
programs for converting data between VIS-AD data
objects and other systems.

• A mechanism for storing data objects in disk files or
for transmitting data objects across networks.

Thus, the most difficult functions for managing
complex earth science data already exist in VIS- AD. In
order for VIS-AD to function as a true data management
system, it needs to include functions for:

mode commands. Currently, all functions
are called by a running VIS-AD program. Users need
a way to invoke functions one at a time by typing
commands.

• Managing data objects in disk files. There should be
commands for transfering data objects between disk
files and memory, for listing objects in disk files, and
possibly for retrieving sub-objects of objects stored in
disk files (since data objects may be large).

After these functions are implemented, VIS-AD
wfll be a powerful earth science data manager, in addition
to its original role for visualizing the behavior of scientific
algorithms.

8. REFERENCES

Hibbard, W., C. Dyer and B. Paul, 1992*; A development
environment for data analysis algorithms. Preprints, Conf.
Interactive Information and Processing Systems for
Meteorology, Oceanography, and Hydrology. Atlanta,
American Meteorology Society. 101-107.

Hibbard, W., C. Dyer, and B. Paul, 1992b; Display of
scientific data structures for algorithm visualization.
Accepted for Visualization '92, IEEE.

161

3.3

u
A DEVELOFHZNT ENVIRONMENT FOR DATA ANALYSIS ALGORITHMS

Will iam Hlbbard1. Charlei R. Dyer2, and Brian Paul1

Space Science and Engineering Center
Computer Science Department

University of Wisconsin-Madison

1. INTRODUCTION

Data analysis algorithms encode much of
our scientific understanding of the environment.
They extract information from images and from
other observations, and they produce diagnostic
fields from the output of numerical simulations.
A primary activity of the Space Selene* and
Engineering Center has been the creation of
algorithms for analyzing GOES (Geostationary
Operational Environmental Satellite) images.
These algorithms estimate winds from cloud
not ions , estimate cloud top height and thickness,
classify cloud types, and estimate vertical
temperature and moisture profiles from multi-
spectral images. Analysis algorithms are also
applied to a vide variety of non-satellite data,
including two- and three-dimensional radar and
lldar images, model output grids, Irregularly
located observations, and time sequences of all
of these.

There is currently a great need and a
great opportunity to create new visualization
tools to help the developers of data analysis
algorithms. There is a need due to the
increasing volumes of environmental data, the
difficulty of many data analysis problems, and
the urgency of environmental understanding.
There is opportunity because of the increasing
power of visualization workstations, and because
•ost environmental data are Inherently
geometrical and thus can be understood visually.

Two particularly interesting new tools
for image processing are the Khoros system
(Rasure . Argiro. Sauer and Wil l iams. 1990) and
the Interactive Image Spreadsheet (Hasler, Dodge
and Woodward, 1991). The Khoros system allows
Its user to compose image processing algorithms
as data flow diagrams whose nodes are basic image
processing modules. The user may interactively
execute the flow algorithm, and display any of
its intermediate image products, in order to
visualize the functioning of the algorithm. The.
I»ge Spreadsheet allows its user to build and
display a matrix of Images, where the Images are
raw satellite channels, or computed from
combinations of other images by standard image
processing functions. This allows the user to
«xp«riaent with combinations of satelli te
channels and Image processing operators to
extract useful information.

We are developing the VIS-AD
(Visualization for Algorithm Development) system
to extend this experimentation with data analysis
algorithms beyond image data. Even when the data
being analyzed consists of Images, many of the
intermediate) data structures are not images. For
example, during the development of an algorithm
for extracting clouds from GOES images, v*
utilized ad hoc graphics of multiple intermediate
images, image section boundaries, cloud
boundaries, scatter diagrams, histograms, and
histogram clusters, all in a common frame of
reference (Hibbard, 1987). These graphics helped
in understanding the relation between these data
structures and therefore the functioning of the
cloud extraction algorithm.

2. INTERACTIVE DEBUGGING PLUS VISUALIZATION

From a programmer's point of view, VIS-AD
is an interactive debugger that provides
visualization of program data structures Instead
of just printing the values of variables. Data
Analysis algorithms are expressed in an ordinary
programming language which is similar to C with
high level data structures. The VIS-AD user
edits an analysis program, interactively executes
it, and controls the display of its data
structures. Interactive debuggers greatly
increase the* productivity of programmers, but
they harve not been appropriate for most
scientific algorithms because they can only print
numerical values of variable*. VIS-AD will make
this productivity tool available to scientists by
including visualization of high level data
structures.

The central focus of VIS-AD is a
programing window where the user edits programs
and controls execution and display. The window
provides an interactive screen editor for program
text, including saving and retrieving programs.
The user controls execution with the mouse,
selecting and highlighting program lines as
breakpoints, toggling a button to start and stop
program execution, and hitting a 'single step*
button to execute one program step. The user
controls data display by selecting and
highlighting program variables for display.

101 ftAGE BUNK NOT fiuWEn

VIS-AD «lio Include* on* or nore display
wlndowi, where prograa variable! are depleted aa
graphics and Image*. Each window can display
two- and three-dluernlonal color graphics. The
window also supplies widgets for user Interaction
with the window contents, and mouse controls for
Interactive pan, zoom, and rotation of the 3-D
window contents. Each display window defines a
different frame of reference for the display of
an algorithm's data structures. The user defines
a frame of reference by a set of mappings from
the physical scalar quantities of the algorithm
to the coordinates of the display, as described
in Section 4. These mappings are edited In a
text window attached to the display window.

In a typical Interactive scenario the
user would:

1) compose an algorithm In the program window,
or retrieve a saved algorithm

2) create one or more display windows, each
defining a frame of reference for the
algorithm's data structures

3) select an Input data sets, and Interactively
execute the algorithm, either one step at a
time, or by setting breakpoints

4) during execution, select various
combinations of the algorithm's data,
structures for display in the display windows

5) alter the algorithm based on the visual
understanding of its actions

6) repeat the steps above during a development
session

7) save the developed algorithm.

3. DATA TYPES

The key to VIS-AD is the fact that every
algorithm data structure can be displayed. We
have developed a technique for automating the
display of scientific data structures (Hlbbard
and Dyer, 1991), in terms of a data type
definition language and a way of defining a frame
of reference by a set of mappings. We have made
this data type definition language part of the
VIS-AD programming language. .

VIS-AD allows scalar types to be defined
as Integers, aa one-, two- and three-dimensional
real numbers, as strings, and mm list indices.
For example, the following are VIS-AD scalar type
definitions:

type time - float;
type temperature - float;
type earth_location - float2d;
type wlnd_veloclty - float3d;
type data_set_name - string;
type count - int;
type llne_llst_index - list;

Here time and temperature take real values,
earth_locacion takes a pair of real values for
latitude and longitude, and vind_velocity takes a
triple of real values for wind components.
Data_set_name takes a text string value, and
count and lln*_ll*t_index take Integer values.
List and int scalars are very similar, but list
scalars generally have no physical •caning and
their use as an array Index indicates that the
array is used as a list.

VIS-AD also allows complex data
structures to be built up as arrays and
structures from simpler types. The following are
VIS-AD type definitions for complex data
structures:

type image -
array [earth_location] of temperature;

type image_sequence —
array [time] of image;

type border —
array [llne_llst_index] of
structure (

.flrst_end_polnt - earth_locatlon;

.second_end_polnt - earth_locatlon;
);

type histogram -
array [temperature) of count;

Here an image is an array of temperature's
indexed by a set of earth_location's, an
image_sequence Is an array of image's indexed by
time, a border is an array of earch_Iocacion
pairs (the endpoints of line segments) Indexed as
a list, and a histogram Is an array of count's
indexed by temperature.

Arrays may be defined as any scalar or
complex type indexed by any scalar type, with the
Index scalar specified inside brackets.
Structures may be defined as any fixed list of
scalar or complex types, each Identified by a
structure element name (for example,
first end_polnt or second_end_polnt in the border
type)?

The definition of complex data types in
terms of scalars provides the information
necessary to display them in a common frame of
reference. For example, the image and border
types are both defined in terms of
earth_location, which makes it possible to
overlay them geographically In the display.

VIS-AD array declarations do not specify
the number and range of index values of the
array. Instead, this information Is part of an
array data object, so that different array
object* of the same type may cover different
numbers and ranges of index values. Consider an
image array. The image pixel locations are a
finite sampling of earth_loc*tion'•, and the
pixel values are a finite sampling of
temperature*. The Interpretation of the VIS-AD
image type is that the finite samplings of
earth_location and temperature are specified as
part of each data object of type image, rather
than being specified by the type definition.
This Is different than most programming
languages, in which the range of values of
variables and the sizes of arrays are specified
in the declarations of data objects. For the
image type, the finite sampling of eaxth_location
determines the number of pixels in an image
array, and the finite sampling of temperature
determines the number of values each pixel may
take (and thus the necessary number of bits per
pixel), and these may vary between image data
objects. Furthermore, the finite sampling of
earth_locatlon provides the image navigation
(mapping between earth location and pixel

102

location In an I m a g e) , and the f in i te laapllng of
temperature provides the image calibration
(mapping be tween temperature and pixel value).
Thus the image type Is actually a high level data
type, corresponding to a McIDAS image file 'area'
with Its attached directory and codicil
Information for navigation and calibration.

VIS-AD type definitions provide a
mechanism for specifying when the finite sampling
of values varies over an array Index and when It
does not. For example, the sampling of
tempera cure may not vary over the
earth_locacion's in an image, but the finite
samplings of both temperature and ear relocation
may vary over time In an lmage_sequence. The
mechanism for controlling the variation of finite
samplings Is used by VIS-AD primarily to Increase
storage and computational efficiency, and we will
not describe It In detail here.

Any VIS-AD data object may take the
special value MISSING, Indicating the lack of
Information. This applies to scalar, structure
and array types, and to any sub-object within a
named data object. All operations are defined
for MISSING Input values, usually producing a
MISSING output. Our experience with science data
has shown the need to accommodate missing data
values In all of our data analyses, so we have
built It Into the VIS-AD language. Missing data
sometimes Indicate an error condition, but are
also often used Intentionally to Indicate partial
data coverage. Because MISSING data handling Is
built Into VIS-AD, Including efficient Internal
data representations for sparse arrays, MISSING
data can be used as a data structuring technique.

VIS-AD will Include Interfaces to the
McIDAS data structures for Image areas, grids and
MD (Meteorological Data) files. These Interfaces
will consist of intrinsic functions in VIS-AD for
converting between the McIDAS data structures and
• set of corresponding VIS-AD data types. VIS-AD
algorithms will also be able to Invoke McIDAS
analysis commands and system level commands.

4. DISPLAY WINDOWS

A VIS-AD display window Is defined as a
three-dimensional array of voxels, with values
for colors at those voxels. The color values may
be either true color or pseudo-color. Contour
values may also be attached to voxel*,
represented as iso-level contour surfaces In
three dimensions or as Iso-level contour lines on
two-dimensional slices. A display window also
includes a temporal coordinate for animation, and
widgets which can be used to select ranges of
value*.

Voxel coordinates are defined as the
following Implicit scalar types:

type x_coordlnate - float;
CvPe y_coordlnate - float;
type z_coordlnate - float;
type xy_plane - float2d;
type xz_plane - float2d;
type yz_plane - float2d;
type xyz_voluae - float3d;

Voxel values are defined as the following
Implicit scalar type*:

type color - floatSd;
type red - float;
type green - float;
type blue - float;
type pseudo-color - float;
type contour - float;

The temporal coordinate for animation Is
defined as the following Implicit scalar type:

type animation - int;

The Implicit type widget refers to any
widget for selecting ranges of values, and may
assume any scalar type, determined by its mapping
from an application scalar.

The user defines a frame of reference for
a display window by a set of mappings from
application scalar* (those scalar types defined
In the user's program) to display scalars. For
example, given the application types defined in
Section 2, we can define a frame of reference by:

map earth_location to xy_plane;
map temperature to pseudo_color;
map time to animation;

This create* a frame of reference In
which the image type 1* displayed as a two-
dimensional array of pseudo-color's, the border
type Is displayed a* a series of line segments
over the image, and the lmage_seo,uence type is
displayed a* an animated sequence of Image's.

Adding:

map line_ll*t_lndex to widget;

to the frame of reference will cause a widget to
appear for selecting a range of values for
line_llsc_indfx. Display of the Image type will
not be changed, but only subsets of border data
object* will be displayed, confined to those line
segments in the border array Indexed by the
•elected value* of line_ll*t_index.

If the mapping of temperature 1* modified
to map temperature to contour; then an Image data
object will be displayed a* • *et of Iso-level
contour line* of temperature'* in the

If the mapping of temperature Is
modified, and a mapping for count Is added, a*
follow* :

map temperature to z_coordinate ;
map count to x_coordlnate ;

then an Image data object will be displayed as a
three-dimensional surface showing t as a function
of x and y, and a histogram data object will be
displayed a* a graph in the z*_plana.

A frame of reference 1* a set of mappings
from application scalars to display scalar*, with
each application scalar mapped at most once.
Floac2d and floacJd scalars may only be napped to
display scalars of the same dimension (that is,

103

Co .._plane, xyz_volumt or color), and itrLng
sc«l«r» nay only be mapped to vidgft. At part of
• scalar napping, the user Bay specify a napping
function that control* the napping of numerical
application scalar value* to display scalar
values. The sapping example* above all Invoke a
default mapping function.

The user may define several display
windows, each defining a different fraae of
reference. Different data types Bay best be
understood In different frames of reference, and
this Is particularly true when the uaer needs to
understand the relations between nultiple data
types. Thus it is Important to allow the user to
define multiple frames of reference.

The user has a variety of controls for a
display window, Including:

1) an attached text window for defining scalar
mappings

2) widgets for selecting ranges of values for
scalars mapped to widget

3) if pseudo_color is used, widgets for defining
the mapping from the numerical values of the
mapped application scalars to red, green and
blue

4) if contour is used, widgets for defining the
contour levels, intervals, and 2-D slice
locations

5) widgets for controlling animation - animation
is defined as time sequencing of the values
of application scalars mapped to animation

6) mouse controls for panning, rooming, and
rotating the projection from the
three-dimensional array of voxels onto the
two-dimensional display screen.

Quantitative Information is Important, so
a display window contains numerical labels
for application scalars, including

1) numerical scales along the x, y and z axes
for scalars mapped to those axes

2) numerical and text labels for selected values
of scalars mapped to widget

3) numerical scales for scalars mapped to
pseudo_color, labelling the color selection
widgets

4) numerical labels on contours for scalars
mapped to contour, and labels for locations
of 2-D slices

5) numerical labels on each frame of an
animation sequence, for scalars mapped to
animation.

5. HIGH LEVEL PROGRAMMING LANGUAGE

Users of VIS-AD express their algorithms
in a language similar to C. The following is an
example of a simple image processing algorithm
using the data types defined in Section 2.

SAMPLE PROGRAM

/* main is the top level function of the algorithm */
mainO
(
/* these statements declare data objects with the types

defined in section 2 */
image goes_lr, goes_diff;
border goes_border;

/* call an Intrinsic function to read a GOES infrared image
from McIDAS area number 10 */

goes_ir - read_mcidaa_area(10) ;
/* call an internal function to compute a difference operator */
goes_dlff - image_dlf f (goes_lr) ;
/* call an external function which defines an edge finding operator */
goes_border - edge_flnder(goes_dif f) ;
/* call an Internal function to remove null border segment* */
remove null (goes border);

/* this defines an internal function image_dlff which takes one
argument of type image and return* a value of type image */

image image diff (image lr;)
(
/* these statements declare data objects with the types

defined in section */
Image diff;
earth_locatlon loe, lat_offset, lon_offset;

104

/* »«t latitude and longitud* office* for a difference operator */
lac_offiet - (0.1, 0.0);
lon_off»«t - (0.0, 0.1);
/* Initialize che dlff image Co the value* of Che Ir Image */
dlff - Ir;
/* for each earth_locatlon sampled by Che Ir Inage */
for each (loc In Ir) (
/* calculate a difference operaCor */
diff[loc] - dlff[loc] -
(Irjloc - lat_offsec] + lr[loc •*• lat_offset] +•
irjloc - lon_offset] + Irfloc + lon'offsetj) / 4;

)
/* recurn che dlff image */
return dlff;

/* this defines an untyped Internal function remove_null which Cakes
one argument of type border - this function does not return a value
argument, but alters its argument b */

remove_null(border b;)

/* Chis statement declares a data object with a type
defined In section */

Hne_llst_index ind;

/* any border segment with zero length is replaced by MISSING */
for each (ind In b) (
if (b[ind].first end_point — b[ind].second end_point) (
b[ind] - MISSING;

In Chls simple algorithm,
read_mcidas_area is an intrinsic function that
converts a HeIDAS image file (called an area)
Into a VIS-AD image array. Edg«_flnd«e is a
image processing operaCor defined by an external
function. VIS-AD include* a library of compiled
external functions Implementing a variety of
useful operaCor*, and user* can Implement nev
external functions In either C or Fortran.
Imagejdiff 1* an Image processing operator
defined by an Internal function. Note that Its
formal parameter Ir Is listed with It* type. In
the style of ANSI C function declarations.
Rfnx>ve_null is a simple operator defined by an
Internal function. It illustrates Chat VIS-AD
functions are called by reference, and nay modify
the values of their parameters.

In addition to the control structures for
each and If Illustrated In this simple example,
the language Includes statements for if ... else.
vhile, and break (Immediate exit from a for each
or while loop). The language also allows any
sub-object of an object to be accessed or
assigned Co, and complex nested expressions and
logical condlcions.

In VIS-AD all data objects must be
declared as scalar or complex types defined In
VIS-AD, rather Chan as int or float. This
constrains every data object to be defined in
terms of scalars Chat may be mapped to display
scalars, and thus every data object may be
displayed.

In the lmage_dlff function, the Jr array
Is accessed using expression* such a* lr[loc •
l*c_offsec]. In the likely case that che value
(loc - lmt_off*»e] is not one of the
ear relocation samples of che Ir array, che value
of the expression Is the) Ir temperature value
whose index Is nearest to [loc - lac_offset] .
The value of Che expression Is MISSING If [loc •
l*c_offs«C] Is not near any sample of Che Ir
array. A* part of our VIS-AD development, we
will experiment with array access that Implicitly
interpolates between array Indices.

Because the rang* of values of arrays is
specified as part of Che data objects, VIS-AD
will require a rich sec of intrinsic functions to
access the finite sample information of data
objects for calculation* that need to explicitly
access array elements. On the other hand, many
operations can be implemented store simply by
exploiting che fact that data objects can be
defined and accessed in physically meaningful
terms, including implicit resampling and
Interpolation of array values.

Recently there has been great Interest in
visual programming languages, which express
algorithms as data flow diagrams composed of
basic modules. Examples include the Khoros
system, AVS (Upson eC. al. , 1989), apE (Dyer,
1990), SGI's Explorer, IBM's Data Explorer, JPL
Explorer, NCSA's DICE, and Iconicon's IDF. We
have not adopted a visual programming language
for vis-AD for several reasons:

105

1) The goal of VIS-AD useri If Co produce
algorithm, §o v« an LUX they know hov to
writ* program.

2) A procedural programing model If More
exprefflve Chan a daca flow programing
language, for example In partial updating of
large data structures, and In controlling the
order of execution of function*.

3) A key benefit of visual programing la Che
ability to Interactively modify and execute
an algorltha, but thli la alao poaalble with
an Interpreted procedural language.

4) For complex algorithm*, a procedural
Implementation la probably easier to
understand than a data flow Implementation.

A key to Che usability of any high level
programming system if the availability of-a rich
set of high level operators. This has been the
experience with the visual programming systems,
and will also apply to VIS-AD. However, it is
also important to allow the user to mix low level
data types and operators with Che high level
operators. It is common for users of high level
systems to be frustrated by their inability to
store a little state information in an integer.
Low level data types and operators also allow a
user to quickly compose a new high level
operator, without leaving the context of the high
level programiing system. Once Che new operator
has shown Its value, it can be implemenced more
efficiently as a compiled external function.
Because VIS-AD data types are user definable at
both low and high levels. VIS-AD clearly supports
a mixture of low and high level operators.

C. VISUALLY EXPLORING ALGORITHM

VIS-AD will support high level functions
for visualizing algorltha behavior, allowing Che
user to explore traces of data objects, and the
way algorithm behavior varies with respect to
changing input data seCs and changing versions of
the algorltha. These functions will be supported
by defining array types which index values for
the algorithm's data objects to be visualized.

Traces of algorithm data objects are
based on the implicit scalar

type trace - list;

which indexes sequences of values of data
objects.

The variations of data objects and traces
with respect to changing input data sets are
based on the Implicit scalar

type data_set_nane - string;

which indexes arrays of values of data objects or
traces produced by applying the algorithm Co
multiple InpuC daca sets.

The variations of dace objects and traces
with respect Co changing versions of an algorithm
are based on Che Implicit scalar

type algorlthn_nane - string;

and also on selected algorithm scalar objects
used as algorithm parameters. Algorlcha name
Indexes arrays of values of data objecta and
traces produced by multiple versions of an
algorithm, where the text string values of
algorlcha_naoe are Che names of Che algorithm
aource files. Of course, any daca object
selected for indexing via al£oriehm_naa« must be
declared In all versions of the algorithm. The
selected scalar parameters Index arrays of values
of data objects and traces produced by multiple
versions) of an algorithm, parameterized by
varying Initial values of the selected scalar
data objectf.

The user controls these functions by
1) selecting data objects for trace, data sec

variation, and algorithm variation
2) selecting scalar data objects as algorithm

parameters
3) defining a sec of algorithm source files for

multiple source versions
4) Inserting crace statements into an algorithm

Co define execution polnCs for saving crace
values

5) selecting analysis data objects for display.

The scalars crace, <fae*_*«e_naiM and
algorithm_naiae may be mapped to display scalars,
so that variations in algorithm behavior may be
understood In multiple and flexible frames of
reference. Visually exploring crace data
objects, and data objects indexed by input daca
set name and by algorithm version, will be a
powerful way Co understand patterns in algorithm
behavior.

7. CONCLUSION

VIS-AD extends the power of InCeracCive
debugging to high level data analysis algorithms
through Che use of visualization. VIS-AD can
also be seen as a way of adding interactive daca
analysis functions to our VIS-SD system (Hibbard
and Santek, 1990). Visualization of algorithms
is a very difficult problem, and probably also
the most important problem in visualization. Ic
Is likely Chat we will be improving VIS-AD over a
long period of time, but we also anticipate Chat
VIS-AD will significantly improve the
productivity of scientists developing data
analysis algorithms.

Just as VIS-5D was enabled by a new
generation of high performance graphics
workstations, VIS-AD will require even higher
levels of performance in order to transform high
level data structures Into graphics at
Interactive speeds. We believe that appropriace
hardware will be commonly available ac about the
time Chat VIS-AD matures as a useful software
sysCem.

S. ACKNOWLEDGEMENTS

We wish Co thank Dr. James Dodge and Dr.
Greg Wilson of Che Rational Aeronautics and Space
Administration (NASA) for their encouragement and
support. Funding for this work was received from
the NASA Marshall Space Flight Center (NAGS-828)-

106

». RZFEKENCES

Dyer, 0., 1990; A dataflow toolkit for
visualization; Conputer Graphics and
Applications, 10(4), 60-69.

Hasler, A., J, Dodge, and R. Woodward, 1991; A
high performance Interactive Inage
spreadsheet. Preprints, Conf. Interactive
Information and Processing System for
Meteorology, Oceanography, and Hydrology.
New Orleans, Aaerican Meteorology
Society. 187-194.

Hlbbard, W.. 1987; 4-D Display of satellite cloud
Images. Digital Image Proc. and Visual
Coma. Technologies In Meteor., Cambridge,
SPIE, 83-85.

Hibbard, V., and D. Santek, 1990; The VIS-SD
system for easy Interactive
visualization. Visualization '90, San
Francisco, IEEE. 28-35. Also In 1991
Preprints, Conf. Interactive Information
and Processing Systems for Meteorology,
Oceanography, and Hydrology. New Orleans,
American Meteorology Society. 129-134.

Hibbard, V., and C. Dyer, 1991; Automated display
of geometric data types. Univ. of Wise.
Comp. Scl. Dept. Tech. Report #1015.

Rasure, J., D. Argiro, T. Sauer, and C. Williams,
1990; A visual language and software
development environment for Image
processing; International J. of Imaging
Systems and Technology, Vol. 2, 183-199.

Upson, C., T. Faulhaber, Jr., D. Kamlns, D.
Laidlaw, D. Schlegel, J. Vroom, R.
Gurwltz. A. van Dam, 1989; The
application visualization system: a
computational environment for scientific
visualization; Computer Graphics and
Applications, 9(4). 30-42.

107

DESIGN FOR AND EXPERIENCE WITH THE McIDAS GOES INVENTORY

William Hibbard, William Lagerroos, Delores Wade and Nancy Troxel-Hoehn

Space Science and Engineering Center
University of Wisconsin - Madison

I. INTRODUCTION

The Space Science and Engineering Center
(SSEC) has been archiving data from the Geostationary
Operational Environmental Satellites (GOES) on
videocassettes (Suomi, 1982) since 1978. In 1985 we
began operating an on-line inventory of the GOES archive
(Hibbard, 1986), to replace our previous paper inventory
of archived images.

2.

ideas:

1

THE INVENTORY DESIGN

The inventory design was based on three basic

Generality of inventory information formats. New
inventory record formats may be defined as needed,
so the inventory can be adapted to changing data
source operations and to new data sources. This also
makes it possible for one inventory to be applied to
multiple data sources, allowing archive searches
based on coincidence between data sources.

2. Inventory by exception from a schedule. The
operators define a schedule as a list of times of day,
each associated with an "activity" record that
describes an item (for example, an item is an image
for the GOES satellite) scheduled to be produced by
the source at that time. A set of schedules are
defined for a data source (for example, these may be
named NOMVAS92-6 and RISOP92-5 for GOES
operations). The inventory documents the
operations of a data source as a set of date/time
intervals, each identified with a schedule name.
'Comment" records in the inventory specify
deviations of the actual archived items from the
scheduled items. The inventory by exception idea
was adopted from the paper inventory. It reduces
the volume of inventory records.

3. Grouping of inventory information for secondary
storage. Sets of inventory records are accessed from
secondary storage as a unit. For example, for the
GOES archive a unit consists of all records for one
satellite for one year - this is possible because of the
compression effect of the inventory by exception.
These large units simplify the organization of disk
storage, increasing inventory integrity. They also
increase the efficiency of archive searches,

particularly for searches that specify relations
between items from different sources or at different
times (for example, searching for a sequence of six
items spaced at half hour intervals).

This design can be illustarted with a few simple
examples. We start with two examples of activity record
formats. We give the name of the activity, followed by a
text description, then a list of field names and their
formats:

MSI3B:
"a Multi-Spectral Imaging mode"
SCANS: 2 values of 2 bytes each
BANDS: 8 values of 1 byte each
DETECT: 6 values of 2 bytes each
PDLNUM: 1 value of 2 bytes

DS12B:
"a Dwell Sounding mode"
SCANS: 2 values of 2 bytes each
SPINS: 12 values of 1 byte each
DETECT: 12 values of 2 bytes each
PDLNUM: 1 value of 2 bytes

We also offer examples of comment record
formats:

C-OTHER:
"a substituted image type"
SCANS: 2 values of 2 bytes each
PDLNUM: 1 value of 2 bytes

M-SAT:
"Missing data - SATellite problems"
BADSCANS: 2 values of 2 bytes each

M-GSEQ:
"Missing data - Ground Station EQuipment problems"
BADSCANS: 2 values of 2 bytes each

P-SAT:
"Poor data - SATellite problems"
BADSCANS: 2 values of 2 bytes each

P-GSEQ:
"Poor data - Ground Station EQuipment problems"
BADSCANS: 2 values of 2 bytes each

PRECEDING CAGE BLANK NOT HU«D

Schedules are defined as lists of times-of-day
associated with activity records, and we offer examples of
parts of two schedules, RISOP92-5 and NOMVAS92-6:

RISOP92-5:
0:01 MSI3B(SCANS=101, 1701;

BANDS = 8, 7, 8,7, 8,10,8, 10;
DETECT = 8, S, 7, L, 10,L;
PDLNUM = 707)

0:20 DS12B (SCANS=234,404; etc)
0:31 MSI3B (SCANS=101, 901; etc)
0:41 MSI2B (SCANS=191, 531; etc)
0:46 MSI3B (SCANS=191, 531; etc)
0:51 MSI3B (SCANS=191, 531; etc)
0:56 MSI3B (SCANS=191, 531; etc)

NOMVAS92-6:
0:01 MSI3B (SCANS=101,1701; etc)

The inventory is organized by days, and
associates a schedule with time intervals during the day.
It also associates archive tape numbers with time intervals,
as seen in the following excerpt:

3. OPERATIONAL EXPERIENCE

DAY = 92131
0:00z - 2:00z schedule: RISOP92-5

0:20z M-SAT (BADSCANS = 234,404)
0:3 Iz P-SAT (BADSCANS = 101,200)

2.00z - 23:30z schedule: NOMVAS92-6
4:01z C-OTHER (SCANS = 1,1201;

PDLNUM =112)

TAPES:
. 0:00z-10:00z

10:30-23:30z

DAY = 92132

17921302
17921311

In the current inventory organization, all of the
days for 1992 would be accessed as a unit from a disk file.
However, if there is a need for more inventory information
per day (for example, to include an explicit quality
assessment for every image in the archive), the number of
days in a storage unit could be decreased

We have had about seven years of operating
experience with the on-line GOES inventory. The
inventory has:

1. Been successful at documenting the contents of the
GOES archive, including adapting to a wide variety
of operational schedules and a wide variety of
contingencies for missing data or poor data quality.

2. Provided a high degree of integrity for the inventory
data. Over a seven year period the inventory system
has faced numerous system crashes, and during the
first year of its operations the inventory software
contained numerous bugs. In spite of these
problems, the integrity of inventory files was
maintained,

3. Not been used for complex searches. This has been
the primary failing of the original inventory design.
We believe it is due to a poor user interface and a
user preference for manually searching printed
listings of the inventory.

4. ADAPTING THE INVENTORY

We have adapted the McIDAS inventory for the
GOES AAA and the anticipated GVAR (GOES VARiable)
data formats. The inventory has been fairly successful at
adapting to these new formats. The adaptation process has
highlighted a couple of places where more flexibility of
data formats would be useful. We are planning to adapt
our inventory to METEOSAT and other new sources. We
are also using it to document major weather events (such
as hurricanes) to be used in search conditions.

5. USER INTERFACE LESSONS

One very important lesson has been the need to
structure the user interface in terms of the users' tasks
rather than in terms of the inventory data structures. For
example, we have added functions for merging the
scheduled "activity" records with the "comment" records
that specify deviations of the actual archive contents from
the schedule. Thus the information is presented to the
user in terms of actual archive contents.

We have also greatly increased the flexibility of
the way that the inventory information is presented to the
user, so that users can ask for whatever level of detail is
appropriate for their task.

In the original inventory design, the user
interface was constrained by the McIDAS user interface.
All user input had to be in terms of McIDAS command
lines, which consist of a command name followed by a list
of parameter values. Commands could not accept free

format text input. In order to incorporate graphics into the
user interface, the inventory would have been restricted to
the "McIDAS tower" workstations. Thus we adopted a
text-only user interface so that the inventory could be used
at simple terminals.

However, the inventory could really benefit from
a graphical user interface (GUI). With the availability of
inexpensive graphics workstations and McIDAS-X
designed to run on these workstations, it will be natural to
give the inventory a GUI. Some examples of graphical
interfaces for the inventory could include:

1. Show geographical cove age on a map outline
display, and allow users c select data coverage by
drawing over a map outline.

2. Show inventory items along a time line, coding
information about items by color, shape or
embedded text. Multiple data sources may be
shown as several parallel time lines.

3. Show statistics of archive data quality as functions of
time, data source, schedule type, etc.

4. Prompt for user specification of criteria for inventory
search.

6. DATA FORMAT LESSONS

The original inventory design emphasized
flexible data formats, and the primary lesson has been the
success of this flexibility. In fact, even more flexibility
would be useful. For example, the data in "activity" or
"comment" record fields were originally allowed to be 1,2
or 4-byte integers, or text strings. We have added floating
point fields, and coded text fields (that is, fields that may
contain one of a small set of different strings, rather than
free user text).

The inventory is largely table driven, and the
tables fall into two basic types:

1. Tables with fixed contents, implmented in data
statements embedded in the inventory source
programs.

2. Tables with variable contents, implemented in files.
The inventory software includes user commands for
updating these tables.

There has been a desire to change some of the fixed tables
to variable tables. For example, the inventory is
distributed over several physical files, and there has been
a desire to segregate inventory information for new data
sources into their own files. The names of files are
contained in fixed tables, and it would be convenient if
these were in variable tables. Segregating new sources
into separate files makes it possible for the same "activity"

and "comment" names to be associated with different
record formats for different data sources.

The current structure divides inventory
information into "activity" records, whose field values are
constant over many items, and "comment" records, whose
field values are different for each item. It would be useful
to give the operators ways to link "comment" records to
"activity" records, so that logically it would appear that an
"activity" record had some constant fields and some
variable fields. This could be addressed purely by user
interface changes, but it may be better to actually link
certain fields of "activity" records to fields of "comment"
records.

The inventory implements an approximate
navigation function for GOES images, where the mapping
from image line/element to earth latitude/longitude
depends only on the longitude of a satellite's sub-point.
This approximate navigation is used for rough calculations
of data coverage. Originally the information for
generating this approximate navigation was contained in
simple tables. However, this information is now contained
in a format that is identical to the detailed GOES
navigation, so that it can be used to drive McIDAS
graphics programs.

7. INVENTORY SEARCH

Traditionally, scientists have used the GOES
archive by extracting small data sets from it. This pattern
has largely been dictated by technical and financial limits
on the size of data sets that can be analyzed. Because of
the limits on data set size, scientists have tried to carefully
select their data sets. Thus, in our original inventory
design, we stressed the importance of efficiently
supporting complex criteria for searching the inventory.

A typical request for an archive data set may ask
for

1. Data on three consecutive days in April or May of
1983.

2. On each day, data from images spaced one hour
apart, and from the same hours on each day.

3. Data in a rectangle over the U.S. East coast,
covering the same region in each image.

4. No poor quality images.

This search specifies a relation between data at different
times. Other typical searches may be based on relations
between data from different sources (for example, between
GOES data and surface observations). The inventory
organization was designed to optimize the efficiency of
such searches, using relatively few accesses to secondary
storage.

8. CONCLUSION

The McIDAS GOES inventory documents the
contents of SSECs 120 Terabyte GOES archive, and has
been operating successfully since 1985. The archive has
adapted to changes in satellite operations, and to the new
GOES AAA and GVAR data formats.

The least successful part of the inventory has
been its user interface, but this is improving with a better
understanding of the archive operators' tasks. We also
believe that the archive could benefit from a graphical user
interface under McIDAS-X.

The way scientists use the archive is changing
with the development of the GOES Pathfinder system, and
this will cause some evolution in the role of the archive
inventory system.

The most important lesson of our experience
with the inventory is the success of its flexible data
formats, that have allowed the inventory to adapt to
changing and unpredictable needs.

9. REFERENCES

Hibbard, W. and G. Dengel, 1986: The GOES catalog on
McIDAS. Preprints, Conf. Interactive Information and
Processing Systems for Meteorology, Oceanography,
and Hydrology. Miami, Amer. Meteor. Soc, 98-100.

Hibbard, W., 1992; A highly parallel approach to satellite
archive processing. Preprints, Conf. Interactive
Information and Processing Systems for Meteorology,
Oceanography, and Hydrology. Atlanta, Amer. Meteor.
Soc, 82-83.

Suomi, E., 1982: The Videocassette GOES Archive
System - 21 Billion Bits on a Videocassette. IEEE
Trans, on Geoscience and Remote Sensing, GE-21(1),
119-121.

